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Abstract By adopting the idea of Born–Infeld electromag-
netism, the Born–Infeld determinantal gravity in Weitzen-
böck spacetime provides a way to smooth the Big Bang sin-
gularity at the classical level. We consider a thick braneworld
scenario in the higher-dimensional extension of this grav-
ity, and investigate the torsion effects on the brane structure
and gravitational perturbation. For three particular parameter
choices, analytic domain wall solutions are obtained. They
have a similar brane configuration that the brane thickness
becomes thinner as the spacetime torsion gets stronger. For
each model, the massless graviton is localized on the brane
with the width of localization decreasing with the enhance-
ment of the spacetime torsion, while the massive gravitons
propagate in the bulk and contribute a correction term propor-
tional to 1/(kr)3 to the Newtonian potential. A sparsity con-
straint on the fundamental 5-dimensional gravitational scale
is estimated from the gravitational experiment. Moreover,
the parameter ranges in which the Kaluza–Klein gravitons
are tachyonic free are analyzed.

1 Introduction

Einstein’s general relativity (GR) is the cornerstone of mod-
ern cosmology, which provides the most accurate descrip-
tions of a variety of phenomena in our universe. In GR, the
gravitation is described by the curvature of spacetime, where
the affine connection is symmetric and coincides uniquely
with the Levi-Civita connection. A well-known alternative
gravity theory dynamically equivalent to GR is the so-called
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teleparallel gravity [1,2], which allows us to interpret GR
as a gauge theory for a translation group. In teleparallel
gravity, the spacetime is characterized by the curvature-free
Weitzenböck connection rather than the torsion-free Levi-
Civita connection, and the dynamical field is the vielbein
instead of metric in Weitzenböck spacetime [3,4]. Following
the spirit of the popular f (R) gravity which generalizes the
Lagrangian of GR to be some functions of the Ricci scalar R,
the f (T ) gravity generalizes the Lagrangian of teleparallel
gravity to be some functions of the torsion scalar T [5–7].
This impactful modification of teleparallel gravity provides
possible explanations for the accelerating expansion of the
universe without invoking the dark energy [6,8] and for the
inflation without resorting to the inflaton field [5,9].

It is well-known that GR suffers from the inevitable sin-
gularities at the beginning of Big Bang and the center of
black holes [10]. Some attempts to solve the singularity prob-
lem of GR at the classical level were done by replacing the
Einstein-Hilbert action with the Born–Infeld-type determi-
nantal action [11–14]. The Born–Infeld determinantal grav-
ity (BIDG) in Weitzenböck spacetime was also considered in
Refs. [15–17]. This theory leads to second-order field equa-
tions and supports some regular cosmological solutions by
replacing the possible initial singularity with a de-Sitter phase
or a bounce. The tensor evolution of these cosmological solu-
tions can hold stability in a large parameter space in the early
universe, and the theoretical parameter λ is constrained by the
speed of gravitational waves [18]. However, other cosmolog-
ical singularities such as Big Rip, Big Bang, Big Freeze, and
Sudden singularities may emerge in some regions of parame-
ter space [19]. The Schwarzschild geometry was considered
in this framework as well [20].

The idea that our spacetime may have hidden extra dimen-
sions in ultraviolet regime is a long historical topic since the
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proposal of Kaluza–Klein (KK) theory in the 1920s. As the
most plausible candidate for unifying all fundamental inter-
actions, the superstring/M-theory requires extra dimensions
for mathematical consistency. Instead of traditional com-
pact extra dimension scenario, the braneworld scenario sug-
gests that our universe is a 3-brane embedded into a higher-
dimensional bulk, which opens a new way to solve some
long-standing problems in particle physics and cosmology,
such as the gauge hierarchy problem and cosmological con-
stant problem [21–25]. Thick brane scenario is considered as
a smooth generalization of Randall–Sundrum-2 (RS2) model
[24]. The most interesting thick brane configuration is the
domain wall, which is a global topological defect in a mul-
tidimensional bulk [26]. The domain wall brane could be a
potential carrier, onto which the Standard Model could pos-
sibly be transplanted [27].

The projected Gauss–Codazzi equations of RS2 model in
the 5-dimensional teleparallel gravity contain two extra terms
arising from the extra degrees of freedom in the teleparallel
Lagrangian [28]. Furthermore, the brane cosmology provides
an equivalent viewpoint as RS2 model in GR, however, the
projected effect on the brane is determined by the projection
of torsion tensor [29]. The inflation and dark energy domi-
nated stage were realized on the brane by generalizing RS2
model in 5-dimensional f (T ) gravity [30]. Analytic thick
brane solutions were obtained in the 5-dimensional f (T )

gravity [31–34]. The gravitational perturbation against the
thick branes and the corresponding resonance spectrum were
investigated [35,36]. Thick string-like brane-world models
were constructed in the 6-dimensional f (T ) gravity, where
the torsion effects on the models were analyzed as well [37].

In this work, we will consider the thick brane scenario in
the higher-dimensional BIDG in Weitzenböck spacetime and
analyze the torsion effects on the brane structure and gravita-
tional perturbation. The layout of the paper is as follows: In
Sect. 2, the higher-dimensional BIDG in Weitzenböck space-
time is briefly introduced. In Sect. 3, the thick brane scenario
is constructed in (d + 1)-dimensional BIDG, and the first-
order formalism is employed in order to solve the field equa-
tions analytically. Specifically, for d = 4, analytical 3-brane
solutions are obtained for three particular parameter choices
in Sect. 4. In Sect. 5, the gravitational perturbation against the
domain wall backgrounds is discussed. Finally, brief conclu-
sions and discussions are presented. Throughout the paper,
the capital Latin indices A, B,C . . . and small Latin indices
a, b, c . . . label the (d + 1)-dimensional and d-dimensional
coordinates of tangent space, respectively, while the capital
Latin letters K , L , M, N , . . . and Greek letters μ, ν, ρ, σ . . .

label the (d + 1)-dimensional and d-dimensional spacetime
indices, respectively.

2 Higher-dimensional BIDG in Weitzenböck spacetime

In Weitzenböck spacetime, the fundamental dynamic field is
the vielbein eAM , which refers to the metric through the rela-
tion gMN = eAMeB NηAB , with ηAB = diag(−1, 1, . . . , 1)

the Minkowski metric for the tangent space. The torsion ten-
sor T P

MN = �P
NM −�P

MN is constructed in terms of the
Weitzenböck connection �P

MN = eAP∂NeAM . With the
torsion tensor, the contorsion tensor is defined as K P

MN =
1
2 (TM P

N +TN P
M −T P

M N ). By defining the superpotential
torsion tensor SPMN = 1

2 (KMN
P +δNP TQ

QM −δMP TQQN ),
the torsion scalar is given by T = SPMNT P

MN .
The action of (d + 1)-dimensional BIDG in Weitzenböck

spacetime takes the form [16]

S = − λ

16πGd+1

∫
dd+1x

[√
−|gMN + 2λ−1FMN |

−√−|gMN |
]

+
∫

dd+1x
√−|gMN |LM, (1)

where the rank-2 tensor FMN is a function of vielbein field
eAM and its derivatives, λ the Born–Infeld constant with mass
dimension 2, and LM the Lagrangian of matter fields. The
(d + 1)-dimensional gravitational constant Gd+1 will be set
to 4πGd+1 = 1 for later convenience.

In the low-energy limit λ → ∞, the above action approx-
imates to

S ≈ −1

4

∫
dd+1x eTr(FMN ) +

∫
dd+1x eLM, (2)

where e = |eAM | = √−|gMN |. Thus, the teleparallel gravity
can be recovered in the case of Tr(FMN ) = T . Generally,
FMN is given by FMN = αF (1)

MN + βF (2)
MN + γ F (3)

MN with

F (1)
MN = SM PQTN PQ , F (2)

MN = SPM
QT P

NQ , and F (3)
MN =

gMNT [16]. The three dimensionless parameters α, β and γ

satisfy the condition α + β + (d + 1)γ = 1 in order to yield
Tr(FMN ) = T .

By varying the action with respect to the vielbein, one gets
the Euler–Lagrange equation

∂LG

∂eAM
− ∂S

(
∂LG

∂(∂SeAM )

)
= 4e

λ
�A

M , (3)

with each term written explicitly as

∂LG

∂eAM
= |UK L | 1

2 (U−1)QP

2

(
eA(PδMQ) + 2∂FPQ

λ∂eAM

)

−eA
Me, (4)

∂LG

∂(∂SeAM )
= |UK L | 1

2 (U−1)QP

λ

∂FPQ

∂(∂SeAM )
, (5)

�A
M = 1

e

∂(eLM)

∂eAM
, (6)
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whereLG represents the gravitational Lagrangian andUK L =
gK L + 2λ−1FKL . After contracting the index A of tangent
space via multiplying a vielbein eAN , the equations of motion
read [20]

|UK L | 1
2
(U−1

)QP

2

[
δM (PgNQ) + 2eAN

λ

∂FPQ

∂eAM

]
− δMNe

−eAN

λ
∂S

[
|UK L | 1

2

(
U−1

)QP ∂FPQ

∂(∂SeAM )

]
= 4e

λ
�N

M ,

(7)

where the symbol ( ) denotes the symmetric tensor compo-
nents. The energy–momentum tensor �N

M = eAN�A
M is

symmetric and conserved if the action of the matter fields is
local Lorentz invariant [38]. With some algebra, these two
partial derivative terms are written explicitly as

∂FPQ

∂eAM
= α

(
δM P F

(1)
AQ + δMQF

(1)
PA

+ QM
APK LTQ

K L − 2SPK (ATQ
KM)

)

+β
(
QM

AK PLT
K
Q
L − SK P

(MT K
QA)

)

+γ
(
δM (PeAQ)T − 4gPQF

(2)M
A

)
, (8)

∂FPQ

∂(∂SeAM )
= α

(
2eAQSP

SM + DPK LA
[SM]TQK L

)

+β
(
SAP

[MδS]
Q + DK PLA

[SM]T K
Q
L
)

+4γ gPQSA
SM , (9)

where [ ] denotes the skew-symmetric tensor components,
and the tensors DC

PQB
K L and QK

A
C
PQ are expressed as

DC
PQB

K L = 1

4

(
δP

K δQ
LδB

C − eCLeB[PδQ]K
)

+ 1

2
eB

LeC [PδKQ], (10)

QK
A
C
PQ = 1

4

(
eCK T[PQ]A − δK [PTAQ]C

)

− 1

2

(
δA

CδK [PT L
LQ] − eC [PT K

AQ]
)

. (11)

3 Thick brane scenario and first-order formalism

To investigate the braneworld scenario, the (d + 1)-dimen-
sional line element is described by

ds2 = a2(y)ημνdx
μdxν + dy2, (12)

where y denotes the extra dimension coordinate perpen-
dicular to the brane, and a(y) is the so-called warp fac-
tor. Correspondingly, the proper vielbein reads eAM =
diag (a(y), . . . , a(y), 1).

In order to construct a braneworld configuration, a single
background scalar field is included, of which the Lagrangian
reads

LM = −1

2
∂Mφ∂Mφ − V (φ). (13)

The scalar field should depend on the coordinate y only, to be
consistent with the d-dimensional Poincaré invariance of the
metric ansatz. Then, the energy–momentum tensor is written
explicitly as

Qμ
ν =

(
−1

2
φ′2 − V

)
δμ

ν,

Qy
y = 1

2
φ′2 − V, (14)

where the prime denotes the derivative with respect to the
coordinate y. Since the brane is constructed by the scalar
field, the brane configuration is more easily seen from its
effective energy density, which is defined as [39,40]

ρ(y) = −Q0
0 − V0, (15)

where V0 is the vacuum energy of the scalar potential.
With the vielbein and matter energy–momentum tensor,

the field equations (7) become(
1 − BH2

) d−2
2

(1 − AH2)
1
2

[
1 + (d − 1)BH2 − d ABH4] − 1

= 4

λ

(
φ′2

2
− V

)
, (16a)

(
1 − BH2

) d−4
2

(
1 − AH2

) 3
2

[
1 + A + dB

d
H ′ − (A − (d − 2)B)H2

−2(2d + 1)A + d(d − 1)B

d
BH2H ′ − (d + 1)A2B2H6H ′

−(2(d − 1)A + (d − 1)B)BH4 + (d A + (2d − 1)B)ABH6

+ (2d2 + 1)B + 3d A

d
ABH4H ′ − d A2B2H8

]
− 1

= 4

λ

(
−φ′2

2
− V

)
, (16b)

φ′′ + 4Hφ′ = Vφ, (16c)

where H ≡ a′/a, Vφ ≡ dV
dφ

, A = d(d − 1)(β + 2γ )/λ, and
B = (d − 1)(2α + β + 2dγ )/λ.

It is noted that the system is underdetermined since there
are only two of the three equations of motion are independent,
but we have three unknown variables a, φ, and V (φ). In
order to solve the system analytically, we employ the first-
order formalism [41–43], which can transform the equations
of motion (16) into first-order equations by introducing a
superpotential W (φ), namely,

H = −W

3
, (17a)
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φ′ = λ

4d

(9 − BW 2)
d−4

2

3d(9 − AW 2)
3
2

[
729(A + dB) − 81((4d + 2)A

+(d − 1)dB)BW 2 + 9(3Ad + 2Bd2 + B)ABW 4

−d(d + 1)A2B2W 6
]
Wφ, (17b)

V = λ

4
− λ

3d+1

[(
9 − BW 2

) d−2
2

4(9 − AW 2)
1
2

[
81 + 9(d − 1)BW 2

−d ABW 4] + (9 − BW 2)
d−4

2

8d(9 − AW 2)
3
2

[
2187(A + dB)

−243
[
(4d + 2)A + d(d − 1)B

]
BW 2

+27
[
3d A + (2d2 + 1)B

]
ABW 4

−3d(d + 1)A2B2W 6
]
φ′Wφ

]
, (17c)

where Wφ ≡ dW
dφ

.
In order to recover the massless chiral fermions on the

brane, the bulk should be Z2-symmetric along the coordinate
y. Thus, the warp factor a(y) must be an even function of
extra dimension. From Eq. (17a), the superpotential W (φ)

must be chosen as an odd function of the scalar φ. With
an appropriate ansatz of superpotential, the variables can be
solved directly from the above equations.

4 Analytic 3-brane solutions

Specifically, we focus on solving the 3-brane solutions in
a 5-dimensional bulk (d = 4) in the rest of the work. The
higher-dimensional brane solutions can be solved similarly.
However, Eqs. (17a) and (17b) can not be integrated out gen-
erally due to their complicated form. Therefore, it is conve-
nient to consider some particular cases by fixing the values
of free parameters, which can simplify the equations greatly.

4.1 Case A = B

The first interesting case is A = B. Then from A = 12(β +
2γ )/λ, B = 3(2α + β + 8γ )/λ, and α + β + 5γ = 1, the
parameters are fixed as α = 3

5 − 3γ and β = 2
5 − 2γ , yet

γ left as a free parameter. It leads to A = B = 24
5λ

. So the
Eqs. (17) reduce to

a′ = −aW

3
, (18a)

φ′ =
(

1

2
− 16W 2

15λ

) (
1 − 8W 2

15λ

) 1
2

Wφ, (18b)

V = λ

4
−

(
λ

4
+ 2W 2

5
− 64W 4

225λ
− φ′Wφ

4
+ 8φ′WφW 2

15λ

)

×
(

1 − 8W 2

15λ

) 1
2

. (18c)

A set of analytical solutions can be obtained with the
superpotential ansatz W (φ) = 2k√

3
φ, where the mass dimen-

sion one parameter k is defined as λ ≡ 32
45k

2. Then tak-
ing W (φ) into Eqs. (18), the set of analytical solutions are
obtained as

a(y) = sech
1

3
√

3 (ky)[(
2 − √

3
) (

2 +
√

4 − sech2(ky)
)] 1

3
√

3

, (19a)

φ(y) = tanh(ky)√
3 + tanh2(ky)

, (19b)

V (φ) = k2

90

[
φ2

(
4φ2 − 3

) (
45 − 60φ2 + 16

√
1 − φ2

)

−16
√

1 − φ2 + 31
]
, (19c)

where the integration constants have been chosen such that
a(0) = 1 and φ(0) = 0. The solutions of the warp factor
a(y), scalar field φ(y), and scalar potential V (φ) are illus-
trated in Fig. 1a–c. As shown in Fig. 1a, the warp factor
holds the Z2 symmetry and has a typical bell shape profile.
As y → ±∞, the scalar field φ(±∞) → ± 1

2 , which just
correspond to the two local minima of the scalar potential,
i.e., V0 = V (± 1

2 ) = (8 − 6
√

3)k2/45. Since the scalar field
non-trivially maps the boundaries of extra dimension into
two scalar vacua, it is a kink soliton [26].

With the solution (19a), the torsion scalar reads T =
− 16k2 tanh2(ky)

9
(
4−sech2(ky)

) . It approaches − 4k2

9 at the vacua y → ±∞.

Since the absolute value of the torsion scalar is monotoni-
cally increasing with the parameter k (or λ), the torsion of
spacetime is enhanced as the parameter k goes larger. As
shown in Fig. 1d, the energy density of the brane is localized
at the origin of the extra dimension, and the brane thickness
becomes thinner as the background torsion gets stronger.

By choosing the free parameter γ = 1/5, one has α =
β = 0. Then, the action (1) reduces to a Born–Infeld- f (T )-
type one [16,33], i.e.,

SBI = −1

4

∫
d5x e f (T )

= −λ

4

∫
d5x e

[(
1 + 2T

5λ

)5/2

− 1

]
. (20)

In addition, the same analytic solutions (19) were obtained
and the issue about trapping fermions on the domain wall
was considered in Ref. [33].

4.2 Case A = 0

The second interesting case is A = 0. Then from A = 12(β+
2γ )/λ, B = 3(2α + β + 8γ )/λ, and α + β + 5γ = 1, one
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(a) (b)

(d)(c)

Fig. 1 The profiles of the warp factor a(y), scalar field φ(y), scalar potential V (φ), and energy density ρ(y) for the case of A = B

gets B = 6/λ, α = 1 − 3γ , and β = −2γ , with γ a free
parameter. Now the equations (17) reduce to

a′ = −aW

3
, (21a)

φ′ =
(

1

2
− W 2

λ

)
Wφ, (21b)

V =
(

1

4
− W 2

2λ

)
φ′Wφ −

(
1

3
− W 2

3λ

)
W 2. (21c)

For the superpotential ansatz W (φ) = 2kφ with λ ≡ 8k2,
a set of analytical solutions are obtained

a(y) = sech
2
3 (ky), (22a)

φ(y) = tanh(ky), (22b)

V (φ) = k2

6

(
3 − 32φ2 + 64φ4

)
, (22c)

where the integration constants have been chosen such that
a(0) = 1 and φ(0) = 0. The solutions of a(y), φ(y), and

V (φ) are illustrated in Fig. 2a–c, respectively. The warp
factor is Z2 symmetric, and the scalar field is a kink with
φ(±∞) → ±1, which connects two local minima of the
scalar potential, i.e., V0 = V (±1) = −k2/96.

In this case, the torsion scalar reads T = − 16k2

3 tanh2(ky),

and it approaches − 16k2

3 at the vacua y → ±∞. Therefore,
the spacetime torsion is also enhanced as the parameter k
goes larger. As shown in Fig. 2d, the energy density of the
brane is localized at y = 0, and its thickness becomes thinner
as the spacetime torsion gets stronger as well.

4.3 Case B = 0

The last interesting case is B = 0. Then from A = 12(β +
2γ )/λ, B = 3(2α + β + 8γ )/λ, and α + β + 5γ = 1, one
has A = 24/λ, α = −(1 + 3γ ), and β = 2(1 − γ ), with γ

a free parameter. In this case, the equations (17) become

123
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(a) (b)

(d)(c)

Fig. 2 The profiles of the warp factor a(y), scalar field φ(y), scalar potential V (φ), and energy density ρ(y) for the case of A = 0

a′ = −aW

3
, (23a)

φ′ = Wφ

2

(
1 − 8W 2

3λ

)− 3
2

, (23b)

V = 1

4

⎡
⎣φ′Wφ −

(
λ − 8W 2

3

) ⎛
⎝1 −

√
1 − 8W 2

3λ

⎞
⎠

⎤
⎦

×
(

1 − 8W 2

3λ

)− 3
2

. (23c)

By assuming the superpotential as the form W (φ) =
3k sin φ√
1+sin2 φ

, a set of analytical solutions can be achieved as

a(y) =
(

1 + √
2
)√

2
3

(
cosh

1
2 (3ky) + √

2 cosh (3ky/2)
)√

2
3

, (24a)

φ(y) = arcsin [tanh (3ky/2)] , (24b)

V (φ) = 3k2

16

[
35 + 3 cos(2φ) − 32

(
1 + sin2 φ

) 1
2
]

, (24c)

where the integration constants have been chosen such that
a(0) = 1 and φ(0) = 0 as well. As shown in Fig. 3, the
warp factor a(y), scalar field φ(y), scalar potential V (φ),
and brane energy density ρ(y) have similar shapes with the
previous two cases. The scalar field exhibits a kink profile,
whose two ends φ(±∞) → ±π/2 connect two vacua of the

scalar potential, i.e., V0 = V (±π/2) = 6
(

1 − √
2
)
k2.

Now the torsion scalar reads T = −6k2[1 − sech(3ky)],
and T → −6k2 as y → ±∞. The bulk torsion also gets
stronger as the parameter k goes larger. As shown in Fig. 3d,
the energy density of the brane is localized at the origin, and
its thickness becomes thinner as the torsion becomes stronger
as the previous cases.
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(a) (b)

(d)(c)

Fig. 3 The profiles of the warp factor a(y), scalar field φ(y), scalar potential V (φ), and energy density ρ(y) for the case of B = 0

5 Gravitational perturbation

The full perturbed metric against the domain wall back-
grounds takes the form

ds2 = gMNdx
MdxN

= a2(y)
[
ημν + 2hμν + 2ημνϕ + 2∂μ∂νB

+2∂(μCν)

]
dxμdxν + a(y)(∂μF + Gμ)dxμdy

+(1 + 2ψ)dy2, (25)

where hμν is the transverse-traceless (TT) tensor mode, Gμ

and Cν are the transverse vector modes, and ψ , ϕ, F , and B
are the scalar modes. Due to the broken 5-dimensional local
Lorentz invariance of current theory, the broken gauge free-
dom in tangent frame will release 10 extra degrees of freedom
in the vielbein [38]. Thus, one can generally write the per-
turbed vielbein as the form eAM = ēAM +æA

M [44,45]. The
degrees of freedom of the perturbed metric gMN are encoded

in ēAM , satisfying the condition gMN = ηABēAM ēAN . Then,
all the 10 extra degrees of freedom are included in æA

M ,
which can be decomposed explicitly as æ5

5 = 0, æa
5 =

δaμ(∂μβ + Dμ), æ5
μ = 0, æa

μ = δaνεμνλ(∂
λσ + V λ),

with β a scalar, Dμ a transverse vector, σ a pseudo-scalar,
and V λ a transverse pseudo-vector. After taking the scalar–
vector–tensor decomposition in the linear perturbed equa-
tions of motion, the TT tensor, transverse (pseudo-)vector,
and (pseudo-)scalar modes can be decoupled from each other,
and they can be dealt with separately.

Here, we focus on studying the property of 4-dimensional
KK gravitons in current models. This is done by considering
the TT tensor perturbation against the domain wall back-
grounds. So we close all the transverse (pseudo-)vector and
(pseudo-)scalar modes in the perturbed metric (25). Now, the
non-vanishing components of the perturbed inverse metric
are gμν = a−2 (ημν − 2hμν) and g55 = 1.
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Correspondingly, the perturbed vielbein with respect to
the perturbed metric reads

eAM =
(
a(y)

(
δaμ + ηaνhνμ

)
0

0 1

)
. (26)

Then, the inverse of the vielbein is given by

eA
M =

(
a−1(y) (δa

μ − ηaνhνμ) 0
0 1

)
. (27)

With the perturbed vielbein and metric, the expressions
for the non-vanishing components of the perturbed torsion
tensor T P

MN read

T λ
5ν = −T λ

ν5 = Hδλ
ν + h′λ

ν, (28a)

T λ
μν = ∂[μhλ

ν]. (28b)

Then, the non-vanishing components of the perturbed con-
torsion tensor K P

MN are given by

K λ
5ν = −Hδλ

ν − h′λ
ν, (29a)

K 5
μν = a2 (

Hημν + 2Hhμν + h′
μν

)
, (29b)

K λ
μν = ∂λhμν − ∂μh

λ
ν. (29c)

With the expressions of the perturbed torsion tensor T P
MN

and contorsion tensor K P
MN , the non-vanishing compo-

nents of the perturbed superpotential torsion tensor SPMN

read

Sλ
μ0 = −Sλ

0μ = 1

2

[
(d − 1)Hδμ

λ − h′μ
λ

]
, (30a)

Sλ
μν = 1

2a2 ∂ [μhν]
λ. (30b)

By taking the torsion tensor T P
MN and superpotential

torsion tensor SPMN into consideration, the perturbed tensor
FPQ = αF (1)

PQ + βF (2)
PQ + γ F (3)

PQ can be calculated by the

non-vanishing components of F (1)
PQ , F (2)

PQ , and F (3)
PQ , given

by

F (1)
μν = (1 − d)a2H2

[
ημν + 2hμν + d − 2

d − 1

h′
μν

H

]
, (31a)

F (2)
μν = 1 − d

2
a2H2

[
ημν + 2hμν + d − 2

d − 1

h′
μν

H

]
, (31b)

F (2)
55 = d(1 − d)

2
H2, (31c)

F (3)
μν = d(1 − d)a2H2 (

ημν + 2hμν

)
, (31d)

F (3)
55 = T = d(1 − d)H2. (31e)

Further, the perturbations of ∂FPQ

∂eAM
and ∂FPQ

∂(∂SeAM )
can be

assembled by ∂FPQ

∂eAM
= α

∂F (1)
PQ

∂eAM
+ β

∂F (2)
PQ

∂eAM
+ γ

∂F (3)
PQ

∂eAM
and

∂FPQ

∂(∂SeAM )
= α

∂F (1)
PQ

∂(∂SeAM )
+ β

∂F (2)
PQ

∂(∂SeAM )
+ γ

∂F (3)
PQ

∂(∂SeAM )
. Because

there are too many items, the non-vanishing components of
∂F (i)

PQ

∂eAM
and

∂F (i)
PQ

∂(∂SeAM )
are listed in Appendix A.

With all of these perturbed terms, the linear perturbation
of the field equations (7) is obtained finally

F2h
′′
μν + F1h

′
μν + F0�(4)hμν = 0, (32)

where �(4) = ηρσ ∂ρ∂σ is the 4-dimensional d’Alembert
operator, and the functions F2, F1 and F0 are defined as

F2 = A

d
(
1 − AH2

) + B

1 − BH2 − (d − 1)C2H2

2
(
1 − BH2

)2 , (33a)

F1 = AH

1 − AH2 − (d − 1)
[
2 − (2B − dC)H2

]
CH

2
(
1 − BH2

)2

+ [dB + (d − 1)C] H

1 − BH2 − 2ABHH ′(
1 − AH2

) (
1 − BH2

)

+ A2HH ′

d
(
1 − AH2

)2 −
[
(d − 2)B2 + (d − 1)C2

]
HH ′

(
1 − BH2

)2

+
[

AC2

2
(
1 − AH2

) + (d − 4)BC2

2
(
1 − BH2

)
]

(d − 1)H3H ′
(
1 − BH2

)2 ,

(33b)

F0 = 2(d − 1)

λa2

(
γ

1 − AH2 + 1 − γ

1 − BH2

)
, (33c)

with C = (d − 2)(2α + β)/λ.
In the low energy regime λ → ∞, the leading orders of the

coefficient functions F2, F1 and F0 read F2 → 2(d − 1)λ−1,
F1 → 2(d − 1)dHλ−1, and F0 → 2(d − 1)λ−1a−2,
respectively. Then, the evolution equation (32) reduces to
the standard form in GR, i.e.,

h′′
μν − 4Hh′

μν + a−2�(4)hμν = 0. (34)

If F2/F0 > 0, we can make a coordinate transformation
dz = dy/

√
F2/F0 to eliminate the prefactors F2 and F0 in

Eq. (32). Then, the evolution equation (32) is recast as

ḧμν + F3ḣμν + �(4)hμν = 0, (35)

where the dot denotes the derivative with respect to the coor-

dinate z, and F3 = F1√
F0F2

+ 1
2

(
Ḟ0
F0

− Ḟ2
F2

)
.

In order to get a Schrödinger-like equation, we employ a

KK decomposition as the fromhμν = εμν(xμ)�(z)e− ∫ F3
2 dz .

Then, the evolution equation (35) can be decompose into
two equations. The first one is a Klein–Gordon equation
(�(4) − m2)εμν = 0 owing to the preserved 4-dimensional
Poincaré invariance, where m is the observed 4-dimensional
effective mass of KK gravitons. The other is the aimed
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Schrödinger-like equation

−�̈(z) +U (z)�(z) = m2�(z), (36)

where the effective potential U (z) is given by

U (z) = Ḟ3

2
+ F2

3

4
. (37)

The Hamiltonian can be further factorized as a super-
symmetric quantum mechanics form, i.e., H = A†A =(
∂z + F3

2

) (
−∂z + F3

2

)
. With the Neumann boundary con-

dition ∂zhμν = 0, the self-adjoint Hamiltonian leads to
non-negative eigenvalues m2 ≥ 0 [46]. Therefore, the KK
gravitons are tachyonic free. The wave function of the mass-
less graviton can be directly derived from the equation(
−∂z + F3

2

)
�0(z) = 0, yielding

�0(z) = N0e
∫ F3

2 dz, (38)

where N0 is the normalization constant.

5.1 Case A = B

In this case, the parameters are A = B = 24
5λ

and C =
16−80γ

5λ
, with γ a free parameter. It is easily verified that

F2

F0
= a2

1 − φ2

[
1 −

(
40γ 2

3
− 16γ

3
+ 23

15

)
φ2

]
≥ a2. (39)

So the coordinate transformation dz = dy/
√
F2/F0 is

robust. Following the above procedure, the KK gravitons are
tachyonic free. This conclusion can also be seen directly by
recasting Eq. (32) into the form, h′′

μν + F1
F2
h′

μν +M2hμν =
0, with M2 ≡ m2F0/F2 acting as an effective squared mass
[47].

Due to the free parameter γ , the expressions can be simpli-
fied a lot by fixing γ = 1/5, which corresponds to C = 0. In
this case, F2/F0 = a2. With the domain wall solutions (19),
the functions F2, F1 and F0 in Eqs. (33) are given explicitly
as

F2 = 45

16k2

(
3 + tanh2(ky)

)
, (40)

F1 = − 5

16k

[
27sech2(ky) + 8

√
9 + 3 tanh2(ky)

]

× tanh(ky), (41)

F0 = 45
(
3 + tanh2(ky)

)
16k2

[ (
2 − √

3
)

cosh(ky)

×
(

2 +
√

4 − sech2(ky)

)] 2
3
√

3
. (42)

Since the coordinate transformation dz = dy/a(y) cannot
be integrated out analytically in this case, we cannot obtain
the analytical expression of the effective potential in z coor-
dinate. However, the effective potential in y coordinate can
be expressed explicitly as

U (y) = 3a2

4
(
4k2 − 27H2

)2

[
5H2 (

16k4 + 729H4)

−270H4 (
4k2 − 27H ′) + 8k2 (

4k2 − 27H ′) H ′

−81H2H ′ (16k2 − 9H ′) − 54
(
4k2 − 27H2) HH ′′]

= − k2sech8(ky)

72
√

4 − sech2(ky)
(
3 + tanh2(ky)

)2

×
cosh(ky)

− 2
3
√

3

(
2 +

√
4 − sech2(ky)

)− 2
3
√

3

(
2 − √

3
) 2

3
√

3
(

2 +
√

4 − sech2(ky)
)2

×
[

4 (1 + 2 cosh(2ky))
[
5

(
28 + 15

√
3
)

cosh(2ky)

−
(

113 + 6
√

3
)

cosh(4ky) − 5 cosh(6ky) + 302

+57
√

3
]

+
√

4 − sech2(ky)
[
2

(
593 + 150

√
3
)

+2
(

701 + 222
√

3
)

cosh(2ky) − 10 cosh(8ky)

−3
(

23 − 44
√

3
)

cosh(4ky) −
(

12
√

3 + 241
)

× cosh(6ky)
]]

. (43)

Correspondingly, the wave function of the massless gravi-
ton in y coordinate is given by

�0(y) = N0a
3
2

(
1 − 27H2

4k2

)3/4

= N033/4 cosh
3
2 (ky)(

2 − √
3
) 1

2
√

3 (1 + 2 cosh(2ky))3/4

×
(

2 cosh(ky) + √
1 + 2 cosh(2ky)

)− 1
2
√

3 . (44)

By numerically integrating out the coordinate transfor-
mation, the effective potential U (z) and the wave function
�0(z) of the massless graviton in z coordinate are illus-
trated in Fig. 4. As shown in Fig. 4b, the massless graviton is
normalizable and its width decreases with the enhancement
of the spacetime torsion. With the normalization condition∫ ∞
−∞ �2

0dz = ∫ ∞
−∞

�2
0dy√
F2/F0

= 1, the normalization constant

can be approximately calculated, yielding N0 ≈
√

k
4.681 .

The normalizable massless mode ensures that the effective 4-
dimensional gravity can be recovered on the brane. Further,
by counting the contribution of the massless mode sector in
the action (1), the 4-dimensional gravitational constant can
be derived from the reduction 1

G4
= 1

G5N2
0

∫ ∞
−∞ �2

0dz. So the
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(a) (b)

Fig. 4 The profiles of the effective potential U (z) and gravitational zero mode �0(z) for the case of A = B

fundamental 5-dimensional gravitational constant G5 reads
G5 = G4/N 2

0 ≈ 4.681G4/k.
As shown in Fig. 4a, the effective potential is volcano-like

and the width of potential well decreases with the enhance-
ment of the spacetime torsion. Therefore, the massless gravi-
ton is the only bound state, and the massive excited states
possess a continuous mass spectrum. The massive states will
contribute a correction to the Newtonian potential at short
distance. Quantitatively, for two point-like sources separated
by a distance r on the brane, a volcano-like potential with
U (z) ∼ α(α+1)/z2 for z 
 1 will yield a correction propor-
tional to 1/(kr)2α to the Newtonian potential [48,49]. For the
current case, the effective potential behaves like U (z) ∼ 15

4z2

for z 
 1, so it leads to a correction proportional to 1/(kr)3

to the Newtonian potential.

5.2 Case A = 0

For case A = 0, the parameters are B = 6
λ

and C = 4−16γ
λ

,
with γ a free parameter. It is easily shown that

F2

F0
= 9 − (

32γ 2 − 16γ + 5
)
φ2(

3 − φ2
) (

3 − γφ2
) a2. (45)

Due to −1 ≤ φ(y) ≤ 1, the ratio F2/F0 is positive every-

where in the intervals 1−√
3

4 < γ < 1+√
3

4 or γ > 3. So
the coordinate transformation dz = dy/

√
F2/F0 is robust

and the KK gravitons are tachyonic free in these parameter
intervals.

The corresponding expressions can be simplified a lot by
setting C = 0, which is realized by fixing the free parameter
γ = 1/4. In this case, F2/F0 = 12a2

12−φ2 . With the solutions
(22), the functions F2, F1 and F0 in Eqs. (33) are written
explicitly as

F2 = 9

4k2
(
3 − tanh2(ky)

) , (46)

F1 = −3(11 + 4 cosh(2ky)) sinh(2ky)

4k(2 + cosh(2ky))2 , (47)

F0 = 3(13 + 11 cosh(2ky))

32k2(2 + cosh(2ky))sech
4
3 (ky)

. (48)

Then, the effective potential in y coordinate is given by

U (y) = 12a2k2
[

5H2

16k2 − 3H2

−9
(
512k6 − 240k4H2 + 24k2H4 + 9H6

)
H ′2

(
4k2 − 3H2

)2 (
16k2 − 3H2

)3

+8
(
16k4 − 48k2H2 + 9H4

)
H ′

(
4k2 − 3H2

) (
16k2 − 3H2

)2

− 18
(
4k2 − H2

)
HH ′′

(
4k2 − 3H2

) (
16k2 − 3H2

)2

]

= − k2sech
4
3 (ky)

4(2 + cosh(2ky))2(13 + 11 cosh(2ky))3

×
[
295290+365898 cosh(2ky)+56976 cosh(4ky)

−24669 cosh(6ky) − 8602 cosh(8ky)

−605 cosh(10ky)
]
. (49)

Moreover, the wave function of the massless graviton in
y coordinate is obtained as

�0(y) = N0a
3
2

(
1 − 3H2

4k2

) 1
2
(

1 − 3H2

16k2

) 1
4

= N0sech(ky)

(
1 − tanh2(ky)

3

) 1
2
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(a) (b)

Fig. 5 The profiles of the effective potential U (z) and gravitational zero mode �0(z) for the case of A = 0

×
(

1 − tanh2(ky)

12

) 1
4

, (50)

where the normalization constant reads N0 =
√

91k
453

√
π

�(1/6)
�(2/3)

≈
√

k
2.146 . Therefore, the fundamental 5-dimensional grav-

itational constant is G5 = G4/N 2
0 ≈ 2.146G4/k in this

model. The effective potential U (z) and the wave function
of the massless graviton �0(z) in z coordinate are illustrated
in Fig. 5. It is shown that the widths of the potential well and
wave function are both decreasing with the enhancement of
the spacetime torsion. The volcano-like effective potential
also behaves like U (z) ∼ 15

4z2 for z 
 1, so it leads to a cor-

rection proportional to 1/(kr)3 to the Newtonian potential as
the previous case.

5.3 Case B = 0

In this case, the parameters are A = 24
λ

and C = − 16γ
λ

, with
γ a free parameter. Then, the ratio F2/F0 reads

F2

F0
= 3 + (

6 − 8γ 2
)

sin2 φ + 3 sin4 φ

3
(
1 + sin2 φ

) (
1 + γ sin2 φ

) a2. (51)

Due to −π
2 ≤ φ(y) ≤ π

2 , one has 0 ≤ sin2 φ(y) ≤ 1. Thus,

the ratio F2/F0 is positive everywhere only if γ < −
√

3
2

or −1 < γ <

√
3
2 . The coordinate transformation dz =

dy/
√
F2/F0 is robust and the KK gravitons are tachyonic

free in these two parameter intervals.
In order to simplify the expressions, it is convenient to set

γ = 0, which vanishes the parameter C . Now the ratio (51)
reduces to F2/F0 = a2

(
1 + sin2 φ

)
. With the solutions (24),

the functions F2, F1 and F0 are written explicitly as

F2 = 1 + tanh2 (3ky/2)

4k2 , (52)

F1 = − tanh (3ky/2)

8k

[
8
(

1 + tanh2 (3ky/2)
) 1

2

−3sech2 (3ky/2)
]
, (53)

F0 = 1

4k2

(
cosh

1
2 (3ky) + √

2 cosh (3ky/2)
) 2

√
2

3

×
(√

2 − 1
) 2

√
2

3
. (54)

Then, the effective potential in y coordinate can be
expressed explicitly as

U (y) = 3k2a2
(
5k2H2 − 5H4 + 2k2H ′)

4
(
k2 − H2

)2

= −5 − 5 cosh(3ky) + 6
(
1 + tanh2 (3ky/2)

)
(

cosh
1
2 (3ky) + √

2 cosh (3ky/2)
) 2

√
2

3

×
3k2

(
1 + √

2
) 2

√
2

3

4(1 + cosh(3ky))
. (55)

Correspondingly, the wave function of the massless graviton
in y coordinate is obtained as

�0(y) = N0a
3
2

=
N0

(
1 + √

2
) 1√

2

(
cosh

1
2 (3ky) + √

2 cosh (3ky/2)
) 1√

2

, (56)

where the normalization constant is estimated as N0 ≈√
k

1.684 . Hence, the fundamental 5-dimensional gravitational
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(a) (b)

Fig. 6 The profiles of the effective potential U (z) and gravitational zero mode �0(z) for the case of B = 0

constant reads G5 = G4/N 2
0 ≈ 1.684G4/k. The effective

potentialU (z) and the wave function of the massless graviton
�0(z) in z coordinate are illustrated in Fig. 6. It is shown that
the widths of the potential well and wave function are both
decreasing with the enhancement of the spacetime torsion
as the previous cases. The volcano-like effective potential
behaves like U (z) ∼ 15

4z2 for z 
 1 as well, which con-

tributes a correction proportional to 1/(kr)3 to the Newtonian
potential.

6 Conclusions

We studied thick brane scenario in the context of the higher-
dimensional BIDG in Weitzenböck spacetime. In order to
solve the equations of motion (7) analytically, we resorted to
the first-order formalism, which transforms the equations of
motion into first-order equations by introducing a superpo-
tential. Three analytic 3-brane solutions were obtained cor-
responding to some particular cases of parameter choices.
It was found that all the three models describe the domain
wall braneworld, where the kink scalar maps the boundaries
of the extra dimension into two scalar vacua non-trivially. In
every model, the thickness of the domain wall brane becomes
thinner as the spacetime torsion gets stronger. Furthermore,
by introducing a Yukawa coupling between the Dirac field
and scalar field in the bulk, the massless chiral fermion can
be localized on the domain wall brane [33,50].

Further, we analyzed the tensor perturbation against the
domain wall backgrounds and derived the Schrödinger-like
equation (36) of KK modes. The effective potential of the
Schrödinger-like equation is volcano-like, which is univer-
sal in flat brane scenario. The wave functions of the mass-
less graviton are localized on the brane, so the effective 4-

dimensional gravity can be recovered in each model. The
widths of the potential well and wave function decrease with
the enhancement of the spacetime torsion. The KK gravitons
are tachyonic free for any γ in the first model (A = B), for

γ ∈
(

1−√
3

4 , 1+√
3

4

)
∪ (3,∞) in the second model (A = 0),

and for γ ∈
(

−∞,−
√

3
2

)
∪

(
−1,

√
3
2

)
in the third model

(B = 0).
Since the effective potentials of the Schrödinger-like equa-

tion have the same behavior like U (z) ∼ 15
4z2 for z 
 1,

the correction to the Newtonian potential is proportional to
1/(kr)3 in all modes. This is the same as the correction
generated by RS2 model, but is different from the correc-
tion generated by domain wall branes in Eddington-inspired
Born–Infeld gravity, where the correction is proportional to
1/(kr)3+4n with n a positive integer [39,51]. The experimen-
tal test suggests that the length scale deviating from the grav-
itational inverse-square law is at least less than 48 μm [52],
so the parameter k is roughly estimated to be k > 10−3eV.
From the relations G5 ∼ G4/k and Gd+1 = (1/Md+1)

d−1,
a sparsity constraint on the fundamental 5-dimensional grav-
itational scale is obtained as M5 > 105 TeV.

Although the current scope of this works is to build the
braneworld models and investigate the gravitational pertur-
bation, the (pseudo-)scalar and (pseudo-)vector perturbations
are also interesting and important. Due to the complexity of
the field equations (7), the calculation and analysis on these
modes are left for our further investigation.
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Appendix A: Perturbations of
∂FP Q

∂eAM
and

∂FP Q

∂(∂SeAM )

The perturbation of ∂FPQ

∂eAM
can be assembled by ∂FPQ

∂eAM
=

α
∂F (1)

PQ

∂eAM
+ β

∂F (2)
PQ

∂eAM
+ γ

∂F (3)
PQ

∂eAM
, with the non-vanishing compo-

nents of
∂F (1)

PQ

∂eAM
,

∂F (2)
PQ

∂eAM
, and

∂F (3)
PQ

∂eAM
given by

∂F (1)
μν

∂e5
5

= 2(d − 1)a2H2
[
ημν + 2hμν + d − 2

d − 1

h′
μν

H

]
, (A.1)

∂F (1)
5ν

∂e5
λ

= (1 − d)H2δλ
ν + (2 − d)Hh′λ

ν, (A.2)

∂F (1)
μ5

∂ea5
= ∂F (1)

5μ

∂ea5
= (1 − d)aH2

[
ηaμ + haμ + d − 2

d − 1

h′
aμ

H

]
,

(A.3)

∂F (1)
μν

∂e0
λ

= H
[
∂νh

λ
μ − (d − 2)∂μh

λ
ν + (d − 3)∂λhμν

]
, (A.4)

∂F (1)
μν

∂ea5
= aH

[(3

2
− d

)
∂μhaν + 1

2
∂νhaμ + (d − 2)∂ahμν

]
,

(A.5)

∂F (1)
5ν

∂eaλ

= H

a

(
1

2
∂λhaν + 1

2
∂ah

λ
ν − ∂νha

λ

)
, (A.6)

∂F (1)
μν

∂eaλ

= aH2
[(1

2
− d

)
δλ

νηaμ − 1

2
δλ

μηaν + δa
λημν

]

+aH2
[(1

2
− d

)
δλ

νhaμ − 1

2
δλ

μhaν − δμνha
λ

+2δa
λhμν

]
− aH

[
1

2
ηaμh

′λ
ν + ηaνh

′λ
μ

−ημνh
′
a
λ − δa

λh′
μν +

(
d − 3

2

)
δλ

νh
′
aμ

]
, (A.7)

∂F (2)
μν

∂e5
5

= (d − 1)a2H2
[
ημν + 2hμν + d − 2

d − 1

h′
μν

H

]
, (A.8)

∂F (2)
5ν

∂e5
λ

= 1

2

[
(1 − d)H2δλ

ν + (2 − d)Hh′λ
ν

]
, (A.9)

∂F (2)
μ5

∂e5
λ

= (1 − d)H2δλ
μ + (2 − d)Hh′λ

μ, (A.10)

∂F (2)
μ5

∂ea5
= ∂F (2)

5μ

∂ea5
= 1 − d

2
aH2

[
ηaμ + haμ + d − 2

d − 1

h′
aμ

H

]
,

(A.11)

∂F (2)
55

∂eaλ

= (d − 1)
H2

a

[
δa

λ − ha
λ + d − 2

d − 1

h′
a
λ

H

]
, (A.12)

∂F (2)
μν

∂e5
λ

= H

2

[
∂μh

λ
ν − (d − 2)∂νh

λ
μ + (d − 3)∂λhμν

]
,

(A.13)

∂F (2)
μν

∂ea5
= aH

2

[(3

2
− d

)
∂νhaμ + 1

2
∂μhaν + (d − 2)∂ahμν

]
,

(A.14)

∂F (2)
μ5

∂eaλ

= H

2a

[
(d − 3)∂μha

λ − (d − 2)∂ah
λ
μ + ∂λhaμ

]
,

(A.15)

∂F (2)
5ν

∂eaλ

= H

2a

[
(d − 2)∂νha

λ −
(
d − 3

2

)
∂ah

λ
ν + 1

2
∂λhaν

]
,

(A.16)

∂F (2)
μν

∂eaλ

= aH2

4

[
2δa

λημν − (2d − 1)δμ
ληaν − δν

ληaμ

]

−aH2

4

[
(2d − 1)δμ

λhaν + δν
λhaμ + 2ημνha

λ

−4δa
λhμν

]
− aH

4

[
ηaμh

′λ
ν + 2(d − 1)δμ

λh′
aν

+δν
λh′

aμ − 2ημνh
′
a
λ − 2δa

λh′
μν

]
, (A.17)

∂F (3)
μν

∂e5
5

= 2d(d − 1)a2H2 (
ημν + 2hμν

)
, (A.18)

∂F (3)
μ5

∂e5
λ

= ∂F (3)
5μ

∂e5
λ

= d(1 − d)H2δλ
μ, (A.19)

∂F (3)
μ5

∂ea5
= ∂F (3)

5μ

∂ea5
= d(1 − d)aH2 (

ηaμ + haμ

)
, (A.20)

∂F (3)
55

∂eaλ

= 2(d − 1)
H2

a

[
δa

λ − ha
λ + d − 2

d − 1

h′
a
λ

H

]
, (A.21)

∂F (3)
μν

∂eaλ

= (1 − d)aH2 (
dδλ

(μην)a − 2δλ
aημν

)

+(1 − d)aH2 (
dδλ

(μhν)a + 2ημνha
λ − 4δa

λhμν

)
+2(d − 2)aHημνh

′
a
λ. (A.22)

The perturbation of ∂FPQ

∂(∂SeAM )
can be assembled by ∂FPQ

∂(∂SeAM )

= α
∂F (1)

PQ

∂(∂SeAM )
+ β

∂F (2)
PQ

∂(∂SeAM )
+ γ

∂F (3)
PQ

∂(∂SeAM )
, where the non-

vanishing components of
∂F (1)

PQ

∂(∂SeAM )
,

∂F (2)
PQ

∂(∂SeAM )
, and

∂F (3)
PQ

∂(∂SeAM )
are given by
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∂F (1)
μ5

∂(∂5e5
λ)

= (1 − d)Hδλ
μ + h′λ

μ, (A.23)

∂F (1)
μ5

∂(∂γ e5
5)

= (d − 1)Hδγ
μ − h′γ

μ, (A.24)

∂F (1)
μν

∂(∂5e5
λ)

= ∂λhμν − ∂μh
λ
ν, (A.25)

∂F (1)
μν

∂(∂γ e5
5)

= ∂μh
γ

ν − ∂γ hμν, (A.26)

∂F (1)
5ν

∂(∂5eaλ)
= 1

2a

(
∂ah

λ
ν − ∂λhaν

)
, (A.27)

∂F (1)
5ν

∂(∂γ ea5)
= 1

2a

(
∂γ haν − ∂ah

γ
ν

)
, (A.28)

∂F (1)
μ5

∂(∂γ e5
λ)

= 1

a2

(
∂γ hλ

μ − ∂λhγ
μ

)
, (A.29)

∂F (1)
5ν

∂(∂γ e5
λ)

= 1

2a2

(
∂γ hλ

ν − ∂λhγ
ν

)
, (A.30)

∂F (1)
μν

∂(∂5eaλ)
= −a

[
Hδa

λημν +
(
d − 3

2

)
Hδλ

μηaν

−1

2
Hδλ

νηaμ

]
+ a

[
Hημνha

λ − 2Hδa
λhμν

+1

2
Hδν

λhaμ −
(
d − 3

2

)
Hδλ

μhaν + ηaνh
′λ

μ

−δa
λh′

μν + 1

2
δλ

μh
′
aν + 1

2
ηaμh

′λ
ν

]
, (A.31)

∂F (1)
μν

∂(∂γ ea5)
= −aH

[
δa

γ ημν − 1

2
δγ

νηaμ +
(
d − 3

2

)
δγ

μηaν

]

+a

[
Hημνha

γ − 2Hδa
γ hμν + 1

2
Hδγ

νhaμ

−
(
d − 3

2

)
Hδγ

μhaν + ηaνh
′γ

μ − δa
γ h′

μν

+1

2
δμ

γ h′
aν + 1

2
ηaμh

′γ
ν

]
, (A.32)

∂F (1)
μν

∂(∂γ e5
λ)

= 1

2

(
Hδγ

μδλ
ν − Hδγ

νδ
λ
μ + δγ

μh
′λ

ν

−δλ
μh

′γ
ν

)
, (A.33)

∂F (1)
5ν

∂(∂γ eaλ)
= 1

a

(
Hδa

λδγ
ν − Hδa

γ δλ
ν + Hδν

λhγ
a

−Hδν
γ hλ

a + δa
λh′γ

ν − δa
γ h′λ

ν

)
, (A.34)

∂F (1)
μν

∂(∂γ eaλ)
= 1

a

[
1

2
δλ

μ

(
∂γ haν − ∂ah

γ
ν

)

−1

2
δγ

μ

(
∂λhaν − ∂ah

λ
ν

)

+1

2
ηaμ

(
∂γ hλ

ν − ∂λhγ
ν

)

+ηaν

(
∂γ hλ

μ − ∂λhγ
μ

)
+δa

λ
(
∂μh

γ
ν − ∂γ hμν

)

−δa
γ

(
∂μh

λ
ν − ∂λhμν

) ]
, (A.35)

∂F (2)
μ5

∂(∂5e5
λ)

= 1

2

[
(d − 1)Hδλ

μ − h′λ
μ

]
, (A.36)

∂F (2)
μ5

∂(∂γ e5
5)

= 1

2

[
(1 − d)Hδγ

μ + h′γ
μ

]
, (A.37)

∂F (2)
55

∂(∂5eaλ)
= 1 − d

a

(
Hδa

λ − Hha
λ − h′

a
λ

d − 1

)
, (A.38)

∂F (2)
55

∂(∂γ ea5)
= d − 1

a

(
Hδa

γ − Hha
γ − h′

a
γ

d − 1

)
, (A.39)

∂F (2)
μν

∂(∂5e5
λ)

= 1

2

(
∂λhμν − ∂νh

λ
μ

)
, (A.40)

∂F (2)
μν

∂(∂γ e5
5)

= 1

2

(
∂γ hμν − ∂νh

γ
μ

)
, (A.41)

∂F (2)
μ5

∂(∂5eaλ)
= 1

2a

(
∂μha

λ − ∂λhaμ

)
, (A.42)

∂F (2)
5ν

∂(∂5eaλ)
= 1

4a

(
2∂νha

λ − ∂λhaν − ∂ah
λ
ν

)
, (A.43)

∂F (2)
μ5

∂(∂γ ea5)
= 1

2a

(
∂γ haμ − ∂μha

γ
)
, (A.44)

∂F (2)
5ν

∂(∂γ ea5)
= 1

4a

(
∂γ haν + ∂ah

γ
ν − 2∂νha

γ
)
, (A.45)

∂F (2)
5ν

∂(∂γ e5
λ)

= 1

4a2

(
∂γ hλ

ν − ∂λhγ
ν

)
, (A.46)

∂F (2)
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∂(∂γ e5
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= 1

4
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λδν
γ − Hδμ
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λ + δμ

λh′γ
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−δμ
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(A.47)
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∂(∂5eaλ)
= −a
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d − 3
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Hδλ

νηaμ
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Hδλ

μηaν
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δλ

μh
′
aν − 1

2
ηaμh
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]
, (A.48)
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, (A.49)
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)
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−δμ
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2∂νha

γ − ∂γ haν − ∂ah
γ

ν

)
+2δγ

ν

(
∂μha

λ − ∂λhaμ

)
−2δλ

ν

(
∂μha

γ − ∂γ haμ

)]
, (A.50)

∂F (3)
55

∂(∂5eaλ)
= 2(1 − d)

a

[
Hδa

λ − Hha
λ − h′

a
λ

d − 1

]
, (A.51)

∂F (3)
55

∂(∂γ ea5)
= 2(d − 1)

a

[
Hδa

γ − Hha
γ − h′

a
γ

d − 1

]
, (A.52)

∂F (3)
55

∂(∂γ eaλ)
= 2

a3

(
∂γ ha

λ − ∂λha
γ
)
, (A.53)

∂F (3)
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∂(∂5eaλ)
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(1 − d)Hδa

λ − (1 − d)Hha
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]
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λhμν, (A.54)
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γ − (d − 1)Hha
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γ
]

+4(d − 1)aHδa
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a
ημν

(
∂γ ha
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γ
)
. (A.56)
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