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Abstract We investigate two types of transformations that
keep NS–NS generalized supergravity equations satisfied:
χ -symmetry (20) that shifts dilaton and gauge transforma-
tions (30) that change both dilaton and vector field J . Due to
these symmetries there is a large set of dilatons and vector
fields J that (for a fixed metric and B-field) satisfy general-
ized supergravity equations but only some of them can be be
used as input for Poisson–Lie transformations. Conditions
that define the admissible dilatons are given and examples
are presented.
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1 Introduction

Poisson–Lie transformation of solutions of generalized
supergravity equations must include dilatons and Killing
fields. Formula for transformation of dilaton field � accom-
panying Poisson–Lie transformation [1,2] of sigma model
backgroundF = G+B was given in [3] (see also [4–6]). For-
mula for Poisson–Lie transformation of Killing field J was
given in [7,8]. Later it turned out that the the latter formula
works well only for non-Abelian T-duality, i.e. for Poisson–
Lie transformations of sigma models with isotropic back-
grounds, and it was extended in [9] for other type of trans-
formations. Unfortunately, applicability of these formulas is
dependent on choice of initial dilatons related by symme-
tries of solution space of generalized supergravity equations.
It turns out that transformed dilatons and vector fields J keep
validity of generalized supergravity equations in dependence
on the choice on the initial dilaton. Examples of these cases
are given below.

Goal of this paper is to discuss compatibility of Poisson–
Lie transformation of dilaton and Killing field with trans-
formations that leave invariant (NS–NS part of) generalized
supergravity equations and give conditions for applicability
of the transformations.

2 Poisson–Lie transformations and generalized
supergravity equations

Poisson–Lie duality/plurality is based on the possibility to
pass between various decompositions of Drinfel’d double D
that generates background of investigated sigma models. It
is a 2d-dimensional Lie group whose Lie algebra d can be
decomposed into double cross sum of Lie subalgebras g and
g̃ that are maximally isotropic with respect to non-degenerate
symmetric bilinear ad-invariant form 〈., .〉. Drinfel’d double
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with so called Manin triple (d, g, g̃) and Lie subgroups G , ˜G
corresponding to g, g̃ is denoted by (G | ˜G ).

Assume that there is d-dimensional Lie group G whose
action on M is smooth, proper and free. The action of G is
transitive on its orbits, hence we may locally consider M ≈
(M /G )×G = N ×G , dim M = dim N +dim G = n+d
and introduce adapted coordinates

{yμ} = {sα, ya}, (1)

where ya are group coordinates and sα label the orbits of G ,

μ = 1, . . . dim M , α = 1, . . . , n = dim N ,

a = 1, . . . , d = dim G . (2)

Coordinates sα are treated as “spectators” as they do not
participate in Poisson–Lie transformations.

Poisson–Lie dualizable sigma models on N × G are
given by tensor field

F = F(yμ) = F(sα, ya), (3)

that satisfy [1,2]

(LviF)μν = Fμκvκ
j f̃ jk

i vλ
kFλν, i = 1, . . . , dim G , (4)

where vi form basis of left-invariant fields on G and f̃ jk
i

are structure coefficients of th Lie group ˜G . Explicit form
of dualizable tensors F and their Poisson–Lie transformed
forms are given in the Appendix.

The NS–NS part of generalized supergravity equations
GSE(F ,�, J ) read [10,11]

0 = Rμν − 1

4
Hμρσ H ρσ

ν + ∇μ Xν + ∇ν Xμ, (5)

0 = −1

2
∇ρ Hρμν + Xρ Hρμν + ∇μ Xν − ∇ν Xμ, (6)

0 = R − 1

12
Hρστ Hρστ + 4∇μ Xμ − 4Xμ Xμ (7)

where Rμν is Ricci tensor of metric G, R = Rμ
μ,

Hρμν = ∂ρBμν + ∂μBνρ + ∂νBρμ (8)

and

Xμ := ∂μ� + J κFκμ. (9)

For the NS–NS part of generalized supergravity equations
(5)–(7) it is not necessary to require that J be Killing vector
field of G, H, φ even though it is it is required for their full
version containing the R-R fields. Goal of this section is to
define Poisson–Lie transformations of the fields φ, J that
keep the Eqs. (5)–(7) satisfied.

Let Drinfel’d double has two decomposition D =
(G | ˜G ) = ( ̂G |Ḡ ). Transformation of dilaton under Poisson–
Lie T-plurality can be expresed as

�0(s, y) =: �(s, y)− 1

2
L(s, y) = ̂�(s, x̂)− 1

2
̂L(s, x̂) (10)

where �(s, y), ̂�(s, x̂) are dilatons of the initial and trans-
formed model. Variables y represent coordinates of group G ,
x̂ are coordinates of group ̂G , and terms L(s, y), ̂L(s, x̂) read

L(s, y) = ln
∣

∣

∣

(det G(s, y))1/2

det u(y)

∣

∣

∣,

̂L(s, x̂) = ln
∣

∣

∣

(det ̂G(s, x̂))1/2

det û(x̂)

∣

∣

∣, (11)

where G and ̂G are metrics of sigma models on N ×G resp.
N × ̂G . Matrices u, û are components of left-invariant forms
of G and ̂G .

In cases when the invariant dilaton �0 in (10) depends on
coordinates y we have to express y in terms of x̂ and x̄ to
get explicit form of transformed dilaton ̂�(s, x̂). This can be
done by solving relation between two different decomposi-

tions of elements of Drinfel’d double D = (G | ˜G ) = ( ̂G |Ḡ ).

g(y)h̃(ỹ) = ĝ(x̂)h̄(x̄), g ∈ G , h̃ ∈ G̃ , ĝ ∈ ̂G , h̄ ∈ Ḡ

(12)

so that

yk = Y k(x̂, x̄), ỹk = Ỹ k(x̂, x̄). (13)

If �0(s, y) after the insertion (13) into (10) depends lin-
early on dual-coordinates x̄a

̂�0(s, x̂, x̄) := �0(s, Y (x̂, x̄)) = ̂�0(s, x̂) + d̄a x̄a (14)

then we can transform dilaton � and vector field J in the
following way (see [7,8]).

̂�(s, x̂) = ̂�0(s, x̂) + 1

2
̂L(s, x̂) (15)

̂J α = 0, α = 1, . . . , n = dim N ,

̂J dimN +m(s, x̂) =
(

1

2
f̄ ab

b − d̄a
)

v̂a
m(x̂) (16)

The above formulas work well for isometric models, i.e.
if ˜G is abelian. For some more general type of models trans-
formation of Killing field must be extended to [9]
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̂J α = 0, α = 1, . . . , n = dim N ,

̂J dimN +m(s, x̂) = 1

2
˜f ab

b

(

∂ ỹa

∂ x̄k
v̂k

m(x̂) − ∂ ỹk

∂ x̂a
̂Fkm

)

+
(

1

2
f̄ ab

b − d̄a
)

v̂a
m(x̂) (17)

where a, b, k, m = 1, . . . , dim G , ˜f ba
c and f̄ ba

c are struc-
ture constants of Lie algebras of ˜G , Ḡ and v̂a are left-
invariant fields of the group ̂G . This modification does not
change results of [8,12,13] because those papers deal with
isotropic initial models whose corresponding Manin triples
(d, g, g̃) are semiabelian, i.e. ˜f ab

b = 0.

3 Symmetries of generalized supergravity equations

Let (F ,�, J ) satisfy generalized supergravity equations and
there is a a symmetry of these equations, i.e. transformation
(F ,�, J ) �→ (F ′,�′, J ′) that keep the generalized super-
gravity equations satisfied

GSE(F ,�, J ) ⇔ GSE(F ′,�′, J ′). (18)

We shall call this symmetry Poisson–Lie compatible if
(̂F ′, ̂�′, ̂J ′) obtained by Poisson–Lie transformation of
(F ′,�, J ′) satisfy generalized supergravity equations as
well, i.e. if

GSE(F ′,�′, J ′) ⇔ GSE(̂F ′, ̂�′, ̂J ′). (19)

Our aim is finding symmetries compatible with Poisson–
Lie transformations (15) and (16) or (17).

3.1 χ -Symmetry

First symmetry we are going to investigate is shift of form X .
For torsionless backgrounds, which are all examples below,
it is easy to see that if Xμ satisfy the generalized supergravity
equations, then

X ′
μ := Xμ + χμ, (20)

where

∇νχμ = 0, (Xμ + 2 χμ)χμ = 0, (21)

satisfy the equations as well. Due to the former condition
form χ is (locally) exact so that χ = dψ and this symmetry
is just (t, x-dependent) shift of dilaton

�′ = � + ψ. (22)

Note that the vector field J remains unchanged.

Unfortunately, in many cases χ -symmetries are not
Poisson–Lie compatible.

3.1.1 Example 1

Solving the Eq. (21) for flat metric1

ds2 = −dt2 + t2 dy2
1 + t2 e2y1dy2

2 + t2 e2y1 dy2
3 (23)

with coordinates adapted to its Bianchi 5 symmetry

[T 1, T 2] = T 2, [T 1, T 3] = T 3, (24)

and dilaton � = 0 we get

χμ = (C1 ey1 , C1 t ey1 , 0, 0), �′ = ψ = C1 t ey1 + C0

(25)

By nonabelian T-duality given by the matrix

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(26)

we get (see Appendix)

̂Fμν =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0

0 t2

t4+x̂2
2+x̂2

3

x̂2
t4+x̂2

2+x̂2
3

x̂3
t4+x̂2

2+x̂2
3

0 − x̂2
t4+x̂2

2+x̂2
3

t4+x̂2
3

t2
(

t4+x̂2
2+x̂2

3

) − x̂2 x̂3
t2

(

t4+x̂2
2+x̂2

3

)

0 − x̂3
t4+x̂2

2+x̂2
3

− x̂2 x̂3
t2

(

t4+x̂2
2+x̂2

3

)

t4+x̂2
2

t2
(

t4+x̂2
2+x̂2

3

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(27)

but if C1 �= 0 we cannot apply formulas (15) and (16) or (17)
for the non-Abelian T-duality (and some other Poisson–Lie
T-pluralities) as the condition (14) for its application does
not hold because

̂�0 ′(t, x̂, x̄) = C1 t ex̄1 + C0 + x̄1 − 3

2
log t.

1 We work with four-dimensional models invariant w.r.t. three-
dimensional groups so that dimN = 1, and spectator is denoted
as t .
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3.1.2 Example 2

Background

Fμν =

⎛

⎜

⎜

⎝

1 0 0 0
0 0 e−y1 y1 e−y1

0 e−y1 y1 e−2y1 0
0 e−y1 0 0

⎞

⎟

⎟

⎠

(28)

that corresponds to the flat metric adapted to Bianchi 4 sym-
metry satisfy generalized supergravity equations together
with vanishing X-form. Solving the equations (21) we get

�′ = ψ = C0 + C1 t + C2e−y1 + C3
(

y1 + e−y1 y2
)

+ C4

(

1

2
e−y1 y2

2 + (y1 − 1) y2 − ey1

2
+ y3

)

(29)

where the latter condition of (21) implies

C1
2 + C3

2 − 2 C2C4 = 0.

The background (28), dilaton (29) and vanishing J satisfy
generalized supergravity equations but once again we can-
not apply formulas (15) and (16) or (17) for non-Abelian
T-duality as the condition (14) is satisfied only if �′ = C0.

3.2 Gauge transformations

Another symmetry of NS–NS generalized supergravity
equations is gauge transformation2

F� := F , �� := � + � J� := J − d�.F−1 (30)

where � is arbitrary (differentiable) function of (s, y). It
leaves X invariant, X = X�, so that

GSE(F�,��, J�) ⇔ GSE(F ,�, J ). (31)

Contrary to this, formulas (15) and (16) or (17) for Poisson–
Lie transformation of dilaton and Killing field do not provide
solution of generalized supergravity equations for arbitrary
�.

GSE(F�,��, J�) <�=> GSE(̂F�, ̂��, ̂J�).

3.2.1 Example 3, trivial - identical transformation of flat
background

Let us investigate the simplest Poisson–Lie transformation
– identity of the flat model (23) with B-field vanishing. This
background together with

2 Note that this symmetry is different from the the transformation of
B-field Bλ = B + dλ investigated e.g. in [14,15]

� = 0, Jμ = (0, 0, 0, 0), Xμ = (0, 0, 0, 0), (32)

obviously satisfy generalized supergravity equations. Besides
that, identical Poisson–Lie transformation of (32) gives the
same fields φ, J, X .

However, generalized supergravity equations are satisfied
also for

�� = �, Jμ
� = −∂ν�G νμ, F� = F ,

X� = (0, 0, 0, 0) (33)

where � is arbitrary function of (t, y1, y2, y3). Choosing for
example � = y1 we get

� = y1, Jμ =
(

0,
−1

t2 , 0, 0

)

. (34)

Applying formulas (15) and (16) for identical Poisson–Lie
transformation to (34) we find

̂�= x̂1, ̂Jμ =(0, 0, 0, 0), ̂F� =F , ̂X� = (0, 1, 0, 0)

and generalized supergravity equations are not satisfied.
This simple example shows that Poisson–Lie transforma-

tions are not in general compatible with gauge transforma-
tions and that the condition (14) is not sufficient for applica-
bility of the formulas (15) and (16) or (17).

Note that the field J in (34) in the latter case is not Killing
field of the flat metric. It may give a clue for restriction of
the gauge transformations.

4 Choice of Poisson–Lie compatible gauge

We have seen that in spite of the fact that due to symmetries
there can be quite large set of dilatons and vector fields J that
satisfy generalized supergravity equations, only very limited
subset of them are Poisson–Lie compatible. By inspection of
the formulas (15) and (16) one can see that the problem is in
fulfilling the condition (14) for invariant dilaton �0 shifted
both by χ -symmetry and gauge transformation

�0 ′(s, y) = �0(s, y) + ψ(s, y) + �(s, y). (35)

Fortunately, we can use the arbitrariness of the gauge function
� to satisfy the condition (14). On the other hand, we know
from the Example 3.2.1 that gauge transformations in general
are not compatible with Poisson–Lie transformation so that
they must be further restricted.

Condition that the field J is Killing vector of the back-
ground F = G + B (up to an exact 2-form) is not necessary
for satisfying NS–NS generalized supergravity equations but
it is required for their full version containing the R–R fields
[11]. Beside that, dilaton must also be invariant in direction
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of J . Therefore, if (F ,�, J ) satisfy generalized supergravity
equations (5)–(7) we will require for �

LJ�G = 0, LJ�B = dω, LJ�� = 0 (36)

where and J� := J − d�.F−1. It turns out that these addi-
tional conditions together with (14) are sufficient for com-
patibility of Poisson–Lie transformations with symmetries
introduced in the Sect. 3.

4.1 Example 1: continued

Let B-field is vanishing, background is given by the flat
metric (23), vanishing J -field and dilaton obtained by χ -
symmetry and gauge transformation

�′(t, y) = C1 t ey1 + C0 + �(t, y1, y2, y3). (37)

They satisfy generalized supergravity equations. Condition
(14) for non-Abelian T-duality is fulfilled for

� = −C1 t ey1 + �0(t) + λ1 y1 + λ2 y2 + λ3 y3. (38)

Requiring that J� is Killing vector of flat metric (23), and
dilaton (37) we get

�0(t) = λ1 = λ2 = λ3 = 0.

This gauge is compatible with T-duality of background (23)
dilaton (37) and vanishing J -field. This means that only the
trivial dilaton �′ = C0 can be dualized by formulas (15),
(16). By the non-Abelian T-dual given by (26) we get the
background (27) and formulas (15), (16) yield [16]

̂� = −1

2
log

(

−t2
(

t4 + x̂2
2 + x̂2

3

))

, ̂Jμ = (0, 2, 0, 0).

(39)

Generalized supergravity equations are satisfied for these
fields.

Let us note that repeating the Poisson–Lie transformation
given by (26) on the tensor field (27) we return to flat metric
(23) but dual dilaton and vector J given by(15) and (17) are
of the form (34) that differ from the initial ones (32) by gauge
transformation � = y1.

4.2 Example 2: continued

Let B-field is vanishing, background is given by the flat met-
ric (28), vanishing J -field and by dilaton

�′ = C0 + C1 t + C2e−y1 + C3
(

y1 + e−y1 y2
)

(40)

+ C4

(

1

2
e−y1 y2

2 + (y1 − 1) y2 − ey1

2
+ y3

)

+ �(t, y1, y2, y3). (41)

They satisfy generalized supergravity equations. Condition
(14) for T-duality given by (26) is fulfilled if

� = c0 + c1 y2 + c2 y3

+ 1

2

(

C4ey1 − e−y1
(

2C2 + 2C3 y2 + C4 y2
2

))

(42)

+ y1 (c4 − C4 y2) + �0(t). (43)

Requiring that J� is Killing vector of flat metric (28), and
dilaton (40) one gets

c1 = −c2 = C4, c4 = −C3, �0(t) = c5 − C1t.

This gauge eliminates χ -symmetry shift in (40) up to con-
stant and only the trivial dilaton �′ = C0 can be dualized by
formulas (15), (16). We get

̂� = ̂C0 − 1

2
log

(

x̂3
2 − 1

)

, ̂J = (0,−2, 0, 0) (44)

that together with

̂F =

⎛

⎜

⎜

⎜

⎝

1 0 0 0
0 0 0 1

1−x̂3

0 0 1 x̂3−x̂2
x̂3−1

0 1
x̂3+1

x̂3−x̂2
x̂3+1

(x̂2−x̂3)
2

x̂3
2−1

⎞

⎟

⎟

⎟

⎠

, (45)

obtained by (55)–(58), satisfy generalized supergravity equa-
tions.

On the other hand, let us note that there are Poisson–Lie
transformations that impose weaker restriction on the gauge
transformations and therefore admit a wider subset of dila-
tons that can be Poisson–Lie transformed. It is for example
Poisson–Lie T-plurality (4|1) → (6−1|2) of (28), (40) given
by

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−1 0 0 0 0 0
0 0 0 0 1 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 1 0 0 0 0
0 0 0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(46)
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Condition (14) then gives C1 = C3 = C4 = 0 and

� = �1(t, y1, y3) + �2(y1, y3) + �3(y1) + c1 y2. (47)

Requiring further that J� is Killing vector of flat metric (28),
and dilaton (40), i.e. satisfies (36), one gets finally

� = c2 + c3e−y1 , �′ = C0 + C2 e−y1 + c2 + c3e−y1 (48)

All these dilatons can be pluralized. Poisson–Lie T-plurality
induced by (46) then gives

̂F =

⎛

⎜

⎜

⎝

1 0 0 0
0 −x̂2

1 −e−x1 x̂1 ex̂1

0 e−x̂1 x̂1 e−2x̂1 0
0 ex̂1 0 0

⎞

⎟

⎟

⎠

(49)

̂� = C0 + (C2 + c3) ex̂1 , ̂J = (0, 0, 0, 0) (50)

and generalized supergravity equations are satisfied.

5 Conclusion

We have investigated two types of transformations that keep
NS–NS part of generalized supergravity equations satisfied.
They are χ -symmetry (20) for torsionless sigma models,
that shifts dilaton only, and gauge transformations (30) that
change both dilaton and vector field J but leave the form

Xμ := ∂μ� + J κFκμ.

invariant. Due to these symmetries there is a large set of dila-
tons and vector fields J that satisfy generalized supergravity
equations for fixed tensor field F .

We have shown that Poisson–Lie transformations are not
in general compatible with the above mentioned symmetries
- see Examples 1,2,3. In other words, formulas (15), (16) or
(17) for Poisson–Lie transformations of dilatons and vector
fields J can be applied only to a rather narrow subset of dila-
tons in order that the transformed fields satisfy generalized
supergravity equations.

The applicability of the formulas (15), (16) or (17) is
restricted

1. By the condition (14) requiring that the invariant dilaton
�0 given by (10) is linear in the dual coordinates x̄ .

2. By the conditions (36) that fixes the admissible gauges,
namely, that gauge transformed vector field J� is Killing
vector of metric, torsion and dilaton. It is interesting that
this condition of Poisson–Lie compatibility is identical
with condition for full generalized supergravity equations
containing the R-R fields.

Within these restrictions Poisson–Lie transformations keep
generalized supergravity equations satisfied – see Exam-
ples 1,2 continued. Typically it chooses just one dilaton and
Killing vector field but it is not a rule as shown in the Sect.
4.2. We have checked several other cases of Poisson–Lie
duality/plurality with equal results.

Besides that we have found that twice applied T-duality
produces identical dilatons but vector fields J only up to a
gauge transformation. It means that, diferently from trans-
formations of tensor fields (55)–(58), the above mentioned
formulas do not provide true representation of O(d, d).

Appendix: Poisson–Lie transformations of the tensor
field

For many Drinfel’d doubles several decompositions may
exist. Suppose that we have sigma model on N ×G and ten-
sor fieldF satisfies Eq. (4). Let Drinfel’d doubleD = (G | ˜G )

splits into another pair of Lie subgroups ̂G and Ḡ so that
(G | ˜G ) = ( ̂G |Ḡ ). Then we can apply the full framework of
Poisson–Lie T-plurality [1,3] and find tensor field ̂F for
sigma model on N × ̂G in the following way.

Poisson–Lie dualizable sigma models on N × G satis-
fying (4) are given by tensor field F of the form

F(s, y) = E(y)·(1n+d + E(s) · �(y))−1 ·E(s)·ET (y) (51)

where E(s) is spectator-dependent (n +d)× (n +d) matrix.
Denoting generators of Manin triple (d, g, g̃) as T, T̃ , matrix
�(y) is given by submatrices a(y) and b(y) of the adjoint
representation

adg−1(˜T ) = b(y) · T + a−1(y) · ˜T

as

�(y) =
(

0n 0
0 b(y) · a−1(y)

)

.

Matrix E(y) reads

E(y) =
(

1n 0
0 e(y)

)

(52)

where e(y) is d × d matrix of components of right-invariant
Maurer–Cartan form (dg)g−1 on G .

Manin triples (d, g, g̃) and (d, ĝ, ḡ) are two decomposi-
tions of Lie algebra d into double cross sum of subalgebras
that are maximally isotropic with respect to 〈., .〉. Pairs of
mutually dual bases Ta ∈ g, ˜T a ∈ g̃ and ̂Ta ∈ ĝ, T̄ a ∈ ḡ,
a = 1, . . . , d, then must be related by transformation

(

̂T
T̄

)

= C ·
(

T
˜T

)

(53)

123



Eur. Phys. J. C (2022) 82 :1070 Page 7 of 7 1070

where C is an invertible 2d × 2d matrix. (Non-Abelian) T-
duality is obtained by

C =
(

0 1d

1d 0

)

.

Poisson–Lie T-plurality is given by d×d matrices P, Q, R, S
such that

(

T
˜T

)

= C−1 ·
(

̂T
T̄

)

=
(

P Q
R S

)

·
(

̂T
T̄

)

. (54)

For the following formulas it is convenient to extend matrices
P, Q, R, S to (n + d) × (n + d) matrices

P =
(

1n 0
0 P

)

, Q =
(

0n 0
0 Q

)

,

R =
(

0n 0
0 R

)

, S =
(

1n 0
0 S

)

to accommodate the spectator fields.
Sigma model on N × ̂G obtained from (51) via Poisson–

Lie T-plurality is given by tensor field

̂F(s, x̂) = ̂E(x̂) · ̂E(s, x̂) · ̂ET (x̂), ̂E(x̂) =
(

1n 0
0 ê(x̂)

)

,

(55)

where ê(x̂) is d × d matrix of components of right-invariant
Maurer–Cartan form (dĝ)ĝ−1 on ̂G and

̂E(s, x̂) = (

1n+d + ̂E(s) · ̂�(x̂)
)−1 ·

̂E(s) =
(

̂E−1(s) + ̂�(x̂)
)−1

. (56)

The matrix ̂E(s) is obtained from E(s) in (51) by formula

̂E(s) = (P + E(s) · R)−1 · (Q + E(s) · S), (57)

and

̂�(x̂) =
(

0n 0
0 ̂b(x̂) · â−1(x̂)

)

,

adĝ−1(T̄ ) = ̂b(x̂) · ̂T + â−1(x̂) · T̄ . (58)
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