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Abstract The high instantaneous luminosity of the CERN
Large Hadron Collider leads to multiple proton–proton inter-
actions in the same or nearby bunch crossings (pileup).
Advanced pileup mitigation algorithms are designed to
remove this noise from pileup particles and improve the per-
formance of crucial physics observables. This study imple-
ments a semi-supervised graph neural network for particle-
level pileup noise removal, by identifying individual particles
produced from pileup. The graph neural network is firstly
trained on charged particles with known labels, which can
be obtained from detector measurements on data or simula-
tion, and then inferred on neutral particles for which such
labels are missing. This semi-supervised approach does not
depend on the neutral particle pileup label information from
simulation, and thus allows us to perform training directly on
experimental data. The performance of this approach is found
to be consistently better than widely-used domain algorithms
and comparable to the fully-supervised training using simu-
lation truth information. The study serves as the first attempt
at applying semi-supervised learning techniques to pileup
mitigation, and opens up a new direction of fully data-driven
machine learning pileup mitigation studies.

1 Introduction

The high instantaneous luminosity of the CERN Large
Hadron Collider (LHC) enables studies of the deep mysteries
of our universe, such as the nature of the Higgs boson [1,2]
and dark matter as well as the origin of the matter-antimatter
asymmetry [3]. The enormous amount of data coming from
increasingly noisy particle collisions, recorded by more com-
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plex detectors, poses various challenges to data collection
and analysis [4–8]. Multiple collisions in the same or nearby
proton bunch crossings lead to overlapping particle inter-
actions, referred to as pileup (PU). To achieve the desired
physics sensitivity with the LHC data, the noise from PU
particles needs to be identified and mitigated effectively in
order to identify signals of interest, i.e., those from the pri-
mary interaction of interest, often referred to as the leading
vertex (LV). The average number of PU interactions during
the LHC data-taking period of 2016–2018 is around 30–40
[9,10]. This is expected to increase in future data-taking peri-
ods and reaches around 150 for the high luminosity LHC [11].
Improvements in pileup mitigation techniques can therefore
have significant effects on the entire current and future LHC
program, through performance gains in the reconstruction of
all high-level physics objects which in turn are used in nearly
all measurements and searches at ATLAS and CMS.

Particles produced from proton–proton (pp) interactions
are reconstructed using the hit information in the track-
ing detectors and the energy deposits in the calorimeters.
Due to the excellent performance of the charged particle
tracking systems and their reconstruction algorithms, the
track and vertex information of charged particles within the
tracker acceptance can be precisely determined [12,13]. Most
charged particles associated with PU vertices can be identi-
fied and removed from the event. This is often referred to as
charged hadron subtraction, and its performance can be found
in [4,14]. The remaining challenge of the pileup mitigation
task falls therefore mostly on neutral particles, including pho-
tons and neutral hadrons.

During data-taking between 2009–2012, most of the
developments of pileup mitigation algorithms focused on
area-based subtractions [15–17], which correct the physics
quantities based on the average pileup density per event.
While these methods provide unbiased estimations of jet
four-momenta, their resolutions usually become worse and
only operate at the level of a whole jet object. More advanced
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particle-level algorithms have been developed later on, such
as SoftKiller [18], Constituent Subtraction [19], and PUPPI
[20]. SoftKiller makes use of the fact that particles from
PU vertices tend to have lower transverse momentum (pT)
than the particles from the LV, and applies a pTcut to
remove low-pT(“soft”) pileup particles. Constituent Subtrac-
tion is generalized from the area-subtraction methods, cre-
ates “ghost”constituents according to the average pileup den-
sity, and modify the particle pTbased on the nearby “ghosts”.
PUPPI, on the other hand, makes use of the neighboring par-
ticle information and defines a local shape variable α for each
particle. Per-particle weights are calculated based on α, and
the particle four momenta are rescaled with their correspond-
ing weights. PUPPI has achieved significantly better perfor-
mance compared with other methods and has been adopted in
many LHC analyses [7]. All of these rule-based algorithms
developed and described above do not need labeled simu-
lated data for training, but the parameters in these algorithms
need to be carefully tuned based on the real data for each
experimental setting.

With the recent rapid developments of machine learn-
ing (ML) algorithms, studies [21–24] have been performed
applying ML techniques to the pileup mitigation task. These
ML-based algorithms adopt convolutional neural network
[21], gated graph neural network [22,25], and attention-
based models [23,24], to learn complex patterns from the
training data and have achieved significantly better perfor-
mance than the classical domain algorithms in simulation
studies. Most of these algorithms require a large amount of
LV/PU label information of input particles to get sufficiently
trained, termed “fully-supervised” methods. However, such
label information for neutral particles is difficult to retrieve
in the full Geant-based simulations [26] due to the complica-
tions of the showering process in the calorimeters, and does
not exist in real collision data. The simulation inaccuracy
makes it non-trivial to train and deploy these algorithms to
the actual experiments. Dedicated model tunings and precise
calibrations are often required, bringing in extra work and
systematic uncertainties [7,27,28]. Alternative ways include
mixing the special low-pileup data with pileup ones, which
requires dedicated low-pileup runs to collect such dataset,
and also further studies to understand and verify the perfor-
mances, e.g., comparing the events in two datasets and cre-
ating training labels, and performances with models trained
on dataset with mislabels.

The goal of our work is to abandon the previous fully-
supervised methods as they rely on the label information of
neutral particles. Instead, a novel semi-supervised machine-
learning technique (SSL) is applied, taking advantage of the
fact that the LV/PU labels of charged particles can still be
precisely determined with reconstruction-level information
of real collision data. Inspired by the success of PUPPI, our
key idea is to capture the effects of neighboring particle fea-

tures on the LV/PU estimation of the target particle, which
does not strongly depend on whether the target particle is
neutral or charged. To achieve this, we first construct a graph
connecting particles close to each other in the physical space,
and then train a graph neural network (GNN) using exclu-
sively the LV/PU labels of charged particles. The trained
GNN is further applied to neutral particles to estimate the
probability of each of them being produced from LV or PU.
To avoid the label leakage and the potential bias due to the
feature shifts from charged to neutral particles, we propose
a random masking technique, which can be viewed as a sep-
arate and unique contribution to the adopted machine learn-
ing technique itself. The GNN mimics PUPPI in the sense
that it explores the neighboring particle features to form a
data-driven local shape variable for pileup mitigation, fully
learned from the real experimental data. It not only aggre-
gates the features in a more expressive way than PUPPI,
but also avoids the complex manually tuning procedure of
PUPPI.

The effectiveness of this SSL approach is carefully studied
and confirmed by comparing the performance of a GNN from
fully-supervised training, a GNN with the same architecture
but from semi-supervised training, and the domain algorithm
PUPPI, in the simulations of different processes and differ-
ent pileup conditions. DELPHES-based [29] simulation sam-
ples are used in order to carry out the fully-supervised train-
ing, with more details provided in later sections. It has been
found that there is no significant performance drop going
from fully supervised training to semi-supervised training,
and the GNNs achieve better performance than PUPPI in
both cases.

The studies in this paper serve as the first attempt of
applying a SSL approach to pileup mitigation studies. This
approach does not rely on any neutral particle pileup label
information from simulations, and therefore the full work-
flow can be performed directly on real collision data, with-
out concerns about differences between data and simulation
or imperfect choices in the truth labeling. Comparisons are
made between techniques using simulated data with truth
labels. With promising results, it is worthwhile to study and
explore similar approaches in more realistic simulations and
real collision data in the near future.

Details of our studies and the results are presented in the
following sections. Section 2 provides a brief overview of
the previous related works. Section 3 describes the details of
the simulation setup and the dataset used. Section 4 presents
the methodology of the semi-supervised training technique,
the network architecture, and the training setup. Section 5
presents the results, with the performance benchmarks of
labeling LV/PU particles, and the subsequently reconstructed
physics quantities such as observables of hadronic jets
and missing transverse momentum. Section 6 discusses the
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results and followup studies. Section 7 summaries the paper
with an outlook for future developments.

2 Related work

As briefly introduced in Sect. 1, SoftKiller, Constituent Sub-
traction, and PUPPI are the three currently widely used pileup
mitigation algorithms which operate on a per-particle basis.
SoftKiller breaks one event into patches and defines a single
pT cut pcut

T based on the pTof the hardest particle in each
patch pmax

T,i :

pcut
T = mediani∈patches{pmax

T,i } (1)

Particles with pTlower than pcut
T will be marked as pileup

and removed from the event in the subsequent reconstruc-
tions. Compared with previous area-based pileup mitigation
algorithms [15–17,19], SoftKiller operates at the individ-
ual particle level and brings significant improvements to the
hadronic jet observables, such as mass, pT, and substructure
variables. However, on the other hand, making use of only
the pTinformation will drop lots of other useful information.

Constituent Subtraction is the generalization of area-based
pileup correction methods. It converts the pileup energy den-
sity ρ to a set of “ghost”particles with transverse momentum
pgT using:

pgT = Ag × ρ (2)

where Ag is a predefined area. A distance metric �Ri,k is
calculated among particle i and ghost k:

�Rik = pα
T

√
(ηi − η

g
k )

2 + (φi − φ
g
k )2 (3)

where α is a parameter free to choose, and in some exper-
iments set to 0; η is pseudorapidity and φ is the azimuthal
angle in collider cylindrical space. Each particle’s pTwith a
certain �Ri,k are corrected based on the comparison with
pgT,k.

PUPPI makes use of the information from local neighbor-
ing particles. The local shape variable α is calculated accord-
ing to:

αi = log
∑
j

ξi j × θ(Rmin < �Ri j < R0) (4)

where �Ri j =
√

(�ηi j )2 + (�φi j )2 is the distance between
the neighboring particle j and the target particle i in the η−φ

space; the sum j is over neighboring particles in the event
with �R < R0 and �R > Rmin; ξi j = pT, j/�Ri j ; and θ is
the Heaviside step function. The local shape α is computed
per particle, and PUPPI weights are assigned to individual
particles accordingly, which describes the probability of each
particle being produced from LV. The particle four momenta
are rescaled based on the PUPPI weights.

Compared with SoftKiller, PUPPI makes better use of the
local neighboring features and the α calculation does not
depend on target particles’ pT. But the critical part of the
PUPPI algorithm is one ad hoc, expert-level metric. There are
some parameters that require extensive studies and manual
tunings, such as the choice of the cone size R0, the selection
of the neighboring particles, and the metric ξi j , which can
be sometimes changed to (pT, j/�Ri j )

2, etc. Hence, more
recent efforts have focused on developing machine learning
approaches to automatically learn such combinations.

PUMML serves as the first attempt to apply modern deep
learning (DL) techniques for pileup mitigation. It treats col-
lision events as images and particles as pixels in the η − φ

grids. With a convolutional neural network applied to extract
local features, it achieves better performance compared with
PUPPI and SoftKiller. However, representing particles as
images requires fixed spatial resolution, which in realistic
cases depends on the η − φ positions and can vary dramat-
ically for different types of particles. For sparse events with
a limited number of particles in certain regions, flat images
would also waste computing resources.

Benefiting from the rapid developments in the DL commu-
nity, deep sets, graph neural networks, and attention mecha-
nisms are introduced in particle physics [30], such as jet flavor
tagging [31,32], calorimeter and event reconstruction [33–
35], and also pileup mitigation studies [22–24]. Treating each
particle as one unit, these DL architectures do not assume
regular detector geometry and can explore much more effec-
tively and efficiently the local structures in collision events.
Models including PUPPIML [22], ABCNet [23], and PUMA
[24] belong to this category and have shown promising results
produced on DELPHES-based [29] simulation data.

Applying these similar architectures on more realistic
GEANT-based [26] simulations and real collision data is the
next major task. However, it is very challenging to apply
such ML algorithms to these more realistic scenarios as the
proposed models need full supervision, i.e., being trained
with a large number of labeled (LV or PU) neutral parti-
cles. The neutral particle pileup label information is hard to
be recovered in GEANT simulations and does not exist in
real collision data. In order to overcome this challenge and
bring these powerful DL models into the realistic deployment
and usage for the LHC experiments, we explore the idea of
semi-supervised learning, where the training is performed on
charged particles, whose LV/PU labels can be determined at
reconstruction level for both data and simulations, and the
trained model is then applied on neutral particles to estimate
their LV/PU probabilities. Note that even though we design
and apply our own neural network architecture in Sect. 4,
the main focus of this study is not the architecture but rather
the semi-supervised training method. The same approach can
generally be applied to other network architectures as well if
they are believed to have better discriminating power.
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3 Datasets

For our studies, simulated datasets have been generated of
different physical processes under different pileup condi-
tions. In this study, we select three pileup conditions where
the numbers of pileup interactions (nPU) are 20, 80, and
140 respectively, and two hard scattering signal processes,
Z(νν)+jets and H(bb̄)+jets. We study these two signal pro-
cesses because they include important physics signatures
which are affected significantly by additional pileup inter-
actions. In the Z(νν)+jets process, the invisibly decaying
Z has the detector signature of missing transverse momen-
tum, pmiss

T , and reconstructing this quantity with high fidelity
is important across a broad range of LHC analyses. In the
H(bb̄)+jets process, jet objects – collimated sprays of many
particles – are produced. Furthermore, the substructure of
the jet is also very important for a wide array of applica-
tions and both jets and jet substructure reconstruction can be
affected by the presence of pileup particles. When studying
the performance of our algorithm, we use the resolution of
the reconstruction of pmiss

T and jet pT and mass as benchmark
metrics. The dataset generation follows a similar setup as in
[22], with no detector-level effects taken into account. We
have also performed some tests on the DELPHES samples
generated using its default CMS card configuration, where
different resolutions are applied to charged and neutral par-
ticles. The effects are found out to be small and most of the
results still hold.

For each signal process, 30K hard scattering events and
30M pileup QCD events are generated separately using
PYTHIA 8.223 [36] with 4C tune [37]. The 30K signal
events are then randomly divided into 3 groups for differ-
ent pileup conditions, each with 10K signal events. Particles
from the hard scattering signal process are overlaid at particle
level with the ones from pileup events, which are randomly
selected with nPU following a Poisson distribution, central-
ized at nPU = 20, 80, and 140, respectively. The overlaying
process is done through DELPHES 3.3.2 [29]. Along the
beam axis direction, the vertices are randomly distributed
following the Gaussian distribution with a spread of 5.3 cm.
The allowed maximum spread is 25 cm. No spread in the
transverse plan of the beam axis is applied. All particles with
pT > 0.5 GeV are kept in the output particle collection.
Checks are done by lowering the minimum neutral particle
pT to 0.1 GeV, where no significant differences are found on
the jet and pmiss

T performances.

4 Methodology

The details of the problem formulation and the semi-
supervised training setup are provided in this section.

4.1 Formulating pileup mitigation as a graph-based SSL
problem

Graph-based SSL is a widely-used technique in the ML com-
munity to handle the case where training samples (labeled)
and testing samples (unlabeled) are connected as nodes in
a graph [38,39]. More importantly, the graph structure that
connects these nodes also indicates a certain level of labeling
information. For example, it is widely used to detect social-
group labels of individuals in social network analysis [40–
42], where two individuals denoted by two nodes are more
likely to be connected if they share the same social-group
label. Graph-based SSL effectively combines the graph struc-
ture, the labels of training samples, and the features of both
training and testing samples all together to predict the labels
of testing samples with high accuracy.

The pileup mitigation problem can be naturally formu-
lated as a graph-based SSL problem by utilizing the geomet-
ric relationship between charged particles and neutral parti-
cles, and the labels of charged particles to make predictions
over neutral particles. Specifically, as introduced in Sects. 1
and 2, charged particle labels (LV or PU) can be precisely
determined in real experiments for the most part, while neu-
tral particle labels remain unknown and need to be inferred.
Because of the short range of hadronization and parton show-
ers, and also the larger boosts from higher-pTenergetic par-
ticles, charged and neutral particles from the LV tend to be
more localized in certain regions of the η − φ space, while
particles from PU are more isotropically distributed. Explo-
ration of such local connections between charged and neutral
particles helps identify individual particles produced from
LV or PU. Therefore, an effective learning procedure of a
model should not only leverage the self features of the neu-
tral particle, but also the features of its neighboring particles,
in particular the labels of its neighboring charged particles,
which the graph-based SSL is by definition designed for. For
each event in our study, we view particles as nodes and con-
nect particles with edges if their distance in the η − φ space
is small. Note that building graph formulation also naturally
fits the sparse nature of the particles located in the geometric
space. Alternative ways such as viewing the data as images in
the η−φ space with regular pixels and rounding the locations
of particles onto those pixels, often suffer from the rounding
error and a granularity selection issue.

4.1.1 Unique ML aspects of the pileup mitigation problem

There are also two fundamental differences between the
pileup mitigation problem and a traditional graph-based SSL
problem to be noted:

(1) Graph-level generalization. Pileup mitigation requires
graph-level generalization that traditional graph-based
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SSL does not need. Traditional graph-based SSL typ-
ically adopts only one single graph, e.g., a social net-
work, to connect all training and testing samples. In
pileup mitigation, each event forms one graph consist-
ing of both charged and neutral particles. The obtained
model is also expected to be generalized across different
types of events (graphs). In our studies, multiple events
(graphs) are used to train and test the model.

(2) Particle-level label usage. The way to use labels in
pileup mitigation is fundamentally different from that
in traditional graph-based SSL. Traditional graph-based
SSL typically assumes that labels of training samples
are only used to supervise the model training and not
used as input features of the model. However, in pileup
mitigation, the labels of charged particles to supervise
the model training are also needed to feed the model as
features, because they provide very informative informa-
tion for the inference of neighboring particles. If we use
the labels of all charged particles both as the input fea-
tures of the model and to supervise the model training,
the obtained model cannot be applied to the inference
of neutral particles as neutral particles do not have such
labels. To address such a problem, we propose a random
masking strategy, where we randomly mask the charged
particles to decide whether their labels are used to super-
vise the model training or as input features. The detailed
masking process will be discussed in the following sec-
tion.

4.2 Detailed approach

The four steps of the developed approach to train the model
are provided in Fig. 1.

(1) Graphs are constructed on an event-by-event basis where
each node in the graph is one particle.

(2) A random selection and masking of charged particles are
carried out.

(3) A GNN is applied to aggregate neighboring features and
update the node representations.

(4) The LV/PU prediction is computed based on the final
node representations.

Details are documented in the following subsections. It is
worth pointing out that although the GNN takes the entire
graph as input, only those selected and masked charged par-
ticles will be used to supervise the model training, specifi-
cally for computing the loss function, performing backward
propagation, and optimizing the model parameters. At the
inference stage, the masking procedure is excluded and the
inference is conducted on all neutral particles. We explain
the details of the approach as follows.

4.2.1 Graph construction

One graph is constructed per event to establish the relations
between particles and their neighbors. Particles are viewed
as nodes and two particles are connected if their distance
in the η − φ space, �R = √

(�η)2 + (�φ)2, is smaller
than a certain threshold R0. A smaller threshold would result
in a sparser graph, easier to compute but with less neighbor

Fig. 1 A diagram illustrating the SSL model training flow
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Fig. 2 Node representation hv update for the kth iteration

Table 1 Message passing and representation updates in the graph neural network

Message formulation: muv =
[
hk−1
u , hk−1

v ,�ηuv,�φuv,�Ruv, hk−1
g

]
(5),

Aggregation: mv = ∑
u∈N (v)guvmuv, where guv = Sigmoid(W1muv + b1) (6)

Node-level gate: qv = Sigmoid(W2[hk−1
v ,mv] + b2) (7)

Node update: hkv = ReLU(qv(W3hk−1
v + b3)) + (1 − qv)(W4mv + b4)), (8)

information, while a larger threshold would result in a denser
graph, with more neighbor information but more computing-
intensive. R0 = 0.4 is chosen in this study.

4.2.2 Graph neural networks

Graph neural networks (GNN) have shown to be one power-
ful tool for graph-based SSL [39]. GNN first associates each
node with a node representation based on the initial node
features and then updates node representations by aggregat-
ing and combining with the representations of the neigh-
boring nodes. One widely-used GNN model is GraphSage
[43], which takes an average of neighboring node features
for node representation update. Several previous works in
applying machine learning techniques for pileup mitigation
also chose GNN as their models [22,24].

Even though many varieties of GNN models can be
applied to our framework in pileup mitigation, we focus on
using a variant of the gated GNN model [44]. Since there
are certain scenarios where LV particles are surrounded by
PU particles, the gated GNN model can automatically learn
the gates to control the aggregation of neighboring particles’
representations. In contrast, the GraphSage model does not
have such control when averaging the representations of the
neighbors.

Let hkv denote the node v representation at k-th layer.
Our gated GNN model, as shown in Fig. 2, is formulated
as shown in Table 1: where �η,�φ,�R are the geometric
features that characterize two particles’ spatial coordinates
differencesη,φ, and distance�R = √

�η2 + �φ2, andhg is
a global node, which is calculated as the average of all node
representations in one graph. The node representations are
initialized as particle features that in our studies include the

particle transverse momentum pT and one-hot label encod-
ing, that is, (1, 0, 0) for PU charged particles, (0, 1, 0) for LV
charged particles, (0, 0, 1) for neutral particles and masked
charged particles, where the procedure of masking charged
particles will be introduced in Sect. 4.2.3. For a target node v,
in Eq. (6), guv ∈ [0, 1] is a weight learned for each neighbor-
ing node u ∈ N (v) to control the amount of information that
is passed to v. In Eq. (7), another gate qv ∈ [0, 1] controls
the portion between the representation at (k − 1)-th layer
hk−1

v and the aggregation from the neighbors mv , when for-
mulating the new node representation hkv in Eq. (8). The node
representations of the selected particles in the final layer of
the GNN are put through a multi-layer perceptron [45] with
two hidden layers to make the final prediction.

4.2.3 Masking charged particle and random selection

The primary goal of masking a subset of charged particles is
to make the model leverage the labels (LV or PU) of charged
particles in two different ways simultaneously. On the one
hand, the masked charged particles are used to supervise the
model training, with the expectation that the model trained
on these charged particles can be applied to infer the labels of
neutral particles in the later testing stage. Therefore, the fea-
tures of these charged particles in the training should mimic
the ones of neutral particles, and their LV/PU labels should
not be used as the input features. On the other hand, the
LV/PU label information of neighboring charged particles
serves as important inputs for predicting the labels of target
particles. Thus the label information of neighboring particles
should be kept in the inputs.

Note that such masking procedure is at risk of breaking the
original structure of the data and thus may introduce biases.
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Table 2 The first four columns include the mean and variance of four types of particles under different pileup conditions per graph. The last two
columns indicate the number of charged particles being randomly selected for training per graph in one epoch

nPU # Particles (in total) # Selected particles (for training)

Charged LV Charged PU Neutral LV Neutral PU Charged LV Charged PU

20 69 ± 34 407 ± 154 43 ± 22 203 ± 80 7 35

80 67 ± 33 1630 ± 310 42 ± 22 813 ± 160 7 126

140 68 ± 34 2846 ± 408 43 ± 22 1423 ± 213 7 224

To reduce such bias, our model only masks a small portion
of the charged particles per event. However, masking only a
small portion of charged particles for training may not suffi-
ciently leverage the labels. To achieve a better usage of the
labels, we propose the random selection mechanism. That is,
for each event, we perform multiple-time random selections
of the charged particles for masking. This guarantees that for
each event each time, only a small portion of charged par-
ticles are masked and used to supervise the model training,
while most of the charged particles of this event can be even-
tually used to supervise the model after running the model
multiple times on this event.

Another practical consideration is regarding the time com-
plexity of model training. Although the random masking
strategy guarantees a sufficient usage of the labels and the
data, setting the masking portion too small may slow down
the training procedure, because a huge time of model run-
ning per event is needed to guarantee a good coverage of the
masking procedure. To balance the tradeoff, in our exper-
iments we randomly select about 10% of charged particles
per event each time. Table 2 includes the numbers of selected
charged LV and PU particles per graph per epoch and the
total number of charged LV and PU particles per graph. With
about tens of training epochs, all charged particles should be
selected as training data at least once by random selection.
Even though different pileup levels seem to affect the actual
numbers of selected particles greatly, experiments show that
the model is robust when it is trained on one pileup level and
tested on another pileup level.

4.3 Training details and complexity

We also compare our SSL model with a model that has the
same architecture but is trained using fully supervised learn-
ing (SL), i.e, using the labels of neutral particles without
any masking strategy. The SL model needs to be trained
and tested over different events, though our SSL model
does not need to. To make fair comparisons, for experi-
ments where nPU = 80, there are 3000/1000/1000 events for
training/validation/testing. When nPU = 140, 2000/800/800
events are used for training/validation/testing. For the nPU =
140 scenario, there are more particles per event, so the total
number of events is reduced to maintain reasonable memory

usage. To save graph construction time for random mask-
ing, a masking vector is implemented to efficiently mask the
charged particles for training each epoch. The vector can be
easily altered to mask another set of training particles without
constructing a new graph entirely. During training, the model
is trained until convergence, which normally takes about 5
times running over all the events for training. The total num-
ber of parameters is around 1300 and can be trained within
6 hours on one NVIDIA Tesla V100 or P100.

In order to reduce the training complexity, we construct
graphs by only connecting particles with �R ≤ 0.4. This
restriction in �R, in this case, will make the entire graph
sparse to reduce the time for graph construction, training,
and inference. The graph construction time is approximately
0.1 s per event (per graph) and the inference time is about
30 ms for a graph with �R ≤ 0.4 and about 50 ms for a graph
with �R ≤ 0.8 at nPU = 80. The inference time becomes
longer if we increase �R when constructing the graph.

5 Results

Experiments are carried out to verify the effectiveness of the
model trained via SSL and its ability to be adapted to different
nPU levels. The performance with PUPPI, semi-supervised
training, and supervised training are compared in this section.
Firstly, we examine the performance at particle level, using
the receiver operating characteristic (ROC) curves and the
area under the ROC curve (AUC) scores trained and tested
under different pileup conditions. Then, the performance of
physics observables, such as the hadronic jet mass and pT,
and also the missing transverse momentum pmiss

T , are stud-
ied and compared among the three approaches. Finally, some
event display examples are provided, visualizing the differ-
ences and improvements of (semi-)supervised results with
respect to PUPPI.

5.1 Performance at particle level

Figure 3 shows the ROC curves and Table 3 lists the area
under the ROC curve (AUC) score trained and tested in dif-
ferent nPU conditions. These plots show the performance at a
per-particle level of the LV and PU labels. In all these cases,
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Fig. 3 The ROC curves for the gated GNN on neutral particles under nPU = 80 for SSL, fully-supervised learning, and the domain PUPPI
algorithm. The small plot inserted under the ROC curve is the log scale of the lower left region of the ROC curve for better visualization

when training and testing at the same pileup level, both SL
and SSL outperform PUPPI by around 10%, and the perfor-
mance decrease from SL to SSL is within a few percent. An
inset shows the plot in the log-log scale where smaller false
positive rates are important given the much larger number of
PU particles compared with the number of LV particles in
one event. How the per-particle performance is manifested
in physics object performance will be explored below.

When training and testing under different pileup condi-
tions, SL models seem to be more robust to different pileup
conditions, i.e., the AUC scores are more consistent across
different training and testing conditions, whereas the SSL
model is more sensitive to the pileup condition. An interest-
ing observation is that the SSL model performs well when

extrapolating to a higher nPU condition, but not the reverse
order. It is interesting to further improve the generalization
capability of the model across different pileup conditions.
We leave it as a future research direction.

5.2 Performance on jet observables

The GNN model output, which is an N-dimensional array
of float numbers between 0 and 1 (N is the total number of
particles per event), can be interpreted as the probability of
how likely each corresponding particle is produced from the
LV. Similar to the approach adopted in the PUPPI algorithm,
the four-momenta of all particles are rescaled with the corre-
sponding GNN outputs. The jets are then clustered with the
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Table 3 AUC scores (%) of the PUPPI algorithm, supervised (SL) and semi-supervised (SSL) models trained and tested on three different pileup
conditions: nPU =20, 80, and 140

Training testing Model type nPU = 20 nPU = 80 nPU = 140

nPU = 20 PUPPI 63.6 64.2 64.1

SL 76.6 75.5 74.3

SSL 73.9 70.7 67.6

nPU = 80 PUPPI 63.6 64.1 64.1

SL 75.4 75.1 74.7

SSL 71.8 73.2 73.5

nPU = 140 PUPPI 63.7 64.2 64.1

SL 69.5 75.2 75.0

SSL 53.0 71.7 72.9

particle rescaled four-momenta using the anti-kt jet cluster-
ing algorithm [46], with the radius parameter R chosen to
be 0.7 to be consistent with previous related work [22]. Jets
clustered with the generator-level LV particles serve as the
ground truth information for comparison.

We study the leading jet in the event with truth pTabove
20 GeV in the H(bb̄)+jets sample. Because this process is
inclusive, the typical jet pTis approximately 60 GeV, nearly
half the Higgs mass. Figure 4 shows the reconstructed jet
mass and pTresolutions with respect to the truth-level jets
for the scenario where nPU = 80. Resolutions are defined as
q83 −q14, where q83 and q14 are the 84% and 14% quantiles.
We study reconstructed jets which are within �R = 0.1 of a
truth-level jet. Compared with PUPPI, the bias and resolution
of jet masses and pTclustered with both the semi-supervised
and fully-supervised algorithms are significantly smaller.
This indicates that the GNN approach does both a better
job in predicting the overall aggregate pTof the jet object,
and also its substructure using the jet mass metric. Improve-
ments over PUPPI are comparable to other DL approaches
using GNNs [22]. Compared with the SL approach, the per-
formance drop of the SSL approach is relatively small. These

are consistent with the per-particle performance results and
show the improvements provided by the SL and SSL mod-
els. The results are also consistent across different pileup
scenarios.

Figure 5 shows the relative jet mass and jet pTresolutions
as a function of nPU, where better resolutions can be observed
across all the tested nPU conditions.

5.3 Performance on missing transverse momentum

We study the missing transverse momentum (pmiss
T ) resolu-

tion performance of our algorithm using Z(νν)+jets events.
The pmiss

T is the negative vector sum of the particles in the
event and are calculated with the rescaled four-momenta of
all particles. We compare the SL and SSL approaches with
the performance of PUPPI and the results are shown in Fig. 6.
Compared with PUPPI, the resolution is significantly better
(∼ 20%), with some minor deviation in the mean value from
zero. This can potentially be due to the SSL misidentifying
some LV particles as PU ones, and removing these from the
LV collection. The bias nevertheless is small and can be mit-

Fig. 4 Performance on jet mass and jet pTwith different pileup mitigation techniques for nPU = 80
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Fig. 5 Resolutions of jet mass (left) and jet pT(right) as a function of nPU

Fig. 6 Resolution of the missing transverse momentum of events for
the different pileup mitigation models for nPU = 80

igated via offline calibrations. The results are also consistent
across different pileup scenarios.

5.4 Event visualization

Figure 7 provides one event visualization of the particle dis-
tributions in the η − φ space with different pileup mitiga-
tion algorithms: PUPPI (top right), SL (lower left), and SSL
(lower right). The marker size scales with the particle pT.
It can be observed that while PUPPI leaves some PU rem-
nants, both SL and SSL models clean the PU particles more
efficiently while preserving the LV particles.

In summary, the performances of all these particle-level
metrics and physical observables are consistent and show the
improvements of the SSL models with respect to the currently
widely used domain algorithm PUPPI. Compared with the
traditional SL approach, the performance decreases with the
novel SSL approach is negligible. However, the SL approach

cannot be directly applied to the real experimental data while
the SSL approach can. The trainings and evaluations are cur-
rently all performed on theDELPHES-based simulation data,
and their effectiveness will be carefully re-examined on the
GEANT-based simulation and real collision data in future
studies.

6 Discussion on the connections with PUPPI

This section briefly discusses the connections between the
Graph (S)SL model and PUPPI, in both the algorithm design
and outputs, in order to help provide some insights into what
the model learns and where further improvements could be
realized.

6.1 Model design and understanding behavior

As briefly mentioned in previous sections, the GNN model
architecture is designed to mimic the α calculation in PUPPI,
with trainable parameters directly learned from data that can
be more expressive and powerful. The similarities and dif-
ferences between PUPPI and the GNN model are compared
in detail here:

(1) Targets particle self features. PUPPI does not use parti-
cle self features while the GNN model does. In PUPPI,
only the neighboring particle features are included when
determining PUPPI weights, whereas in the GNN model
both the target and the neighboring particle information
are used in Eq. (8). This is potentially very useful in some
practical cases: for example, for high-pTparticles which
are highly likely to be produced from the LV, PUPPI usu-
ally requires one additional step to manually assign high
weights but the GNN is expected to handle these well
automatically.
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Fig. 7 Some event display examples of the particle distributions in the η − φ space. The upper left plot is using ground truth information. The
upper right plot is after applying PUPPI. The lower left and right plots are after applying SL and SSL, respectively

(2) Selections/Gates to remove noise. When aggregating
information from neighboring particles, different selec-
tion criteria can be applied to remove noisy information
and keep only the useful ones. Within the tracker accep-
tance, PUPPI uses all the neighboring charged LV parti-
cles. In the GNN model, Eq. (6) does a similar job - the
gate gμν is applied to determine the weight (importance)
of the neighboring information, and therefore the noisy
information can be reduced.

(3) Choice of metric. For the neighboring particles pass-
ing the selection, PUPPI utilizes their pTand the �R
distance with respect to the target particle, and defines
the metric pT, j/�Ri j . Different metric options, such as
(pT, j/�Ri j )

2, or p2
T, j/�Ri j were also studied in the

PUPPI developments. Claiming what is the best choice
is ad-hoc and takes a lot of human labor. This is avoided
in the GNN model as more information is the neigh-
boring particles are included in the inputs, such as the
pT , η, �η, �φ, �R, and the metric with more compli-

cated and powerful forms can be learned inside the GNN
model.

(4) Generalization of PUPPI. The Graph SSL model can
also be viewed as a direct generalization of PUPPI
because both of them learn or tune their parameters by
only using charged particles whose labels are available
in real collision data. In contrast, the Graph SL model
needs extra labeling information from neutral particles.

Figure 8 shows the pT-weighted �R distribution of the
LV (left) and PU (right) particles in the proximity of one
truth-level jet in H(bb̄)+jets events. The �R is calculated
between the particle direction and the associated jet axis,
and the particle pTis normalized to the truth-level jet pTand
served as the weight for each entry in the two histograms.

From the right plot, it can be observed that PUPPI in gen-
eral removes around 50% of the PU particles, while the SSL
model removes around 75% of the PU particles. From the left
plot, compared with PUPPI, in the central region (small �R)
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Fig. 8 The pT-weighted �R distributions of the LV (left) and PU (right) particles locally to a truth-level jet

where most of the LV particles exist, SL and SSL models
keep similar amounts of LV particles as PUPPI. In the region
far from the jet axis (large �R) where fewer LV particles
exist, both SL and SSL models remove more LV particles
than PUPPI. From both these plots, it is clear that generally
the Graph SL and SSL models are more aggressive in remov-
ing particles at the edge of the jets than PUPPI which leads to
improved physics performance. However, this also indicates
areas of potential further improvements.

6.2 Output comparison

We would also like to further explore the model outputs and
directly compare them to PUPPI outputs. Figure 9 shows the
outputs of the GNN model (left) and PUPPI weights (right)
for neutral particles. For the pileup neutral particles, most
of them get a score close to 0. For the LV neutral particles,

a fraction of them get assigned a score close to 1, correctly
identified as LV particles, while there are still some assigned
a weight close to zero, indicating spaces for future improve-
ments. In general, the Graph SL and SSL models tend to cre-
ate a more gradual assignment of LV-like vs PU-like where
the weights are bunched more towards 0 or 1 whereas PUPPI
will say either definitely the particle is PU or else gives a
much more uniform probability. The effect is exacerbated in
the case of SL vs. SSL where the SL model tends to give some
particles a weight closer to 0.5. However, given that the plots
are presented with a log y-axis scale, these are generally a
small fraction of the overall particles.

Figure 10 shows the GNN model outputs with respect to
the PUPPI weights (left) and the neutral particle pT(right).
The correlation between GNN outputs and PUPPI weights
is not strong, where most of the particles with high PUPPI
weights still get relatively small GNN outputs. On the right

Fig. 9 GNN weight (left) and PUPPI weights (right) on neutral particles
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Fig. 10 GNN output with respect to the PUPPI weights (left) and the pTof neutral particles (right)

plot, for particles with pTbelow 1 GeV, most of them get
assigned weight close to 0; as pTgoes higher, the weight
increases, more likely to be produced from the LV.

In summary, it can be observed that the GNN models tend
to be more powerful at exploring the high-dimensional input
feature space and more efficient in removing pileup noises,
especially in the regions with less LV activities (i.e., large
�R with respect to the LV jet axes). While the LV particles
with high pTor close to the jet axes are preserved by the GNN
model, it is less efficient for keeping the LV information far
from the jet axes. This can be further studied and potentially
improved in future studies.

7 Summary and outlook

This paper presents the first study of semi-supervised ML
techniques with a graph neural network for the pileup mit-
igation task. The task is cast naturally as a graph learning
problem, the training is performed on labeled charged par-
ticles, and the inference is evaluated on unlabeled neutral
particles. This is performed through a careful feature mask-
ing process which trains on charged particles as if they were
neutral particles. By approaching pileup mitigation as a semi-
supervised learning problem, we can train from the data and
avoid complicated issues arising from (a) data and simulation
differences for soft and hard-to-model physics and (b) label-
ing neutral particles which is inherently challenging given
the relatively poor spatial and energy resolution from detect-
ing neutral particles. Compared with PUPPI, the Graph SSL
algorithm is more powerful at removing pileup particles,
while maintaining the leading vertex particle information.
Improvements are observed at the particle-level LV/PU iden-
tification and physics observables such as jet pTand mass,
and pmiss

T .

This study serves as a proof of concept, with promising
and extensive future studies planned to apply this technique to
train directly on real collision data, without any dependence
on the ground-truth labeling information. In such cases where
the forward region has no tracking information, the momen-
tum and spatial resolutions are expected to be worse than the
central ones. We believe that transfer learning techniques can
be explored to properly apply the training in the central region
to the forward region, and to mitigate the potential larger
differences between charged and neutral particles in more
realistic scenarios. We show that treating the pileup mitiga-
tion task as one that can be machine-learned from data with
minimal dependence on simulation is particularly promising
and opens up a number of new and interesting challenges for
research.

Acknowledgements We would like to thank Maurizio Pierini and
Jean-Roch Vlimant for providing us with the PUPPIML datasets to
get started with the training. YF and NT are supported by Fermi
Research Alliance, LLC under Contract no. DE-AC02-07CH11359
with the Department of Energy (DOE), Office of Science, Office of
High Energy Physics and the DOE Early Career Research Program
under Award no. DE-0000247070. GP and ML are supported by the
DOE, Office of Science, Office of High Energy Physics Research Pro-
gram under Award no. DE-SC0007884, and the National Science Foun-
dation (NSF) under award number 2117997 (A3D3). TL, SL, and PL
are supported by the NSF award HDR-2117997.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Details in the
data generation is provided in Sect. 3. The dataset is relatively large
and hard to make them all public. Similar studies usually do not publish
their dataset.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article

123



99 Page 14 of 16 Eur. Phys. J. C (2023) 83 :99

are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Additional material

We emphasize that the merit of this paper lies in demonstrat-
ing the possibility and effectiveness of the semi-supervised
learning approach for the pileup mitigation task. Therefore
the studies in the main contents of this paper are carried on an
idealized configuration. While working on studying the per-
formance of this approach with Geant-based full simulations,
we have also verified the performance on DELPHES sam-
ples with the resolution effects included. We use the default
DELPHES v3.5.0 CMS card, where the momentum reso-
lutions for charged particles and neutral ons are different.
We followed the same strategy to train and test the model
(The main architecture is the same and the semi-supervised
approach is unchanged, with more convolutional operations
and more depth in the GNN part to capture more features).
Figure 11 shows the ROC curve of the test performances
on the neutral particles and the jet mass distributions on the
Z(νν) + jets samples. As can be seen, the performance with
the semi-supervised training approach does not degrade sig-
nificantly from the fully-supervised one, and is consistently
better than PUPPI performance. Therefore, we can conclude
that our semi-supervised approach is still effective on the

DELPHES simulation samples with different detector effects
on charged and neutral particles.

As discussed in the main contents, the effectiveness of this
semi-supervised approach and the performances still need to
be carefully evaluated on Geant-based full simulations and
the real collision data, which is currently undergoing and will
be discussed in the future studies.
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