
Eur. Phys. J. C (2022) 82:1098
https://doi.org/10.1140/epjc/s10052-022-11081-7

Regular Article - Theoretical Physics

Schwarzschild–Finsler–Randers spacetime: geodesics, dynamical
analysis and deflection angle

E. Kapsabelis1,a, P. G. Kevrekidis2,b, P. C. Stavrinos3,c, A. Triantafyllopoulos1,d

1 Section of Astrophysics, Astronomy and Mechanics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis
15784, Athens, Greece

2 Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305, USA
3 Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis 15784, Athens, Greece

Received: 15 August 2022 / Accepted: 25 November 2022 / Published online: 6 December 2022
© The Author(s) 2022

Abstract In this work, we extend the study of Schwarzschi
ld–Finsler–Randers (SFR) spacetime previously investigated
by a subset of the present authors (Triantafyllopoulos et al.
in Eur Phys J C 80(12):1200, 2020; Kapsabelis et al. in Eur
Phys J C 81(11):990, 2021). We will examine the dynam-
ical analysis of geodesics which provides the derivation of
the energy and the angular momentum of a particle moving
along a geodesic of SFR spacetime. This study allows us to
compare our model with the corresponding of general rela-
tivity (GR). In addition, the effective potential of SFR model
is examined and it is compared with the effective potential of
GR. The phase portraits generated by these effective poten-
tials are also compared. Finally we deal with the derivation
of the deflection angle of the SFR spacetime and we find that
there is a small perturbation from the deflection angle of GR.
We also derive an interesting relation between the deflection
angles of the SFR model and the corresponding result in the
work of Shapiro et al. (Phys Rev Lett 92(12):121101, 2004).
These small differences are attributed to the anisotropic met-
ric structure of the model and especially to a Randers term
which provides a small deviation from GR.

1 Introduction

Einstein’s field equations in general relativity predict that
the curvature is produced not only by the distribution of
mass-energy but also by its motion [4]. Candidate met-
ric geometries that can intrinsically describe the motion
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are the Finsler and Finsler-like geometries which consti-
tute metrical generalizations of Riemannian geometry and
depend on position and velocity/momentum/scalar coordi-
nates. These are dynamic geometries that can describe locally
anisotropic phenomena and Lorentz violations [5–15] as well
as with field equations, FRW and Raychaudhuri equations,
geodesics, dark matter and dark energy effects [16–21]. By
considering this approach, the gravitational field is inter-
preted as the metric of a generalized spacetime and consti-
tutes a force-field which contains the motion. This possibility
reveals the Finslerian geometrical character of spacetime.

In the framework of applications of Finsler geometry,
many works in different directions of geometrical and phys-
ical structures have contributed to the extension of research
for theoretical and observational approaches during the last
years. We cite some works from the literature of the applica-
tions of Finsler geometry [7,8,13,21–32].

In the first period of development of applications of
Finsler geometry to Physics, especially to General Rela-
tivity, remarkable works were published by Randers [33],
Horváth [34] and Moór [35]. Later, Einstein’s field equa-
tions were formulated in the Finslerian framework by the
works of Horváth [34,35], Takano [36] and Ikeda [37]. In
these studies, the field equations had been considered with-
out calculus of variations. Asanov [38] explored the Finsle-
rian gravitational field by using Riemannian osculating meth-
ods and derived Einstein field equations using the variational
principle. A class of Finsler spaces (FR standing for Finsler–
Randers) originated by Randers [33] who studied the physical
properties of spacetime with an asymmetrical metric which
provides the uni-direction of time-like intervals. This con-
sideration gives a particular interest in a generalized metric
structure of the Riemannian spacetime. Based on this form of
spacetime, it is possible to investigate the gravitational field
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with more degrees of freedom in the framework of a tan-
gent/vector/scalar bundle [31,39,40]. The FR cosmological
model was first introduced in [41,42]. It is of special interest
since the Friedmann equations include an extra geometrical
term that acts as a dark energy-fluid. The Finsler–Randers-
type spacetime can be considered as a direction-dependent
motion of the Riemannian/FRW model.

The local anisotropic structure of spacetime affects the
gravitational field and leads to modified cosmological con-
siderations. Based on Finsler or Finsler-like cosmologies, the
Friedmann equations include extra terms which influence the
cosmological evolution [17,20,31,39]. When Lorentz sym-
metry holds, the spacetime is isotropic in the sense that all
directions and uniform motions are equivalent. The intro-
duction of a vector field in the structure of spacetime causes
relativity violations and local anisotropy which arise from
breaking the Lorentz symmetry and which affect the metric,
curvature, geodesics and null cone [43–50].

In the framework of modified gravitational theories with
Finsler–Randers type structure, two fundamental theories of
investigation for the gravitation and cosmology can be devel-
oped. The first one is connected with the Friedmann–Finsler–
Randers cosmological model and the second one is related
to the study of SFR spacetime.

The introduction of a force field causes an asymmetry
to a pseudo-Finslerian metric. Asymmetrical and locally
anisotropic models such as Finsler–Randers spacetime can be
connected with the chiral fields in Cosmology for descrip-
tions of the inflationary epoch and the present accelerated
expansion of the Universe [51].

An FR space has a metric function of the form

F(x, y) = (−aμν(x)yμyν)1/2 + uα yα (1)

where uα is a covector with ||uα|| � 1, yα = dxα

dτ
and aμν(x)

is a pseudo-Riemannian metric for which the Lorentzian
signature (−,+,+,+) has been assumed and the indices
μ, ν, α take the values 0, 1, 2, 3. The geodesics of this space
can be produced by (1) and the Euler–Lagrange equations.
If uα denotes a force field fα and yα is substituted with dxα

then fαdxα represents the spacetime effective energy pro-
duced by the anisotropic force field fα , therefore Eq. (1) is
written as

F(x, dx) = (−aμν(x)dxμdxν
)1/2 + fαdxα (2)

This form of metric provides a dynamical effective structure
of spacetime. A small differentiation is presented between
GR and the FR gravitation model. This is because of the
work provided by the one-form Aγ which gives an exter-
nal motion to the Riemannian spacetime. This motion is an
internal concept for the FR spacetime.

A cosmological model can be introduced by Eq. (2) if we
assume the FRW cosmological metric instead of the general
type of the Riemannian one [41,42]. In this case, we get a

Friedmann–Finsler–Randers cosmological model in the fol-
lowing form

aμν(x) = diag

[
−1,

a2

1 − κr2 , a2r2, a2r2 sin2 θ

]
(3)

This model was also further studied later in [9,21,52–68].
In this work, we will follow the SFR model presented in

[1]. The metric gμν is the classic Schwarzschild one:

gμνdxμdxν = − f dt2 + dr2

f
+ r2dθ2 + r2 sin2 θ dφ2 (4)

with f = 1 − Rs
r and Rs = 2G M the Schwarzschild radius

(we assume units where the speed of light c = 1).
Hereafter, we consider an α-Randers type metric as the

one in Eq. (1) which is distinguished from the β-Randers type
metric that is investigated in the Standard Model Extension
(SME) [7,8,11,46].

The metric vαβ is derived from a metric function Fv of the
α-Randers type [1]:

Fv =
√

−gαβ(x)yα yβ + Aγ (x)yγ (5)

where gαβ = gμνδ̃
μ
α δ̃ν

β is the Schwarzschild metric from
Eq. (4) and Aγ (x) is a covector which expresses a deviation
from general relativity, with |Aγ (x)| � 1, i.e., we assume
that the deviation is small. In this work, we continue the
investigation of the Schwarzschild–Finsler–Randers space-
time (SFR) which has been studied in previous works by a
subset of the present authors [1,2].

In this article, we examine the influence of extra gravita-
tional effect which is imprinted in the geodesics of an SFR
spacetime and we compare it with that of GR case. We prove
that the additional amount of energy included in the equation
of geodesics (see Eqs. (28)–(31)) stems from the geometry
and the form of the SFR model.

This approach is also applied in the Newtonian gravita-
tional theory and we obtain an interesting relation between
the fundamental term A0(r) of SFR gravitational theory and
the Newtonian potential. This relation also provides a phys-
ical interpretation of the extra term A0(r) in the Newtonian
framework.

In addition, we calculate the deflection angle for the SFR
model and we compare its value with that of the GR case.
We also show that there is a relation between the deflection
angle of SFR and of Shapiro et al. [3] observational result
of the deflection angle for very small angles (φ ≈ 0) near a
fiducial geodesic.

The present work is organized as follows. The structure of
the model is given in Sect. 2. In this framework, the geodesics
are studied and a dynamical analysis is presented in Sect. 3.
We also compare our results with GR and discuss the corre-
sponding similarities and differences and we give an appli-
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cation to the Newtonian framework. A dynamical analysis
for the effective potential of this spacetime is provided in the
Sect. 4, where upon suitable assumptions, the phase portraits
of both models (SFR and GR) are presented. In Sect. 5,
we study the deflection angle of the SFR spacetime and we
compare it with very small values of the deflection angle of
Shapiro et al. [3]. Finally, the conclusions of our study and
some possible directions for future exploration are presented
in Sect. 6.

2 Basic structure of the model

In this section, we briefly present the underlying geometry of
the SFR gravitational model, as well as the field equations for
the SFR metric. The solution of these equations for this metric
is presented at the end of the section. An extended study
of this model can be found in [1,40]. The Lorentz tangent
bundle T M is a fibered 8-dimensional manifold with local
coordinates {xμ, yα} where the indices of the x variables are
κ, λ, μ, ν, . . . = 0, . . . , 3 and the indices of the y variables
are α, β, . . . , θ = 4, . . . , 7. The tangent space at a point
of T M is spanned by the so-called adapted basis {E A} =
{δμ, ∂̇α} with

δμ = δ

δxμ
= ∂

∂xμ
− Nα

μ(x, y)
∂

∂yα
(6)

and

∂̇α = ∂

∂yα
(7)

where Nα
μ are the components of a nonlinear connection N =

Nα
μ(x, y) dxμ ⊗ ∂̇α .
The nonlinear connection induces a split of the total space

T T M into a horizontal distribution TH T M and a vertical
distribution TV T M . The above-mentioned split is expressed
with the Whitney sum:

T T M = TH T M ⊕ TV T M (8)

The anholonomy coefficients of the nonlinear connection are
defined as

Ωα
νκ = δNα

ν

δxκ
− δNα

κ

δxν
(9)

A Sasaki-type metric [69,70] G on T M is:

G = gμν(x, y) dxμ ⊗ dxν + vαβ(x, y) δyα ⊗ δyβ (10)

where we have defined the metrics gμν and vαβ to be pseudo-
Finslerian.

A pseudo-Finslerian metric fαβ(x, y) is defined as one
that has a Lorentzian signature of (−,+,+,+) and that also

obeys the following form:

fαβ(x, y) = ±1

2

∂2 F2

∂yα∂yβ
(11)

where the function F satisfies the following conditions [69]:

1. F is continuous on T M and smooth on ˜T M ≡ T M \
{0}, i.e., the tangent bundle minus the null set {(x, y) ∈
T M |F(x, y) = 0} .

2. F is positively homogeneous of first degree on its second
argument:

F(xμ, kyα) = k F(xμ, yα), k > 0 (12)

3. The form

fαβ(x, y) = 1

2

∂2 F2

∂yα∂yβ
(13)

defines a non-degenerate matrix:

det
[

fαβ

] �= 0 (14)

where the plus-minus sign in (11) is chosen so that the metric
has the correct signature.

In the following, we choose a non-linear connection with
the following form:

Nα
μ = 1

2
yβ gαγ ∂μgβγ (15)

The metric tensor vαβ is derived from (5) by using (11), after
omitting higher order terms O(A2):

vαβ(x, y) = gαβ(x) + hαβ(x, y) (16)

where

hαβ = 1

ã
(Aβgαγ yγ + Aγ gαβ yγ + Aαgβγ yγ )

+ 1

ã3 Aγ gαεgβδ yγ yδ yε (17)

with ã =
√

−gαβ yα yβ . The total metric defined in the previ-
ous steps is called the Schwarzschild–Finsler–Randers (SFR)
metric. As we can see, the term hαβ(x, y) can be consid-
ered as a perturbation of the Schwarzschild metric since
|Aγ (x)| � 1.

The nonzero coefficients of a canonical and distinguished
d−connection D on T M are:

Lμ
νκ = 1

2
gμρ

(
δk gρν + δνgρκ − δρgνκ

)
(18)

Lα
βκ = ∂̇β Nα

κ + 1

2
vαγ

(
δκvβγ − vδγ ∂̇β N δ

κ − vβδ ∂̇γ N δ
κ

)

(19)
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Cμ
νγ = 1

2
gμρ∂̇γ gρν (20)

Cα
βγ = 1

2
vαδ

(
∂̇γ vδβ + ∂̇βvδγ − ∂̇δvβγ

)
(21)

See Appendix A for more details.
The field equations for our model have been derived in

previous works and can be found in Appendix B. The solution
of the field equations (B.29), (B.30) and (B.31) to first order
in Aγ (x) in vacuum (Tμν = Yαβ = Zκ

α = 0) is [1]:

Aγ (x) =
[

Ã0

(
1 − RS

r

)1/2

, 0, 0, 0

]

=
[

Ã0 f 1/2, 0, 0, 0
]

(22)

with Ã0 a constant. While this is an approximate solution,
it will be sufficient for our purposes given the assumption
|Aγ (x)| � 1.

3 Geodesics

In this section, we will study the geodesics of the SFR and
perform a dynamical analysis. We compare our results with
the corresponding ones of GR. From the definition of the
metric function (5) we have:

F(x, dx) = (−gμν(x)dxμdxν
)1/2 + Aγ (x)dxγ (23)

where gμν(x) is the Schwarzschild metric and Aγ (x) is a
one-form vector field with |Aγ (x)| � 1.

By using the rel. (4), the rel. (23) is written as:

F(x, dx) =
[

f dt2 − dr2

f
− r2dθ2 − r2 sin2 θ dφ2

]1/2

+ Aγ (x)dxγ (24)

We define the Lagrangian

L(x, ẋ) = F(x, ẋ) =
[

f ṫ2 − ṙ2

f
− r2θ̇2 − r2sin2θφ̇2

]1/2

+ Ã0 f 1/2 ṫ (25)

where we denote ẋ = dx
dτ

and we have used Eqs. (24) and (22).
From the Euler–Lagrange equations

d

dτ

∂L

∂ ẋμ
= ∂L

∂xμ
(26)

we find the equations for the geodesics:

ẍλ + Γ λ
μν ẋμ ẋν + gκλΦκμ ẋμ = 0 (27)

where Γ λ
μν are the Christoffel symbols of Riemann geometry,

ẋμ = dxμ

dτ
and Φκμ = ∂κ Aμ − ∂μ Aκ and Aμ is the solution

rel. (22). We notice that from the definition of Φκμ we get

a rotation form of geodesics. If Aμ is a gradient of a scalar

field, Aμ = ∂Φ

∂xμ
then Φκμ = 0 and the geodesics of our

model are identified with the Riemannian ones.
The geodesics of our model can then be explicitly written

in the form:

ẗ + 1 − f

r f
ṙ ṫ = − Ã0ṙ

f −3/2(1 − f )

2r
(28)

r̈ + f (1 − f )

2r
ṫ2 − 1 − f

2r f
ṙ2

− r f
(
θ̇2 + sin2 θφ̇2) = − Ã0 ṫ

f 1/2(1 − f )

2r
(29)

θ̈ + 2

r
θ̇ ṙ − 1

2
sin 2θ φ̇2 = 0 (30)

φ̈ + 2

r
φ̇ṙ + 2 cot θ θ̇ φ̇ = 0 (31)

From the relations (28)–(31), we notice that the first two
dynamical equations involve a contribution of extra terms
particular to the SFR spacetime while the last two relations
are the same as in GR. From the above mentioned relations,
we notice that the Riemannian geodesics are affected by a
contribution that involves the curl of the force field in the
SFR spacetime which can be interpreted as extra energy for
the content of GR. We can notice that the geodesics of SFR
are destroyed at the singular value r = 0 as in the GR case,
this can be seen from the relations (28)–(31). In our case, the
singularity is inherited from the Schwarzschild spacetime of
GR. Moreover, it is evident from their dynamical form that
the equations are not meaningful for r ≤ RS in the context
of the presently considered Schwarzschild metric, hence we
only consider radial displacements past this singular point.

We now make a key assumption regarding the angular
dependence of the model. Namely, by using θ = π

2 we notice
that Eq. (30) is satisfied and equations (28), (29) and (31) can
be written as:

ẗ + 1 − f

r f
ṙ ṫ = − Ã0ṙ

f −3/2(1 − f )

2r
(32)

r̈ + f (1 − f )

2r
ṫ2 − 1 − f

2r f
ṙ2 − r f φ̇2 = − Ã0 ṫ

f 1/2(1 − f )

2r
(33)

φ̈ + 2

r
φ̇ṙ = 0 (34)

From Eq. (34) we find:

r2φ̇ = J = const. (35)

where J is the angular momentum and the relevant equation
represents its conservation law. If we use the relation f ′ =
1− f

r where f = 1 − 2G M
r and the Leibniz chain-rule d

dτ
=
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dr
dτ

d
dr = ṙ d

dr , then Eq. (32) can be written as:

f ẗ + d f

dτ
ṫ = − Ã0

d f 1/2

dτ
(36)

which, in turn, gives us

f ṫ + Ã0 f 1/2 = ER = const. (37)

where ER is the energy of the particle moving along the
geodesic. We notice that the first term constitutes the energy
for a particle moving along the geodesics in general relativ-
ity, EG R = f ṫ and we can rewrite the relevant expression
as:

EG R + Ã0 f 1/2 = ER . (38)

By using Eq. (33) with (35), and (37), we arrive at the
(effectively one-degree-of-freedom) radial equation:

r̈ + 1 − f

2r f
(E2

R − ṙ2) − f J 2

r3 = Ã0ER
f −1/2(1 − f )

2r
(39)

where we omitted O( Ã2
0) terms. As before, we use the rela-

tion f ′ = 1− f
r in (39) to bring it to the equivalent form:

r̈ + f ′

2 f
(E2

R − ṙ2) − f J 2

r3 = Ã0ER

2
f −1/2 f ′ (40)

We can further simplify the Eq. (40) by using the Leibniz
chain-rule d

dτ
= dr

dτ
d
dr = ṙ d

dr and upon deriving the first
integral of the motion, we obtain:

ṙ2 + f

(
J 2

r2 + ε

)
+ 2 Ã0ER f 1/2 = E2

R (41)

where ε is a constant and for ε = 0 we have null geodesics.
It is important to indicate here that for each value of ε, we
obtain a different curve of this “first integral” of Eq. (41)
and the inclusion of all of the admissible (r ,ṙ) curves will
provide us with the phase portraits presented below. The first
two terms from (41) constitute the total energy in general
relativity (GR), E2

G R = ṙ2 + f ( J 2

r2 + ε) and the third term
emerges from the structure of SFR spacetime and its energetic
contribution. Therefore Eq. (41) can be written as:

E2
G R + 2 Ã0ER f 1/2 = E2

R (42)

Equation (42) shows that the term Aγ (x) from (22) provides
an additional energy contribution to the system of GR.

For a particle moving along the geodesics in the SFR
spacetime with metric function Fv(x, dx) (rel. 24), we have
extra gravitational effect (energy) compared to GR. An
amount of energy comes from the gravitational field of total
space in the SFR model. Therefore, from the rel. (37) and
(42), the second term Ã0 f 1/2 can be interpreted as the dif-
ference of energy between ER and EG R = f ṫ .

Remark 1 The action of a vector field in the pseudo-
Riemannian structure of space-time can give a vector-
dependent gravitational field of Finsler–Randers (FR) type
which can describe the asymmetry and the locally anisotropic
form of spacetime that the Riemannian geometry is unable
to provide. In this approach, because of broken Lorentz sym-
metry, particles and forces interact with this vector field.

In the following, we give an application for the weak grav-
itational field where we show that the term A0(r) in the
Eq. (22) is connected to the gravitational potential Φ.

Application to the Newtonian limit
In the Newtonian gravitational theory, we can consider

the second term of rel.(2) of the manuscript in the following
form:

fadxa = Gm M

r2 dr (43)

The gravitational potential is given by

U = W

m
= 1

m

∫
fadxa = 1

m

∫ r

∞
Gm M

r2 dr =−G M

r
=Φ

(44)

where W represents the gravitational potential energy to be
done to bring a unit mass m from infinity to a point and r
is the distance from a mass M . This means that the work is
converted to gravitational potential energy. In addition, from
the relations (4) and (22) we have

g00 = −
(

1 − RS

r

)
= − f (45)

and

A0(r) = Ã0

(
1 − RS

r

)1/2

= Ã0 f 1/2 (46)

From the relations (44), (45) and (46), we obtain

A0(r) = Ã0
√−g00 = Ã0

(
1 − Φ

2

)1/2

(47)

where we have used RS = 2G M . The rel. (47) gives a physi-
cal interpretation in the geometrical term A0(r) because of its
dependence on the gravitational potential Φ. The term A0(r)

is included in the relations (37), (38), (42) giving a physical
meaning to these equations.

Remark 2 The relation (47) is also related to gravitational
redshift of photons in the SFR spacetime (Ref. [2, paragraph
6]). In that case, we have proved that:

Erec

Eemit
= νrec

νemit
≈ Ã0 f 1/2 (48)

where νrec, νemit denote the frequencies of receiver and emit-
ter.
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(a) This is a (τ ,r) graph for the geodesics of photons
for angular momentum J = 4 and initial radial distance
r0 = 3. The red line shows the SFR geodesics and the
blue line the GR geodesics.

(b) This is a (τ, φ) graph for the geodesics of photons
for angular momentum J = 4 and initial radial distance
r0 = 3. The red line shows the SFR geodesics and the
blue line the GR geodesics.

Fig. 1 These are the graphs for the GR and SFR geodesics of photons
for angular momentum J = 4 and initial radial distance r0 = 3

Below, we give the Figs. 1 and 2 for the geodesics of GR
and SFR we have obtained by solving the Eqs. (28)–(31).
The relevant ordinary differential equations are solved via a
standard solver within Mathematica and (r, φ) are presented
as a function of τ , while Fig. 2 presents the evolution in the
original (x, y) plane. In our case, we assume Rs = 2 and
initial radial distance r0 = 3, so the photons are found on
the photonsphere with rph = 3

2 Rs = 3 in the GR case. The
deviation between the trajectories of the SFR and those of
the GR is clearly discernible in both figures.

From Fig. 1a, we can see that the radial component in the
SFR model takes lower values compared to the GR one which
remains constant. This difference between the r-components
of SFR and GR can be interpreted as the increase of the
radius of the photonsphere due to the one-form Aγ as we
have shown in [2]. This leads the orbit of the photon to fall
inside the event horizon because the initial distance r0 = 3
and energy are not sufficient to allow circular orbits of the
photonsphere. That means for an orbit with r constant in the
SFR model, the particle needs more energy compared to the
GR case. In Fig. 2, the geodesics of GR and SFR are depicted.

Fig. 2 This is an x–y graph for the geodesics of photons for angular
momentum J = 4 and initial radial distance r0 = 3. The red line shows
the SFR geodesics and the blue line the GR geodesics

In the case of GR, the photons move in circular orbits around
the black hole. In the SFR model, the photons follow a spiral
orbit and fall inside the event horizon.

It is important to remind the reader here that underlying
these results is the key assumption of θ = π

2 which allows
the reduction of the model to an effective single degree-of-
freedom system. It is important in future work to consider
how deviations from this equilibrium value (and the corre-
sponding incorporation of the full dynamical system) may
affect the conclusions presented above. However, as the lat-
ter is outside the scope of the present study, we now focus
on the further analysis of the effective potential of the SFR
model and its implications for the phase portrait of the rele-
vant system.

4 Effective potential of SFR model

In this section, we will study the effective potential of the
SFR model and compare it with the effective potential of
GR. The equation of the energy in GR reads:

ṙ2 + f

(
J 2

r2 + ε

)
= E2

G R (49)

We see from (49) that the effective potential energy landscape
is given by:

Vef f,G R = 1

2
f

(
J 2

r2 + ε

)
(50)

In Fig. 3a, we show the graph for the effective potential in GR
for angular momentum J = 3, J = 4 and J = 5 to examine
its variation for different values of the angular momentum.
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Our effective potential (here and in what follows in Fig. 3a)
solely bears a maximum at a finite r > 0. Based on the
general theory of dynamical systems for the conservative
type of problems considered herein, the relevant fixed point
will be a saddle, as will be confirmed in the corresponding
phase portraits below (where the attracting direction of the
stable manifold and the repelling direction of the unstable
manifold will be evident).

We now recall the key difference (and associated addi-
tional contribution) to the energetics of the SFR model. In
particular, the energy equation for the latter, derived from
Eq. (40), is given as:

ṙ2 + f

(
J 2

r2 + ε

)
+ 2 Ã0ER f 1/2 = E2

R (51)

In (51) the effective potential can be written in the form

Vef f,SF R = 1

2
f

(
J 2

r2 + ε

)
+ Ã0ER f 1/2 (52)

The graph for the effective potential in the SFR model
(Vef f , r) is depicted in Fig. 3a, in this case for different values
of angular momentum.

In Fig. 3c, d we show the effective potentials of the SFR
and GR models comparing the two for J = 1 and J = 5. As
we can see in Fig. 3c, the difference between GR and SFR is
bigger than that of Fig. 3d. Notably, when the contribution of
the angular momentum is weaker, the difference between the
two models is more substantial/clearly discernible. When the
angular momentum becomes large, the relevant difference is
rather weak and the Vef f of the two models become proximal.

In Fig. 3 we observe the phase portraits associated with
the effective potentials depicted above. These phase portraits
reflect the existence of an energy barrier whose precise height
depends on the value of the angular momentum. Energies
below this barrier height result in reflection from the out-
side and trapping from the inside. On the other hand, ener-
gies higher than those of the barrier result in reaching the
Schwarzschild radius (if the particle is coming from the out-
side) or reaching infinity (if the particle is moving outward
from the inside). The latter figure demonstrates the differ-
ences between the two phase portraits which are quantitative
but not qualitative (Figs. 4, 5).

5 Deflection angle

In this section, we will deal with the deflection angle of the
SFR model and we will compare our findings with the cor-

(a) Graph for the Veff (r) in the SFR model for angular
momentum J = 3, J = 4 and J = 5.

(b) Graph for the Veff (r) in the GR model for angular
momentum J = 3, J = 4 and J = 5.

(c) Graph for the Veff (r) in GR (blue line) and SFR
(red line) for angular momentum J = 1.

(d) This is a graph for the Veff (r) in GR (blue line) and
SFR (red line) for angular momentum J = 5.

Fig. 3 These are the graphs for the Vef f (r) in the GR and SFR models
for various angular momenta
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(a) This is a phase plot for the radial geodesics of SFR,
representing the trajectories in (r, ṙ) space.

(b) This is a phase plot for the radial geodesics of GR
representing the trajectories in (r, ṙ) space.

Fig. 4 These are phase plots for the radial geodesics of the GR and
SFR models

responding ones of the GR model. In this consideration, we
take into account photons that pass close to a central mass
M. From Eq. (41) for photons, we put ε = 0 and we get:

ṙ2

J 2 + f

r2 + 2 Ã0 f 1/2

Jb
= 1

b2 (53)

where b = J/ER is a composite constant formed by the
ratio of the angular momentum J divided by the energy of
the particle moving along the geodesic ER .

By using the Leibniz chain-rule φ̇ = dφ
dτ

= dφ
dr

dr
dτ

= dφ
dr ṙ

with the relations (35) and (53) we have:

Fig. 5 This is a comparison between the radial phase portraits of the
GR (blue) and SFR (yellow) models

ṙ2

φ̇2
= r4

(
1

b2 − f

r2 − 2 Ã0 f 1/2

Jb

)

(54)

After some rearrangements we find:

dφ

dr
= 1

r2

(
1

b2 − f

r2 − 2 Ã0 f 1/2

Jb

)−1/2

(55)

The deflection angle is calculated by the integration of (55):

ΔφSF R = 2
∫ ∞

r1

dr

r2

[
1

b2 − 1

r2

(
1 − 2G M

r

)

−2 Ã0

Jb

(
1 − 2G M

r

)1/2
]−1/2

(56)

where we have used f = 1 − 2G M
r .

We perform a change of variables in the integral of
Eq. (56):

ΔφSF R = 2
∫ w1

0
dw

[
1 − w2

(
1 − 2G M

b
w

)

−2a

(
1 − 2G M

b
w

)1/2
]−1/2

(57)

where we have set w = b
r and a = Ã0b

J .
If we expand the integral in powers of 2G M

b and a we find:

ΔφSF R ≈ 2
∫ w1

0
dw

1 + G M
b w

[
(1 − 2a) + 2G M

b w − w2
]1/2 (58)

where we have omitted second order terms.
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By evaluating the integral in Eq. (58) we get (see Appendix
3):

ΔφSF R = π + 4G M

b

1 − a√
1 − 2a

(59)

The deflection angle δφSF R can be found as:

δφSF R = ΔφSF R − π ⇒
δφSF R = 4G M

b

1 − a√
1 − 2a

(60)

If we expand Eq. (60) in powers of a = Ã0b
J the deflection

angle can be written as:

δφSF R ≈
(

1 + a2

2

)
4G M

b
(61)

The deflection angle δφ of GR [4,71] is given by:

δφG R = 4G M

b
(62)

Therefore, we notice that the deflection angle of SFR includes
a small additional Randers contribution term a which shows
a small deviation from GR because | Ã0| � 1. We can see
from Eq. (60) that:

lim
Ã0→0

δφSF R = δφG R (63)

The small difference of the deflection angle of the SFR model
from the GR one can plausibly be attributed to the Lorentz
violations [7] or on the small amount of energy which is
added to the gravitational potential of SFR.

Shapiro et al. [3] have shown that the deflection angle for
a light ray is:

θ � (1 + γ )G M

c2b
(1 + cosφ) (64)

where M is the mass of the Sun, G is the gravitational con-
stant, φ is the angle between the source and the Sun for an
observer on Earth and γ is the PPN parameter that charac-
terizes the contribution of space curvature to gravitational
deflection and is estimated to be γShap = 0.9998 ± 0.0004.
We compare this observational result of Shapiro et al. with
Eq. (55) of our model in order to obtain some constraints for
the parameter α. If we do this we find:

2

(
1 + α2

2

)
� 1 + γShap (65)

where we have taken φ � 0 for an infinitesimal neighbour-
hood of a fiducial geodesic. By solving for α we get:

α � ±√−1 + γShap (66)

which gives the values for α � ±0.0141421. This result
provides an interesting relation between the deflection angle

of a light ray in the SFR model and the approach to the
deflection angle used in [3].

Remark 3 By considering the following relation, we can con-
nect the geometrical concept of the curvature κφ = dφ

dτ
of a

path with the deflection angle δφ in the following way:

φ̇ = dφ

dτ
= dφ

dr

dr

dτ
= dφ

dr
ṙ ⇒ (67)

κφ = dφ

dr
ṙ ⇒ (68)

δφ =
∫

κφ

ṙ
dr (69)

This form of curvature can be called deflection curvature.

6 Conclusions and future challenges

In this article, we investigated the analytic form of the
geodesics of the model SFR which was introduced in previ-
ous works [1,2]. A dynamical analysis was presented based
on the energy and angular momentum of a particle along of
geodesics (null or timelike) of the SFR spacetime. Compar-
isons between the SFR and GR were provided. We found that
there is a small deviation from the GR model which is due to
the dynamical term Aγ (x). We also formulated and studied
an effective potential of our model and we compared the one
of the SFR case once again with the effective potential of GR
attributing the small but discernible differences to the spe-
cific structure of (and perturbation incorporated within) the
SFR spacetime. The relevant differences in the trajectories
were illustrated both in the evolution over the time-variable τ

and in the (x, y) plane. In addition, we calculated the deflec-
tion angle for the SFR spacetime and we compared with the
corresponding one of GR. The result is a small difference of
the SFR model from GR, it is possibly caused by Lorentz
violations or by the small amount of energy which is added
to the gravitational potential of SFR spacetime.

In addition, we found an interesting relation between the
observational data of [3] and the SFR model’s prediction for
the deflection angle of a null geodesic. Finally, we presented
an application which relates the covector field Aγ (x) of the
SFR model with the Newtonian gravitational potential.

It is important to note that this work opens a number of
interesting directions of further study for the future. On the
one hand, the traditional assumption of θ = π/2 made over
here is clearly a restrictive one that simplifies the equations of
motion automatically satisfying the dynamics for the angu-
lar variable θ with the latter being at steady state. However,
more generally, one can straightforwardly envision scenarios
where this condition is no longer satisfied. It is then of inter-
est to explore if one starts in the vicinity of π/2 whether one
stays in that neighborhood or perhaps if one deviates away

123



1098 Page 10 of 13 Eur. Phys. J. C (2022) 82 :1098

from this steady state and how the associated dynamics of
the full 4-degree-of-freedom space is accordingly explored.
Another aspect that is also worth further exploring is that
of the small amplitude covector deviation from the General
Relativity standard model. Here, we have limited our con-
siderations to the realm of associated small amplitude per-
turbations (where leading order expansions of the field would
suffice). However, it would also be of interest to explore the
situation when one gradually deviates from the realm of this
approximation as well. In addition, applications of geodesics
of the SFR model can be pursued for more concrete cosmo-
logical studies such as, e.g., for the case of the S2 stars orbit-
ing the black hole in Sagittarius A* in which the geodesics
of the star are perturbed from the classical Keplerian orbits
because of the distribution of stellar remnants. Indeed, our
hope is that this work may pave the way towards testing the
Schwarzschild–Finsler–Randers gravitational model which
incorporates features going beyond the standard Riemannian
geometry of spacetime. In this vein, some of the above topics
are presently under consideration and associated results will
be presented in future publications.
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Appendix A: Distinguished connection on TM

In this work, we consider a distinguished connection
(d−connection) D on T M [69,70]. This is a linear connec-
tion with coefficients {Γ A

BC } = {Lμ
νκ , Lα

βκ , Cμ
νγ , Cα

βγ } which
preserves by parallelism the horizontal and vertical distribu-
tions:

Dδκ δν = Lμ
νκ(x, y)δμ , D∂̇γ

δν = Cμ
νγ (x, y)δμ (A.1)

Dδκ ∂̇β = Lα
βκ(x, y)∂̇α , D∂̇γ

∂̇β = Cα
βγ (x, y)∂̇α (A.2)

From the above conditions, the definitions for partial covari-
ant differentiation follow immediately, e.g. for X ∈ T T M
the expression for the covariant h-derivative is:

X A|ν ≡ Dν X A ≡ δν X A + L A
Bν X B (A.3)

and for the covariant v-derivative:

X A|β ≡ Dβ X A ≡ ∂̇β X A + C A
Bβ X B (A.4)

The d−connection is metric-compatible when we have:

Dκ gμν = 0, Dκ vαβ = 0, Dγ gμν = 0, Dγ vαβ = 0

(A.5)

A d−connection can be uniquely defined when the following
conditions are satisfied:

– The d−connection is metric compatible
– Coefficients Lμ

νκ, Lα
βκ , Cμ

νγ , Cα
βγ depend solely on the

quantities gμν , vαβ and Nα
μ

– Coefficients Lμ
κν and Cα

βγ are symmetric on the lower

indices, i.e. Lμ
[κν] = Cα[βγ ] = 0

We use the symbolD instead of D for a connection satisfying
these conditions. We call D a canonical and distinguished
d−connection. The coefficients of this connection are

Lμ
νκ = 1

2
gμρ

(
δk gρν + δνgρκ − δρgνκ

)
(A.6)

Lα
βκ = ∂̇β Nα

κ + 1

2
vαγ

(
δκvβγ − vδγ ∂̇β N δ

κ − vβδ ∂̇γ N δ
κ

)

(A.7)

Cμ
νγ = 1

2
gμρ∂̇γ gρν (A.8)

Cα
βγ = 1

2
vαδ

(
∂̇γ vδβ + ∂̇βvδγ − ∂̇δvβγ

)
(A.9)

Curvatures and torsions on T M are defined by the linear
maps:

R(X, Y )Z = [DX ,DY ]Z − D[X,Y ]Z (A.10)

and

T (X, Y ) = DX Y − DY X − [X, Y ] (A.11)

where X, Y, Z ∈ T T M . We use the following definitions for
the curvature components [69,70]:

R(δλ, δκ)δν = Rμ
νκλδμ (A.12)

R(δλ, δκ)∂̇β = Rα
βκλ∂̇α (A.13)

R(∂̇γ , δκ)δν = Pμ
νκγ δμ (A.14)

R(∂̇γ , δκ)∂̇β = Pα
βκγ ∂̇α (A.15)

R(∂̇δ, ∂̇γ )δν = Sμ
νγ δδμ (A.16)

R(∂̇δ, ∂̇γ )∂̇β = Sα
βγ δ∂̇α (A.17)
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In addition, we use the following definitions for the torsion
components:

T (δκ , δν) = T μ
νκδμ + T α

νκ ∂̇α (A.18)

T (∂̇β, δν) = T μ
νβδμ + T α

νβ ∂̇α (A.19)

T (∂̇γ , ∂̇β) = T μ
βγ δμ + T α

βγ ∂̇α (A.20)

From (A.12), the h-curvature tensor of the d−connection in
the adapted basis and the corresponding h-Ricci tensor read:

Rμ
νκλ = δλLμ

νκ − δκ Lμ
νλ + Lρ

νκ Lμ
ρλ − Lρ

νλLμ
ρκ + Cμ

ναΩα
κλ

(A.21)

Rμν = Rκ
μνκ = δκ Lκ

μν − δν Lκ
μκ + Lρ

μν Lκ
ρκ − Lρ

μκ Lκ
ρν

+ Cκ
μαΩα

νκ (A.22)

From (A.17), the v-curvature tensor of the d−connection in
the adapted basis and the corresponding v-Ricci tensor are:

Sα
βγ δ = ∂̇δCα

βγ − ∂̇γ Cα
βδ + Cε

βγ Cα
εδ − Cε

βδCα
εγ (A.23)

Sαβ = Sγ
αβγ = ∂̇γ Cγ

αβ − ∂̇βCγ
αγ + Cε

αβCγ
εγ − Cε

αγ Cγ
εβ

(A.24)

The generalized Ricci scalar curvature in the adapted basis
is:

R = gμν Rμν + vαβ Sαβ = R + S (A.25)

where

R = gμν Rμν , S = vαβ Sαβ (A.26)

Appendix B: Field equations of the model

A Hilbert-like action on T M can be defined as

K =
∫

N
d8U

√|G|R + 2κ

∫

N
d8U

√|G|LM (B.27)

for some closed subspaceN ⊂ T M , where |G| is the absolute
value of the metric determinant, LM is the Lagrangian of the
matter fields, κ is a constant and

d8U = dx0 ∧ · · · ∧ dx3 ∧ dy4 ∧ · · · ∧ dy7 (B.28)

Variation with respect to gμν , vαβ and Nα
κ leads to the fol-

lowing field equations [40]:

Rμν − 1

2
(R + S) gμν

+
(
δ(λ
ν δκ)

μ − gκλgμν

) (
DκT β

λβ − T γ
κγ T

β
λβ

)
= Tμν (B.29)

Sαβ − 1

2
(R + S) vαβ

+
(
vγ δvαβ − δ(γ

α δ
δ)
β

) (
Dγ Cμ

μδ − Cν
νγ Cμ

μδ

)
= Yαβ

(B.30)

gμ[κ ∂̇α Lν]
μν + 2T β

μβgμ[κCλ]
λα = Zκ

α (B.31)

where

T α
νβ = ∂̇β Nα

ν − Lα
βν (B.32)

are torsion components, where Lα
βν is defined in (19). From

the form of (10) it follows that
√|G| = √−g

√−v, with g, v

the determinants of the metrics gμν, vαβ respectively.

Appendix C: Calculation of the deflection angle

We begin the calculation from Eq. (57)

ΔφSF R = 2
∫ w1

0
dw

[
1 − w2

(
1 − 2G M

b
w

)

−2a

(
1 − 2G M

b
w

)1/2
]−1/2

(C.33)

ΔφSF R = 2
∫ w1

0
dw

{(
1 − 2G M

b
w

)−1/2

×

×
[(

1 − 2G M

b
w

)−1

− w2 − 2a

(
1 − 2G M

b
w

)−1/2
]−1/2 }

⇒

ΔφSF R ≈ 2
∫ w1

0
dw

(
1 + G M

b
w

)[(
1 + 2G M

b
w

)
− w2 − 2a

]−1/2

⇒

ΔφSF R ≈ 2
∫ w1

0
dw

1 + G M
b w

[(
1 + 2G M

b w
) − w2 − 2a

]1/2 ⇒

ΔφSF R ≈ 2
∫ w1

0
dw

1 + G M
b w

[
(1 − 2a) + 2G M

b w − w2
]1/2 (C.34)

In order to find w1 we solve the following equation from the
denominator:

(1 − 2a) + 2G M

b
w − w2 = 0 (C.35)

and we get:

w1 = G M

b
+

√(
G M

b

)2

+ (1 − 2a) (C.36)

which is the positive root of the denominator. The solution
for the integral in Eq. (C.34) is:

ΔφSF R = π + 1√
1 − 2a

2G M

b
+ 2G M

b

√
1 − 2a (C.37)

where we omit terms O(( 2G M
b )2), given their smallness.

Hence, we find:

ΔφSF R = π + 4G M

b

1 − a√
1 − 2a

(C.38)
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