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Abstract We study the CDF W -mass, muon g−2, and dark
matter observables in a local U (1)Lμ−Lτ model in which the
new particles include three vector-like leptons (E1, E2, N ),
a new gauge boson Z ′, a scalar S (breaking U (1)Lμ−Lτ ), a
scalar dark matter XI and its partner XR . We find that the
CDF W -mass disfavors mE1 = mE2 = mN or sL = sR = 0
where sL(R) is mixing parameter of left (right)-handed fields
of vector-like leptons. A large mass splitting between E1

and E2 is favored when the differences between sL and sR
becomes small. The muon g − 2 anomaly can be simulta-
neously explained for appropriate difference between mE1

(sL) and mE2 (sR), and some regions are excluded by the
diphoton signal data of the 125 GeV Higgs. Combined with
the CDF W -mass, muon g − 2 anomaly and other relevant
constraints, the correct dark matter relic density is mainly
obtained in two different scenarios: (i) XI X I → Z ′Z ′, SS
for mZ ′(mS) < mXI and (ii) the co-annihilation processes
for min(mE1,mE2 ,mN ,mXR ) close to mXI . Finally, we use
the direct searches for 2� + Emiss

T event at the LHC to con-
strain the model, and show the allowed mass ranges of the
vector-like leptons and dark matter.

1 Introduction

Recently, the CDF collaboration reported their new measure-
ment of the W -boson mass [1]

mW = 80.4335 ± 0.0094 GeV, (1)

which approximately has 7σ deviation from the Standard
Model (SM) value, 80.357±0.006 GeV [2]. This CDF value
is in significant tension with the other experiment measure-
ments including the most precise one reported by the ATLAS
collaboration, mW = 80.370 ± 0.019 GeV [3]. Here we
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take the CDF result seriously and discuss implication of the
W -mass shift on new physics models. Besides, the FNAL
experiment measurement of the muon anomalous magnetic
moment (muon g − 2) [4], when combined with the result
of the BNL experiment [5,6], has an approximate 4.2σ dis-
crepancy from the SM prediction [7–9],

�aμ = aexpμ − aSMμ = (25.1 ± 5.9) × 10−10. (2)

The two anomalies both call for new physics beyond SM.
There have been many works explaining the CDF W -mass
[10–79].

In this paper, we study the CDF W -mass, the muon g−2,
and the DM observables in a localU (1)Lμ−Lτ model in which
a singlet vector-like lepton, a doublet vector-like lepton and
a complex singlet X field are introduced in addition to the
U (1)Lμ−Lτ gauge boson Z ′ [80] and a complex singlet S
breakingU (1)Lμ−Lτ symmetry. As the lightest component of
X , XI is a candidate of dark matter (DM) and its heavy part-
ner is XR . The gauge boson self-energy diagrams exchanging
the vector-like leptons in the loop can give additional contri-
butions to the oblique parameters (S, T, U ), and explain the
CDF W -mass [24,53,55,76–79]. The interactions between
the vector-like leptons and muon mediated by the XI (XR)

can enhance the muon g − 2 [81–92]. These new particles
can affect the DM relic density via the DM pair-annihilation
and various co-annihilations processes.

Our work is organized as follows. In Sect. 2 we introduce
the model. In Sects. 3 and 4 we study the W-boson mass,
muon g-2 anomaly, and the DM observables imposing rel-
evant theoretical and experimental constraints. Finally, we
give our conclusion in Sect. 5.

2 The model

In addition to the U (1)Lμ−Lτ gauge boson Z ′, we introduce
a complex singlet S breaking U (1)Lμ−Lτ , a complex singlet
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X , and the following vector-like lepton fields,

E
′′
L ,R =

(
NL ,R

e′′
L ,R

)
, E

′
L ,R . (3)

Their quantum numbers under the gauge group SU (3)C ×
SU (2)L ×U (1)Y ×U (1)Lμ−Lτ are displayed in Table 1, and
the qx is the U (1)Lμ−Lτ charge of the X field.

The new Lagrangian respecting the SU (3)C × SU (2)L ×
U (1)Y ×U (1)Lμ−Lτ symmetry is written as

L = −1

4
Z ′

μν Z
′μν + gZ ′ Z ′μ(μ̄γμμ + ν̄μLγμνμL

− τ̄ γμτ − ν̄τLγμντL )

+ Ē ′′(i �D)E ′′ + Ē ′(i �D)E ′ + (DμX
†)(DμX)

+ (DμS†)(DμS) − V + LY, (4)

where μ and τ denote the SM muon and tau leptons, and
νμ and ντ are the corresponding neutrinos. The Dμ is the
covariant derivative and gZ ′ is the gauge coupling constant
of the U (1)Lμ−Lτ group. The kinetic mixing term of gauge
bosons of U (1)Lμ−Lτ and U (1)Y is severely constrained
from the electroweak precision data [93], and therefore we
ignore it simply in this paper. The field strength tensor
Z ′

μν = ∂μZ ′
ν − ∂ν Z ′

μ, and V and LY indicate the scalar
potential and Yukawa interactions.

The scalar potential V is written as

V = −μ2
h(H

†H) − μ2
S(S†S) + m2

X (X†X)

+
[
μX2S + h.c.

]
+ λH (H†H)2 + λS(S†S)2

+ λX (X†X)2 + λSX (S†S)(X†X) + λHS(H
†H)(S†S)

+ λHX (H†H)(X†X), (5)

where the SM Higgs doublet H , the complex singlet fields
S and X are

H =
(

G+
1√
2

(h1 + vh + iG)

)
, S = 1√

2
(h2 + vS + iω) ,

X = 1√
2

(XR + i X I ) . (6)

Here H and S respectively acquire vacuum expectation val-
ues (VEVs), vh = 246 GeV and vS , and the VEV of X field
is zero. The parameters μ2

h and μ2
S are determined by the

minimization conditions for Higgs potential,

μ2
h = λHv2

h + 1

2
λHSv

2
S,

μ2
S = λSv

2
S + 1

2
λHSv

2
h . (7)

The complex scalar X is split into two real scalar fields XR

and XI by the μ term after the S field acquires VEV vS .

Their masses are

m2
XR

= m2
X + 1

2
λHXv2

H + 1

2
λSXv2

S + √
2μvS

m2
XI

= m2
X + 1

2
λHXv2

H + 1

2
λSXv2

S − √
2μvS . (8)

Because the X field has no VEV, there is a remnant discrete
Z2 symmetry which makes the lightest component XI to be
stable and as a candidate of DM.

The λHS term leads to a mixing of h1 and h2, and their
mass eigenstates h and S are obtained from following rela-
tion,

(
h1

h2

)
=

(
cos α sin α

− sin α cos α

) (
h
S

)
(9)

with α being the mixing angle. From the λHS term and λHX

term, we can obtain the 125 GeV Higgs h coupling to a pair
of DM. In order to escape the strong bounds of the DM indi-
rect detection and direct detection experiments, we simply
assume the hX I X I coupling to be absent, namely choosing
λHS = 0 and λHX = 0. Thus we obtain

α = 0, λH = m2
h

2v2
h

, λS = m2
S

2v2
S

. (10)

The gauge boson Z ′ acquires a mass after S breaks the
U (1)Lμ−Lτ symmetry,

mZ ′ = 2gZ ′ | qx | vS . (11)

The Yukawa interactions with the U (1)Lμ−Lτ symmetry
are given as

− LY,mass

= m1E ′
L E

′
R + m2E

′′
L E

′′
R + κ1μR XE ′

L + κ2LμXE
′′
R

+ √
2y1E

′′
L H E ′

R + √
2y2E

′′
RHE ′

L

+
√

2mμ

v
LμHμR + h.c., (12)

where Lμ = (
νμL , μL

)
.

Since the X field has no VEV, there is no mixing between
the vector-like leptons and the muon lepton. However, there
is a mixing between the vector-like leptons E ′′ and E ′ after
the H acquires the VEV, vh = 246 GeV, and their mass
matrix is given as

ME =
(

m1 y2vh
y1vh m2

)
. (13)

We take two unitary matrices to diagonalize the mass matrix,

UL =
(
cL −sL
sL cL

)
, UR =

(
cR −sR
sR cR

)
,
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Table 1 The quantum numbers of the fields charged under U (1)Lμ−Lτ . The charge of the other field is zero

SU(3)c SU(2)L U(1)Y U(1)Lμ−Lτ

E
′′
L ,R 1 2 −1/2 1 − qx

E ′
L ,R 1 1 −1 1 − qx

X 1 1 0 qx

S 1 1 0 −2qx
Lμ 1 2 −1/2 1

μR 1 1 −1 1

Lτ 1 2 −1/2 −1

τR 1 1 −1 −1

“1” and “2” denote the singlet and the doublet, respectively

U †
LMEUR = diag

(
mE1,mE2

)
, (14)

where c2
L ,R + s2

L ,R = 1. The E1 and E2 are the mass eigen-
states of charged vector-like leptons, and the mass of neutral
vector-like lepton N is

mN = m2 = mE2cLcR + mE1sLsR . (15)

From the Eq. (12), we can obtain the interactions between
the charged vector-like leptons and muon mediated by XR

and XI ,

−LX ⊃ 1√
2
(XR + i X I ) [μ̄R(κ1cL E1L − κ1sL E2L)

+ μ̄L(κ2sRE1R + κ2cRE2R)] + h.c., (16)

and the 125 GeV Higgs interactions to the charged vector-like
leptons E1 and E2,

− Lh ⊃ mE1(c
2
Ls

2
R + c2

Rs
2
L) − 2mE2sLcLsRcR
vh

h Ē1E1,

+ mE2(s
2
Lc

2
R + c2

Ls
2
R) − 2mE1sLcLsRcR
vh

h Ē2E2.

(17)

3 The S,T,U parameters, W -mass, and muon g − 2

In addition to mh = 125 GeV, vh = 246 GeV, λHS = 0,
λHX = 0, there are many new parameters in the model. We
take gZ ′ , qx , mZ ′ , λX , λSX , mS , mXR , mXI , mE1 , mE2 , sL ,
sR , κ1, and κ2 as the input parameters, which can be used to
determine other parameters.

In order to maintain the perturbativity, we conservatively
take

| λSX |≤ 4π, | λX |≤ 4π,

− 1 ≤ κ1 ≤ 1, − 1 ≤ κ2 ≤ 1. (18)

The mixing parameters sL and sR are taken as

− 1√
2

≤ sL ≤ 1√
2
, − 1√

2
≤ sR ≤ 1√

2
. (19)

We take the random uniform sampling method to scan over
the input mass parameters in the following ranges:

60 GeV ≤ mXI ≤ 500 GeV, mXI ≤ mXR ≤ 1 TeV,

mXI ≤ mE1 ≤ 1 TeV, mXI ≤ mE2 ≤ 1 TeV,

100 GeV ≤ mZ ′ ≤ 1TeV, 100 GeV ≤ mS ≤ 1 TeV. (20)

The mass of neutral vector-like lepton N is determined by
mE1 , mE2 , sL and sR , we require mN > mXI . We choose 0 <

gZ ′/mZ ′ ≤ (550 GeV)−1 to satisfy the bound of the neutrino
trident process [94]. We take −2 < qx ≤ 2, and require
| gZ ′(1 − qx ) |≤ 1 and gZ ′ ≤ 1 to respect the perturbativity
of the Z ′ couplings.

The tree-level stability of the potential in Eq. (5) impose
the following bounds,

λH ≥ 0, λS ≥ 0, λX ≥ 0,

λHS ≥ −2
√

λH λS, λHX ≥ −2
√

λH λX , λSX ≥ −2
√

λS λX ,√
λHS + 2

√
λH λS

√
λHX + 2

√
λH λX

√
λSX + 2

√
λS λX

+ 2
√

λHλSλX + λHS

√
λX + λHX

√
λS + λSX

√
λH ≥ 0. (21)

The H → γ γ decay can be corrected by the loops of the
charged vector-like leptons E1 and E2. We impose the bound
of the diphoton signal strength of the 125 GeV Higgs [95],

μγγ = 1.10 ± 0.07. (22)

3.1 The S,T,U parameters and W -mass

The model contains the interactions of gauge bosons and
vector-like leptons,

−LVG = −eγ Ē1,2γ
μE1,2 + Z Ēiγ

μ(Li j PL + Ri j PR)E j

+ g

2cW
Z N̄γ μ(PL + PR)N
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+ 1√
2
W+ N̄γ μ[(cL PL + cR PR)E2

+ (sL PL + sR PR)E1] + h.c., (23)

where Li j and Ri j are

L(R)11 = A1c
2
L(R) + A2s

2
L(R), L(R)22 = A1s

2
L(R)

+ A2c
2
L(R),

L(R)12 = L(R)21 = (A2 − A1)sL(R)cL(R) (24)

with

A1 = g

cW
s2
W , A2 = g

cW

(
−1

2
+ s2

W

)
, (25)

where sW ≡ sin θW and cW =
√

1 − s2
W , and θW is the weak

mixing angle.
The gauge boson self-energy diagrams exchanging the

vector-like leptons in the loop can give additional contri-
butions to the oblique parameters (S, T, U ) [96,97], which
are calculated as in Refs. [96–99]

α(M2
Z ) S = 4s2

Wc2
W

M2
Z

[
�NP

Z Z (M2
Z ) − �NP

Z Z (0) − �NP
γ γ (M2

Z )

− c2
W − s2

W

cW sW
�NP

γ Z (M2
Z )

]
, (26)

α(M2
Z ) T = �NP

WW (0)

M2
W

− �NP
Z Z (0)

M2
Z

, (27)

α(M2
Z )U = 4s2

W

[
�NP

WW (M2
W ) − �NP

WW (0)

M2
W

−c2
W

(
�NP

Z Z (M2
Z ) − �NP

Z Z (0)

M2
Z

)

− 2sW cW
�NP

γ Z (M2
Z )

M2
Z

− s2
W

�NP
γ γ (M2

Z )

M2
Z

]
, (28)

where the �NP function is given in Appendix A.
Analyzing precision electroweak data and the new CDF

W -mass, Ref. [10] gave the values of S, T and U ,

S = 0.06 ± 0.10, T = 0.11 ± 0.12, U = 0.14 ± 0.09 (29)

with correlation coefficients

ρST = 0.9, ρSU = −0.59, ρTU = −0.85. (30)

The W -boson mass is given as [97],

�m2
W = αc2

W

c2
W − s2

W

m2
Z

(
−1

2
S + c2

WT + c2
W − s2

W

4s2
W

U

)
. (31)

We perform a fit to the values of S, T, U , and require
χ2 < χ2

min + 6.18 with χ2
min denoting the minimum of

χ2. We find the best fit point at which χ2
min = 1.77 and

mW = 80.4381 GeV. These surviving samples mean to be

within the 2σ range in any two-dimension plane of the model
parameters fitting to the S, T , and U parameters.

In Fig. 1, we show the samples explaining the CDF W -
boson mass within 2σ range while satisfying the constraints
of the oblique parameters and theoretical constraints. Fig-
ure 1 shows that the explanation of the CDF W -mass requires
appropriate mass splittings among E1, E2 and N , which
do not simultaneously equal to zero. For example, when
mE2 = mN , the mass splitting between mE1 and mE2(mN )

is required to be larger than 100 GeV. The corrections of
the model to mW tend to increase with | mE2 − mE1 | and
| sL − sR |. Thus, the measurement of CDF W -mass tends
to favor a large (small) | mE2 − mE1 | for a small (large)
| sL − sR |, which leads to two clearly distinct populations
in | mE2 −mE1 | of the right panel. From Eq. (15) we obtain

| mE2 − mN |=| mE2(1 − cLcR) − mE1sLsR |, (32)

and | mE2 − mN |< 50 GeV favors sL and sR to be around
0. However, in such small sL and sR region, the CDF W -
boson mass and the oblique parameters disfavor a large |
mE2 − mE1 |, as shown in the right panel of Fig. 1. As a
result, a gulf-like structure appears in the left panel for |
mE2 − mN |< 50 GeV and | mE2 − mE1 |> 400 GeV.
Assuming sL = sR simply we can find that | mE2 − mN |
is proportional to | mE2 − mE1 | and sLsR from Eq. (32).
However, when | mE2 − mE1 | has a very large value, the
CDFW -boson mass and the oblique parameters favor relative
small sL and sR (see the right panel). Therefore, | mE2 −mN |
has a maximal value for a moderate | mE2 − mE1 |. As a
result, a peak-like structure appears in the left panel for which
| mE2 − mN | reaches 250 GeV for | mE2 − mE1 | around
500 GeV. Also the similar peak-like and gulf-like structures
appear in the middle panel since | mE1 −mN | can be derived
from | mE2 − mE1 | and | mE2 − mN |.

The surviving samples in the Fig. 1 are projected on the
plane of U and T, see Fig. 2. The authors of Ref. [10] used
GFitter [100] to perform a fit to the new CDF W -mass and
precision electroweak data, and gave the values of S, T and
U in Eq. (29) [10]. The result of Ref. [10] is independent
on model, and the U parameter is pushed to a large value.
From Fig. 2, we see that the correction of the model to T is
dominant over U and S. Since the values of S, T and U in
Eq. (29) are correlated, a large T and a small U can give a
well fit to the values of S, T and U in Eq. (29) and explain
the CDF W -mass.

Now we discuss the T parameter. The function �NP
WW (0)

is zero for mE2 = mN and mE1 = mN , and the �NP
Z Z (0)

is zero for mE2 = mE1 . Therefore, from Eq. (27) we see
that the corrections of the model to T parameter are absent
for mE2 = mE1 = mN , which is disfavored by the CDF
measurement ofW mass. Because there is no mixing between
E2 and E1 for sL = sR = 0, both the ZE2E1 and WE1N
couplings disappear and mE2 equals to mN . Therefore, for
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Fig. 1 The surviving samples explaining the CDF W -mass within 2σ range while satisfying the oblique parameters and theory constraints. The
varying colors in each panel indicate the values of | mE1 − mN | and | mE2 − mE1 |, respectively

Fig. 2 Same as Fig. 1, but
projected on the plane of U and
T. The varying colors in each
panel indicate the values of χ2

and S, respectively

Fig. 3 Same as Fig. 1, but
projected on the planes of mW
versus | mE2 − mN | and
| mE2 − mE1 |. Here mWC

denotes the central value of the
CDF W -mass, 80.4335 GeV.
The varying colors in each panel
indicate the values of
| mE2 − mE1 | and
| mE1 − mN |, respectively

123
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Fig. 4 All the samples
explaining the muon g − 2
anomaly while satisfying the
constraints of “pre (g − 2)μ”.
The varying colors in each panel
indicate the values of
min(mE1 ,mE2 ) and sL , and the
min(mi ,m j , . . .) denotes the
minimal value of mi ,m j , . . .

Fig. 5 All the samples explaining the muon g − 2 anomaly while sat-
isfying the constraints of “pre (g − 2)μ”. The squares and circles are
allowed and excluded by the diphoton signal data of 125 GeV Higgs,
respectively. The varying colors indicate the values of | mE2 − mE1 |

sL = sR = 0, both �NP
WW (0) and �NP

Z Z (0) are zero, and
the corrections to T parameter are also absent. The case of
sL = sR = 0 is disfavored by the CDF measurement of
W -mass.

The corrections of the model toW -mass are sensitive to the
mass differences between the vector-like leptons. In Fig. 3
we show the W -mass as a function of | mE2 − mN | and
| mE2 − mE1 |.

3.2 The muon g − 2

The model can give additional corrections to the muon
g − 2 via the one-loop diagrams containing the interactions
between muon and E1 (E2) mediated by XR and XI , and the
main corrections are calculated as in Refs. [81,83,101]

�aμ = 1

32π2 mμ

(
κ1cLκ2sRH(mE1 ,mXR )

− κ1sLκ2cRH(mE2 ,mXR )

+ κ1cLκ2sRH(mE1 ,mXI ) − κ1sLκ2cRH(mE2 ,mXI )
)
,

(33)

where the function

H(m f ,mφ) = m f

m2
φ

(r2 − 4r + 2 log r + 3)

(r − 1)3 (34)

with r = m2
f

m2
φ

. Also the one-loop diagram containing the

interactions of Z ′μ+μ− gives additional correction to the
muon g − 2, which can be safely ignored since the mass
of Z ′ is taken to be O(102) GeV. Equation (33) shows that
the correction of the model to the muon g − 2 is absent for
mE1 = mE2 and sL = sR .

We respectively take sL = sR and mE1 = mE2 , and show
the samples explaining the muon g − 2 anomaly within 2σ

range while satisfying the constraints “pre (g− 2)μ” (denot-
ing theory constraints, the oblique parameters, and the CDF
W -mass) in Fig. 4. From Fig. 4, we see that the explanation
of the muon g − 2 anomaly favors | sL | to decrease with
increasing of | mE1 −mE2 | for sL = sR , andmE1 to increase
with decreasing of | sL −sR |. This characteristic can be well
understood from Eq. (33).

After imposing the constraints of the diphoton signal data
of the 125 GeV Higgs and “pre (g − 2)μ”, we scan over
the parameter space, and project the samples explaining the
muon g−2 anomaly in Fig. 5. We find that the diphoton signal
data of the 125 GeV Higgs exclude some samples explaining
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Fig. 6 All samples satisfy the constraints of “pre (g−2)μ”, the dipho-
ton signal data of the 125 GeV Higgs, and muon g−2. The squares and
circles are allowed and excluded by the DM relic density respectively.
The varying colors indicate the values of mXI

the muon g − 2 anomaly, and favors sL and sR to have same
sign, especially for large | sL | and | sR |. When sL and
sR have same sign, the terms of hĒ1E1 (hĒ2E2) coupling
in Eq. (17) are canceled to some extent, which suppresses
the corrections of E1 and E2 to the h → γ γ decay. The
allowed ranges of sL , cL and mE1,2 will be sizably reduced
with the enhancement of measurement precision of the dipho-
ton signal. However, it is challenge to completely exclude the
parameter space explaining the muon g − 2 and W -mass via
the h → γ γ measurement with the currently expected sen-
sitives at the future LHC.

4 The DM observables

In the model, in addition to XI X I → μ+μ−, and the DM
pair-annihilation processes XI X I → Z ′Z ′, SS will be open
for mZ ′ (mS) < mXI . When the masses of E1, E2, N
and XR are close to mXI , their various co-annihilation pro-
cesses will play important roles in the DM relic density. We
use FeynRules [102] to generate a model file, and employ
micrOMEGAs-5.2.13 [103] to calculate the relic density.
The Planck collaboration reported the relic density of cold
DM in the universe, �ch2 = 0.1198 ± 0.0015 [104].

After imposing the constraints of “pre (g−2)μ”, the dipho-
ton signal data of the 125 GeV Higgs, and the muon g − 2
anomaly, we project the samples achieving the DM relic den-
sity within 2σ range in Fig. 6. Due to the constraints of muon

g− 2 on the interactions between the vector-like leptons and
muon mediated by XI , it is not easy to obtain the correct
DM relic density only via the XI X I → μ+μ− annihilation
process, and other processes are needed to accelerate the DM
annihilation. As shown in Fig. 6, for min(mZ ′,mS) < mXI ,
the XI X I → Z ′Z ′ or SS will be open and play a main
role in achieving the correct relic density. Then the masses
of XR , E1, E2 and N are allowed to have sizable deviation
from mXI . When min(mZ ′,mS) is larger than mXI and the
XI X I → Z ′Z ′, SS processes are kinematically forbidden,
min(mE1, mE2 , mN , mXR ) is required to be close to mXI

so that the correct DM relic density is obtained via their co-
annihilation processes.

The XI has no interactions to the SM quark, and its cou-
plings to the muon lepton and vector-like leptons are con-
strained by the muon g − 2 anomaly. Therefore, the model
can easily satisfy the bound from the direct detection of DM.
At the LHC, the vector-like leptons are mainly produced via
electroweak processes,

p p → γ /Z∗ → E1 Ē1,2, E2 Ē1,2, N N̄ ,

p p → W ∗ → E1,2 N̄ , Ē1,2N , (35)

then the decay modes include

E1,2 → μXI , N → νμXI . (36)

If kinematically allowed, the following decay modes will be
open,

E1,2 → μXR, WN , E1,2 → ZE2,1, N → νμXR . (37)

The 2μ + Emiss
T event searches at the LHC can impose

strong constraints on the vector-like leptons and DM. The
production processes of 2μ + Emiss

T in our model are very
similar to the electroweak production of charginos and
sleptons decaying into final states with 2� + Emiss

T ana-
lyzed by ATLAS with 139 fb−1 integrated luminosity data
[105]. Therefore, we will use this analysis to constrain
our model, which is implemented in the MadAnalysis5
[106–108]. We perform simulations for the samples using
MG5_aMC-3.3.2 [109] with PYTHIA8 [110] and
Delphes-3.2.0 [111]. We applyMadAnalysis5 to iden-
tify the best signal region that is statistically the most signifi-
cant, and check its 1−CLs value. Assuming 95% confidence
level for the exclusion limit, the model with the given param-
eter space has been excluded if 1 − CLs > 0.95, where CLs

is determined by the procedure in [112] and implemented in
MadAnalysis5.

If the DM relic density is achieved via the co-annihilation
processes of vector-like lepton, the mass of vector-like lepton
is required to be close to mXI . As a result, the μ from the
vector-like lepton decay is too soft to be distinguished at
detector, and the scenario can easily satisfy the constraints
of the direct searches at LHC. Here, we employ the ATLAS
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Fig. 7 For the scenario of
1 < mXR /mXI < 1.15 and
mZ ′ (mS) > mXR , all samples
satisfy the constraints of “pre
(g − 2)μ”, the diphoton signal
data of the 125 GeV Higgs, the
muon g − 2 anomaly, and the
DM relic density. The squares
and circles are allowed and
excluded by the direct searches
for 2� + Emiss

T at the LHC. The
varying colors in each panel
indicate the values of mXI and
min(mE1 ,mE2 ), respectively

analysis of 2� + Emiss
T in Ref. [105] to constrain another

scenario in which 1 < mXR/mXI < 1.15 and m′
Z (mS) >

mXR is taken, and the co-annihilation processes of XR can
play a main role in achieving the correct relic density. Thus,
the masses of the vector-like leptons are allowed to be much
larger than mXI .

We impose the constraints of “pre (g−2)μ”, the diphoton
signal data of the 125 GeV Higgs, the muon g−2 anomaly, the
DM relic density, and the direct searches for 2�+Emiss

T at the
LHC, and project the surviving samples in Fig. 7. From Fig. 7
we see that the mass of the lightest charged vector-like lepton
is allowed to be as low as 120 GeV if min(mE1, mE2) −
mXI < 60 GeV since the muon becomes soft in the region.
As min(mE1, mE2) − mXI increases, the energy of muon
becomes large, and the vector-like lepton needs to be large
enough to escape the constraints of direct searches for 2� +
Emiss
T at the LHC. For example, min(mE1, mE2) is favored

to be larger than 500 GeV for min(mE1, mE2) − mXI >

300 GeV. The DM mass is allowed to be as low as 100 GeV
if min(mE1, mE2) − mXI < 60 GeV or min(mE1, mE2) −
mXI > 400 GeV.

The p p → E1,2 Ē1,2 → μ+μ− + Emiss
T is still the

most sensitive channel of detecting the vector-like leptons
at future LHC. With the enhancement of the integrated lumi-
nosity and center-of-mass energy of the LHC, the current
surviving parameter space will be furtherly reduced. How-
ever, it is challenge to examine the case of the small mass
splitting between min(mE1 , mE2) and mXI for which the
signal contains two soft muon leptons and missing energy.
The searches for soft leptons require a dedicated study of
the signal and background kinematics beyond a simple cut-
and-count analysis. Also the LHC collaborations need design
dedicated triggers that have acceptance for leptons with lower
transverse momenta. These studies are beyond the scope of
this paper.

At the tree-level, the Z ′ has couplings to the muon lep-
ton, the tau lepton and the new vector-like leptons, and no

couplings to the SM quarks. Therefore, for a light Z ′, the
Z ′ is mainly produced from the decay of Z , and then Z ′
decays into μ+μ−, τ+τ−, νμν̄μ, ντ ν̄τ . Thus, the ATLAS
and CMS searches for 4� can impose strong bound on a light
Z ′. Here we take mZ ′ > 100 GeV to avoid the bound of
ATLAS and CMS searches for 4�. Also the Z ′ can be pro-
duced in association with a pair of vector-like leptons, and
the final states contain the multi-leptons + Emiss

T . The LHC
sensitivities to such processes are much weaker than those
of the 2� + Emiss

T discussed above. The scalar S has no cou-
plings to the SM quark, the SM lepton, the SM-like Higgs
boson, and the new vector-like leptons at the tree-level. The
S can be produced in association with a Z ′, and the LHC
sensitivities are much weaker than those of Z ′ production
processes. Therefore, mS > 100 GeV is a safe choice in this
paper.

5 Conclusion

In this paper we discussed the CDF W -mass, the muon g−2,
and the DM observables in a local U (1)Lμ−Lτ model, and
obtained the following observations: (i) The CDF W -mass
disfavors mE1 = mE2 = mN or sL = sR = 0, and favors
a large mass splitting between E1 and E2 when the differ-
ences between sL and sR becomes small. (ii) The muon g−2
anomaly can be simultaneously explained for appropriate dif-
ference between sL (mE1) and sR (mE2), and some regions
are excluded by the diphoton signal data of the 125 GeV
Higgs. (iii) Combined with the CDF W -mass, muon g − 2
anomaly and other relevant constraints, the correct DM relic
density is mainly achieved in two different scenarios: (1)
XI X I → Z ′Z ′, SS for mZ ′(mS) < mXI and (2) the co-
annihilation processes for min(mE1,mE2 ,mN ,mXR ) close
to mXI . (iv) The direct searches for 2� + Emiss

T event at the
LHC impose strong bounds on the masses of the vector-like
leptons and DM as well as their mass splitting.
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Appendix A: The � function

The �XY (p2,m2
1,m

2
2) and �XY (0,m2

1,m
2
2) are given as [98,

99]
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Here the coupling constants g f1 f2
LX and g f1 f2

RX are from

f 1

(
g f1 f2
LX PL + g f1 f2

RX PR

)
γμ f2X

μ, (A3)

and the A0, B0, and B
′
0 functions are
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. (A5)
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