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Abstract If the leptoquarks proposed to account for the
intriguing anomalies observed in the semileptonic B-meson
decays, RD(∗) and RK (∗) , as well as in the anomalous mag-
netic moment of the muon, (g − 2)μ, can be embedded into
the scotogenic Dirac neutrino mass models, all these flavor
anomalies, together with the origin of neutrino masses and
the nature of dark matter, could be potentially addressed in
a unified picture. Among the minimal seesaw, one-loop, and
two-loop realizations of the dimension-4 effective operator
L4 for the Dirac neutrino masses, we show that plenty of
diagrams associated with the two-loop realizations of L4 can
support the coexistence of leptoquarks and dark matter can-
didates. After a simple match of these leptoquarks with the
ones introduced to accommodate all the flavor anomalies, we
establish the scotogenic Dirac neutrino mass models embed-
ded with leptoquarks, which could address all the problems
mentioned above.

1 Introduction

Despite its great success in elementary particle physics, the
Standard Model (SM) fails to explain the origin of tiny neu-
trino masses and the nature of dark matter (DM). In general,
these two problems are considered as two separate topics, and
could be solved via completely different mechanisms with
unrelated particles and/or interactions. However, addressing
them in a unified picture, in which the neutrino mass scale as
well as the DM property and its abundance can be quantita-
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tively connected with each other, would be more intriguing.
It is known that the scotogenic models can fulfill the task,
because the essence of these models, as demonstrated in the
original works [1,2], is that the neutrino mass generation
involves at least one DM propagator. Interestingly enough,
the interactions responsible for the neutrino mass generation,
though being not necessarily, can also successfully account
for the DM relic abundance [3]. Thus, in a sense, the scoto-
genic models could really kill two birds with one stone.

Depending on the nature of neutrinos, being of the Majo-
rana or of the Dirac type, the scotogenic models are gener-
ally classified into two categories. Historically, neutrinos of
the Majorana type are relatively more motivated and vari-
ous mechanisms for their mass generation, based either on
the seesaw [4–10] or the loop effects [1,11–13], have been
proposed. However, since no indisputable evidence has been
reported for the neutrinoless double beta decay so far [14–
18], the nature of neutrinos is still unsettled, and the possi-
bility of Dirac neutrinos should not be discounted. In fact,
during the past few years there has been a renewed inter-
est in building the mass generation models for the Dirac
neutrinos, in which the tiny masses can be generated either
through the seesaw mechanisms [19–36] or the loop effects
[3,37–57]. Among these proposals, if the DM exchanges are
also involved, they can be identified as the scotogenic Dirac
neutrino mass models (SDνM) [3], which constitutes one of
the key “stones” of this work. Besides in the mass genera-
tion mechanisms, growing interests have also been revived
in other aspects of the Dirac neutrinos, such as their inti-
mate connections to the baryon asymmetry of the Universe
[58,59], which is another conundrum the SM of particle
physics is now facing.
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Besides the problems associated with neutrinos and DM,
several intriguing anomalies in the semileptonic B-meson
decays, particularly in the ratios RD(∗) [60–68] and RK (∗)

[69–74], as well as in the muon g− 2 measurements [75,76]
have been reported over the last few years. Interestingly, it has
been demonstrated that models with only a single leptoquark
(LQ) [77–79] or a few of them [80–87] are capable of address-
ing all these flavor anomalies simultaneously. Inspired by the
spirit of SDνM, we will explore in this work if these “stones”,
once combined properly, could accommodate all the flavor
anomalies, together with the origin of neutrino masses and
the nature of dark matter in a unified picture. Arguably, the
simplest approach is to check if whatever proposed to account
for the B-meson and (g−2)μ anomalies simultaneously also
contributes to the Dirac neutrino mass generation. If these
viable LQs could be embedded into the SDνM, not only can
all the aforementioned problems be solved in a unified pic-
ture, but also their rich phenomenology correlated with the
neutrino mass and mixing will make the constructed models
more predictable and testable.

Our starting point will be the classification of minimal see-
saw (tree-level), one-loop, and two-loop realizations of the
Dirac neutrino mass operatorsL4 at dimension four [88,89].1

Guided exclusively by the SM gauge symmetry, we will work
out a selection scheme for the topologies, and then examine
systematically possible diagrams and ultraviolet (UV) com-
pletions associated with each topology. In contrast to the
previous studies [88,89], the topologies we are seeking must
involve the exchanges of at least one LQ and one DM candi-
date, supporting therefore our scenario of SDνM embedded
with LQs—only after the dominance of their contributions to
the Dirac neutrino masses is established, will the topology-
based UV completions be dubbed LQ-SDνM. If the LQ(s)
embedded can simultaneously account for the B-meson and
(g−2)μ anomalies as well, the LQ-SDνM will be considered
as the mighty “stones”. As will be demonstrated in this work,
there exist plenty of such kinds of mighty models. Intrigu-
ingly, in some of these models, a close-knit connection can
be established between the flavor anomalies and the neutrino
mass.

The paper is organized as follows. We begin Sect. 2 by
establishing a topology-selection scheme, under which we
examine the topologies and their associated diagrams of the
two-loop realizations of L4, and identify the ones that can
support the coexistence of at least one LQ and one DM can-
didate. Based on the existing studies aimed at addressing
all the flavor anomalies with LQs exclusively, we establish
the possible mighty “stones” in Sect. 3. Our conclusions are

1 Note that the classification of seesaw and loop realizations of the Dirac
neutrino mass operators at dimension five [90–92] and dimension six
[93,94] also exists; our choice of L4 here is solely for simplicity.

finally made in Sect. 4. For convenience, useful supplemen-
tary materials are provided in the appendices.

2 SDνM embedded with LQs

In order to have massive Dirac neutrinos, one needs firstly
extend the SM particle contents by adding the right-handed
neutrinos νR . Arguably, the simplest way goes with the fol-
lowing Yukawa interaction,

L4 = −yL̄ L ˜HνR + H.c., (1)

where LL = (νL , eL)T is the left-handed lepton doublet,
and ˜H = iσ2H∗ with σ2 the second Pauli matrix and
H = (φ+, φ0)T the SM Higgs doublet. However, to account
for the sub-eV neutrino masses, the Yukawa coupling y must
be tuned to a very small value, y ∼ O(10−12), being there-
fore often criticized as unnatural. To circumvent this prob-
lem, more attractive mechanisms, such as the Dirac seesaw
[19–36] and the radiative mass generation [3,37–57], have
been proposed, and they are not necessarily confined to the
Yukawa structure specified by Eq. (refeq:SMspsyukawa)

In this paper, we will focus on the case in which the Dirac
neutrino masses are generated by these attractive mecha-
nisms. In addition, a global lepton-number symmetry U(1)L
will be introduced to ensure the absence of Majorana mass
terms for νR at all orders, so that the Dirac nature of the
neutrinos is protected. In general, there might be an infi-
nite number of UV completions of L4 that respect the SM
and lepton-number symmetries. For simplicity, we will only
focus on the fields transforming as singlet, doublet, or triplet
under the SM SU(2)L gauge symmetry. Furthermore, for the
sake of minimality, we will introduce only limited number of
new degrees of freedom carrying colors. Before diving into
the classification of minimal seesaw (tree-level), one-loop,
and two-loop realizations ofL4, and identifying the topology
and its associated diagrams that can support the coexistence
of at least one LQ and one DM candidate, we will firstly give
a brief discussion about the LQs and DM candidates, and
then establish a topology-selection scheme.

The LQs, due to their ability of turning quarks into lep-
tons and vice versa, have very rich phenomenology in, e.g.,
the anomalous magnetic moment of the charged leptons, the
weak decays of various hadrons, the neutral-meson mixings,
etc.; see Ref. [95] for a recent review. If their interactions with
the right-handed Dirac neutrinos νR are taken into account,
there are totally twelve LQs, namely six scalars and six vec-
tors. Their possible couplings to the SM fermions and νR , as
well as their representations under the SM gauge symmetry
SU(3)c ⊗ SU(2)L ⊗ U(1)α are summarized in Table 1. We
follow here the same conventions as used in Ref. [95].

123



Eur. Phys. J. C (2022) 82 :1078 Page 3 of 16 1078

Table 1 Possible couplings of the scalar and vector LQs to the SM
fermions and the right-handed neutrinos νR , as well as their representa-
tions under the SM gauge group SU(3)c⊗SU(2)L⊗U(1)α . The interac-
tions between LQs and fermions are indicated only schematically and,
for simplicity, their coupling constants and the Hermitian conjugated
terms are not shown explicitly—they could be found, e.g., in Ref. [95].
Our convention for the hypercharge α is specified by Qem = T3 + α,
and the charge conjugate of a fermion field ψ is defined as ψC = Cψ̄T ,
with C the charge conjugate operator

Scalar LQ SM Rep. Vector LQ SM Rep.

S1 Q̄C
L LL (3̄, 1, 1/3) U1μ Q̄Lγ μLL (3, 1, 2/3)

S1ūCReR U1μd̄Rγ μeR

S1d̄CR νR U1μū Rγ μνR

S3 Q̄C
L LL (3̄, 3, 1/3) U3μ Q̄Lγ μLL (3, 3, 2/3)

R2ū R LL (3, 2, 7/6) V2μd̄CR γ μLL (3̄, 2, 5/6)

R2 Q̄LeR V2μ Q̄C
L γ μeR

˜S1d̄CR eR (3̄, 1, 4/3) ˜U1μū Rγ μeR (3, 1, 5/3)

˜R2d̄R LL (3, 2, 1/6) ˜V2μūCRγ μLL (3̄, 2,−1/6)

˜R2 Q̄LνR ˜V2μ Q̄C
L γ μνR

S̄1ūCRνR (3̄, 1,−2/3) Ū1μd̄γ μνR (3, 1,−1/3)

Mounting evidences have indicated that the DM, if being
an elementary particle, must be stable, colorless, and elec-
trically neutral. To avoid the constraints from the DM
direct detection experiments, such as PandaX-II [96] and
XENON1T [97], we will, as discussed in Refs. [90,93],
require the DM candidate to satisfy the condition α = 0,
with α the hypercharge of the DM field, since otherwise the
direct detection cross section via nucleon recoil, being pro-
portional toα2, would be generally quite large. Consequently,
the convention Qem = T3 +α, together with the requirement
Qem = 0, leads further to the condition T3 = 0 for the DM
candidate. This implies that the SU(2)L multiplets with even
number of components (i.e., doublet, quartet, etc.) are already
eliminated. The scalar doublet with α = ±1/2 is, however,
an exception, because a mass splitting enforced between the
scalar and pseudo-scalar components can eliminate the cou-
pling of the DM candidate to the Z boson at tree level [98,99],
and thus help the model with such a scalar doublet evade the
constraints from the direct detection experiments. In gen-
eral, there can be more than one DM candidate participating
in the neutrino mass generation. If so, the lightest one will
be deemed the DM.

To prevent the DM from decaying exclusively to the SM
particles, a necessary auxiliary symmetry is usually intro-
duced. The most popular choice is the Z2 symmetry, which
is commonly used in radiative neutrino mass models to help
stabilize the DM candidates. Assuming the symmetry to be
exact, we will assign an even (+) Z2 parity to all the SM
particles, as well as the right-handed neutrinos νR , whereas
an odd (−) Z2 parity to the DM candidates.

Summarizing all the bits and pieces of our discussions
made above, we can establish the following set of criteria for
our later topology (diagram) selection scheme:

• Only the fields transforming as singlet, doublet, or triplet
under the SU(2)L gauge symmetry will be considered.

• The DM candidates, expect for being the neutral compo-
nents of a scalar doublet with α = ± 1/2, must satisfy
the condition α = T3 = 0, to avoid the constraints from
DM direct detection experiments.

• A minimum of new degrees of freedom carrying colors
will be introduced.

• The dark Z2 symmetry introduced to prevent the DM
from decaying exclusively to the SM particles must be
exact.

Given that the external field contents LL , νR , and H in L4

are all colorless, the requirement of SU(3)c symmetry indi-
cates that the colored internal fields must be wrapped into
loops. If they all arise at one loop, it is obvious that the DM
candidate cannot appear in the very same loop, because it
must be colorless. Then, in order to have a diagram contain-
ing at least one LQ and one DM, the DM must be linked
to the colored loop (i.e., the one containing the LQ) either
directly or through a colorless portal. In either case, since the
DM possesses a Z2-odd parity, whereas all the external field
contents are even under the Z2 symmetry, the DM must also
be wrapped into loops to preserve the Z2 symmetry. Further-
more, if the DM forms a separate loop with other colorless,
Z2-odd particles, our desired diagrams must have either the
structure (I) or the structure (II) depicted in Fig. 1, because
the maximum loop number concerned here is restricted to
two; if the DM appears in a loop that shares a common piece
with the colored loop, the desired diagrams would be of the
structure (III) shown in Fig. 1. On the other hand, if the DM
and the colored fields share a loop, the diverted colors from
this loop have to be shunted into another loop. Once again,
the diagrams in this case would possess the structure (III).
Finally, the topology (diagram) of the structure (I) is one-
particle reducible, and thus should be discarded when dis-
cussing the loop realizations of an effective neutrino mass
operator, because the line which would disconnect the dia-
gram must have the quantum number to mediate the seesaw
realizations of the same mass operator [100]. As a conse-
quence, our analyses will focus only on the two-loop realiza-
tions of the operator L4 with the last two structures depicted
in Fig. 1.

2.1 Two-loop realizations of the operator L4

Two-loop realizations of the effective operator L4 have been
studied in Ref. [89]. After removing all the topologies cor-
responding to the tadpoles, the self-energy diagrams, and
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Fig. 1 Three possible structures for a topology (diagram) containing
at least one LQ and one DM at the two-loop level. Note that the particle
connecting the two loops in structure (I) must be colorless

Fig. 2 Finite two-loop 1PI topologies with three- and four-point ver-
tices and three external legs, which are all associated with the two-loop
realizations of the operator L4 [89]

the non-renormalizable diagrams involving, e.g., the three-
point vertices with only fermions or the four-point vertices
with a fermion insertion, we are left with five one-particle-
irreducible (1PI) topologies, which are shown in Fig. 2. It
can be seen that the topologies T1, T2, T3, and T5 all share
the structure (III), while T4 has the structure (II).

Based on these five topologies, we can build 18 diagrams
after specifying the external fermion and scalar fields, which
are depicted in Figs. 3 and 4. It can be seen that all the dia-
grams in Fig. 3, except for the top three, contain a compress-
ible fermion–fermion–scalar vertex, whereas the diagrams in
Fig. 4 have a compressible scalar-scalar-scalar or a compress-
ible scalar–vector–vector vertex. As the top three diagrams
in Fig. 3 contain no compressible three- or four-point renor-
malizable vertex, they will be called the genuine two-loop
diagrams [89]. Here the compressibility means that an inter-
nal sub-loop can be compressed to a renormalizable vertex,
while the genuinity of a diagram indicates that its contribu-
tion to the neutrino masses arises firstly at the two-loop level
[89].

Let us firstly consider the diagrams in Fig. 4. For a simple
demonstration, here we will focus on the diagram T4-i that
has the structure (II). If the DM candidates occupy the upper,
small loop, then, to make this diagram our desired one, at
least one LQ must propagate in the lower, big loop, yield-
ing therefore a compressible three-point vertex X2X5H with
both X2 and X5 carrying colors. On the other hand, If the
LQ arises in the upper, small loop, then the DM candidates
must propagate in the lower, big loop, resulting in another
compressible three-point vertex X2X5H with both X2 and
X5 being colorless and carrying a Z2-odd parity. Neverthe-
less, the resulting non-vanishing three-point vertices in both
cases, according to Refs. [89,100] and also shown in Fig. 5,
cannot prevent the presence of tree-level vertices X2X5H ,

Fig. 3 Genuine two-loop diagrams (the top three) and the ones con-
taining a compressible fermion–fermion–scalar vertex [89]. Here the
dashed line represents either a scalar or a vector field, while the solid
line always denotes a fermion field

Fig. 4 Two-loop diagrams that contain a compressible scalar-scalar-
scalar or a compressible scalar–vector-vector vertex. The other captions
are the same as in Fig. 3

or do not satisfy our requirement on the fields X2 and X5

for the non-local operator H(x)H(y)X (z) realized in Fig. 5,
rendering therefore the two-loop diagram non-genuine [89].
Consequently, we will consider neither the diagram T4-i nor
the rest ones in Fig. 4 (due to the same reason), and thus the
structure (II) in Fig. 1 is completely eliminated.

To build the possible UV models associated with the dia-
grams shown in Fig. 3, we have to pinpoint the proper quan-
tum numbers of all the internal fields in these diagrams. Let
us firstly assign them possible Z2 parity and color. Note
that assigning concrete SU(3)c representations to the inter-
nal fields is not necessary at this point; we will thus use a
simple notation “c” to indicate that the corresponding fields
are colored. In addition, since these diagrams share the same
structure, we can strip away the external fields to make our
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Fig. 5 The sub-diagram surrounded by the small red box on the left
is a compressible scalar-scalar-scalar (scalar–vector–vector) loop, and
always generates a tree-level three-point vertex HXX1, unless X1 = H
and X transforms as (1, 1,−1) under the SM gauge group, because
the local operator H(x)H(x)X (x) (on the right inside the big red box)
vanishes automatically due to the anti-symmetric contraction of the two
SU(2)L doublets H to the singlet X , whereas the non-local operator
H(x)H(y)X (z) realized at one loop (on the left inside the big red box)
does not vanish in general [89,100]

Fig. 6 Possible assignments of the Z2 parity (the upper three diagrams)
and the color c (the lower three diagrams) to the internal fields of the
structure diagram. Note that the diagrams with all their internal fields
labeled with c or + have been eliminated, because no place is left for
the DM candidates in this case

following procedure as general as possible. Then, it can be
seen from Fig. 6 that there are three ways to assign the Z2

parity (the upper three diagrams in Fig. 6) and the color c
(the lower three diagrams in Fig. 6) to the internal fields sep-
arately, resulting in nine combinations in total. Among them,
the combinations (a)-(B) and (b)-(A) leave no place for the
DM candidates, and hence should be eliminated. In addition,
the combinations (a)-(C), (b)-(C), (c)-(A), and (c)-(B) con-
tain two colored, Z2-odd particles, whereas (c)-(C) involves
four colored, Z2-odd particles. They have to be eliminated
as well according to our selection criteria. Finally, the com-
binations (a)-(A) and (b)-(B) contain one colored, Z2-odd
particle, two colored, Z2-even particles (one of them can be
a LQ), and two colorless, Z2-odd particles (one of them can
be a DM). Therefore, these two combinations are what we
will assign to the diagrams in Fig. 3. For the convenience of
our later discussions, we will hereafter use “a” and “b” to
denote the combinations (a)-(A) and (b)-(B), respectively.

Assigning the LQs in Table 1 to the internal field con-
tents for both the combinations “a” and “b”, we work out in
Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 all the
possible UV models corresponding to the diagrams shown
in Fig. 3, except for T2-ii, T3-v, T3-vi, T3-vii, and T3-viii,
since their UV models can be obtained by following the same
procedure (note that they all involve at least one colored, Z2-
odd fermion). In addition, the possible DM candidates are

already identified by using our prescriptions for the quantum
numbers of them. As indicated by the quantum numbers of
the field contents in Tables 14 and 17, we have set the LQs and
the DM candidates, which occupy the lower and the upper
loop respectively, to be the combination “a” for the diagrams
T3-ix and T3-x. The underlying reason for such an arrange-
ment is to make the LQs’ couplings to the left-handed lepton
doublet LL contribute directly to the neutrino mass genera-
tion, which in turn helps establish the mighty models to be
introduced later, because these interactions are essential to
address the flavor anomalies, as will be discussed in Sect. 3.
This indicates that the combination “b” in these two cases,
i.e., the LQs and the DM candidates occupying the two loops
in a reversed order, must be eliminated, since otherwise no
LQ couplings in Table 1 will contribute to the neutrino mass
generation. It is also interesting to note that only a handful
of UV models can involve a pair of LQs listed in Table 1.
They are (˜R2, S̄1) and (˜V2, Ū1) for the diagram T3-i with the
combination “b”, as well as (˜R2, S1,3), (R2, S̄1), (˜V2, U1,3),
and (V2, Ū1) for the diagram T3-ii with “a”.

These UV models for radiative Dirac neutrino masses sup-
port the coexistence of the LQs and the DM candidates, and
can be easily read off from Tables 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16 and 17. Let us take the model T1-i-a-A-1 as an
illustration.2 The new field contents of this model consist of
two SM singlets XF

2 and XS
3 , one colored, SU(2)L doublet

XS
4 , and one LQ S1. Note that, for simplicity, we have cho-

sen X3,4 to be the scalar fields—hence the superscript S on
X3,4 here, though they can also be vector ones, and X2,3,5 to
be the SU(2)L singlets, even though triplets would work as
well. After setting the hypercharge α = 0 for X1, both X2

and X3, as shown in Table 4, satisfy our prescription for the
DM candidates, i.e., carrying the hypercharge α = 0, and
thus the lighter one shall be the DM.

With our choice for the field contents, the relevant
Lagrangian that generates the diagram T1-i-a is then given
by

L ⊃ [λ1 Q̄
C
L iτ2LL S1 + λ2 Q̄L X

C
2L X4 + λ3ν̄R X2L X

†
3

+ λ4X
†
4HS†

1 X3 − MX2 X̄2L X2R + H.c.]
− M2

S1
S†

1 S1 − M2
X3
X†

3X3 − M2
X4
X†

4X4, (2)

where X2 is a vector-like fermion, λ1,2,3 describe the new
Yukawa interactions, and λ4 is the coupling constant among
the Higgs H , the LQ S1, and the two other new scalar fields
X3,4. After the electroweak symmetry breaking, one can
obtain the effective neutrino mass by computing the two-
loop integral of this diagram. For technical details and the

2 Here T1-i-a denotes the diagram T1-i depicted in Fig. 3 and with the
combination (a)-(A) shown in Fig. 6, and T1-i-a-A-1 the model listed
in the first row of Table 4. We refer the readers to Appendix B for our
convention of the model labeling.
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final expression of the loop evaluation, we refer the readers
to Refs. [101–104]. Following the same procedure, one can
also write out the Lagrangians for all the other models and
derive the corresponding neutrino masses.

2.2 Securing the two-loop dominance

To ensure the dominance of the two-loop contribution to
the Dirac neutrino masses, all the lower-order corrections
must be forbidden. For instance, besides the renormalizable
Yukawa interaction L̄ L ˜HνR , all the tree-level (seesaw) and
one-loop realizations of the effective operators L4 consid-
ered, e.g., in Ref. [88], should be absent. This can be achieved
by resorting to some softly broken symmetry or forcing the
fermion–fermion–scalar loop vertex to contain a derivative
on the fermion with correct chirality [89,100]. In what fol-
lows, we will consider the softly broken non-Abelian S4 sym-
metry and apply it to the diagram T1-i-a as a demonstration of
how the absence of these lower-order contributions is guar-
anteed.

The discrete flavor group S4 has been used to predict
the lepton-flavor mixing angles and the CP-violation phases
[105–109] and, recently, to ensure the dominance of the one-
loop contributions to the Dirac neutrino masses [90,93]. It
has five irreducible representations, two singlets 1 and 1′,
one doublet 2, and two triplets 3 and 3′, with their tensor
decomposition rules given, respectively, by [110]

1′ ⊗ 1′ = 1, 1′ ⊗ 2 = 2, 1′ ⊗ 3 = 3′, 1′ ⊗ 3′ = 3,

2 ⊗ 2 = 1 ⊕ 1′ ⊕ 2, 2 ⊗ 3 = 2 ⊗ 3′ = 3 ⊕ 3′,
3 ⊗ 3 = 3′ ⊗ 3′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′,
3 ⊗ 3′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′. (3)

We assign all the SM fermions to be 3, while the right-
handed neutrinos νR to be 3′. Note that certain LQs, such as
S1, ˜R2,U1, and ˜V2, have couplings with both the SM fermions
and the right-handed neutrinos, and hence can generate the
Dirac neutrino masses through the one-loop diagrams shown
in Fig. 9, as discussed in Ref. [88]. To exclude such a possi-
bility, we divide the LQs into the following two groups: the
first one refers to the LQs that couple with νR and transform
as 1′, while the second one to the LQs transforming as 3
under the S4 symmetry. Then, the one-loop diagrams shown
in Fig. 9 are excluded due to the violation of the S4 symme-
try. In addition, as indicated in Table 2, the renormalizable
Yukawa interaction L̄ L ˜HνR and the seesaw realizations of
the effective operator L4 are automatically forbidden by the
S4 symmetry, while the two-loop diagram T1-i-a can be gen-
erated due to the soft-breaking term X†

5X4X3H . Thus, the S4

symmetry introduced guarantees the two-loop dominance in
generating the Dirac neutrino masses. It should be, however,
mentioned that the representation assignment here is solely

Table 2 Forbidding the lower-order contributions in the UV models of
the diagram T1-i-a under the S4 symmetry. We list also the transforma-
tion properties of the relevant fields under the Z2 symmetry

Fields T1-i-a

LL νR H X1 X2 X3 X4 X5

Z2 + + + + − − − +
S4 3 3′ 1 3 3′ 3 1′ 3

Table 3 Summary of the LQs that can accommodate the RK (∗) , RD(∗) ,
and/or (g − 2)μ anomalies

Model RK (∗) RD(∗) (g − 2)μ

U1 � � �
V2 � � �
S1 × � �
S3 � × ×
R2 × � �

as an illustration. It may not be the best choice, since, besides
the Dirac neutrino masses, a compatible Pontecorvo–Maki–
Nakagawa–Sakat mixing matrix must also be reproduced,
once a specific UV model is concerned under the symmetry.
It should also be pointed out that the choice of the auxil-
iary symmetry is highly subjective; other symmetries, either
Abelian (e.g., Z2, Z3 [93]) or non-Abelian (e.g., A4 [90]),
have also been considered to secure the dominance of the
loop contributions.

In short, once the dominance of the two-loop contributions
to the Dirac neutrino masses is established, the UV comple-
tions listed in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
and 17 can be identified as the LQ-SDνM, and the mighty
“stones” we are seeking, if existed, must arise from them.

3 The mighty “stones”

If the LQs proposed to account for the RD(∗) , RK (∗) , and (g−
2)μ anomalies also emerge in our established LQ-SDνM,
there will be a good chance that these models are the mighty
“stones” aimed at providing a simultaneous explanation of
the flavor anomalies and the neutrino masses in a unified
picture. To this end, we will firstly find out the proper LQs.

It is known that the vector LQ U1 can alone address the
RD(∗) and RK (∗) anomalies simultaneously, while the LQs S1,
S3, R2, ˜R2, andU3 can only account for one of the anomalies
[111,112]. Interestingly, it has been shown recently in Refs.
[77,78] that the same vector LQ U1 can also explain the
(g− 2)μ anomaly [75,76,113], provided that its interactions
with the left- and right-handed SM fermions are both present.
These findings lead to an exciting observation that all the
flavor anomalies can be addressed by such a single vector
LQ. Remarkably, U1 is in fact not alone. A very recent study
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shows that the same task can also be achieved by another
vector LQ V2 [79].

Besides the option with a single vector LQ U1 or V2, one
could also resort to a pair of scalar LQs. It is known that
at tree-level S3 is the only scalar LQ that can account for
the RK (∗) anomalies, while either S1 or R2 can address the
RD(∗) anomalies (see, e.g., Refs. [112,114–116] and refer-
ences therein). Meanwhile, both S1 and R2 can address the
(g − 2)μ anomaly, due to the simultaneous presence of their
couplings to the SM left- and right-handed chiral fermions
[117]. Thus, to solve all the flavor anomalies, the first step is
to select the proper LQ pairs. In order to help visualize these
possible options, we summarize in Table 3 the aforemen-
tioned LQs that can accommodate the RK (∗) , RD(∗) , and/or
(g−2)μ anomalies. It becomes clear that, besides the vector
LQs U1 and V2, we have two more options with a pair of
LQs: (i) S1 and S3, and (ii) R2 and S3. Both options have
been explored to address these flavor anomalies in a unified
framework [80–87].

We are now ready to establish the mighty “stones”. Given
the high freedom in choosing the auxiliary symmetry to
secure the two-loop dominance, we will directly match the
LQs in Table 3 with those in the UV models listed in Tables 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17. For the options
U1 and V2, clearly plenty of models are available. Among
them, the ones associated with the diagrams T1-i-a and T3-
iii-a are probably the optimum for both options, since a mini-
mum of new fields are involved. Here it should be mentioned
that the models associated with the diagrams T1-i-b, T3-iv-b,
T3-ix-a, and T3-x-a can be optimal for the optionU1 as well,
due to the same reason.

However, for the scalar-LQ options (i) and (ii), none of
the models listed in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16 and 17 are available, because at least an additional
LQ has to be introduced. Under such a circumstance, for the
scalar-LQ option (i), the model A-1 (A-2) associated with the
diagrams T1-i-a, T1-i-b,T3-iii-a, T3-iv-b, T3-ix-a, and T3-
x-a, after extended to include the missing LQ S1 or S3, shall
be the optimum, because it will involve a minimal number
of new degrees of freedom. Intriguingly, both S1 and S3 will
contribute to the neutrino mass generation in the enlarged
model A-1 (A-2) of the diagrams T1-i-a and T3-iii-a. The
next best option would be the model A-1 (A-2) associated,
e.g., with the diagrams T3-i-a, T3-i-b, T3-ii-a, T3-ii-b, T2-i-
a, T2-i-b, T3-iii-b, and T3-iv-a, since only one additional new
field must be added. Similar to the previous optimum, both S1

and S3 in the modified model A-1 (A-2) of the diagrams T3-i-
a, T3-ii-a, T2-i-a, and T3-iv-a will contribute to the neutrino
mass generation; interestingly, the updated model T3-ii-a-A-
1 (A-2) will involve overall three scalar LQs.

Semi-similar conclusions drawn for the scalar-LQ option
(i) hold for the option (ii) as well. For instance, the optimum
shall arise from the model B-1 (B-2) associated with the dia-

grams T1-i-a and T3-iii-a enlarged with the LQ S3, while the
next best option from the updated model B-1 (B-2) associated
with the diagrams T3-i-a, T3-ii-a, T2-i-a, and T3-iv-a.

At this point, it may be interesting to note that combining
two of the above models—each contains one component of
the scalar LQ pair—surely works for both the options (i) and
(ii). Although these combined models often involve more
new degrees of freedom and are therefore less appealing,
some of them can still be very interesting. For instance, the
models A-1 (A-2) and B-1 (B-2) associated with the diagram
T1-i-a, although each of them consists of three new fields
besides the LQs, share two of them. Bringing the two mod-
els together can thus generate another best option as well,
which consists of six new degrees of freedom, just like the
aforementioned updated models such as T3-i-a-A-1 (A-2).
Besides, both the LQs S3 and R2 in this model will con-
tribute to the neutrino mass generation. Based on this model,
one may also build an even larger model by adding the LQ
S1. Although the model seems cumbersome, a slight com-
promise on minimality might be a good bargain here, given
especially that it contains all the scalar LQs in Table 3.

Finally, we conclude this section by making the follow-
ing comment. In the mighty models involving the vector LQ
U1 or V2, there is a close-knit connection between the fla-
vor anomalies and the neutrino masses. In other words, the
absence of any particle introduced to account for the fla-
vor anomalies in these mighty models will fail to generate
the neutrino masses.3 In the mighty models consisting of the
scalar LQs listed in Table 3, on the other hand, such a connec-
tion is missing, since removing S1 or S3 from the enlarged
model A-1 (A-2) associated with, e.g., the diagram T1-i-a
does not render the neutrino massless. To build a close-knit
connection for the scalar-LQ options (i) and (ii), one can
consider, e.g., the two-loop realizations of the effective oper-
ator L5 = −gν̄RLL H X + H.c., where X is a color-singlet,
SU(2)L-triplet scalar with hypercharge α = 0. Given that the
two-loop diagrams of L5 and L4 share similar structures (or
skeletons) [89,92], one can obtain the former (at least some
of them) by attaching the field X to the propagators of the
latter, and in turn build the corresponding UV models. Let us
take the model T3-iii-a-A-1 as an illustration. We firstly set
X3 = (1, 1, α), X4 = (1, 1, α), X5 = (3, 1, α−1/3), and
X6 = S1 or S3. Then, as shown in Fig. 7, we can obtain a
two-loop realization of L5 by linking X to X6, and build the
corresponding UV model, which contains, besides the fields
X3,4,5, both S1 and S3. We can further impose an auxiliary
symmetry to forbid all the lower-order diagrams, as well as
the one T3-iii-a, while introducing a soft-breaking interac-
tion term (marked in red in Fig. 7) to support the two-loop
dominance. In this way, both S1 and S3 become indispens-
able for the neutrino mass generation, and thus a close-knit

3 The same idea has been appreciated recently in Refs. [84,86].
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Table 4 Possible assignments
of the quantum numbers under
the SU(3)c ⊗ SU(2)L ⊗
U(1)α ⊗ Z2 symmetry to the
mediators in the diagram T1-i
depicted in Fig. 3 and with the
combination (a)-(A) shown in
Fig. 6, where m ⊕ n implies that
either an SU(2)L m- or n-plet
works. The possible DM
candidates are identified by the
hypercharge conditions for the
fields, as indicated by the last
column, where the symbols like
[X2, X3]|α=0 require both the
fields X2 and X3 to have the
same hypercharge or
hypercharge component α = 0

Model XF
1 XF

2 X3 X4 X5 DM

A-1 Q̄L (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 2, α+ 1
6 )− S†

1,3 [X2, X3]|α=0

A-2 Q̄L (1, 2, α)− (1, 2, α)− (3, 1 ⊕ 3, α+ 1
6 )− S†

1,3 X3|α= 1
2

B-1 uR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 1, α− 2
3 )− R†

2 [X2, X3]|α=0

B-2 uR (1, 2, α)− (1, 2, α)− (3̄, 2, α− 2
3 )− R†

2 X3|α= 1
2

C-1 dR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 1 ⊕ 3, α+ 1
3 )− ˜R†

2 [X2, X3]|α=0

C-2 dR (1, 2, α)− (1, 2, α)− (3̄, 2, α+ 1
3 )− ˜R†

2 X3|α= 1
2

D-1 QL (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 2, α− 1
6 )− U†

1,3 [X2, X3]|α=0

D-2 QL (1, 2, α)− (1, 2, α)− (3̄, 1 ⊕ 3, α− 1
6 )− U†

1,3 X3|α= 1
2

E-1 ū R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 1 ⊕ 3, α+ 2
3 )− ˜V †

2 [X2, X3]|α=0

E-2 ū R (1, 2, α)− (1, 2, α)− (3, 2, α+ 2
3 )− ˜V †

2 X3|α= 1
2

F-1 d̄R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 1 ⊕ 3, α− 1
3 )− V †

2 [X2, X3]|α=0

F-2 d̄R (1, 2, α)− (1, 2, α)− (3, 2, α− 1
3 )− V †

2 X3|α= 1
2

Table 5 Same as in Table 4 but
for the diagram T1-i depicted in
Fig. 3 and with the combination
(b)-(B) shown in Fig. 6

Model XF
1 XF

2 X3 X4 X5 DM

A-1 (1, 1 ⊕ 3, α)− d̄R S1 (3̄, 1 ⊕ 3, 1
3 −α)− (1, 2,− 1

2 −α)− [X1, X5]|α=0

A-2 (1, 2, α)− d̄R S1 (3̄, 2, 1
3 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X5|α=− 1
2

B-1 (1, 1 ⊕ 3, α)− QL ˜R2 (3, 2, 1
6 −α)− (1, 2,− 1

2 −α)− [X1, X5]|α=0

B-2 (1, 2, α)− QL ˜R2 (3, 1 ⊕ 3, 1
6 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X5|α=− 1
2

C-1 (1, 1 ⊕ 3, α)− ū R S̄1 (3̄, 1 ⊕ 3,− 2
3 −α)− (1, 2,− 1

2 −α)− [X1, X5]|α=0

C-2 (1, 2, α)− ū R S̄1 (3̄, 2,− 2
3 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X5|α=− 1
2

D-1 (1, 1 ⊕ 3, α)− uR U1 (3, 1 ⊕ 3, 2
3 −α)− (1, 2,− 1

2 −α)− [X1, X5]|α=0

D-2 (1, 2, α)− uR U1 (3, 2, 2
3 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X5|α=− 1
2

E-1 (1, 1 ⊕ 3, α)− Q̄L ˜V2 (3̄, 2,− 1
6 −α)− (1, 2,− 1

2 −α)− [X1, X5]|α=0

E-2 (1, 2, α)− Q̄L ˜V2 (3̄, 1 ⊕ 3,− 1
6 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X5|α=− 1
2

F-1 (1, 1 ⊕ 3, α)− dR Ū1 (3, 1 ⊕ 3,− 1
3 −α)− (1, 2,− 1

2 −α)− [X1, X5]|α=0

F-2 (1, 2, α)− dR Ū1 (3, 2,− 1
3 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X5|α=− 1
2

Table 6 Same as in Table 4 but for the diagram T3-i depicted in Fig. 3 and with the combination (a)-(A) shown in Fig. 6

Model XF
1 XF

2 X3 X4 X5 X6 DM

A-1 Q̄L (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (3, 2, α+ 1

6 )− S†
1,3 [X2, X3, X4]|α=0

A-2 Q̄L (1, 2, α)− (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (3, 1 ⊕ 3, α+ 1

6 )− S†
1,3 [X3, X4]|α=− 1

2

B-1 uR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (3̄, 1, α− 2

3 )− R†
2 [X2, X3, X4]|α=0

B-2 uR (1, 2, α)− (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (3̄, 2, α− 2

3 )− R†
2 [X3, X4]|α=− 1

2

C-1 dR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (3̄, 1 ⊕ 3, α+ 1

3 )− ˜R†
2 [X2, X3, X4]|α=0

C-2 dR (1, 2, α)− (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (3̄, 2, α+ 1

3 )− ˜R†
2 [X3, X4]|α=− 1

2

D-1 QL (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (3̄, 2, α− 1

6 )− U†
1,3 [X2, X3, X4]|α=0

D-2 QL (1, 2, α)− (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (3̄, 1 ⊕ 3, α− 1

6 )− U†
1,3 [X3, X4]|α=− 1

2

E-1 ū R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (3, 1 ⊕ 3, α+ 2

3 )− ˜V †
2 [X2, X3, X4]|α=0

E-2 ū R (1, 2, α)− (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (3, 2, α+ 2

3 )− ˜V †
2 [X3, X4]|α=− 1

2

F-1 d̄R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (3, 1 ⊕ 3, α− 1

3 )− V †
2 [X2, X3, X4]|α=0

F-2 d̄R (1, 2, α)− (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (3, 2, α− 1

3 )− V †
2 [X3, X4]|α=− 1

2
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Table 7 Same as in Table 4 but for the diagram T3-i depicted in Fig. 3 and with the combination (b)-(B) shown in Fig. 6

Model XF
1 XF

2 X3 X4 X5 X6 DM

A-1 (1, 1 ⊕ 3, α)− d̄R S1 (3̄, 2, 5
6 ) (3̄, 1 ⊕ 3, 1

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

A-2 (1, 2, α)− d̄R S1 (3̄, 2, 5
6 ) (3̄, 2, 1

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

B-1 (1, 1 ⊕ 3, α)− QL ˜R2 S̄†
1 (3, 2, 1

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

B-2 (1, 2, α)− QL ˜R2 S̄†
1 (3, 1 ⊕ 3, 1

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

C-1 (1, 1 ⊕ 3, α)− ū R S̄1 ˜R†
2 (3̄, 1 ⊕ 3,− 2

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

C-2 (1, 2, α)− ū R S̄1 ˜R†
2 (3̄, 2,− 2

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

D-1 (1, 1 ⊕ 3, α)− uR U1 (3, 2, 7
6 ) (3, 1 ⊕ 3, 2

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

D-2 (1, 2, α)− uR U1 (3, 2, 7
6 ) (3, 2, 2

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

E-1 (1, 1 ⊕ 3, α)− Q̄L ˜V2 Ū†
1 (3̄, 2,− 1

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

E-2 (1, 2, α)− Q̄L ˜V2 Ū†
1 (3̄, 1 ⊕ 3,− 1

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

F-1 (1, 1 ⊕ 3, α)− dR Ū1 ˜V †
2 (3, 1 ⊕ 3,− 1

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

F-2 (1, 2, α)− dR Ū1 ˜V †
2 (3, 2,− 1

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

Table 8 Same as in Table 4 but
for the diagram T3-ii depicted in
Fig. 3 and with the combination
(a)-(A) shown in Fig. 6

Model XF
1 XF

2 X3 X4 X5 X6 DM

A-1 Q̄L (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 2, α+ 1
6 )− ˜R2 S†

1,3 [X2, X3]|α=0

A-2 Q̄L (1, 2, α)− (1, 2, α)− (3, 1 ⊕ 3, α+ 1
6 )− ˜R2 S†

1,3 X3|α= 1
2

B-1 uR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 1, α− 2
3 )− S̄1 R†

2 [X2, X3]|α=0

B-2 uR (1, 2, α)− (1, 2, α)− (3̄, 2, α− 2
3 )− S̄1 R†

2 X3|α= 1
2

C-1 dR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 1 ⊕ 3, α+ 1
3 )− S1,3 ˜R†

2 [X2, X3]|α=0

C-2 dR (1, 2, α)− (1, 2, α)− (3̄, 2, α+ 1
3 )− S1,3 ˜R†

2 X3|α= 1
2

D-1 QL (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 2, α− 1
6 )− ˜V2 U†

1,3 [X2, X3]|α=0

D-2 QL (1, 2, α)− (1, 2, α)− (3̄, 1 ⊕ 3, α− 1
6 )− ˜V2 U†

1,3 X3|α= 1
2

E-1 ū R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 1 ⊕ 3, α+ 2
3 )− U1,3 ˜V †

2 [X2, X3]|α=0

E-2 ū R (1, 2, α)− (1, 2, α)− (3, 2, α+ 2
3 )− U1,3 ˜V †

2 X3|α= 1
2

F-1 d̄R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 1 ⊕ 3, α− 1
3 )− Ū1 V †

2 [X2, X3]|α=0

F-2 d̄R (1, 2, α)− (1, 2, α)− (3, 2, α− 1
3 )− Ū1 V †

2 X3|α= 1
2

Table 9 Same as in Table 4 but for the diagram T3-ii depicted in Fig. 3 and with the combination (b)-(B) shown in Fig. 6

Model XF
1 XF

2 X3 X4 X5 X6 DM

A-1 (1, 1 ⊕ 3, α)− d̄R S1 (3̄, 1 ⊕ 3, 1
3 −α)− (1, 1 ⊕ 3,−α)− (1, 2,− 1

2 −α)− [X1, X5, X6]|α=0

A-2 (1, 2, α)− d̄R S1 (3̄, 2, 1
3 −α)− (1, 2,−α)− (1, 1 ⊕ 3,− 1

2 −α)− [X5, X6]|α=− 1
2

B-1 (1, 1 ⊕ 3, α)− QL ˜R2 (3, 2, 1
6 −α)− (1, 1 ⊕ 3,−α)− (1, 2,− 1

2 −α)− [X1, X5, X6]|α=0

B-2 (1, 2, α)− QL ˜R2 (3, 1 ⊕ 3, 1
6 −α)− (1, 2,−α)− (1, 1 ⊕ 3,− 1

2 −α)− [X5, X6]|α=− 1
2

C-1 (1, 1 ⊕ 3, α)− ū R S̄1 (3̄, 1 ⊕ 3,− 2
3 −α)− (1, 1 ⊕ 3,−α)− (1, 2,− 1

2 −α)− [X1, X5, X6]|α=0

C-2 (1, 2, α)− ū R S̄1 (3̄, 2,− 2
3 −α)− (1, 2,−α)− (1, 1 ⊕ 3,− 1

2 −α)− [X5, X6]|α=− 1
2

D-1 (1, 1 ⊕ 3, α)− uR U1 (3, 1 ⊕ 3, 2
3 −α)− (1, 1 ⊕ 3,−α)− (1, 2,− 1

2 −α)− [X1, X5, X6]|α=0

D-2 (1, 2, α)− uR U1 (3, 2, 2
3 −α)− (1, 2,−α)− (1, 1 ⊕ 3,− 1

2 −α)− [X5, X6]|α=− 1
2

E-1 (1, 1 ⊕ 3, α)− Q̄L ˜V2 (3̄, 2,− 1
6 −α)− (1, 1 ⊕ 3,−α)− (1, 2,− 1

2 −α)− [X1, X5, X6]|α=0

E-2 (1, 2, α)− Q̄L ˜V2 (3̄, 1 ⊕ 3,− 1
6 −α)− (1, 2,−α)− (1, 1 ⊕ 3,− 1

2 −α)− [X5, X6]|α=− 1
2

F-1 (1, 1 ⊕ 3, α)− dR Ū1 (3, 1 ⊕ 3,− 1
3 −α)− (1, 1 ⊕ 3,−α)− (1, 2,− 1

2 −α)− [X1, X5, X6]|α=0

F-2 (1, 2, α)− dR Ū1 (3, 2,− 1
3 −α)− (1, 2,−α)− (1, 1 ⊕ 3,− 1

2 −α)− [X5, X6]|α=− 1
2
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Table 10 Same as in Table 4 but for the diagram T2-i depicted in Fig. 3 and with the combination (a)-(A) shown in Fig. 6

Model XF
1 XF

2 X3 X4 X5 X6 DM

A-1 Q̄L (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 1 ⊕ 3, α− 1
3 )− (3, 2, α+ 1

6 )− S†
1,3 [X2, X3]|α=0

A-2 Q̄L (1, 2, α)− (1, 2, α)− (3, 2, α− 1
3 )− (3, 1 ⊕ 3, α+ 1

6 )− S†
1,3 X3|α= 1

2

B-1 uR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 2, α− 7
6 )− (3̄, 1, α− 2

3 )− R†
2 [X2, X3]|α=0

B-2 uR (1, 2, α)− (1, 2, α)− (3̄, 1 ⊕ 3, α− 7
6 )− (3̄, 2, α− 2

3 )− R†
2 X3|α= 1

2

C-1 dR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 2, α− 1
6 )− (3̄, 1 ⊕ 3, α+ 1

3 )− ˜R†
2 [X2, X3]|α=0

C-2 dR (1, 2, α)− (1, 2, α)− (3̄, 1 ⊕ 3, α− 1
6 )− (3̄, 2, α+ 1

3 )− ˜R†
2 X3|α= 1

2

D-1 QL (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 1 ⊕ 3, α− 2
3 )− (3̄, 2, α− 1

6 )− U†
1,3 [X2, X3]|α=0

D-2 QL (1, 2, α)− (1, 2, α)− (3̄, 2, α− 2
3 )− (3̄, 1 ⊕ 3, α− 1

6 )− U†
1,3 X3|α= 1

2

E-1 ū R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 1 ⊕ 3, α+ 1
6 )− (3, 1 ⊕ 3, α+ 2

3 )− ˜V †
2 [X2, X3]|α=0

E-2 ū R (1, 2, α)− (1, 2, α)− (3, 2, α+ 1
6 )− (3, 2, α+ 2

3 )− ˜V †
2 X3|α= 1

2

F-1 d̄R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 1 ⊕ 3, α− 5
6 )− (3, 1 ⊕ 3, α− 1

3 )− V †
2 [X2, X3]|α=0

F-2 d̄R (1, 2, α)− (1, 2, α)− (3, 2, α− 5
6 )− (3, 2, α− 1

3 )− V †
2 X3|α= 1

2

Table 11 Same as in Table 4 but for the diagram T2-i depicted in Fig. 3 and with the combination (b)-(B) shown in Fig. 6

Model XF
1 XF

2 X3 X4 X5 X6 DM

A-1 (1, 1 ⊕ 3, α)− d̄R S1 (3̄, 2,− 1
6 −α)− (3̄, 1 ⊕ 3, 1

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

A-2 (1, 2, α)− d̄R S1 (3̄, 1 ⊕ 3,− 1
6 −α)− (3̄, 2, 1

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

B-1 (1, 1 ⊕ 3, α)− QL ˜R2 (3, 1 ⊕ 3,− 1
3 −α)− (3, 2, 1

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

B-2 (1, 2, α)− QL ˜R2 (3, 2,− 1
3 −α)− (3, 1 ⊕ 3, 1

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

C-1 (1, 1 ⊕ 3, α)− ū R S̄1 (3̄, 2,− 7
6 −α)− (3̄, 1 ⊕ 3,− 2

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

C-2 (1, 2, α)− ū R S̄1 (3̄, 1 ⊕ 3,− 7
6 −α)− (3̄, 2,− 2

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

D-1 (1, 1 ⊕ 3, α)− uR U1 (3, 2, 1
6 −α)− (3, 1 ⊕ 3, 2

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

D-2 (1, 2, α)− uR U1 (3, 1 ⊕ 3, 1
6 −α)− (3, 2, 2

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

E-1 (1, 1 ⊕ 3, α)− Q̄L ˜V2 (3̄, 1 ⊕ 3,− 2
3 −α)− (3̄, 2,− 1

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

E-2 (1, 2, α)− Q̄L ˜V2 (3̄, 2,− 2
3 −α)− (3̄, 1 ⊕ 3,− 1

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

F-1 (1, 1 ⊕ 3, α)− dR Ū1 (3, 2,− 5
6 −α)− (3, 1 ⊕ 3,− 1

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

F-2 (1, 2, α)− dR Ū1 (3, 1 ⊕ 3,− 5
6 −α)− (3, 2,− 1

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

connection is established between the flavor anomalies and
the neutrino masses.

4 Conclusion

In this paper, we have pointed out a potential pathway to
address in a unified picture the flavor anomalies and the ori-
gin of neutrino masses. The key ingredient here rests on the
compatibility of the LQs proposed to account for the RD(∗) ,
RK (∗) , and (g − 2)μ anomalies with the SDνM, which is
featured by its capability to explain the neutrino mass gen-
eration and the DM property. Based on the minimal seesaw,
one-loop, and two-loop realizations of the effective opera-
tors L4 for the Dirac neutrino masses, and guided by the
topology-selection criteria outlined in Sect. 2, we have found

that plenty of diagrams in the two-loop realizations ofL4 can
support the coexistence of the LQs and the DM candidates,
and exhausted in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16 and 17 all the topology-based UV completions. Match-
ing the LQs of these UV models with the ones introduced to
accommodate all the flavor anomalies considered, we have
established the mighty models that can address all the afore-
mentioned problems in a unified picture. On top of that, we
have also found that, in the models involving the vector LQ
U1 or V2, a close-knit connection can be established between
the flavor anomalies and the neutrino masses.

There exists, without any doubt, very rich phenomenology
for each mighty model. However, since a detailed analysis
has to be done on a case-by-case basis, we will leave it for
future works.

123
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Table 12 Same as in Table 4 but for the diagram T3-iii depicted in Fig. 3 and with the combination (a)-(A) shown in Fig. 6

Model XF
1 XF

2 XF
3 X4 X5 X6 DM

A-1 Q̄L d̄R (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 1 ⊕ 3, α− 1
3 )− S†

1,3 [X3, X4]|α=0

A-2 Q̄L d̄R (1, 2, α)− (1, 2, α)− (3, 2, α− 1
3 )− S†

1,3 X4|α= 1
2

B-1 uR (3, 2, 7
6 ) (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 2, α− 7

6 )− R†
2 [X3, X4]|α=0

B-2 uR (3, 2, 7
6 ) (1, 2, α)− (1, 2, α)− (3̄, 1 ⊕ 3, α− 7

6 )− R†
2 X4|α= 1

2

C-1 dR QL (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 2, α− 1
6 )− ˜R†

2 [X3, X4]|α=0

C-2 dR QL (1, 2, α)− (1, 2, α)− (3̄, 1 ⊕ 3, α− 1
6 )− ˜R†

2 X4|α= 1
2

D-1 QL uR (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3̄, 1 ⊕ 3, α− 2
3 )− U†

1,3 [X3, X4]|α=0

D-2 QL uR (1, 2, α)− (1, 2, α)− (3̄, 2, α− 2
3 )− U†

1,3 X4|α= 1
2

E-1 ū R Q̄L (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 2, α+ 1
6 )− ˜V †

2 [X3, X4]|α=0

E-2 ū R Q̄L (1, 2, α)− (1, 2, α)− (3, 1 ⊕ 3, α+ 1
6 )− ˜V †

2 X4|α= 1
2

F-1 d̄R (3̄, 2, 5
6 ) (1, 1 ⊕ 3, α)− (1, 1 ⊕ 3, α)− (3, 2, α− 5

6 )− V †
2 [X3, X4]|α=0

F-2 d̄R (3̄, 2, 5
6 ) (1, 2, α)− (1, 2, α)− (3, 1 ⊕ 3, α− 5

6 )− V †
2 X4|α= 1

2

Table 13 Same as in Table 4 but for the diagram T3-iii depicted in Fig. 3 and with the combination (b)-(B) shown in Fig. 6

Model XF
1 XF

2 XF
3 X4 X5 X6 DM

A-1 (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− d̄R S1 (3̄, 2,− 1

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

A-2 (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− d̄R S1 (3̄, 1 ⊕ 3,− 1

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− [X2, X6]|α=− 1

2

B-1 (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− QL ˜R2 (3, 1 ⊕ 3,− 1

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

B-2 (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− QL ˜R2 (3, 2,− 1

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− [X2, X6]|α=− 1

2

C-1 (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− ū R S̄1 (3̄, 2,− 7

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

C-2 (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− ū R S̄1 (3̄, 1 ⊕ 3,− 7

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− [X2, X6]|α=− 1

2

D-1 (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− uR U1 (3, 2, 1

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

D-2 (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− uR U1 (3, 1 ⊕ 3, 1

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− [X2, X6]|α=− 1

2

E-1 (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− Q̄L ˜V2 (3̄, 1 ⊕ 3,− 2

3 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

E-2 (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− Q̄L ˜V2 (3̄, 2,− 2

3 −α)− (1, 1 ⊕ 3,− 1
2 −α)− [X2, X6]|α=− 1

2

F-1 (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− dR Ū1 (3, 2,− 5

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

F-2 (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− dR Ū1 (3, 1 ⊕ 3,− 5

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− [X2, X6]|α=− 1

2

Table 14 Same as in Table 4
but for the diagram T3-ix
depicted in Fig. 3 and with the
combination (a)-(A) shown in
Fig. 6

Model X1 XF
2 XF

3 XF
4 X5 XF

6 DM

A-1 S†
1 dR (1, 2, α)− (1, 1 ⊕ 3, α + 1

2 )− (3̄, 2, α+ 1
3 )− Q̄L X4|α=− 1

2

A-2 S†
1 dR (1, 1 ⊕ 3, α)− (1, 2, α + 1

2 )− (3̄, 1 ⊕ 3, α+ 1
3 )− Q̄L X3|α=0

B-1 ˜R†
2 Q̄L (1, 2, α)− (1, 1 ⊕ 3, α + 1

2 )− (3, 1 ⊕ 3, α + 1
6 )− dR X4|α=− 1

2

B-2 ˜R†
2 Q̄L (1, 1 ⊕ 3, α)− (1, 2, α + 1

2 )− (3, 2, α + 1
6 )− dR X3|α=0

C-1 U†
1 ū R (1, 2, α)− (1, 1 ⊕ 3, α + 1

2 )− (3, 2, α+ 2
3 )− QL X4|α=− 1

2

C-2 U†
1 ū R (1, 1 ⊕ 3, α)− (1, 2, α + 1

2 )− (3, 1 ⊕ 3, α+ 2
3 )− QL X3|α=0

D-1 ˜V †
2 QL (1, 2, α)− (1, 1 ⊕ 3, α + 1

2 )− (3̄, 1 ⊕ 3, α− 1
6 )− ū R X4|α=− 1

2

D-2 ˜V †
2 QL (1, 1 ⊕ 3, α)− (1, 2, α + 1

2 )− (3̄, 2, α− 1
6 )− ū R X3|α=0

123
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Table 15 Same as in Table 4 but for the diagram T3-iv depicted in Fig. 3 and with the combination (a)-(A) shown in Fig. 6

Model XF
1 XF

2 XF
3 X4 X5 X6 DM

A-1 Q̄L (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (1, 2, α + 1

2 )− (3, 2, α+ 1
6 )− S†

1,3 [X2, X4]|α=0

A-2 Q̄L (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (1, 1 ⊕ 3, α + 1

2 )− (3, 1 ⊕ 3, α+ 1
6 )− S†

1,3 [X3, X4]|α=− 1
2

B-1 uR (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (1, 2, α + 1

2 )− (3̄, 2, α− 2
3 )− R†

2 [X2, X4]|α=0

B-2 uR (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (1, 1 ⊕ 3, α + 1

2 )− (3̄, 1 ⊕ 3, α− 2
3 )− R†

2 [X3, X4]|α=− 1
2

C-1 dR (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (1, 2, α + 1

2 )− (3̄, 2, α+ 1
3 )− ˜R†

2 [X2, X4]|α=0

C-2 dR (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (1, 1 ⊕ 3, α + 1

2 )− (3̄, 1 ⊕ 3, α+ 1
3 )− ˜R†

2 [X3, X4]|α=− 1
2

D-1 QL (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (1, 2, α + 1

2 )− (3̄, 1 ⊕ 3, α− 1
6 )− U†

1,3 [X2, X4]|α=0

D-2 QL (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (1, 1 ⊕ 3, α + 1

2 )− (3̄, 2, α− 1
6 )− U†

1,3 [X3, X4]|α=− 1
2

E-1 ū R (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (1, 2, α + 1

2 )− (3, 2, α+ 2
3 )− ˜V †

2 [X2, X4]|α=0

E-2 ū R (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (1, 1 ⊕ 3, α + 1

2 )− (3, 1 ⊕ 3, α+ 2
3 )− ˜V †

2 [X3, X4]|α=− 1
2

F-1 d̄R (1, 1 ⊕ 3, α)− (1, 2, α + 1
2 )− (1, 2, α + 1

2 )− (3, 2, α− 1
3 )− V †

2 [X2, X4]|α=0

F-2 d̄R (1, 2, α)− (1, 1 ⊕ 3, α + 1
2 )− (1, 1 ⊕ 3, α + 1

2 )− (3, 1 ⊕ 3, α− 1
3 )− V †

2 [X3, X4]|α=− 1
2

Table 16 Same as in Table 4 but for the diagram T3-iv depicted in Fig. 3 and with the combination (b)-(B) shown in Fig. 6

Model XF
1 XF

2 XF
3 X4 X5 X6 DM

A-1 (1, 1 ⊕ 3, α)− Q̄L d̄R S1 (3̄, 2,− 1
6 −α)− (1, 2,− 1

2 −α)− [X1, X6]|α=0

A-2 (1, 2, α)− Q̄L d̄R S1 (3̄, 1 ⊕ 3,− 1
6 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X6|α=− 1
2

B-1 (1, 1 ⊕ 3, α)− dR QL ˜R2 (3, 1 ⊕ 3,− 1
3 −α)− (1, 2,− 1

2 −α)− [X1, X6]|α=0

B-2 (1, 2, α)− dR QL ˜R2 (3, 2,− 1
3 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X6|α=− 1
2

C-1 (1, 1 ⊕ 3, α)− (3̄, 2,− 7
6 ) ū R S̄1 (3̄, 2,− 7

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

C-2 (1, 2, α)− (3̄, 2,− 7
6 ) ū R S̄1 (3̄, 1 ⊕ 3,− 7

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

D-1 (1, 1 ⊕ 3, α)− QL uR U1 (3, 2, 1
6 −α)− (1, 2,− 1

2 −α)− [X1, X6]|α=0

D-2 (1, 2, α)− QL uR U1 (3, 1 ⊕ 3, 1
6 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X6|α=− 1
2

E-1 (1, 1 ⊕ 3, α)− ū R Q̄L ˜V2 (3̄, 1 ⊕ 3,− 2
3 −α)− (1, 2,− 1

2 −α)− [X1, X6]|α=0

E-2 (1, 2, α)− ū R Q̄L ˜V2 (3̄, 2,− 2
3 −α)− (1, 1 ⊕ 3,− 1

2 −α)− X6|α=− 1
2

F-1 (1, 1 ⊕ 3, α)− (3, 2,− 5
6 ) dR Ū1 (3, 2,− 5

6 −α)− (1, 2,− 1
2 −α)− [X1, X6]|α=0

F-2 (1, 2, α)− (3, 2,− 5
6 ) dR Ū1 (3, 1 ⊕ 3,− 5

6 −α)− (1, 1 ⊕ 3,− 1
2 −α)− X6|α=− 1

2

Table 17 Same as in Table 4 but for the diagram T3-x depicted in Fig. 3 and with the combination (a)-(A) shown in Fig. 6

Model X1 XF
2 X3 X4 XF

5 XF
6 DM

A-1 S†
1 dR (1, 2, α)− (1, 1 ⊕ 3, α + 1

2 )− (3̄, 2, α+ 1
3 )− Q̄L [X3, X4]|α=− 1

2

A-2 S†
1 dR (1, 1 ⊕ 3, α)− (1, 2, α + 1

2 )− (3̄, 1 ⊕ 3, α+ 1
3 )− Q̄L [X3, X4]|α=0

B-1 ˜R†
2 Q̄L (1, 2, α)− (1, 1 ⊕ 3, α + 1

2 )− (3, 1 ⊕ 3, α + 1
6 )− dR [X3, X4]|α=− 1

2

B-2 ˜R†
2 Q̄L (1, 1 ⊕ 3, α)− (1, 2, α + 1

2 )− (3, 2, α + 1
6 )− dR [X3, X4]|α=0

C-1 U†
1 ū R (1, 2, α)− (1, 1 ⊕ 3, α + 1

2 )− (3, 2, α+ 2
3 )− QL [X3, X4]|α=− 1

2

C-2 U†
1 ū R (1, 1 ⊕ 3, α)− (1, 2, α + 1

2 )− (3, 1 ⊕ 3, α+ 2
3 )− QL [X3, X4]|α=0

D-1 ˜V †
2 QL (1, 2, α)− (1, 1 ⊕ 3, α + 1

2 )− (3̄, 1 ⊕ 3, α− 1
6 )− ū R [X3, X4]|α=− 1

2

D-2 ˜V †
2 QL (1, 1 ⊕ 3, α)− (1, 2, α + 1

2 )− (3̄, 2, α− 1
6 )− ū R [X3, X4]|α=0

123
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Fig. 7 Generating a two-loop realization of L5 by linking X to X6 in
the diagram T3-iii-a depicted in Fig. 3
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Appendix A: Systematic classification of tree-level and
one-loop realizations of the operator L4

In this appendix, following Refs. [88,90], we will present a
systematic classification of tree-level and one-loop realiza-
tions of the effective operator L4.

The tree-level and one-loop realizations of the Dirac neu-
trino mass operator L4 have been studied in Ref. [88]. It
is shown that there are only four ways to achieve the see-
saw (tree-level) realizations, i.e., the Dirac neutrino masses
can be generated with the insertion of a Dirac singlet N ,
a Dirac doublet E = (E0, E−)T , a Dirac triplet fermion

 = (
+, 
0, 
−)T , or a doublet scalar η = (η+, η0)T .
The corresponding Feynman diagrams are depicted in Fig. 8.

If the seesaw realizations discussed above are not avail-
able, the Dirac neutrino masses may still arise at the one-
loop level. As demonstrated in Ref. [88], there are only two
Feynman diagrams for the one-loop generation of the Dirac

Fig. 8 Four different seesaw realizations of the Dirac neutrino mass
operator L4 with different new particle insertions, where N , E =
(E0, E−)T , and 
 = (
+, 
0, 
−)T denote a Dirac singlet, a
Dirac doublet, and a Dirac triplet fermion respectively, whereas η =
(η+, η0)T is a scalar doublet [88]

(a) (b)

Fig. 9 One-loop realizations of the Dirac neutrino mass operator L4.
The dashed line represents either a scalar or a vector field, while the
solid line a fermion one

neutrino masses, which are shown in Fig. 9. It can be seen
that both diagrams contain three propagators, two bosonic
and one fermionic in Fig. 9a, whereas one bosonic and two
fermionic in Fig. 9b. With the appropriate assignments of the
SM gauge charges to the fields X1,2,3, the DM candidates
can potentially arise from them or their neutral components
[88,93]. If so, the corresponding UV models can then be
identified as the SDνM.

Appendix B: UV completions and DM candidates

In Sect. 2, we have shown that the diagrams depicted in Fig. 3
support the coexistence of the LQs and the DM candidates.
To pinpoint the possible quantum numbers of the messen-
ger fields, we have then explored possible assignments of the
Z2 parity and the color c to these fields, and found that the
combinations “a” and “b” can support our selection criteria
better. In this appendix, guided by the two combinations and
our selection criteria, we will present in Tables 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 the possible quan-
tum numbers of all the internal fields in each diagram and,
at the same time, the UV models resulting from the diagram.
Although we have uniformly labeled the models in these
tables by x-y with x = A, B, C, · · · and y = 1, 2, 3, · · · , they
are properly referred by, e.g., T1-i-a-x-y in the main text,
where T1-i-a denotes the diagram T1-i with the combination
“a”. To help identify the possible DM candidates, we have
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specified the fermionic messenger fields and their transfor-
mation properties under the Z2 symmetry. By setting down
their hypercharges according to our prescriptions for the DM
candidates, we have also selected them in each model.
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