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Abstract We address multiboson production from a heavy
Z' resonance in the context of the UN2HDM, a standard
model extension with an additional U(1)" symmetry and an
enlarged scalar sector with an extra doublet and a singlet.
After taking into account theoretical and experimental con-
straints on the model, it turns out this type of signals — mostly
uncovered by current searches — could be sizeable. We focus
on three benchmark scenarios, each of them predicting up
to 4000 multiboson events with the LHC Run 2 collected
luminosity. Anomaly-detection methods could uncover those
signals, if present in data.

1 Introduction

Despite the belief that there must be physics beyond the Stan-
dard Model (SM), the way it may manifest at collider exper-
iments is yet to be understood. This circumstance reinforces
the need to put forward new physics signals that searches at
the Large Hadron Collider (LHC) could have been missing,
as well as models in which those signals are produced. An
example of such uncovered signal is multiboson production
arising from the cascade decay of anew resonance [1,2]. Such
signal, namely a triboson resonance, was proposed as alterna-
tive interpretation of a 3.40 bump near 2 TeV in an ATLAS
search for hadronically-decaying diboson resonances with
Run 1 data [3]. Although searches for tri-W resonances have
been performed by the CMS Collaboration [4], focusing on
models with extra dimensions [5,6], more general triboson
as well as quadriboson resonance signals [7] are not experi-
mentally covered.

The persistence of small bumps near 2 TeV in diboson
searches using Run 2 data, with a small local significance
of 20 both in the ATLAS [8] and CMS [9] experiments,
motivated another uncovered signature, dubbed as ‘stealth
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boson’ [10]. This is a boosted particle (generically denoted
as §) with a cascade decay

S — A1A2 — qqqq, (D

where the intermediate particles A » can be SM weak bosons
(W and Z), the SM Higgs boson, or new scalars. When S is
produced with a high boost from the decay of a much heavier
resonance R, the products of its hadronic decay are recon-
structed as a single jet with four-pronged structure. Multibo-
son signals involving cascade decays such as in Eq. (1) can
give rise to merged four-pronged jets, and the complex jet
structure makes the resulting signals quite more elusive for
current searches.

Minimal extensions of the SM allowing hadronic cascade
decays of stealth bosons were proposed in [11] and further
explored in [12]. They were called minimal stealth boson
models (MSBMs) and assume that the heavy resonance R is
a colour-singlet neutral gauge boson Z’. In order to break the
corresponding U(1)" symmetry and simultaneously account
for the cascade decay in Eq. (1), MSBMs include two com-
plex scalar singlets, together with extra matter that is required
to cancel U(1)" anomalies.

In this work we explore an alternative model that can give
rise to these types of signatures. Our study is especially timely
given the latest bump near 2 TeV reported by the CMS col-
laboration in the search for hadronically-decaying diboson
resonances with the full Run 2 dataset, reaching a local sig-
nificance of 3.60 [13]. The model we present in this work
also introduces a heavy gauge boson Z’, but replaces one
of the scalar singlets of MSBMs by a complex scalar dou-
blet. We label the model as UN2HDM, as it corresponds to
a next-to-two-Higgs doublet model (N2HDM) [14-20] with
an extra U(1)’ symmetry. In comparison with MSBMs, the
presence of a larger scalar sector in the UN2HDM leads to
the presence of charged scalar particles. A detailed overview
of the UN2HDM and the interactions of the new fields is
presented in Sect. 2.
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Our main goal is to show that, in the context of the
UN2HDM, multiboson signals can be produced with size-
able cross sections in regions of the parameter space allowed
by theoretical and experimental constraints. We generically
denote the signals as multibosons, including also the case
when the bosons are very boosted and their hadronic decay
products merge into a single jet. In the notation of Eq. (1),
S will be Z’, and A » two neutral or charged scalars, which
subsequently undergo direct or cascade decays into boosted
jets. After explaining in Sect. 3 how we scan the parame-
ter space to find points allowed by constraints, we study in
Sect. 4 three benchmark scenarios for multiboson signals.
We discuss our results in Sect. 5.

2 The UN2HDM

The UN2HDM extends the SM gauge group with an extra
U(1) symmetry, thus featuring a new colour-singlet neu-
tral gauge boson Z’. Given the strong limits from Z’ boson
searches in their leptonic decays, Z' — ete™ and Z' —
uT ™, we consider the new Z’ boson to be leptophobic,
with the U(1)" hypercharges of SM lepton doublets and sin-
glets vanishing, i.e. Y, = Y, = 0. As already mentioned,
the UN2HDM scalar sector contains two doublets ®; and
®,, and one complex singlet x. Cascade decays like the one
in Eq. (1) cannot take place if both doublets have vanishing
U(1) hypercharge. On the other hand, due to the require-
ments of U(1)’ gauge invariance of the Yukawa terms of SM
leptons, and of a leptophobic Z’, one of the Higgs doublets
must have zero hypercharge under U(1)’. We therefore label
the scalar doublets so that Yg,, = 0 and Yg, # 0. The U(1)’
gauge invariance of the quark Yukawa terms with @, implies
Y, =Y, =Y, generally non-vanishing. Therefore, we have
the same Yukawa lagrangian found in a Type I two-Higgs
doublet model (2HDM), namely

—Ly = Y,q; Poug + Yaq; Podg + Yol  Preg + hec., (2)

where Yx (X = u,d, e) are complex Yukawa matrices in
generation space. The U(1)" hypercharges of SM fermions
are identical to those of MSBMs. Thus, all U(1)" anomalies
[21] cancel by adding the same extra matter as in MSBMs.
Assuming the extra matter to be vector-like under the SM
group, two simple solutions have been proposed in Ref. [11]:
one with a set of vector-like quarks (Model 1), and another
with a set of vector-like leptons (Model 2). In this work we
will concentrate only on Model 2, for which the field content
and hypercharge assignments are given in Table 1. The new
vector-like leptons are the two SU(2) doublets (N1 E1)r r
and the four singlets N>, g and E3;, g. N; and E; have elec-
tric charge 0 and — 1, respectively. Their hypercharges are
fixed by anomaly cancellation, and all take values of :|:9Y(; /2.
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Gauge invariance of the Yukawa interactions of the new lep-
tons with the scalar singlet (which give rise to their masses)
implies
/ /

Y, =97, (€)
leading to the following Yukawa interactions involving
vector-like leptons:
LYM = EL @) d2Nag + wi P2E2p)

+ WY Nag®] + wi Er g ®))Er

+y1 N2L Nagx + yi EaL E2gx

—i—yszgR)ﬂL + h.c., @
with wfv ‘£ and yiN’E (i = 1,2) being complex Yukawa
couplings. We also assume a ‘dark lepton number’ that for-
bids Majorana mass terms for Npz and N,y [22]. Finally, as
we will see later, a valid scalar mass spectrum can only be
obtained if Yg, =7,.

With these U(1)” hypercharge assignments, the most gen-

eral gauge-invariant scalar potential of the UN2HDM is

2
m
V=m} @ +m3ol 0y + TOXTX
Moaton? o 22wt a2 t i
+ 7@1@1) + 7(%%) + 23(P; P 1) (P, P2)
As o A6 "
+ 1a(@]92)(@31) + = (x"x)* + T (@@ (x 1)
A ot i T
+7(<D2®2)(X X+ (ux®; P2+ he, &)
where w can be a complex parameter, while the remaining

parameters are real. We define the scalar doublets ®; > and
singlet x as

o= (V2
V2 \vke'% + pp + ing
1
X = —=e'?” + p3+in3).

V2

Without loss of generality, one can assume ¢; = 0, such that
the vacuum expectation values (VEVs) are

B1) = 1 0 Do) — 1 0
( l)—ﬁ(vl)» ( 2>—ﬁ<vzei<ﬂ2>

1 .
(X) = —zue”.

V2

Throughout this work, we will always assume nonzero VEVs
v1, 12 and u. Note also that ¢, and @3 can be rephased away
through

) , (k=1,2),
©)

)

Oy —> D) = eTND,y, x> x =y, ®)
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Table 1 SM and U(1)

SM fermi
hypercharges v ~ (Y, Y') of the ermions

Vector-like leptons Scalars

fermions and scalars in the
UN2HDM. Generation indices
in SM fermions are omitted, as
well as colour indices for quarks

qr = (u d), ~ (1/6,Y))
ug ~(2/3,Y))

dr ~ (=1/3,Y))

= l), ~(=1/2,0)
Ig ~ (=1,0)

&L = (N1 Er), ~ (=1/2,-9Y;/2)
Er= (N1 E1)p ~ (—1/2, 9Y,/2)
Nap ~(0,9Y,/2)

Nog ~ (0, -9Y,/2)

Eyp ~ (=1,9Y//2)

Eyp ~ (—1,-9Y}/2)

@ ~ (1/2,9Y))
@, ~ (1/2,0)
X~ (0,9Y))

which leaves V invariant, provided u is replaced by
w—p = Me—i(wz-i-%), 9)

when V is expressed in terms of @/ and x'. Since p is an
arbitrary complex parameter, from now on we assume ¢, =
@3 = 0 without loss of generality, therefore having all VEVs
real.

An useful feature of V is that the number of parameters
is equal to the number of physical quantities (masses and
mixing angles) needed to define the Higgs sector. This means
that all eleven parameters shown in Eq. (5) can be written in
terms of the three VEVs vy, v, and u, as well as of the five
scalar masses and three mixing angles that will be introduced
later on.

For the cases we are interested in with vy, vo, u # 0, the
four minimisation conditions of the scalar potential are

2 2 2

YT vy u u vy
Lo+ 20+ Aa) + —hg+ ——R(u) =0,
’"11‘*‘2 1+2(3+ 4)-i-4 6+ﬁv1 )
2 2 2
M+ Zho + s+ da) + Ay + =R () = 0
) 2 4 2 ’
) 1, 1, viv2
mi + ks + Svihe + Jv3A + ﬁTSt(,u) =0,
S(u) =0. (10

The first three equations allow to write m%l, m%z and m(2)
in terms of the VEVs and the remaining parameters of the
potential. The last equation in (10) implies that all parameters
in the potential are real and, thus, there are no mixed p;7;
mass terms. Then, the 6 x 6 neutral scalar mass matrix can
be written in block-diagonal form as

P
M = (A/(I) AS,]), (11)

where M” and M" are 3 x 3 real symmetric matrices defined
inthe (p1, p2, p3) and (1, 2, n3) bases, respectively. Using
henceforth the definitions

U:m, tan B = vy /vy, (12)

and the notation sg = sin 8, cg = cos 8, the independent
elements of M” read

1
Mfl = vz)\lcé — —ujptan g,

V2
14 2 1
My, = v°(A3 + Aa)spcp + Eu,u,
0 v 1
M13 = Eukg,gg + Ev,usﬂ,
up
ML = vzkzsz et
2 b \/Etanﬂ
0 v 1
My, = Eu)qs,g + Evucﬁ,
ME —asi? — L (13)
= Asu° — — —Casg,
33 5 J2u HCpSp
while for M,,
1 s 1
n -y B M77 = —up,
11 N 12 NG M
1 1 Cﬁ
M, = —vusg, M = ——upu—,
13 NG B 22 V2 sp
1 1 v?
M), = ——=vucg, Ml = ——=—CBSH. (14)
23 ﬁ 33 «/5 u

All terms in M" are proportional to p, which explains the
need to set Y, </I>1 = Y)’( , otherwise the u term in (5) would not
be present and we would have a massless scalar.

The matrix M" is diagonalised as RTM"R = M M) diag>
using a rotation

—sg cg O —Sa¢ 0 cqu
R=| cg sg O 0 1 0], (15)
0 0 1 e 0 sq

being o given by

tano = — (16)

vegsg
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The only non-zero eigenvalue is

5 n u spcpv?
mey, =———| — ,
A0 V2 Lsgeg u

which corresponds to the squared mass of a CP-odd scalar
A®. The matrix O that rotates the p; fields to the mass basis
is parameterised by three mixing angles, o1, a2, @3, and it is
given by

a7

T
c1e §1C2 52
O = | —ci5283 — 51€c3 €1C3 — 515253 283 , (18)
—C182C3 + 8153 —C183 — §152C3  C2C3

where C1,2,3 = €COS(x1.23, §1,2,3 = sina1,2,3 and —7'[/2 <
o123 < m/2.Letus label as i the SM-like Higgs boson and
Hj > the new CP-even scalars, with H; and H> being always
defined in such a way that mp, < mp,. We can write M”
in terms of the masses of those three scalars and the three
mixing angles introduced in Eq. (18). Namely,

mj, 0 0
MP=0[0 my 0 |oT. (19)

0 0 my

2

Finally, the charged-scalar mass matrix in the basis (qb;—L, ¢2i)
is

2 —s2  sge
ME = |20 +M B ﬁg ’ (20)
S,BC/S SﬁCﬁ —Cﬁ
and its diagonalisation is performed as UT MU = (M) diag»
with
U:<—Sﬂ Cﬂ), 1)
cp SB
like in 2HDMs. The non-zero eigenvalue of M€ is
2
mie = —hgv? — V2 (22)
cpsp

corresponding to the squared mass of new charged scalars
H*. In Appendix A we show how this result, together with
Egs. (17) and (19), can be used to write © and A1_7 as func-
tions of the physical parameters we have just presented.

Defining H = (h, H, H), the couplings involving three
CP-even scalars can be generically written as
)"l]k
£3g = —Vv— H H Hk, (23)
Sljk

where the coefficients A;j; are symmetric under index inter-
change. The symmetry factors S; j are equal to 1 if all indices

@ Springer

are different, 2 if two indices are equal, or 6 if i = j = k.
The three-scalar interactions involving the pseudoscalar A°
and the charged scalars H are

3
v ~
Liponw = =75 D 8 HliA’A°, (24)
i=1
3
Lipig-=-vY gaprg HHTH, (25)
i=1

respectively. The coefficients A;j, g 11,40 A0 and g /3 H+ - Are
collected in Appendix B.

The gauge-boson masses and the gauge-scalar interactions
can be obtained from the scalar kinetic terms

L =|D,®* + D, 2> + Duxl?, (26)

with the covariant derivatives defined as
a

T 1
DM(Dl = (SM —lgW[j? — lg B _ng’YCDIB )(Dl,

2

. ata 1.,
D, ®; = 8M—1gWu7—§lg B, | ®2,
Dyux = (au —igy Y, B;) X 27)

As usual, W/fj and B, are the SM gauge fields, while B;L is
the one corresponding to the new U(1) symmetry. Notice
that Y</1>| = Y)’( = 9Yé, as discussed above. As in the SM, the
W-boson mass at the leading order is

(28)

whereas for the neutral gauge bosons we have, in the
(Wﬁ B, B;L) basis, the mass matrix

2
gTUZ ggf 02 ggz/ Y/ 2. %
_%Uz g4 v2 ggz/ Y’v Cﬂ
—ggTZ’Y)’(v%% ggz’ Y/ vzcé gZ/Y/2 (u +UZC%)
(29)
Similarly to the SM, one can write
w3 A
)= (W v U (30)
B, cw —Sw ZM

with cy = cos Oy, sy = sin Oy, Oy being the weak mixing
angle. The A, field is massless and corresponds to the phys-
ical photon. For the two remaining fields the mass matrix is

2 2
(mzzz i ) (1)
9
Mzz Mz
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where
1 m2
2 2.2 W
"= s =g
Cw
1
my, = —Egng/Y)’( vic,
my = (82 Yy +v’cp), (32)

with g1 = g/cw. The diagonalisation of this matrix is

70 cy —sz> <Z )
m) = K 33
(B;L) (SZ Cz Z//L ( )
with sz = sinfz, cz = cos 0z, 07 being the Z — Z’ mixing

angle. The tree-level masses of the SM Z boson and the new
Z' correspond to the two non-zero eigenvalues,

2 _ 2 2
mZ‘Z/ = El:mzz +mZ/Z/

1/2
£ (0 =3 + ) ] (34)
and the mixing angle is given by

/222
818z Y, vy
(82/Y))?(u? +v2c3) — gfv2/4

tan 260, = (35)

In the limit of small Z — Z’ mixing, i.e. 07 < 1, the masses
of Z and Z’ can be approximated as:

m% 2 (g2Y))? (W? + v’c}),

) ’1\2,,2 .4
m (8z/Yy)v7c
m%:TW|:1—X—2ﬁ:|, (36)

Cw mz

while for 67 one has

gz Y. myvcs
0, ~ X P (37)
my,Cw

The interaction of the Z boson with fermions receives a
small correction due to Z — Z’ mixing,

L=l [81(T3 =53 Qcz + 82V 'sz| V' W2 G38)
with T3 the third isospin component, Q the electric charge

and Y’ the U(1)" hypercharge of the field ¥. The interaction
of the Z’ boson with quarks is

L=gzrqy"(yLPL+ YrPR)GZ),, (39)
where the left- and right-handed couplings are

81
v =Yjcz — =—(T3 — Qsiy)sz,
8z’

81
YR =Y)cz + gQS%VsZ. (40)

The lagrangian terms involving two gauge bosons and one
scalar can be written as

L=gyow g W " WiH + 8775 2" 2, Hi
8,75, 2" 2 Hi + (zwn+Z"' W, I H™

+gz’WiHiZWW,jH* +h.c) 41)
with
g%v
Swrw-f; = T(Olicﬁ + Oyisp),
2
g%v
87z, = #(011'0,3 + 02is5)c%
_gng/Y)/(UOIiCﬁCZSZ
+g%’Y)/(2(01iUCﬂ + O3iu)s5%,
gjv
8zz'8;, = _7(011'0,3 + Onisg)czsz
_gng’Y)/(UOUCﬂ(C% — s%)
+2g%’Y)/(2(OliUCﬁ + Osju)czsz,
gzwEp+ = —887' Y, vepspsz,
gzwtn+ = —88z' Y, vepspez. (42)

The Lagrangian terms with two scalars and one gauge boson
are

L= gzﬁ,-AoﬁiEL)AOZM + gz’ﬁ,-Aol:Ii(‘i)AOZ/u
+ng+H7A“H+<2;:H_ + gZH+H72“H+<EI;H‘
tgzmin-Z" HY 5 H 4 (gyapg e W H™ 0, i
eweaog=WHH™ D, A% +he.), 43)

with

81
870,40 = 7(011'&3 — Oicp)sucz
—82/Y, (O1ispsy + O3ica)sz,
81
8z a0 = ?(021'0,3 — 01i5g)SaSz
—82/Y, (O1ispsq + Ozica)ez,
gVHJer = ie,
_ l_ 2 + Y’ 2
g7zH+H- =1 &1 2 SW Cz 87 XS.ECZ )
. 1 2 /72
8z7H+H- =1 |—81 5~ Sw)sz+8zY,s5cz |,
.8
Swript = 15(—011'S/3 + Ozicp),
8
SwtaAogt = ESQ. (44)
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The above interactions allow to compute the different partial
decay widths for the Z’ boson and the scalars. These are
collected in Appendix C.

3 Parameter space scan

We use the code ScannerS [23] to scan the parameter space
of the UN2HDM and to check whether the points in parame-
ter space are allowed or excluded at the 95% confidence level
(CL). In this analysis, the following constraints are taken into
account:!

e Theoretical constraints imposed by perturbative unitarity,
boundedness from below and vacuum stability conditions
[15]. These are applied after calculating the parameters
of the scalar potential using the equations collected in
Appendix A;

e Electroweak precision constraints, which use fit results
for the oblique parameters S, 7 and U shown in [25].
These are compared with UN2HDM predictions for those
parameters, implemented in ScannerS using the results
of [26,27];

e Flavour constraints based on fit results of [25], which set
limits in the (m y=, tan B) plane;

e Compatibility of the SM-like scalar with the properties
of the experimentally discovered Higgs boson;

e Bounds from direct searches for beyond SM scalars.

To incorporate the constraints mentioned in the last two
points, ScannersS provides aninterfacetoHiggsSignals
[28,29] and HiggsBounds [30-34]. Some of the inputs
required by those two tools are the branching ratios of all
scalars. These are computed by the library N2HDECAY [35],
which is also included in Scanners?.

In order to increase the efficiency of the scan [23], we
parameterise the mixing matrix of CP-even scalars using (i)
the effective couplings of the SM-like Higgs boson % to top
quarks, c(htt); (ii) the effective coupling to SM gauge bosons
c(hVV), with V. = W, Z; O3, and sign(O31). Using these
four parameters we are able to compute the three mixing
angles in O, c.f. (18) while simultaneously constraining the
couplings of & to be SM-like. The type of 2HDM used is also
an input, specifying the flavour constraints applied. Finally,

' From now on we will consider that the new fermions stemming from
the vector-like degrees of freedom are heavy enough not to be produced
in the decays of the Z’ boson. Signals from the new leptons were studied
in Ref. [24].

2 Due to the differences between the scalar potential of the UN2HDM
and the one in [35], the triple scalar couplings in Appendix B have to
be implemented in ScannersS. In contrast, no changes are done to the
couplings between scalars and SM gauge bosons, since they are equal
to those found in Eqs. (42) and (44) in the limit 07 < 1.

@ Springer

Table 2 List of common input parameters for the parameter space scan

Parameter Range

mp 125.09 GeV
M, My, M A0, M+ See Sect. 4
tan 8 [0, 20]
c(hVV)? [0.9, 1.0]
c(htt)? [0.8, 1.2]
sign(031) -1 1
Oxn [-1,1]
2HDM type I

my 2 TeV

gz Y(; 0.1

the parameters mz and g/ Yé are required to extract the VEV
of the singlet and the Z — Z’ mixing angle. We set a refer-
ence mass Mz = 2 TeV. The Z’ production cross section is
determined by the product gY q’, which we set to 0.1. The
list of common parameters used for all chosen benchmarks is
presented in Table 2, together with their varying ranges. (The
ranges for the new scalar masses are different for the various
benchmarks examined, as shown in the next section.) With
the parameter values shown in Table 2, we get u ~ 2.2 TeV
and 67 < 10733

For the parameter-space points allowed by the aforemen-
tioned constraints, we compute the Z’ cross section into SM
final states, especially for Z’ — WT*W~, Z' — Zh and
Z' — tt, to require agreement with direct searches. This is
done using MadGraph [37], where we consider Z’ to be pro-
duced from proton-proton collisions with a centre-of-mass
energy of 13 TeV. Searches of Z’ decaying into dijets are
also considered but they are less constraining [38].

4 Benchmarks

Multiboson signals are generated in the UN2HDM by cas-
cade decay of the Z’ boson into new scalars, which subse-
quently decay into W, Z bosons or other scalars. We focus
on three scenarios that are representative of various types of
multiboson signals:

1. Z - HTH~, with HF —> W¥h;
2. 7/ — H, A, with H, — HH,; and A° — bb;
3. 7/ —> H A%, with Hl — WtW~ and A° — Zh;

The Feynman diagrams for these decays are shown in Fig. 1.

3 Notice that this bound on 67 ensures that constraints coming from
electroweak precision data are respected since they require typically
07 <1073 [36].
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W=
]]i /M

~~

Z/ - ~ ~-— /'
ANNNKL
= W
H> ~aY”
~ h
_H,
II‘_) <
Z’ ~ - \111
ANANNNK
B b

‘_\w\ \Q/\/\I\/Z

~
~ h

Fig. 1 Feynman diagrams for the Z’ cascade decays studied in each
benchmark scenario

In scenario 1, for m g+ of few hundreds of GeV, the four
bosons in the final state are resolved, yielding a quadriboson
signal not experimentally covered. In scenario 2, with A, and
Ao relatively light, the decay H, — HjH; — 4b produces
a four-pronged jet, while Ag — bb produces a two-pronged
jet. Finally, scenario 3 with relatively-light H; and A° pro-
duces two four-pronged jets (when h° — bb) with different
mass and flavour content. The latter two are partly covered
by a search for a heavy resonance decaying into two massive
jets [42] that unfortunately does not consider jet substructure
for the discrimination against SM dijet background. Table 3
collects the range for scalar masses used for the scan in each
benchmark scenario. The scalar branching ratios are com-
puted by N2HDECAY, while for the branching ratios of the
Z' boson we use the partial widths collected in Appendix C.
In all cases, we consider the new leptons to be heavy enough
not to play any role in Z’ decays.

4.1 Scenario 1

In this case, the branching ratio for Z’ — H +H~ can be
up to 0.3, while fulfilling the direct limits on other Z’ decay
modes (and possible improvements with more data). Figure 2
(top) shows the branching ratio for Z’ — HTH™ versus

Table 3 Mass ranges (in GeV) of the new scalars used in each bench-
mark

Benchmark 1 Benchmark 2 Benchmark 3
mp, [30, 1000] [20, 40] [150, 250]
mp, [30, 1000] [90, 110] [250, 1000]
m 40 [30, 1000] [90, 110] [200, 300]
mpy+ [500, 700] [80, 1000] [80, 1000]

Z' — Zh. The vertical line corresponds to the experimental
upper limit at 95% CL derived for this mass from current
searches [39], assuming g Y(; = 0.1. A similar plot can
be obtained for Z' — HTH™ versus Z' — WTW~, but
the allowed area has similar shape and the limit [40] is less
constraining. It is remarkable that Z’ — HTH™ can be
sizeable while Z’ — WYW~ and Z' — Zh vanish. The
reason is that the interactions mediating the latter two modes
are proportional to powers of the VEV v of the scalar doublet
that has non-vanishing hypercharge, either explicitly from
cos B factors, or through the Z — Z’ mixing. The limits from
Z' — tt [41] do not constrain the parameter space allowed
by ScannersS (bottom panel), but an improvement by more
than a factor of two would exclude the value of g/Y é used
in this benchmark.

Requiring agreement with direct searches, the branching
ratios for Z’ — HTH™ versus H¥ — W¥h are presented
in Fig. 3. One can see that the H* can mostly decay into
W*h while having BR(Z' — HTH™) ~ 0.3. As a result,
the maximum branching ratio for Z' — W+ThW~h reached
is 0.27, leading to a cross section times branching ratio of 29
fb for gz ¥, =0.1.

4.2 Scenario 2

In this scenario, the branching ratio for Z’ — H>A° can
range up to 0.35, while fulfilling the direct limits on other Z’
decay modes (and possible improvements with more data).
Figure 4 shows the branching ratio for Z’ — H> A" versus
Z' — Zh. The analogous figure considering Z' — WTW~—
has similar shape, but the current limit does not further
constrain the parameter space, and is omitted for brevity.
Once more, we observe that the decay into SM bosons
Z' — WTW~™, Z' — Zh can have negligible rates while
7' — H>A" is sizeable. This is again because the latter
decay is not suppressed when the VEV vy is small. Direct
limits from Z" — t7 do not constrain further the parameter
space allowed by Scanners, as seen in the bottom panel.
However, an improvement by more than a factor of two would
make this constraint relevant. The results have little depen-
dence on the masses of H, and A°, which range within a
narrow interval [90, 110] GeV in this scenario.
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The size of the signal in this scenario is determined —
besides the Z’ cross section production that is fixed by its
mass and gz Y,} — by the three different branching ratios for
7 — HyA°, H, — H;H; and A® — bb. (Since H; is
the lightest scalar, it decays to bb nearly all the time.) We
present in Fig. 5 the branching ratios for A — bb versus
H, — HyH;, with the colour corresponding to Br(Z’ —
H> A%), for points fulfilling the limit from Z’ — Zh. Clearly,
all three branching ratios can be sizeable, with a maximum
combined branching ratio for Z’ — Hj Hbb of 0.25, leading
to a product of the cross section times branching ratio of 27
fb for gz ¥, = 0.1.

4.3 Scenario 3

The Z’ decay mode considered in this scenario is similar to
the previous one, but considering instead the lightest new
scalar Hj, and larger masses for H; and AY to allow for
other decay modes. The branching ratio for Z' — H;A°
can also range up to 0.35, see Fig. 6 (top). The only direct
limit that partially constrains the parameter space allowed by

“'((l.() 0.2 0.4 0.6 0.8 1.0
BR(H, = W*W~)

Fig. 7 Branching ratios for A — Zh versus versus H, — WW
resulting from the parameter space scan in scenario 3. The colour grad-
ing is related to the value of BR(Z' — HjA®) as shown on the right

Table 4 Scalar masses and tan 8 values in the point with highest cross
section times branching ratio for each benchmark

Benchmark 1 Benchmark 2 Benchmark 3
mp, (GeV) 223.7 354 178.5
mp, (GeV) 812.3 93.2 964.6
m 40 (GeV) 639.1 90.0 248.0
mpy+ (GeV) 502.7 161.8 294.4
tan 8 6.6 10.3 9.4
o x BR (fb) 29 27 31

ScannerS is Z' — Zh. As discussed in the previous two
benchmarks, future improvements of the limit on Z" — 7
would become constraining (bottom panel).

The size of the multiboson signal in this scenario is deter-
mined by the three different branching ratios for Z' —
HiA°, Hf — W*TW~ and A — Zh. We present in
Fig. 7 the branching ratios for A — Zh versus H, —
WHW~, with the colour grading corresponding to the value
of BR(Z' — H;AY), for points fulfilling the direct limit
from Z' — Zh. We point out that the high density of
points around BR(H; — WTW™) =~ 0.7 is motivated by
the fact that, when both channels are kinematically open,
BR(H — WtW~™) ~ 2 x BR(H; — ZZ). The lat-
ter is suppressed for H; masses below the ZZ threshold,
thus the rate into W W™ can range up to unity for the H;
masses considered. Overall, the three branching ratios can
be sizeable, with a maximum combined branching ratio for
7' — WTW~Zh of 0.29, leading to a cross section times
branching ratio of 31 fb for g Yq/ = 0.1. In Table 4 we show
the values of scalar masses and tan § of the points with max-
imum cross section times branching ratio for each scenario.
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5 Discussion

The LHC has set very stringent limits on the production of
new resonances decaying into SM particles, with around 140
fb~! of Run 2 data collected at 13 TeV. Still, many final states
remain to be explored. Conspicuously, these unexplored sig-
nals might be sizeable, yet compatible with existing lim-
its. We have explored three scenarios for the production of
multiboson signals from the decay of a Z’ boson. With cross
sections times branching ratio around 30 fb in the three sce-
narios, around 4000 multiboson events could be produced
with the collected luminosity.

A wide variety of signal topologies is possible, depending
on the decay modes of the W, Z and & bosons in the final
state. Given the high performance achieved by jet taggers [43,
44], already the hadronic decays of SM bosons (which have
the largest branching ratios) are expected to provide a good
sensitivity to these types of signals. We note that semileptonic
signals are also possible, for example from H; — WTW~—,
when one of the W bosons decays hadronically and the other
one leptonically. A detailed study is out of the scope of this
work.

In order to be sensitive to the multiboson signals proposed
in this work, dedicated analyses or anomaly-detection meth-
ods are required. The signal produced in scenario 2 has a
dijet topology, with one jet having four-pronged structure
and the other one two-pronged. In scenario 3, when at least
one of the W bosons and the Z / h decay hadronically, the sig-
nal also has a dijet topology. It has been demonstrated that
anomaly detection tools such as CWolLa [45,46] and SOFIE
[47] have the potential to uncover such signals. The signal
of scenario 1 has four resolved bosons in the final state. This
makes its discrimination from the background technically
more demanding, as it features a 4-body resonance plus two
intermediate two-body resonances. It is likely that the SOFIE
or CATHODE [48] methods are efficient in its detection too.

In summary, the results in this paper show that there are
complex new physics signals that could be at reach with
already collected LHC data, which motivates the use of
generic tools and anomaly-detection strategies to pursue the
discovery of any type of physics beyond the SM. We stress
that such signals appear naturally in the context of popular
SM extensions for which studies are usually focused only on
the most simple final-state topologies (mostly direct decays
into SM particles).
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Appendix A: Higgs potential parameters

As we have noted in Sect. 2, the scalar potential of the
UN2HDM has eleven parameters, which correspond to the
same number of physical parameters of the scalar sector of
the theory. The VEV of the scalar singlet can be expressed
as a function of other physical parameters of the UN2HDM.
From (34) it follows that

m% + mZZ, = mZZZ + mZZ’Z" (A1)

Using the explicit expressions of these matrix elements in
Eq. (32), we obtain

2 2 )
) my+my —my/cy 22
u = — v C,B'

A2
(gzY")? (A2

By inverting Eq. (17), we can write u as a function of VEV
parameters and the pseudoscalar mass m 40:

«/Euc,gs,g 2

_u2 + vzcésé " a0 (A3)

MZ

The charged-scalar mass in Eq. (22) can be used to determine
A4,

1 2
2 M= +

V2up

SBCp

ha = (A4)
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The remaining A; coefficients can be expressed in terms of

2 2 2
(mh7 mHl’ mH2 >

those parameters using Eq. (19). Defining M =

= |:ZM 01,+——}
i=1

ZCﬁ

up cg

3
1
A= —s M;03 + —-=L
(e %2

3
1 ~ up
A3 = EM-O'O-—— — M,
3 UZCﬁSﬁ |: i U1i V2 ﬁj| 4

3 2
1 ~ v
Ay = — E M; 0% + ——
5 12 |: 1031 ﬂucﬁsﬂ] ’

2 3
Ao = M;01,03 — —=sp |,
6 wveg |:i=] i U1i U3 «/—Sﬂi|
3
2 3
= M 0203 — “Ecy (A5)
uvsg | = V2

Appendix B: Triple scalar couplings

In the weak basis w = (p1, p2, 03, 11, N2, 13), the lagrangian
terms involving three scalar fields can be written as

6
n
Z VCpy WpWq Wy

pP=q=r

L3g = — (B1)

The nonzero coefficients C®

bqr are given by

1
Cliy =Cly = 5?»165,

n n 1
Clia = Caag = 7 (A3 + Aa)s,

1 u
Cliz=Ciyy = 165
n n 1
Cip =Ciss = 5(/\3 + Aa)cp,
1
Claz = Coye = Ciys = mﬂﬂ
1
133 = Cles = 7768
c 1
156 = ——=/,
vﬁ
1
Cyp = Cps5 = §A2Sﬂv
1 u
Ch3 = C3s55 = 4)‘7;’

1
Cha3 = Cig6 = Z)ﬂsﬁ’

1 u
Ci33 = Cig6 = ‘k5;'

3 (B2)

The interactions with three scalar fields are thus either of the
form

Lyg == ) vCpyPpPapr. (B3)
pP=q=r

with three CP-even fields, or

Liaom == D vCpyPpilg-3r-3. (B4)

pP=q=r

with one CP-even and two CP-odd fields. The weak eigen-
states can be written in terms of mass eigenstates as p; =
Oi,H, and n; = RizAY, respectively. Therefore,
Lyg=—> vC, 0pa0qOrcHyHyHe (BS)
where the sums over a, b, ¢c and p < g < r run from 1 to 3,
and

Ligon == vCh, OpaRy-33R—33H,A"A°, (B6)

with @ and p running from 1 to 3 and ¢ < r from 4 to 6. We
write

)\ijk = Z Cpqr Ops1 Oqsz 0}’S3 s (B7)
P=q=r,(s)
where (s) = (51, 52, 53) represents the set of all permutations

of the indices i, j and k. Introducing a symmetry factor S; jx
to account for multiple counting of the same terms, we arrive
at the expression in (23). The couplings between a CP-even
neutral scalar and two CP-odd ones are given by

36
:Z Z vChyr OpiRy—33R,—3 3.

p=l4=q=r

8 F; AV A0 (B8)

The interactions of one neutral scalar and two charged ones
are, in the weak basis,

Lanrn-= Z Z v Chgrwpy b - (BY)
p=1gq,r=1
C
The nonzero coefficients C},, . are
Cin = ricp,

C C 1
Ciin=Cip = 5)”45/37

Cly = M3¢8,
G311 = A3sp,
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1
Ci1p = Cy1 = 5 hacp,

2
Chyp = A2sp,
ce = Lt

317 5 6v’

C C 1
C31,=C3y = EIM
ce = Lt

32 = M

Cc Cc l
Cap=—Ciy = —5)‘43137

c  _ c i
Cs1p=—Csyy = 5)‘4%’

i
c c
C6]2 - _C621 -

V2v

. (B10)

Using ¢ii = UizHi, with U in Eq. (21), in the mass-
eigenstate basis the terms of Eq. (B9) that could lead to a
coupling between AY, Ht and H ™ cancel. On the other hand,
the Lagrangian involving one CP-even field and two charged
ones can be written as

Lipeg-=—Y vC5 0paUpUnHHYH™. (Bl
The index p in Eq. (B11) runs from 1 to 3 whereas ¢ and r

are either 1 or 2. The couplings of CP-even neutral scalars to
charged scalars are given by

3 2
ganin-=2 2 VC oy 0pilUpUsn. (B12)

p=1q,r=1

Appendix C: Partial widths

In this appendix we collect for completeness the partial
widths for the relevant decay of the new particles introduced
in the UN2HDM. The partial widths of the Z’ boson are

22 2,5 2 \3/2
cyy sy m m
rZ — wtw) = W% Tz <174 W)

4 2
1927 m$, n,

2 4

m m
><<1+20 2W+12 XV>

mZ, mZ,

: géz,ﬁ_ 11/2(,,122,’,,,22,,,,2)
Iz — ZH;) = 5 :
l92an my
B 2 4 2.2
mzz lnl'_ll' iﬂ% lnl'_li mzml:ll-
x | 1+ 10 5 -2 5 + 4 7 —274 s
mZ/ mZ, mz/ mZ, mz/
2 1/2¢,,2 2 2
_ 8 gyt A T(mS, my,, me )
rz — wru)= ZWZ z"""W T H
1927m?, myr
B 2 2 4 4 2 2
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)lrr0L o HE 4 W HE 5 2 HZ
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L z z z z z
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2
815,40
/ 7 A0y _ ZHiAY 3 o0 9 2
rZz' — H;A )_75 A (mZ,,mI_-ll_,mAO),

48nmz,
g2 +
’ — Z/HYH— ,3/2, 2 2 2
rz — HtH ):7487””52/ W22, mE L m L),
2 172
F(Z/ﬁqq):w<l—4m5)
247 m2
Z/
<Jot e (1- ) vt . (1)
m<, mz,
VA VA
with the usual kinematical function
_ .2 2 2
Ax,y,2) =x"+y +2z°—2xy — 2xz — 2yz. (C2)
The partial widths of the scalars are
3/2
F(ﬁ.ﬁf?)_&m—im - 02 1_4m_§c
! 87 v2sin2 g M2 2 ’
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