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Abstract Standard cosmological equations are written for
the Hubble volume, while the real boundary of space-time
is the event horizon. Within the unimodular and thermody-
namic approaches to gravity, the dark energy term in cosmo-
logical equations appears as an integration constant, which
we fix at the event horizon and obtain the observed value for
the cosmological constant.

Numerous observations imply that the late universe is in
accelerated expansion [1,2]. Within the framework of the
standard cosmological model, an accelerated expansion can
be accounted for by a positive cosmological constant �,
which presents in the system of equations for a homoge-
neous, isotropic and flat universe (k = 0),

H2 = 8πG

3
ρ + �

3
, (1)

ä

a
≡ Ḣ + H2 = −4πG

3
(ρ + 3p) + �

3
. (2)

Here overdots denote derivatives with respect to the cosmic
time, H ≡ ȧ/a is the Hubble parameter,G is the gravitational
constant, and ρ and p are the mass and pressure densities
of cosmological fluids (we use the system of units where
c = h̄ = kB = 1).

In (1) and (2) the cosmological constant � is a free param-
eter and is fixed only from observations, which for the value
of dark energy density gives [3],

�� = �

3H2
0

≈ 0.692, (3)

where H0 denotes the present value of the Hubble parameter.
One of the main problems of standard cosmology is that
the measured value of � is much smaller than theoretical
estimations obtained from the standard quantum field theory.
In order to resolve this discrepancy, various models have been
proposed (see the reviews [4,5]).
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It is known that, using the Friedmann equation (1), the
acceleration equation (2) can be expressed without �,

Ḣ = −4πG(ρ + p). (4)

Also, combining (1) and (2), one can obtain the matter
energy–momentum conservation equation,

ρ̇ = −3H(ρ + p), (5)

where the cosmological constant � does not appear as well.
If instead of (1) and (2), one will choose (4) and (5) as the
independent system of cosmological equations, � obtains
the role of integration constant. Indeed, excluding (ρ + p)
from (4) and (5),

4πG

3
ρ̇ = H Ḣ , (6)

and integrating this relation over the time, we obtain the
Friedmann equation (1),

H2 = 8πG

3
ρ + C, (7)

but with an integration constant C instead of �/3. So, in a
cosmological models where the system (4), (5) is primary,
and the Friedmann equation (1) represents its first integral,
the value of � can be obtained from boundary conditions
of the model. The examples of scenarios where � arises as
an integration constant are unimodular relativity [6–9] and
thermodynamic approach to gravity [10–16].

Key ingredient in thermodynamic model of gravity is
entropy, which allows us to study different aspects of various
physical systems using a similar mathematical framework
(see the recent review [17]). Most thermodynamic cosmo-
logical scenarios are based on the holographic principle (see
the review [18]) and for an associated entropy of a volume
usually is used the Bekenstein–Hawking formula for black
holes [19,20],

SBH = A

4G
= πR2

G
, (8)
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where R denotes the radius and A = 4πR2 is the surface
area. In thermodynamic cosmology, to the Hubble sphere of
radius

RH = 1

H
, (9)

having the surface and volume

AH = 4π

H2 , VH = 4π

3H3 , (10)

can be associated the temperature [21],

TH = H

2π
, (11)

and the black hole type entropy (8),

SH = AH

4G
= π

GH2 > 0. (12)

In thermodynamic approach, the Friedmann equation (7) has
the natural interpretation as the balance of gravitational and
matter heat densities in the spirit of the first law of thermo-
dynamics [15,16], while the acceleration equation (4) can be
obtained by equating the entropy input in the Hubble volume
to the sum of entropy flux (entropy received per unit surface)
transferred through the horizon and the entropy supplied by
internal sources (entropy generated per unit volume). Indeed,
if we neglect the entropy supplied by internal sources, the
time derivative of the entropy contained within the Hubble
volume, SH , should be equal to the flux of the matter entropy
density, Sm , through the boundary AH ,

ṠH = Sm AH . (13)

Using the classical Gibbs–Duhem relation,

ρ + p = TH Sm, (14)

the Eq. (13) takes the form:

ȦH = 4G(ρ + p)
AH

TH
, (15)

which, using (10) and (11), reduces to the standard acceler-
ation equation (4). Note that in thermodynamic picture the
Universe cannot export the entropy to any external universes
and it seems that its total entropy is conserved [22–25].

Thus, in various scenarios, the Friedmann equation (7)
contains the integration constant C (the dark energy term).
This change of the role of � from a parameter of the matter
action to a property of states does not solve the cosmologi-
cal constant problem, but it does change it from a question
of fine-tuning to a question of boundary conditions [26,27].
To find proper boundary conditions, note that cosmologi-
cal equations are written for the Hubble volume, since as a
proper causal boundary of the classical space-time (for the
flat universe, k = 0) usually the Hubble horizon is consid-
ered [28,29]. Then the metric fluctuations are bounded by RH

and thermodynamic laws also are satisfied on this boundary
[30,31].

On the other hand, the quantum fluctuations of matter
fields should be limited not by the Hubble horizon RH , but by
the event horizon Re ≥ RH , which represents a real boundary
of space-time [32,33]. Then, cosmological equations should
also contain the energy density corresponding to entangle-
ments of quantum particles across the Hubble horizon [34]
and can be taken into account by introducing a surface term
at RH . It was found that the perfect fluid of entanglement has
a negative pressure [35] and can be interpreted as the origin
of dark energy [13].

The value of the event horizon at the current cosmic time
can be estimated as (see, for example, [36]):

Re = 1

H0

∫ 0

−1

dy√
�m(1 + y)3 + ��

≈ 0.96 RH√
��

, (16)

where �m denotes the matter density. While particle entan-
glements can be effective up to Re, in the context of cosmol-
ogy (as well as in the context of black holes), (16) is always
defined globally (see more discussions in [37]) and at the
event horizon we can assume absence of matter,

�m |R→Re → 0. (17)

Using this assumption, we can fix the integration constant in
(7):

C = H2|R→Re = 1

R2
e
. (18)

Therefore, for the dark energy density we obtain the value

C

H2
0

= R2
H

R2
e

≈ 1.08 ��, (19)

which almost coincides with the observed density of the dark
energy (3), within the uncertainties in measurements of �m

and �� in (16).
To summarize, in this paper we have noted that within

the unimodular or thermodynamic approaches to gravity, in
the Friedmann equation (7) the cosmological term appears
as an integration constant, i.e. is not associated with the large
vacuum expectation values and can be fixed from boundary
conditions. Since the real boundary of space-time is the event
horizon and not the Hubble sphere, we assume that cosmo-
logical equations should contain the terms corresponding to
the entanglements of quantum particles across the apparent
horizon. Using the fact that in a region enclosed by an event
horizon, like a black hole, interior matter density should tend
to zero at the horizon (17), in the Friedmann equation (7)
we fix the integration constant (18) and obtain the value for
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the dark energy density (19) that almost coincides with the
observations (3).
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