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Abstract The main goal of this paper is to investigate the
physical properties of equilibrium sequences of non-self-
gravitating surfaces that characterize Thick disks around a
rotating deformed compact object described by a station-
ary generalization of the static q-metric. The space-time cor-
responds to an exact solution of Einstein’s field equations
so that we can perform the analysis for arbitrary values of
the quadrupole moment and rotation parameter. To study the
properties of this disk model, we analyze bounded trajecto-
ries in this space-time. Further, we find that depending on
the values of the parameters, we can have various disk struc-
tures that can easily be distinguished from the static case and
also from the Schwarzschild background. We argue that this
study may be used to evaluate the rotation and quadrupole
parameters of the central compact object.

1 Introduction

The gravitational field of astrophysical compact objects can
be characterized by means of their multipole moments. In
Newtonian gravity, only the mass is a source of gravity and,
therefore, all the multipole moments are determined by the
mass distribution only. In the case of relativistic objects, there
are two different sets of multipoles, namely, mass and angular
momentum multipoles [1–3].

From the point of view of their multipole structure, the
simplest relativistic compact objects are black holes because
they can be completely characterized by the lowest possible
moments, i.e., by the mass monopole and the angular momen-
tum dipole, which determine uniquely the corresponding
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Schwarzschild and Kerr space-times, respectively [4]. This
is one of the essential aspects of the black hole uniqueness
theorems [5].

In the case of a non-rotating mass distribution, the next
non-trivial multipole is the quadrupole, which describes the
deviation of the mass distribution from spherical symmetry,
but preserving the axial symmetry. In this case, no unique-
ness theorems exist and so there are several possibilities to
describe a space-time of a mass with quadrupole. In [6], it
was established that there are six different known solutions
of Einstein equations that could be used to describe the gravi-
tational field of a mass with quadrupole. From all of them, we
highlight the quadrupolar metric (q-metric) as the simplest
generalization of the Schwarzschild space-time, including a
quadrupole [7]. The q-metric can be obtained by applying a
Zipoy–Voorhees transformation [8,9] to the Schwarzschild
metric and in spherical coordinates reads

ds2 = −
(

1 − 2m

r

)1+q

dt2

+
(

1 − 2m

r

)−1−q (
r2 − 2mr + m2 sin2 θ

r2 − 2mr

)−q(2+q)

dr2

+
(

1 − 2m

r

)−q

r2(dθ2 + sin2 θdφ2), (1)

where m and q are the mass and quadrupole parameters,
respectively.

The q-metric has been used to study the motion of test
particles, accretion disks, black hole mimickers, shadows,
interior and exterior counterparts, quasi periodic oscillations
among others [10–19]. From these studies, it follows that the
q-metric satisfies all the physical conditions to describe the
field of a deformed mass distribution with quadrupole.

The next interesting physical aspect of compact objects
is their rotation. Therefore, in the present work, as the next
step of this work [16], we will consider a stationary general-
ization of the q-metric that contains an additional parameter,
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corresponding to the dipole of the angular momentum [20].
We explore the applicability of the stationary q-metric in
astrophysical situations, we study the Thick accretion disk
model, which is situated on the background of a rotating,
deformed mass distribution. This hydrostatic equilibrium are
strongly believed to form around X-ray binaries, active galac-
tic nuclei, and also in the central engine of gamma-ray bursts.
The analytical Thick disk model for an accretion disk is ini-
tially assumed to consist of an unmagnetised perfect fluid
with constant angular momentum [21–28]. In this work we
consider this analytical model and explain it briefly in Sect. 4.

The space-time contains three independent multipoles,
namely, mass monopole and quadrupole, and angular momen-
tum dipole. We will show that the structure of accretion disks
around the stationary q-metric depends explicitly on the val-
ues of all the independent parameters of the metric. In par-
ticular, we will see that the behavior of the accretion disks
agrees with our physical expectations. We also compare our
results with those obtained previously for the Kerr spacetime
[29–36], in particular, in the case of naked singularities.

This work is organized as follows. In Sect. 2, we present
the stationary q-metric. In Sect. 3, we study some of the phys-
ical properties of the stationary q-metric. In Sect. 4, we dis-
cuss the main theoretical aspects of the Thick disk model and
present the results in the space-time described by the station-
ary q-metric. In Sect. 5, we discuss our results. Throughout
this work, the signature of the metric is set to be (−,+,+,+)

and we use geometrical units with c = G = 1.

2 The stationary q-metric

A stationary generalization of the static Zipoy–Voorhees
space-time is contained as a particular solution of the rotating
Erez–Rosen solution and was first presented in [37]. How-
ever, the physical meaning of the Zipoy–Voorhees parameter
δ as a quadrupole parameter was first established and inves-
tigated only later on in [7]. It was named q-metric to empha-
size the role of the q parameter as a quadrupole and as a
source of naked singularities. The Ernst potential of the cor-
responding stationary generalization was presented in [20]
and the explicit form of the metric was calculated in [38]. In
prolate spheroidal coordinates (t, x, y, φ), the corresponding
line element can be written as

ds2 = − f (dt − ωdφ)2

+ σ 2

f

[
e2γ (x2 − y2)

(
dx2

x2 − 1
+ dy2

1 − y2

)

+(x2 − 1)(1 − y2)dφ2
]
, (2)

where σ is a constant with the dimension of length and the
metric functions depend only on x and y,

f = A

B
,

ω = −2

(
a + σ

C

A

)
,

e2γ = 1

4

(
1 + m

σ

)2 A

(x2 − 1)1+q

[
x2 − 1

x2 − y2

](1+q)2

. (3)

Here q represents the quadrupole parameter and a is related
to the angular momentum. Besides

A = a+a− + b+b−,

B = a2+ + b2+,

C = (x + 1)q [
x(1 − y2)(λ + η)a+ + y(x2 − 1)(1 − λη)b+

]
,

(4)

and

a± = (x ± 1)q [x(1 − λη) ± (1 + λη)] ,

b± = (x ± 1)q [y(λ + η) ∓ (λ − η)] ,

λ = α(x2 − 1)−q(x + y)2q,

η = α(x2 − 1)−q(x − y)2q,

α = 1

a
(σ − m).

The functions f andω are related to the twist scalar� through

f 2∇ω = ρφ × ∇z, (5)

where

ρ = σ

√
(x2 − 1)(1 − y2) and z = σ xy.

Because of the symmetries of the metric one can easily
find the existing conserved quantities related to the particle
motion, which are the covariant energy E and axial angu-
lar momentum L associated to the Killing vectors ∂t and
∂φ , respectively. Prolate spheroidal coordinates are used for
investigating the symmetries of the field equations of sta-
tionary and axisymmetric gravitational fields [39]. Also, they
allow us to express particular solutions in a very symmetric
way, as in the above example. Nevertheless, for comparison
with other special cases and the investigation of the physical
properties of the spacetime, it is convenient to use spherical
coordinates (t, r, θ, φ), which are determined by the simple
transformation

x = 1

σ
(r − m), y = cos θ. (6)

In these coordinates, the general line element (2) becomes

ds2 = − f (dt − ωdφ)2

+ 1

f

[
e2γ (r2 − 2mr + m2 + σ 2 cos2 θ)
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×
(

dr2

r2 − 2mr + m2 − σ 2 + dθ2
)

+ (r2 − 2mr + m2 − σ 2) sin2 θdφ2
]
. (7)

In the limiting case σ = m, α = 0, and a = 0, the above solu-
tion reduces to the static q-metric given in Eq. (1). Moreover,
for q = 0, the above solution is stationary with a representing
the specific angular momentum of the source. In the general
stationary case, the relation with the Kerr solution is obtained
by choosing the parameters as

σ = m(1 − α2)

(1 + α2)
, (8)

a = −2σα

(1 − α2)
, (9)

so that

σ 2 = m2 − a2. (10)

In the following analysis, we will use spherical coordinates
(t, r, θ, φ); nevertheless, in some equations, we will use the
coordinates x and y for simplicity reasons.

It is convenient to consider m and a as the independent
parameters, instead of σ and α. Indeed, by setting a = 0, we
obtain the limiting case of the static q-metric. Moreover, for
q = 0, the above solution is stationary with a representing
the specific angular momentum of the source. Figure 1 shows
the relationship of the rotation parameter a with σ and α,
respectively. In general, parameter q describes how the mass
distribution along an axis is stretched out. It can be zero,
positive or negative, corresponding to a sphere, an prolate or
a oblate mass distribution, respectively.

3 Physical properties of the stationary q-metric

In this section, we investigate the main physical properties of
the stationary q-metric and the particular spacetimes that are
contained as limiting cases by using an invariant definition
of multipole moments. We also investigate the behavior of
the Ernst potential, which contains all the main information
about the metric of the corresponding spacetime, and the con-
ditions for the existence of bounded and circular geodesics.

3.1 Multipole moments

In general, the physical meaning of the parameters entering
the metric can be clarified by calculating the relativistic mul-
tipole moments [1–3,38]. By using the Geroch–Hansen rela-
tivistic coordinate-invariant definition of multipole moments,
we obtain

M0 = m + X , (11)

Fig. 1 The rotation parameter a as a function of the parameters σ and
α with m = 1

Fig. 2 The behavior of the relativistic quadrupole M2 for different
parameters a and q

J1 = ma + 2aX , (12)

M2 = −m3 + mσ 2 +
(

7

3
σ 2 − 3m2

)
X − mX 2 − 1

3
X 3,

(13)

where X := qσ . All the higher moments can be expressed
in terms of the above multipoles. Moreover, all the odd mass
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moments M2k+1 and even angular momentum moments J2k

vanish identically as a result of the existing reflection sym-
metry with respect to the equatorial plane.

Since all the higher multipole moments can be written
in terms of the first and second multipoles, from the above
expressions for the relativistic multipole moments, we see
that the three parameters m, q, and a that enter the metric
are present in the expressions for all multipoles through the
quantity X .

To illustrate the dependence of the multipoles from the
independent parameters, we plot in Fig. 2 the behavior of
the relativistic quadrupole M2. We see that M2 is symmetric
with respect to the value of a, but no symmetry exists with
respect to the parameter q. This is due to the fact that in this
case the gravitational field does not depend on the direction
of rotation, whereas the sign of quadrupole q determines the
shape of the source, which can be either prolate or oblate,
corresponding to different gravitational fields.

The limiting cases of the stationary q-metric can also
be studied from the expressions of the multipole moments.
Indeed, for a = 0, from the above expressions we obtain

M0 = m(1 + q), (14)

J1 = 0, (15)

M2 = −m3

3
(q3 + 3q2 + 2q), (16)

which are the multipoles of the static q-metric [7]. If, in addi-
tion, we set q = 0, we obtain that the only non-vanishing
multipole is the monopole, M0 = m, i.e., we obtain the mul-
tipole structure of the Schwarzschild spacetime. Notice also
that in the additional limit q = −1, all the multipoles vanish,
indicating that no gravitational source exists. This can also
be verified by calculating the curvature of the q-metric.

Consider now the limiting case of a vanishing quadrupole
parameter, q = 0. Then, from the above expressions for the
multipoles we get

M0 = m, J1 = ma, M2 = −ma2, (17)

which coincide with the multipoles of the Kerr metric [3,37],
where m is the total mass and a = J1/m is the specific angu-
lar momentum. From a physical point of view, the rotation
generates an oblate deformation of the gravitational source,
which in this case is described by the quadrupole moment
M2 = −ma2. Therefore, it is usually assumed as a conven-
tion that an oblate deformation of the source corresponds to
a negative value of the quadrupole moment.

It is interesting to mention the limit m = a, for which we
obtain the following expressions for the multipoles

M0 = m, J1 = m2, M2 = −m3, (18)

which coincide with the Kerr multipoles (17) for a = m, i.e.,
with the multipoles of the extreme Kerr black hole. Therefore,

the stationary q-metric in the limit of m = a describes the
gravitational field of an extreme rotating black hole, indepen-
dently of the value of the quadrupole parameter q. A similar
behavior has been found in generalizations of the Kerr space-
time with other metrics with quadrupole and higher multipole
moments [37].

We thus conclude that the stationary q-metric is a gen-
eralization of the static q-metric, which contains the Kerr
spacetime as a particular case, in the limit of a vanish-
ing quadrupole parameter, and reduces to the metric of an
extreme black hole when the rotational parameter coincides
in value with the mass parameter, independently of the value
of the quadrupole.

3.2 The Ernst potential

To further analyze the physical meaning of the stationary q-
metric, we consider the corresponding Ernst potential which
for stationary vacuum fields is defined as [40,41]

E = f + i z, (19)

where the function z is determined by the following equations

σ(x2 − 1)zx = f 2ωy, (20)

σ(1 − y2)zy = − f 2ωx . (21)

where σ is the constant entering the spatial part of the met-
ric, and f and ω are the metric functions. Thus, once we
have E , the function f can be found algebraically and ω fol-
lows from the above equations. This implies that the Ernst
potential contains all the information about f and ω, which
are the main metric functions, whereas the metric function
γ can be obtained by quadratures from the explicit value of
f and ω [40,41]. Therefore, from a given Ernst potential
one can derive the explicit value of the metric, i.e., all the
information about the corresponding gravitational field. For
instance, fromE we can extract information about the asymp-
totic behavior of the metric. In particular, the q-metric can be
shown to be asymptotically flat [7]. The corresponding Ernst
potential for the stationary q-metric is obtained by utilizing
the solution generating techniques [20,39] as follows

E =
(
x − 1

x + 1

)q [
x − 1 + (x2 − 1)−qd+
x + 1 + (x2 − 1)−qd−

]
, (22)

where

d± = −α2(x ± 1)h+h−(x2 − 1)−q

+ iα[y(h+ + h−) ± (h+ − h−)], (23)
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Fig. 3 The Ernst potential on the equatorial plane for vanishing q and
different spin parameters a

and

h± = (x ± y)2q. (24)

In Figs. 3 and 4, we study the behavior of the Ernst potential
on the equatorial plane θ = π/2 (y = 0) as a function of the
radial coordinate r for different values of the two independent
parameters q and a.

In the case q = 0, the Ernst potential reduces to

E = a2(x − 1) − (σ − m)2(x + 1)

a2(x + 1) − (σ − m)2(x − 1)
. (25)

Since |a| ∈ [0, 1), its square is a small quantity. Also, the
coefficients of a2 in the numerator and denominator of the
Ernst potential (25) are of the same order and comparable,
i.e., the values of E for different values of a are very close to
each other. The result is shown in Fig. 3. We can see that for
each value of a, the Ernst potential is a continuous function of
r that tends monotonically to a constant at infinity. However,
when we plot the Ernst potential for different values of q �= 0,
as shown in Fig. 4, we notice that there are certain points at
which the Ernst potentials for different values of a coincide.
Since the Ernst potential contains all the information about
the gravitational field, we conclude that at the intersection
points the corresponding space-times are identical. A detailed
numerical analysis of the intersection points shows that they
are located close to the radius value r = 2m, i. e., close to
the outermost singularity, as we will see below.

3.3 Curvature singularities

We also investigated the position of the curvature singulari-
ties of the stationary q-metric. In fact, for the static q-metric
(1) it was shown in [7] that there exist an exterior singularity
located at r = 2m and an interior singularity with r < 2m

Fig. 4 The Ernst potential, E , is depicted for various values of q and
a

and a shape that depends on the coordinate θ and on the value
of the quadrupole parameter q.

One would expect that in the space-time of the stationary
q-metric, the singularity structure is affected by the pres-
ence of the rotation parameter a. To see this, we examine the
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Fig. 5 Bounded trajectories for various combinations of a and q. The
first row is dedicated to a ≤ 0 and the second one to a > 0. The colors
refers to the values of a following the same code as the Fig. 5. From

the left to the right q = −0.4, q = 0, q = 0.2 and q = 0.6. All
along the plots the following parameters remain constant: The angular
momentum L = 8, the initial point r(0) = 100, and φ(0) = 0

behavior of the Kretschmann scalar

K = Rνμτθ R
νμτθ , (26)

in this space-time. However, the complexity of the metric
(2) prohibits us to express the Kretschmann scalar explicitly.
Therefore, we perform a careful numerical evaluation and
analytical inspection to see whether the Kretschmann scalar
can be singular for different choices of parameters of the
metric on the equatorial plane.

The analysis of the Kretschmann scalar shows that also in
the spinning case, for any q �= 0 the hypersurface r = 2m is
always singular, besides the curvature singularity located at
r = 0. Inside the radius r = 2m, several singular structures
can exist depending on the value of q and a, meaning that
there are inner singularities located inside the outer singular
hypersurface r = 2m. In addition, as the magnitude of the
rotation parameter |a| decreases, the location of the inner sin-
gularities approach the outer singular hypersurface r = 2m,
and no singularities were found outside the radius r = 2m.
To sum up, for the asymptotic behavior of the Kretschmann
scalar, we found that a curvature singularity is at r = 0 inde-
pendently of the value of q and a. Besides, there are two
situations: If q = 0 and a �= 0 also there is a ring singularity
at r = a. And if q �= 0 by increasing |a|, the radius of the sin-
gularities decreases and always lay inside this hypersurface
r = 2m.

It is worth mentioning that in the absence of both q and a
we recover the Schwarzschild metric with the only curvature
singularity is at r = 0. In addition, in the limit q = 0, a �= 0,

one can recover the Kerr metric in Boyer–Lindquist coordi-
nates after applying an algebraic Ehlers transformation, at
the level of the Ernst potential. The details of this proce-
dure are outside the scope of this work and will be presented
elsewhere. However, it does not affect the local singularity
properties of the space-time [37,39] and the results still valid.

Since we are interested in studying Thick disks that are far
away from the hypersurface r = 2m, the intersection points
are not an obstacle for the investigation of the disks physical
properties.

3.4 On the existence of bounded trajectories

The main goal of this work is to investigate the structure of
equipotential surfaces of the Thick accretion disk model. To
do so, the first step after studying the space-time itself is to
examine if bounded and circular trajectories are possible in
this background.

In general, the trajectory of a test particle in the back-
ground of the stationary q-metric is chaotic. However, trajec-
tories that are close to the minima of the effective potential,
representing stable circular orbits, have a regular character
[42–45]. Here, as mentioned before, we focus on the exis-
tence of the regular bounded and circular orbits located on
the equatorial plane.

The expression for the effective potential in this back-
ground is rather large and complicated. In general, however,
as a standard procedure related to the behavior of the effective
potential, one can distinguish four different types of energetic
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Fig. 6 Top: Minimum of the effective potential versus a for fixed q.
Bottom: Minimum of the effective potential versus q for fixed a. The
value of L is the same for each plot

boundaries. First, in the case that no inner and outer bound-
aries exist, the particle can either fall onto the central object
or escape to infinity. Secondly, if there exists only one of
these boundaries, the particle must fall into the strong grav-
itational field of the central object or must escape to infinity.
Finally, when both inner and outer boundaries exist, the par-
ticles are trapped and form a toroidal region in the vicinity
of the compact object. Therefore, by examining the last case,
where bounded orbits are possible, we investigate the pos-
sibility of having disk configurations. An example of such
trajectories is illustrated in Fig. 5 for several values of the
quadrupole q and the rotation a. Another important partic-
ular case is that of circular geodesics, which correspond to
the situation when the effective potential equals the specific
energy of the particle V 2

eff = E2. Where the effective poten-
tial of the particle motion in (t, r, θ, φ) coordinates takes this
form

Veff(r, θ) = gtφL − √
L2((gtφ)2 − gtt gφφ) − gtt

gtt
. (27)

Fig. 7 The variation of the position of the center of the disk as a func-
tion of a

The existence of stable circular orbits requires having a min-
imum in the effective potential. However, the expression of
effective potential in this background is rather large and com-
plicated to be treated analytically. Therefore, we employed
numerical analysis which indicates that for a large range of
the parameters with fixed values of the specific energy E
and angular momentum L , the minimum exists; however, the
place of the minimum depends on the value of the parame-
ters of the metric. For instance, Fig. 6 shows the place of the
effective potential minimum as a function of the parameter a
(top panel) and as a function of parameter q (bottom panel).
We have seen that circular geodesics are possible in the entire
range of parameter values that we used in this work.

Our results show that indeed in the gravitational field of
the stationary q-metric bounded orbits are allowed, which
can be interpreted as indicating the existence of accretion
disks around the source. Thus, in the next section, we explore
the possibility of constructing models for Thick disks on the
background of the stationary q-metric.

4 Profile of the toroidal disk

The model of equilibrium tori for accretion disks is character-
ized by a negligible loss of mass and no self-gravity. In these
models, the gravity plays a crucial role in building the equipo-
tential configurations. One of the important features of the
tori model is that it exhibits locally a stabilizing mechanism
against thermal and viscous instabilities, and globally ver-
sus the Papaloizou and Pringle instability [46,47]. In these
configurations, the equation of state corresponds to that of
a barotropic perfect fluid since the model is based on the
Boyer’s condition. Moreover, the fluid does not influence the
space-time background and it is considered as test matter.
To briefly explain this model, we proceed as follows. The
general stationary axisymmetric metric in the spherical-like
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Fig. 8 The variation of �2
mb (dashed line) as a function of rmb, and the

variation of �2
ms (thick line) as a function of rms. Besides, the places of

rmb and rms also change with varying q and a. From the left to the right
for each curve, a goes from negative to positive values

coordinates is given by

ds2 = gttdt
2 + 2gtφdtdφ + grrdr2 + gθθdθ2 + gφφdφ2,

(28)

where gμν = gμν(r, θ). The stress-energy tensor contains
only the contribution of the perfect fluid; therefore, we have

Tμ
ν = wuμuν − δμ

ν p, (29)

where p is the pressure, w is the enthalpy as measured by an
observer moving with the fluid, and the four velocity uμ is
given by uμ = (ut , 0, 0, uφ) since we assume that the fluid
rotates in the azimuthal direction.

In this model, it is assumed that the angular velocity of
the rotating fluid � is a function of the angular momentum �

per unit mass [48], � = �(�), where

� = − gtt� + gtφ
gtφ� + gφφ

, (30)

where � = L
E

1. Finally, considering the assumptions of the
model, the continuity equation, and the conservation of the
stress-energy tensor, the equation of motion of the fluid, i.e.,
the relativistic Euler equation for the circular motion, can be
written in terms of surfaces of constant pressure, equipoten-
tial surfaces W , as follows [48]

1 Normally a constant of geodesic motion in axially symmetric space-
times is defined as only the nominator L . However, for having pressure,
specific enthalpy times L will be a constant of motion. For axially
symmetric and stationary space-times the above relation is constant of
motion.

∫ p

pin

dp

w
= Win − W (31)

= − ln
|ut |

|(ut )in| +
∫ �

�in

�d�

1 − ��
, (32)

where the index “in” refers to the internal edge of the disk.
In this case, the general relativistic version of the von Zeipel
theorem is fulfilled. Accordingly, the surfaces of equal �, �,
p and w all are the same [48]. Hence, for the constant angular
momentum distribution �0, the total potential can be found
as

W (r, θ) = 1

2
ln

∣∣∣∣∣
g2
tφ − gtt gφφ

gφφ + 2�0gtφ + �2
0gtt

∣∣∣∣∣ , (33)

This model can be adjusted for both the constant and
non-constant angular momentum distributions. For constant
angular momentum profile that we adapted here, W fulfills
the following conditions [48],

surfaces are

{
closed, if |�ms| < |�0| < |�mb|,
open, if |�0| ≥ |�mb|. (34)

and if |l0| = |lms|, we end up with just a ring. Here lmb and lms

stay for the value of angular momentum at marginally bound
and at marginally stable orbits, respectively. Thus, for a per-
fect fluid matter rotating around an object described by the
stationary q-metric, the shapes and location of the equipres-
sure surfaces follow from the specified angular momentum
distribution �. In this work, we consider adiabatic disks with
negligible influence of radiation. We assume a perfect fluid
obeying

p = Kρ1+ 1
n (35)

where K is the adiabatic constant, andn is the adiabatic index.
Without loss of generality, we assume n = 3 for the follow-
ing calculations. In addition, the cusp point, rcusp, is located
at the smallest intersection radius of �0 and the Keplerian
angular momentum, whereas the largest intersection charac-
terizes the center of the disk rc. At these two points the fluid
can move freely as the pressure gradient vanishes. The radius
rc is shown in Fig. 7 as a function of a for different values
of q. We see that rc is an increasing function of a and q. It
means that for any fixed value of q (or a), for larger values
of a (or q) the disk can be constructed farther away from the
central object. In addition, the plots of rc as a function of a
have a maximum for positive qs and a minimum for negative
qs. This means that for positive values, if one continuously
increases a, the disk configuration shifted from the central
source and then come closer. It could be either an interesting
behavior of this space-time, or some signal to discard very
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Fig. 9 Density profile on the equatorial plane for different values of parameters q and a. The plots are scaled at each case by the value at the center

large positive values of q. This analysis is beyond the scope
of the current work because it would imply a deeper investi-
gation of the physical properties of the background metric.

In Fig. 8, we plot the square of the specific angular momen-
tum at the marginally stable rms and marginally bound rmb

radii for different values of q and a. As mentioned earlier, to
have closed equipressure surfaces (34), we need to choose �0

between the two curves for each model.
In fact, the angular momentum profiles �2

mb and �2
ms and

their orbits rmb and rms, as shown in Fig. 8, have the same
behavior as rc with respect to parameters a and q.

In addition, the area between these two profiles also
increases, leading to the appearance of a wider region, where
closed equipotential surfaces can exist because the chosen
angular momentum �0 should be within this region. A con-
sistent approach for choosing this profile for different values
of parameters consists in fixing the constant angular momen-
tum a �2

0 = 1
2 (�2

mb + �2
ms) for all the models.

To see the impact of the parameter a, in Fig. 9, we plot the
rest-mass density profiles on the equatorial plane for different
values of a and each chosen value for q. We see that as q
or a increases, the maximum of the rest-mass density shifts
farther away from the central object, which is consistent with
the results of Figs. 7 and 8.

To study the influence of the parameters q and a on the
pressure, Fig. 10 shows the pressure profiles on the equato-

rial plane. In this figure, we consider both cases of relativistic
and non-relativistic gas to see the differences as well as the
impact of parameters of the metric on both cases. Following
our choice for an adiabatic pressure-mass density relation
(35), the energy density is given by ε = ρ + np [49]. How-
ever, in the non-relativistic limit one can assume the rest-mass
density is sufficiently lower than the contribution of the spe-
cific internal energy, p � ρ. Nevertheless, this difference is
very small and it is not possible to detect the deviation on
the panels of disk configurations as shown in Fig. 11. How-
ever, increasing q or a causes a sharper deviation as seen in
Fig. 10.

In Fig. 11, a comparison among the different rows tells
us about the role of the quadrupole q for any chosen a,
while a contrast among the columns shows the influence of
the parameter a on the model for any chosen value of q.
Clearly, one can see that by increasing the value of a, the
disk moves away from the compact object. Besides, the disk
shape becomes extended in the radial direction. A similar pat-
tern is obtained for larger values of qs. Then, both parameters
seem to have the same effect on the disk structure. However, a
deeper analysis reveals that the growth rate caused by increas-
ing a is higher than by increasing q. For the case a = 0 the
result is in good agreement with the results found in [16] for
a constant angular momentum. Furthermore, in the second
column and row, the Schwarzschild case is plotted and we see
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Fig. 10 Pressure profile on the equatorial plane comparing the relativistic and the non-relativistic cases

that by changing these parameters, the configuration of the
disk smoothly deviate from this particular choice a = 0 = q.

In conclusion, with respect to the central source, the size
and position of the disk are a monotonically increasing func-
tions of both parameters a and q. Therefore, it seems reason-
able by considering the properties and the overall structure
of a Thick accretion disk, one may estimate the rotation and
quadrupole parameters of the central compact object at least
to find upper and lower bounds on them. For the sake of
comparison, Figs. 12 and 13 shows the disk profile for some
chosen values of spin parameter a in Kerr and in naked Kerr,
respectively. Although the stationary q-metric has a singu-
larity at the horizon, interestingly, the configuration of the
accretion disk in this space-time is more similar to the Kerr

configurations rather than the naked Kerr singularity. In par-
ticular, for the chosen parameters in both cases we have the
cusp. The only difference is by increasing a in Kerr, one
obtains a smaller disk structure contrary to the stationary q-
metric. On the other hand, the size of the disks by increasing
a is similar to the behaviour of disks by increasing a in naked
Kerr singularities. Therefore, without testing the hypothesis
of the Kerr solution first, it is difficult to distinguish between
the Kerr and some other alternatives in astrophysical systems
like the Thick accretion disk model.
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Fig. 11 Equidensity surfaces for various values of a (in column) and q (in row) considered in Fig. 9, in the stationary q-metric

5 Conclusions and summary

In this paper, we analyzed the motion of particles in the sta-
tionary q-metric considering relatively small quadrupole q.

We also investigated the structure of Thick disks on this
background to reveal the physical properties of this space-
time. In particular, we studied the shape and properties of the
equipressure surfaces of the Thick disk model. In addition,
we compare the results of our analysis with the limiting cases
of the static q-metric and the Schwarzschild metric.

In the first part of this work, we analyzed the properties
of the Ernst potential as well as the effective potential of
the stationary q-metric on the equatorial plane. Interestingly,
it turns out that there are certain points very close to r =
2m on the equatorial plane at which the Ernst potential has
the same value for different values of a, indicating a sort of
degeneracy of the gravitational field at the intersection points.
However, this degeneracy does not affect the structure of the
accretion disks that are always located far away from these
intersections.

In the second part, we explore the structure of Thick tori
in the space-time of the stationary q-metric. In general, the
parameters q and a drastically affect the shape of the disk.
Indeed, the larger the values of q and a, the larger the disk
configuration, with an extended shape along the radial direc-
tion, and the farther away from the central object is the disk
located. These results show that, in principle, it should be
possible to determine the rotational and quadrupole parame-
ters of the central object by measuring the shape and location
of accretion disks. In addition, we compared our results with
those obtained for the Kerr spacetime, including the limit of
a naked singularity. It would be interesting to continue the
investigation of this space-time by studying the behavior of
other astronomical systems that could exist in the gravita-
tional field of the stationary q-metric. In particular, to test
the applicability of this solution in the numerical setups and
compare it with other backgrounds.

123



1149 Page 12 of 14 Eur. Phys. J. C (2022) 82 :1149

Fig. 12 Equidensity surfaces for various values of a in the Kerr metric Fig. 13 Equidensity surfaces for various values of a in the naked Kerr
singularity
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25. B. Paczyńsky, P.J. Wiita, Thick accretion disks and supercritical
luminosities. Astron. Astrophys. 500, 203–211 (1980)

26. M.A. Abramowicz, M. Calvani, L. Nobili, Thick accretion disks
with super-Eddington luminosities. APJ 242, 772–788 (1980)

27. B. Paczynski, Thick accretion disks around black holes (Karl-
Schwarzschild-Vorlesung 1981). Mitteilungen der Astronomis-
chen Gesellschaft Hamburg 57, 27 (1982)

28. B. Paczynski, M.A. Abramowicz, A model of a thick disk with
equatorial accretion. APJ 253, 897–907 (1982)

29. F. de Felice, Repulsive phenomena and energy emission in the field
of a naked singularity. Astron. Astrophys. 34, 15 (1974)

30. Z. Stuchlik, Evolution of Kerr naked singularities. Bull. Astron.
Inst. Czech. 32, 68 (1981)

31. G. Török, Z. Stuchlík, Radial and vertical epicyclic frequencies
of Keplerian motion in the field of Kerr naked singularities. Com-
parison with the black hole case and possible instability of naked-
singularity accretion discs. Astron. Astrophys. 437(3), 775–788
(2005)

32. M. Kološ, Z. Stuchlík, Dynamics of current-carrying string loops in
the Kerr naked-singularity and black-hole spacetimes. PRD 88(6),
065004 (2013)

33. C. Chakraborty, P. Kocherlakota, M. Patil, S. Bhattacharyya, P.S.
Joshi, A. Królak, Distinguishing Kerr naked singularities and black
holes using the spin precession of a test gyro in strong gravitational
fields. Phys. Rev. D 95, 084024 (2017)

34. D. Charbulák, Z. Stuchlík, Spherical photon orbits in the field of
Kerr naked singularities. Eur. Phys. J. C 78(11), 879 (2018)

35. M. Rizwan, M. Jamil, K. Jusufi, Distinguishing a Kerr-like black
hole and a naked singularity in perfect fluid dark matter via pre-
cession frequencies. Phys. Rev. D 99, 024050 (2019)

36. D. Bhattacharjee, Solutions of Kerr black holes subject to naked
singularity and wormholes (2020)

37. H. Quevedo, Multipole moments in general relativity-static and
stationary vacuum solutions-. Fortsch. Phys./Prog. Phys. 38(10),
733–840 (1990)

38. F. Frutos-Alfaro, M. Soffel, On relativistic multipole moments of
stationary space-times. R. Soc. Open Sci. 5(7), 180640 (2018)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1310.5339
http://arxiv.org/abs/2106.04932


1149 Page 14 of 14 Eur. Phys. J. C (2022) 82 :1149

39. H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt,
Exact Solutions of Einstein’s Field Equations (Cambridge Univer-
sity Press, Cambridge, 2009)

40. F.J. Ernst, New formulation of the axially symmetric gravitational
field problem. Phys. Rev. 167, 1175–1178 (1968)

41. F.J. Ernst, New formulation of the axially symmetric gravitational
field problem. II. Phys. Rev. 168, 1415–1417 (1968)

42. A.N. Kolmogorov, On conservation of conditionally periodic
motions for a small change in Hamilton’s function. Dokl. Akad.
Nauk SSSR 98, 527–530 (1954)

43. J. Möser, On invariant curves of area-preserving mappings of an
annulus. Nachr. Akad. Wiss. Göttingen II, 1–20 (1962)

44. V.I. Arnol’d, Proof of a theorem of A.N. Kolmogorov on the invari-
ance of quasi-periodic motions under small perturbations of the
hamiltonian. Russ. Math. Surv. 18(5), 9–36 (1963)

45. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (1973)
46. M.A. Abramowicz, Innermost parts of accretion disks are thermally

and secularly stable. Nature 294(5838), 235–236 (1981)
47. O.M. Blaes, Stabilization of non-axisymmetric instabilities in a

rotating flow by accretion on to a central black hole. MNRAS 227,
975–992 (1987)

48. M. Abramowicz, M. Jaroszynski, M. Sikora, Relativistic, accreting
disks. Astron. Astrophys. 63, 221–224, 2 (1978)

49. Z. Stuchlík, P. Slaný, J. Kovář, Pseudo-Newtonian and general
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