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Abstract The doubly-polarized production of W±Z pairs
at the Large Hadron Collider (LHC) is presented at next-to-
leading order (NLO) accuracy both for the electroweak (EW)
and QCD corrections, including a detailed description of the
calculational method using the double-pole approximation.
Numerical results at the 13 TeV LHC are presented in par-
ticular for the W−Z case in the e−ν̄eμ

+μ− channel using
ATLAS fiducial cuts and for polarized distributions defined
in the WZ center-of-mass system. The NLO EW corrections
relative to the NLO QCD predictions are found to be smaller
than 5% in most kinematic distributions, but can reach the
level of 10% in some distributions such as lepton transverse
momentum distributions or rapidity separation between the
electron and the Z boson. EW corrections are not uniform
for different polarizations. A comparison between the new
ATLAS measurement of polarization fractions to our theo-
retical prediction is presented.
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1 Introduction

The Standard Model (SM) of particle physics is the current
framework which describes how matter is organized at the
most fundamental level. It allows for a consistent descrip-
tion of the interactions between quarks and leptons via the
exchange of gauge bosons, in particular the W and Z bosons
that are mediators of the electroweak (EW) interaction. The
CERN Large Hadron Collider (LHC) has produced lots of
such EW gauge bosons since the beginning of its operation,
and the amount of collected data in both run I and run II
has allowed for a detailed study of the properties of the W
and the Z bosons. It is expected that with run III starting in
2022, theorists and experimentalists will be able to search
for more potential new-physics effects in the tail of gauge
boson differential distributions, as well as access to a precise
determination of polarization observables of the W and Z
bosons. The four-lepton channel via Z Z production and the
three-lepton channel viaWZ productions are of prime impor-
tance for such polarization studies, see for example the latest
ATLAS [1] and CMS results [2] in the three-lepton channel,
using the full run II dataset, as well as ATLAS differential
results in the four-lepton channel [3].

In order to allow for a meaningful comparison with exper-
iments, the theory prediction has to reach a high accuracy and
higher order QCD and EW corrections are needed. The next-
to-leading order (NLO) QCD corrections in the WZ channel
were calculated in Refs. [4,5] for on-shell production and
in Refs. [6,7] for off-shell production including the leptonic
decays. The NLO EW corrections were calculated in Refs.
[8–11], demonstrating the importance of the quark-photon
real corrections in an inclusive setup. The next-to-next-to-
leading order (NNLO) QCD corrections were obtained for
the first time in 2015 [12–14] while the combination of
NNLO QCD corrections with NLO EW corrections was
performed in 2019 [15]. The comparison of theory predic-
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tions with experimental observables also requires soft gluon
effects to be taken into account. This was performed in Refs.
[16,17] at NLO QCD in parton shower programs and then
later extended to a consistent matching of NLO QCD+EW
corrections to parton shower in Ref. [18]. In order to study
new physics effects, the effect of SM effective theory oper-
ators was included at NLO QCD+EW via anomalous cou-
plings in Ref. [19] and taken into account in parton shower
programs at NLO QCD in Refs. [20,21]. Full NLO QCD pre-
dictions including full off-shell and spin-correlation effects
for leptonic final states can now be easily obtained with the
help of computer tools such as MCFM [22,23] or VBFNLO
[24,25].

All this progress in the calculation of higher-order cor-
rections has also helped to increase the accuracy of the the-
oretical predictions for angular observables and polarized
cross sections. Thanks to the wealth of data at the LHC it
is now possible to also get experimental results for polar-
ization observables in the three- and four-lepton channels.
Even the two-lepton channel has been given some attention,
see the NNLO QCD theory perspective in Ref. [26]. As the
two-lepton channel is more difficult to measure because of
the amount of missing energy, this paper will focus on the
three-lepton channel using WZ production.

Experimental results for singly-polarized observables in
the three-lepton channel were first presented by ATLAS in
2019 [27] using run II data at 13 TeV. They have been updated
very recently including a measurement, for the first time, of
the double polarization of WZ events, in particular involving
longitudinally polarized gauge bosons [28]. The LO predic-
tion for polarized cross sections were presented in the 80s
[29,30] while the NLO QCD corrections were studied much
later [31]. The NLO EW corrections to gauge boson polar-
ization observables in the WZ channel were first calculated
in Refs. [32,33] and combined with QCD corrections. The
idea of this study is to define polarization observables, which
we termed fiducial polarizations, directly from lepton angu-
lar distributions. The same idea has been implemented in
Refs. [34,35], using polarization asymmetries to constrain
anomalous triple gauge boson couplings. The advantage of
this approach is that the observables can be easily calculated
at any order in perturbation theory with arbitrary kinematic
cuts on the leptons using available calculations for unpolar-
ized cross sections. This has been shown to work for single
polarizations. Whether similar observables can be defined
for double polarization is still an open question. The nega-
tive side of this method is that the values of those observables
depend strongly on the lepton cuts, hence can be very differ-
ent from the values obtained using the on-shell gauge boson
approximation.

The traditional method to define gauge boson polarization
is using the on-shell approximation, allowing for a separation
of the gauge-boson polarizations at the amplitude level. Fol-

lowing this path, doubly-polarized predictions for the two-
lepton channel (W+W−) [36], three-lepton channel (W±Z )
[37], and four-lepton channel (Z Z ) [38] were obtained at
NLO in QCD in 2020 and 2021 using the double-pole approx-
imation (DPA). The calculation in the Z Z channel includes
EW corrections as well, see Ref. [38]. It is worth noticing that,
because this polarization separation is done at the amplitude
level (in contrast to the above fiducial polarizations which are
defined at the cross section level), it requires a careful defini-
tion of the on-shell momenta and other technical details. The
nice thing of this approach is that it allows for generation of
fully polarized events.

Inspired by these results, we have extended their method
to cover the three-lepton channel (W±Z ), where a new ingre-
dient must be added to deal with the photon radiation off the
intermediate on-shell W boson. In [39] we have already pre-
sented our first results at the NLO QCD+EW level for the
W+Z production using the same fiducial cuts and reference
frame as ATLAS [27]. The goal of the paper is to present
the complete description of the calculation method behind
the results of Ref. [39], as well as give results for the W−Z
channel. We will also perform a comparison between our
NLO QCD+EW predictions and the new ATLAS measure-
ment [28] for the doubly-polarized cross sections.

The paper is organized as follows. The definition of polar-
izations is given in Sect. 2. The details of the calculation of
the QCD corrections are briefly given in Sect. 3 while the
EW corrections are explained in depth in Sect. 4, first with
the description of the method to calculate the EW corrections
to the production part in Sect. 4.1, and then to the decay part
in Sect. 4.2. The numerical results using the ATLAS fiducial
cuts and the WZ center-of-mass system (c.m.s) reference
frame at the LHC at 13 TeV, mainly for the W−Z channel,
are presented in Sect. 5. This section starts with the integrated
polarized cross sections that are given in Sect. 5.1, where the
comparison with the ATLAS measurement is provided. The
relevant kinematical distributions are then shown in Sect. 5.2.
We conclude in Sect. 6.

2 Definition of polarizations

We study the polarized production of three charged leptons
plus missing energy at hadron colliders, so that the process
of interest is

p(k1) + p(k2) → �1(k3) + �2(k4) + �3(k5) + �4(k6) + X, (2.1)

where the final-state leptons can be either e+νeμ
+μ− or

e−ν̄eμ
+μ−. Representative Feynman diagrams at leading

order (LO) are depicted in Fig. 1. They can be divided in two
categories: either the upper row of Fig. 1 where the interme-
diate W and Z bosons (or photon) both split into final-state
leptons, or the lower row of Fig. 1 which contains only singly-
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resonant diagrams with W → 4� splitting. We are interested
in the kinematical region where the final-state leptons orig-
inate from nearly on-shell (OS) gauge bosons, so that the
process in Eq. (2.1) can be seen as

p(k1) + p(k2) → V1(q1) + V2(q2)

→ �1(k3) + �2(k4) + �3(k5) + �4(k6) + X, (2.2)

where the intermediate gauge bosons are V1 = W±, V2 =
Z . In practice this means we are neglecting the diagrams
depicted in the lower row of Fig. 1 as well as the photon con-
tribution of the upper row of Fig. 1. In this way we will be
able to define polarized cross sections and get a clear sepa-
ration of the polarizations of the intermediate gauge bosons.
This is called the double-pole approximation, where con-
tributions from W → 4� and very off-shell WZ contribu-
tions are neglected because they are strongly suppressed by
the kinematical cuts. In the DPA, the whole process can be
viewed as an OS production of WZ followed by the OS
decays W± → e±νe and Z → μ+μ−, connected via off-
shell W and Z propagators and keeping the spin correlations.

The (unpolarized) amplitude for the process in Eq. (2.1) is
defined at LO in the DPA as (see also Ref. [40] for e+e− →
W+W− → 4 fermions)

Aq̄q ′→V1V2→4l
LO,DPA = 1

Q1Q2
3∑

λ1,λ2=1

Aq̄q ′→V1V2
LO (k̂i )AV1→�1�2

LO (k̂i )AV2→�3�4
LO (k̂i ), (2.3)

with

Q j = q2
j − M2

Vj
+ iMVj �Vj ( j = 1, 2), (2.4)

where q1 = k3 + k4, q2 = k5 + k6, MV and �V are the
physical mass and width of the gauge bosons, and λ j are
the polarization indices of the gauge bosons. A similar fac-
torization in the terms of the sum holds at higher orders in
perturbation theory. It is crucial that all helicity amplitudesA
in the numerator are calculated using OS momenta k̂i for the
final-state leptons as well as OS momenta q̂ j for the interme-
diate gauge bosons, derived from the off-shell (full process)
momenta ki and q j , in order to ensure that gauge invariance
in the amplitudes is preserved. An OS mapping is used to
obtain the OS momenta k̂i from the off-shell momenta ki .
This OS mapping is not unique, however it is known that the
induced shift by different mappings is of order α�V /(πMV )

[40]. The next sections will provide the explicit details on the
mappings used in our calculation.

The sum over the polarization index λ j for a given gauge
boson runs from 1 to 3, because a massive gauge boson has
three physical polarization states: two transverse states λ = 1
and λ = 3 (left and right) and one longitudinal state λ = 2.

In total the diboson system has then 9 polarization states,
each of them can be singled out of Eq. (2.3) by selecting
only the desired λ j in the sum. We will define four main
doubly-polarized cross sections in this paper:

• The longitudinal-longitudinal (LL, or W±
L ZL ) contribu-

tion, obtained with selecting only λ1 = λ2 = 2 in the
sum of Eq. (2.3);

• The transverse-transverse (TT, or W±
T ZT ) contribution,

obtained with selecting only λ1 �= 2 and λ2 �= 2 in the
sum of Eq. (2.3), taking into account the interference
between the various individual transverse polarization
states of the two gauge boson;

• The longitudinal-transverse (LT, orW±
L ZT ) contribution,

obtained with selecting only (λ1, λ2) = (2, 1) + (2, 3);
• The transverse-longitudinal (TL, or W±

T ZL ) contribu-
tion, obtained with selecting only (λ1, λ2) = (1, 2) +
(3, 2).

In addition we will call “interference” the difference between
the unpolarized contribution (where all polarization ampli-
tudes are summed before squaring) and the sum of the LL,
TT, LT, and TL cross sections.

We will present in the next sections our detailed calcula-
tion of the NLO QCD and EW corrections in the DPA and
focus on those doubly-polarized contributions that we have
defined above. While the unpolarized cross section is Lorentz
invariant because all possible helicity states are summed over,
the doubly-polarized cross sections depend on the reference
frame. As done in Ref. [39] we will provide results in the
WZ center-of-mass system, following ATLAS choice in Ref.
[27]. The same set of kinematic cuts will be used. Note that
the NLO QCD corrections have already been presented in
Ref. [37] where the computation method is identical to the
one used for the WW channel [36] and for the Z Z produc-
tion [38]. We follow the same steps and re-describe here the
NLO QCD calculation method to prepare the framework and
notations for the NLO EW calculation.

3 NLO QCD

The master formulas for the virtual, real-gluon emission, and
quark–gluon induced amplitudes are schematically written as
follows,

δAq̄q ′→V1V2→4l
virt,QCD

= 1

Q1Q2

∑

λ1,λ2

δAq̄q ′→V1V2
virt,QCD (k̂)AV1→�1�2

LO (k̂)AV2→�3�4
LO (k̂),

(3.1)
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(a)

(b)

Fig. 1 Double and single resonant diagrams at leading order. Group a) includes both double and single resonant diagrams, while group b) is only
single resonant

δAq̄q ′→V1V2g→4lg
g-rad

= 1

Q1Q2

∑

λ1,λ2

δAq̄q ′→V1V2g
g-rad (k̂)AV1→�1�2

LO (k̂)AV2→�3�4
LO (k̂),

(3.2)

δAqg→V1V2q ′→4lq ′
g-ind

= 1

Q1Q2

∑

λ1,λ2

δAqg→V1V2q ′
g-ind (k̂)AV1→�1�2

LO (k̂)AV2→�3�4
LO (k̂),

(3.3)

where the correction amplitudes δAq̄q ′→V1V2
virt,QCD , δAq̄q ′→V1V2g

g-rad ,

and δAqg→V1V2q ′
g-ind have been calculated in the OS produc-

tion calculation in Ref. [10] and are reused here. The ampli-
tudes are for the unpolarized process; for the polarized ampli-
tudes the corresponding λi, j have to be selected in the sum.
Note that the amplitude factors on the r.h.s have to be calcu-
lated using suitable OS mapped momenta denoted by the hat.
Details of the OS mappings are below provided. The propa-
gator factors Qi are computed using the off-shell momenta.

For the real corrections Eqs. (3.2) and (3.3), since the
amplitudes are divergent in the IR limits we employ the dipole
subtraction method [41,42] to calculate the NLO cross sec-
tion. In this formalism, the full differential cross section is
written as, using similar notation as in Ref. [38]:

(
dσ

dξ

)

NLO
=

∫
d�(4)

n B(�(4)
n )δ(ξ − ξn)

+
∫

d�(4)
n

[
V(�(D)

n ) + C(�(D)
n )

+
∫

d�
(D)
rad Dint(�

(D)
n ,�

(D)
rad )

]

D=4
δ(ξ − ξn)

+
∫

d�
(4)
n+1

[
R(�

(4)
n+1)δ(ξ − ξn+1)

−Dsub(�̃
(4)
n ,�

(4)
rad)δ(ξ − ξ̃n)

]
, (3.4)

where B and V are the Born and virtual contributions. The
flux factor is included in the matrix elements. R is the real
correction term, which includes the amplitudes δAg-rad and
δAg-ind above defined. Note that ξ is a placeholder for any
differential variable that is of interest: the pT of one of the
final-state leptons, the invariant masses, angle, etc. Dsub is
the dipole subtraction term introduced in the Catani-Seymour
(CS) formalism [41]. For the NLO QCD, Dsub includes only
the case of initial-state emitter and initial-state spectator. The
corresponding integrated Dint term is placed in the same
group with the virtual contribution and also depends on the
radiation phase-space �

(D)
rad (here in D dimensions). Finally,

to cancel the left-over initial state collinear divergences, the
collinear counter term C has to be added. The tilde placed on
top of �n and ξn is to indicate that the momenta are calcu-
lated using the CS mappings. To regulate the IR divergences
we use as default the mass regularization, i.e. introducing
small mass parameters for the gluon and the light quarks (all
but the top quark). We have verified that the result is in good
agreement with the one obtained using dimensional regular-
ization.

For theR contribution, we first generate a set of (n+1) off-
shell momenta [kn+1] in the partonic c.m.s. We then perform
the following OS mapping:

• Boost all momenta to the VV c.m.s1;
• Perform the OS projection on the four lepton momenta.

We call this OSVV4 mapping (which is the DPA(2,2)

mapping in [38]),

[k̂n+1] = OSVV4 mapping([kn+1]), (3.5)

where VV indicates that this mapping has to be done in
the VV c.m.s and 4 to denote the VV → 4 l transition (in

1 Note that the partonic c.m.s does not always coincide with the VV
c.m.s, because of the extra real radiation at NLO.
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the next section we will have VV → 4 l+γ for NLO EW
final-state radiation). We note that the VV c.m.s of the
new OS momenta [k̂n+1] coincides with the VV c.m.s of
the off-shell momenta, because momentum conservation
requires that

q̂1 + q̂2 = q1 + q2, (3.6)

where q1,2 are the momenta of the gauge bosons.

To be more explicit, the OSVV4 mapping is done as fol-
lows [38]. After boosting all momenta to the VV c.m.s, we
first calculate the OS momenta q̂i which satisfy Eq. (3.6)
together with the on-shellness q̂2

i = M2
Vi

. These conditions
are however not enough to fix all the components of q̂i . For
this, we choose that the spatial direction of the gauge bosons
in the VV c.m.s is preserved as in [40], namely �̂q1 = b�q1

with b being a real number. This coefficient b is then easily
calculated and the result is provided in [32] (see Appendix
A). The OS final-state lepton momenta are computed as [38]:

• Boost ke and kνe into the off-shell W boson rest frame,
calculate the spatial direction �ne in this frame;

• Set the spatial direction of k̂′
e in the on-shell W boson

rest frame to be the same as in the off-shell W boson
rest frame, so that, in the on-shell W boson rest frame,

we have �̂k
′
e = �nek̂′0

e with k̂′0
e = MW /2. For the neutrino

�̂k
′
νe

= −�̂k
′
e and k̂′0

νe
= k̂′0

e ;

• Boost back the momenta k̂′
l from the on-shell W rest

frame to the VV c.m.s using the boot parameters q̂1 to
obtain the OS momenta k̂e and k̂νe .

The same procedure is applied to the Z decay products,
replacing above the W boson by the Z boson (q1 by q2,
ke and kνe by kμ+ and kμ− ). The initial quark momenta are
unchanged in this mapping.

For the subtraction term Dsub, we first calculate the CS
momenta (also called the CS reduced momenta) [k̃n] from the
off-shell momenta [kn+1] (generated in the partonic c.m.s)
using the CS mapping for the case of initial-state emitter and
initial-state spectator as in Ref. [42] (massless case):

[k̃n] = CS mapping([kn+1]). (3.7)

We then boost [k̃n] to the VV c.m.s and perform the OSVV4
mapping to obtain a set of OS momenta:

[ ˆ̃kn] = OSVV4 mapping([k̃n]). (3.8)

The DPA amplitudes for the subtraction terms are calculated

similarly to Eq. (2.3) with the OS momenta [ ˆ̃kn] entering
the amplitudes in the numerator and the off-shell momenta
[k̃n] in the denominator factors Q j . We note that Q j are

Lorentz invariant hence it does not matter in which frame
they are calculated. However, the helicity amplitudes in the
numerator are not Lorentz invariant, hence they have to be
calculated in the correct frame, which is the VV c.m.s in our
case.

For kinematic cuts and distributions, we use the off-shell
momenta [kn+1] for theR term and the CS mapped momenta
[k̃n] for the Dsub term. These momenta have to be boosted
from the partonic c.m.s to the Lab frame before applying cut
constraints or filling histograms.

Concerning the integrated dipole terms, they are calcu-
lated as in [42] with the only addition that the OS mapping
step has to be implemented when calculating the Born ampli-
tudes. Since the same on-shell mapping is used in the Dsub

term and in its integrated counterpart Dint, the needed corre-
spondence between these two terms are guaranteed.

4 NLO EW

NLO EW corrections in the DPA are divided into production
and decay parts. For the production part, full NLO EW cor-
rections to the process q̄q ′ → WZ are calculated. For the
decay part, full NLO EW corrections to the decays W → eνe
and Z → μ+μ− are included. These are called factoriz-
able corrections. The non-factorizable contribution, includ-
ing interferences between the initial-state radiation and the
final-state radiation, as defined in [32], is very small [43–45]
and hence neglected.

For the production part, the NLO amplitudes read

δAq̄q ′→V1V2→4l
virt,prod

= 1

Q1Q2

∑

λ1,λ2

δAq̄q ′→V1V2
virt,prod AV1→�1�2

LO AV2→�3�4
LO , (4.1)

δAq̄q ′→V1V2→4lγ
γ -rad,prod

= 1

Q1Q2

∑

λ1,λ2

δAq̄q ′→V1V2γ
γ -rad,prod AV1→�1�2

LO AV2→�3�4
LO , (4.2)

δAqγ→V1V2q ′→4lq ′
γ -ind,prod

= 1

Q1Q2

∑

λ1,λ2

δAqγ→V1V2q ′
γ -ind,prod AV2→�3�4

LOV1→�1�2ALO
, (4.3)

where the correction amplitudes δAq̄q ′→V1V2
virt,prod , δAq̄q ′→V1V2γ

γ -rad,prod ,

and δAqγ→V1V2q ′
γ -ind,prod have been calculated in the OS production

calculation in Ref. [10] and are reusedhere.
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For the W decay part, we have

δAq̄q ′→V1V2→4l
virt,W

= 1

Q1Q2

∑

λ1,λ2

Aq̄q ′→V1V2
LO δAV1→�1�2

virt AV2→�3�4
LO , (4.4)

δAq̄q ′→V1V2→4lγ
γ -rad,W

= 1

Q′
1Q2

∑

λ1,λ2

Aq̄q ′→V1V2
LO δAV1→�1�2γ

γ -rad AV2→�3�4
LO , (4.5)

and for the Z decay:

δAq̄q ′→V1V2→4l
virt,Z

= 1

Q1Q2

∑

λ1,λ2

Aq̄q ′→V1V2
LO AV1→�1�2

LO δAV2→�3�4
virt , (4.6)

δAq̄q ′→V1V2→4lγ
γ -rad,Z

= 1

Q1Q′
2

∑

λ1,λ2

Aq̄q ′→V1V2
LO AV1→�1�2

LO δAV2→�3�4γ
γ -rad , (4.7)

where the NLO decay amplitudes are generated by
FormCalc [46,47]. The new variables Q′

1 and Q′
2 are

defined as in Eq. (2.4) but with the gauge-boson momenta
being reconstructed from the off-shell 1 → 3 decays.

As in the case of NLO QCD, the amplitude factors on the
r.h.s of Eqs. (4.1–4.7) are calculated using on-shell momenta,
while the factors Qi and Q′

i are off-shell.

4.1 NLO EW corrections to the production part

The differential cross section for the production part is cal-
culated using the same formalism as in Eq. (3.4). The main
differences compared to the NLO QCD case come from the
real corrections because the photon can now be radiated off
the on-shell W boson, leading to new types of dipole terms
in the CS subtraction function.

We split the R term in Eq. (3.4) into two parts

Rprod = Rprod
γ -ind + Rprod

γ -rad, (4.8)

corresponding to two subtraction termsDprod,sub
γ -ind andDprod,sub

γ -rad ,
respectively.

For the Rprod
γ -ind and Rprod

γ -rad terms, the OS momenta [k̂n+1]
are calculated using the same method as in the NLO QCD
case. Concerning the dipole subtraction term (Dsub) of the
γ -induced process, the same method as in the NLO QCD
case is used, meaning that the OS mapping is applied on
top of the CS reduced momenta. The integrated counterpart
is therefore treated accordingly with the same OS mapping.
We note that the γ → W+W− splitting is finite due to the
W mass hence there is no subtraction term for this splitting.

The Born amplitude in the subtraction term is therefore pro-
portional to the q̄q ′ → V1V2 → 4l amplitude as in the NLO
QCD case.

For the dipole subtraction term (Dsub) of the γ -radiated
process, there are two contributions: both emitter and spec-
tator are initial-state particles or one is in the initial state
the other is the OS W boson. The latter one is needed,
even though the W is an intermediate particle, because the

OS amplitude δAq̄q ′→V1V2γ
γ -rad,prod in Eq. (4.2) contains soft diver-

gences due to the photon radiation off an OS W . The case of
initial-state emitter and initial-state spectator is treated iden-
tically to the NLO QCD process.

For the case ofW emitter and initial quark spectator, which
is the case of final-state emitter and initial-state spectator in
[42], the subtraction function for the OS production q̄q ′ →
WZγ reads [42], denoting the OS momenta here as [p],

D̂Wq
sub (p) ∼ ĝsub(pa, pW , pγ )B̂( p̃q , p̃V ), (4.9)

ĝsub = 1

(pW pγ )x̂ia

(
2

2 − x̂ia − ẑia
− 1 − ẑia − M2

W

pW pγ

)
,

(4.10)

x̂ia = pa pW + pa pγ − pW pγ

pa pW + pa pγ

, ẑia = pa pW
pa pW + pa pγ

,

(4.11)

p̃W = pW + pγ − (1 − x̂ia)pa, p̃a = x̂ia pa, (4.12)

where the subscript a denotes the initial spectator, i denotes
the final emitter and the remaining momenta [ p̃] are the same
as the corresponding momenta [p]. The OS Born amplitude is
B̂. When including the leptonic decays in the DPA framework
we have

DWq
sub (k)δ(ξ − ξ̃n) ∼ ĝsub(k̂a, k̂W , k̂γ )B(

ˆ̃kn, Q̃i )δ(ξ − ξ̃n),

(4.13)

where the OS momenta [k̂n+1] are calculated from the off-
shell [kn+1] as follows.

• Boost all lepton momenta from the partonic c.m.s to the
VV c.m.s;

• Perform the OS projection on the four lepton momenta
as in Eq. (3.5);

• Boost all lepton momenta back to the partonic c.m.s.

It is important to notice that for the Born amplitude in
Eq. (4.13) the OS mapping is applied after the CS mapping,
which is the same as in the case of initial-state emitter initial-
state spectator described in Eq. (3.8). We further note that
the singular function ĝsub is Lorentz invariant and hence can
be calculated in any reference frame. However, the helicity

amplitude factorB(
ˆ̃kn, Q̃i ) is not Lorentz invariant when cal-

culating individual gauge-boson polarizations. It is therefore

important in which frame the momenta [ ˆ̃kn] are calculated.
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In order to calculate [ ˆ̃kn], we first need to compute [k̃n]. This
is explained next.

In the above OS mapping, the initial state momenta and the
photon momentum are untouched, hence we have k̂a = ka ,
k̂γ = kγ . For the reduced amplitude B we need the off-
shell momenta [k̃n] for the denominators Q̃i as well as the

corresponding on-shell momenta [ ˆ̃kn] for the amplitudes in
the numerator. Moreover, the off-shell lepton momenta are
needed for the kinematic cuts. These momenta are calculated
as follows:

kW = ke + kνe , (4.14)

xia = kakW + kakγ − kW kγ

kakW + kakγ

, zia = kakW
kakW + kakγ

,

(4.15)

k̃W = kW + kγ − (1 − xia)ka, k̃a = xiaka, (4.16)

and for the remaining momenta k̃ j = k j with j = q ′ (the
other initial quark), μ+, μ− (the Z decay products). We note
that the only change compared to the OS production case is
the replacement from the OS k̂W to the off-shell kW . It is
easy to check that the condition k̃2

W = k2
W is maintained by

this mapping. We then need the off-shell momenta for the
W decay products, corresponding to the reduced momentum
k̃W . These lepton momenta must satisfy:

k̃e + k̃νe = k̃W , k̃2
e = k̃2

νe
= 0. (4.17)

They are calculated as follows.

• Boost the momenta ke and kνe from the partonic center-
of-mass system to the rest frame of kW , calculate the
spatial directions �ne and �nνe in this frame.

• The new off-shell lepton energies in the k̃W rest frame

are k̃′0
e = k̃′0

νe
=

√
k̃2
W /2 (which is equal to

√
k2
W /2). The

spatial directions of the new off-shell lepton momenta in
the k̃W rest frame are taken to be the same as the cor-
responding ones in the kW rest frame, i.e. �n′

e = �ne and
�n′
νe

= �nνe . Using the on-shell condition for the leptons,

all spatial components are then calculated, i.e. k̃′i
l = nil k̃

′0
l

with i = 1, 2, 3 and l = e, νe.
• Boost the new momenta k̃′

l from the k̃W rest frame to the
partonic center-of-mass system using the boost parame-
ters k̃W to obtain the off-shell CS mapped momenta k̃l
for the W decay products.

We note that this off-shell mapping is exactly in the same
spirit as the on-shell mapping OSVV4. With this step, we
have successfully mapped the off-shell momenta [kn+1] to
the off-shell momenta [k̃n] satisfying the energy-momentum
conservationand

k2
W = (ke + kνe )

2 = (k̃e + k̃νe )
2, k̃2

I = 0 (I = 1, n).

(4.18)

Finally, as in the case of NLO QCD, we boost [k̃n] to the VV

c.m.s then apply the OSVV4 mapping to obtain [ ˆ̃kn]. The
case of initial quark emitter and W spectator is calculated
using the same method.

Concerning the integrated dipole terms, since the singu-
lar function ĝsub in Eq. (4.13) is calculated using the OS
momenta, the corresponding integrated functions Ĝsub and
Ĝsub provided in Appendix A.1 of [42] have to be calculated
with the OS momenta as well (i.e. in Eqs. (A.2), (A.3), and
(A.4) of Ref. [42] we set m2

i = M2
W being the W OS mass

squared and P2
ia = (k̂W − k̂q)2 is the on-shell quantity) to

maintain the needed correspondence between the subtraction
term and its integrated counterpart. The Born amplitudes are
of course calculated using OS momenta. The other things are
unchanged in comparison to [42].

4.2 NLO EW corrections to the decay part

The Z decay case is calculated following the method
described in [38]. We sketch here only the important points.
First, the OS mapping DPA(3,2) defined in [38] is used for
the Z → μ+μ−γ decay to generate the OS momenta [k̂n+1].
For completeness we recall here the steps of this mapping
DPA(3,2), reminding that the momenta are originally defined
in the VV c.m.s, kZ = kμ+ + kμ− + kγ , k̂Z is the Z OS
momentum calculated as in the NLO QCD part:

• Boost kμ+ , kμ− , and kγ into the off-shell Z boson rest
frame, to calculate the spatial directions �nμ+ , �nμ− , and
�nγ ;

• Rescale the lepton and photon energies according to the
on-shell-ness of the Z boson, so that we rescale k0

l (taken

in the off-shell Z boson rest frame) by MZ/

√
k2
Z with

l = μ+, μ−, γ ;
• Set the spatial directions of k̂′

l in the on-shell Z boson
rest frame to be the same as in the off-shell Z boson rest
frame, so that, in the on-shell Z boson rest frame, we
have k̂′i

l = nil k̂
′0
l with i = 1, 2, 3, l = μ+, μ−, γ , and

k̂′0
l = k0

l MZ/

√
k2
Z ;

• Boost back the momenta k̂′
l from the on-shell Z rest frame

to the VV c.m.s using the boost parameters k̂Z to obtain
the OS momenta k̂l , l = μ+, μ−, γ .

We then apply the CS mapping (the case of final-state
emitter and final-state spectator as defined in [42]) on

[k̂n+1] to obtain [ ˜̂kn]. These momenta are on-shell by def-
inition. Applying the same CS mapping to the correspond-
ing off-shell momenta [kn+1] gives the off-shell CS mapped
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momenta [k̃n] needed for the Qi factors and kinematic cuts in
the subtraction term. The same CS mapping can be used for
both OS and off-shell momentum sets because the OS map-
ping DPA(3,2) has been designed for this purpose [38]. For
the singular function gsub

i j (defined in Eq. (3.1) of Ref. [42],
emitter i , spectator j) in the subtraction term, we use the on-
shell momentum, i.e. k2

Z = M2
Z to match the corresponding

on-shell requirement in the Z → μ+μ−γ decay. To main-
tain the needed correspondence between the subtraction term
and its integrated counterpart, we must impose k2

Z = M2
Z as

well when calculating the endpoint function Gsub
i j (defined in

Eq. (3.7) of Ref. [42]).
The new thing in this calculation is the W decay where

the photon can be radiated off the W or the electron. It turns
out that the above method for the Z decay works for this
case as well. We implement exactly the same steps. For the
subtraction term and its integrated counterpart, the CS map-
ping and the singular functions gsub

ia , Gsub
ia are provided in

[48].

5 Numerical results

We use the same set of input parameters as in Ref. [39].
Results will be presented for the LHC at 13 TeV center-of-
mass energy. The factorization and renormalization scales are
chosen at a fixed value μF = μR = (MW + MZ )/2, where
MW = 80.385 GeV and MZ = 91.1876 GeV. The parton
distribution functions (PDF) are computed using the Hes-
sian set LUXqed17_plus_PDF4LHC15_nnlo_30 [49–
58] via the library LHAPDF6 [59].

The electromagnetic coupling is obtained from the Fermi
constant as α = √

2GFM2
W (1 − M2

W /M2
Z )/π with GF =

1.16637 × 10−5 GeV−2. Since the widths are needed for the
off-shell propagators in Eq. (2.4), we use �W = 2.085 GeV
and �Z = 2.4952 GeV. For the EW corrections we further
need Mt = 173 GeV, MH = 125 GeV. The leptons and the
light quarks, i.e. all but the top quark, are approximated as
massless. This is justified as the final results are insensitive
to these small masses.

For NLO QCD results, an extra parton radiation occurs.
This emission is treated inclusively and no jet cuts are used.
For NLO EW predictions, an additional photon can be emit-
ted. Before applying real analysis cuts on the charged lep-
tons, we do lepton-photon recombination to define a dressed
lepton. A dressed lepton is defined as p′

� = p� + pγ if

R(�, γ ) ≡ √
(η)2 + (φ)2 < 0.1, i.e. when the pho-

ton is close enough to the bare lepton. Here the letter �

can be either e or μ and p denotes momentum in the Lab
frame. Finally, the ATLAS fiducial phase-space cuts used in
Refs. [27,28,60] are applied on the dressed leptons as fol-
lows

pT,e > 20 GeV, pT,μ± > 15 GeV, |η�| < 2.5,

R
(
μ+, μ−)

> 0.2, R
(
e, μ±)

> 0.3, (5.1)

mT,W > 30 GeV,
∣∣mμ+μ− − MZ

∣∣ < 10 GeV,

where mT,W = √
2pT,ν pT,e[1 − cos φ(e, ν)] with φ

(e, ν) being the angle between the electron and the neutrino
in the transverse plane.

The results presented in the next sections are mostly for
the W−Z process as the results for the W+Z channel have
been presented in [39], except in Table 2 and Fig. 5 where
W+Z results are shown.

5.1 Integrated polarized cross sections

In Table 1 we present the unpolarized and doubly polar-
ized cross sections (LL, LT, TL, TT) calculated using the
ATLAS fiducial phase-space volume for the process pp →
W−Z → e−νeμ

+μ− + X . For the doubly polarized cross
sections, polarizations of the gauge bosons are defined in the
WZ center-of-mass system. The interference showing in the
bottom row is the difference between the unpolarized cross
section and the sum of the doubly polarized ones. To quan-
tify the effect of EW corrections, the relative correction to
the LO result is usually used. However, since the NLO QCD
corrections are large and need to be included in any realistic
analyses, we therefore define the total EW correction relative
to the NLO QCD prediction as

δ̄EW = (σ
QCDEW
NLO − σ

QCD
NLO )/σ

QCD
NLO , (5.2)

to evaluate the effect of NLO EW corrections which are now
missing in automated tools. This information is shown in
the last column. Polarization fractions, f , are calculated as
ratios of the polarized cross sections over the unpolarized
cross section. Statistical errors are very small and shown
in a few places where they are significant. Scale uncertain-
ties are much bigger and are provided for the cross sec-
tions as sub- and superscripts in percent. These uncertainties
are calculated using the seven-point method where the two
scales μF and μR are varied as nμ0/2 with n = 1, 2, 4 and
μ0 = (MW +MZ )/2 being the central scale. Additional con-
straint 1/2 ≤ μR/μF ≤ 2 is used to limit the number of scale
choices to seven at NLO QCD. The cases μR/μF = 1/4 or 4
are excluded, being considered too extreme. Note that there
are only three possibilities for choosing μF at LO or NLO
EW because of the absence of μR .

At LO, the WT ZT is dominant, contributing about 70% to
the unpolarized cross section. The WL ZT and WT ZL cross
sections are of similar size, about 11% each. The doubly lon-
gitudinal polarization WL ZL cross section amounts to 9%,
which is significant enough for us to hope that it can be mea-
sured at ATLAS and CMS. The interference is non-vanishing,
but very small, being −0.4%.
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Table 1 Unpolarized and doubly polarized cross sections in fb together
with polarization fractions calculated at LO, NLO EW, NLO QCD, and
NLO QCD+EW, all in the DPA, in the WZ center-of-mass system for
the process pp → W−Z → e−νeμ

+μ− +X . The statistical uncertain-

ties (in parenthesis) are given on the last digits of the central prediction
when significant. Seven-point scale uncertainty is also provided for the
cross sections as sub- and superscripts in percent. In the last column the
EW correction relative to the NLO QCD prediction is provided

σLO [fb] fLO [%] σEW
NLO [fb] f EW

NLO [%] σ
QCD
NLO [fb] f QCD

NLO [%] σ
QCDEW
NLO [fb] f QCDEW

NLO [%] δ̄EW [%]

Unpolarized 12.745+4.9%
−6.2% 100 12.224+5.1%

−6.3% 100 23.705(1)+5.5%
−4.4% 100 23.184(1)+5.6%

−4.5% 100 −2.2

W−
L ZL 1.094+5.2%

−6.5% 8.6 1.048+5.3%
−6.6% 8.6 1.407+2.6%

−2.1% 5.9 1.361+2.7%
−2.2% 5.9 −3.3

W−
L ZT 1.508+5.8%

−7.0% 11.8 1.456+5.9%
−7.1% 11.9 3.921+7.3%

−5.9% 16.5 3.869+7.4%
−6.0% 16.7 −1.3

W−
T ZL 1.356+5.8%

−7.0% 10.6 1.347+5.8%
−7.0% 11.0 3.606+7.4%

−6.0% 15.2 3.597+7.4%
−6.0% 15.5 −0.2

W−
T ZT 8.833+4.6%

−5.8% 69.3 8.416+4.8%
−5.9% 68.8 14.664(1)+4.7%

−3.8% 61.9 14.247(1)+4.9%
−3.9% 61.5 −2.8

Interference −0.046(1)+6.7%
−5.5% −0.4 −0.043(1)+6.4%

−5.9% −0.4 +0.107(2)+16.2%
−16.3% +0.5 +0.110(2)+15.6%

−15.9% +0.5 +2.8

At NLO EW level the WL ZL , WL ZT , WT ZL and WT ZT

cross sections are reduced by 4.2%, 3.4%, 0.7%, and 4.7%,
respectively, with respect to the corresponding LO value.
The unpolarized cross section is reduced by 4.1%. These
numbers are significantly smaller compared to the results
found in [38] for the Z Z process, where EW corrections are
about −10% for fully polarized or unpolarized cases. These
differences can be understood as follows. The photon-quark
induced corrections, which are positive, are much larger in
the WZ process than in the Z Z process as explicitly shown in
[10] for on-shell productions. This effect leads to a stronger
cancellation between the photon-quark induced corrections
and the negative virtual corrections in the WZ case, hence
leading to smaller total EW corrections. Moreover, the EW
corrections strongly depend on kinematic cuts. The dilepton
invariant mass cuts are tighter for the Z Z than for the WZ
case. The dimuon invariant mass distribution in [61] shows
that a looser invariant mass cut makes the impact of the EW
correction smaller.

For the polarization fractions, the WL ZL , WL ZT , and
WT ZT remain nearly the same as at the LO. The WT ZL

increases slightly by 4%. The above results show that the EW
corrections are very small for integrated quantities. However,
we will see later that EW corrections can be significant for
transverse momentum distributions in high-energy regions.

Unlike EW corrections, NLO QCD corrections to the
polarized cross sections are large but not equally distributed,
leading to sizable changes in the fractions. In particular, the
WL ZL , WL ZT , WT ZL , and WT ZT cross sections increase
by 29%, 160%, 166%, and 66%, respectively. The LL and TT
fractions are both reduced to 6% and 62%, respectively, while
the WL ZT and WT ZL increase to 16% each. It is unfortunate
that QCD corrections reduce the LL fraction, but, luckily the
value is still large enough to be measured. Before compar-
ing our results to the new ATLAS measurement, we notice
that the polarization fractions at NLO QCD+EW level are
slightly different between the W−Z and W+Z processes.
We recall the W+Z fractions [39], 5.6% (LL), 15.6% (LT),

15.1% (TL), and 63.0% (TT), which are to be compared with
the ones in Table 1 for the W−Z case.

A full comparison between our NLO QCD+EW predic-
tions to the new preliminary ATLAS results [28] for both the
W+Z and W−Z processes is shown in Table 2. The errors
on our NLO QCD+EW predictions are calculated only from
the scale uncertainties, taking the averaged value of the two
errors (at the cross sections) to get a symmetric result. The
discrepancy between our NLO QCD+EW polarization frac-
tions and the ATLAS results is quantified by the pull defined

as ( fth − fexp)/σ where σ =
√

σ 2
th + σ 2

exp. The doubly
transverse polarized fractions, being largest and most pre-
cisely measured, are in good agreement with the discrepancy
being less than 0.5 standard deviations for both processes.
The doubly longitudinal fractions, being smallest, are also in
good agreement, within 1 standard deviation. However, the
experimental uncertainties are large, being 22% (25%) for the
W+Z (W−Z ) processes. The largest deviations are found for
the W−

L ZT and W−
T ZL fractions where the magnitudes of the

pulls are of 1.3 for both cases. Though this good agreement
is encouraging, one must pay attention to the experimental
uncertainties, which range from 6% to 36%, while the theory
uncertainties are from 5% to 8%. To reach the level of precise
polarization measurements in di-boson productions, further
work is needed from both the theory and experimental sides.

5.2 Kinematic distributions

We now discuss kinematic distributions. In order to facilitate
comparison between the two processes W+Z and W−Z , we
first present in this section the same set of plots as in [39]
but for the W−Z . As expected, the results for the W−Z case
look very similar to the W+Z case except for the absolute
values of the cross sections. By comparing the figures of the
two papers, the reader will find the shapes of the distributions
very much alike. At the end of the section, a new interesting
distribution of the rapidity separation between the electron
and the Z boson will be presented for both processes.
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Table 2 Comparison with ATLAS measurements [28] for the polarization fractions. The pull is defined as (Theory − Experiment)/σ where σ is
the combined error calculated in quadrature

NLO QCD+EW ATLAS Pull

W+
L ZL 0.056 ± 0.003 0.072 ± 0.016 −1.0

W+
L ZT 0.156 ± 0.013 0.119 ± 0.034 +1.0

W+
T ZL 0.151 ± 0.012 0.153 ± 0.033 −0.1

W+
T ZT 0.630 ± 0.041 0.660 ± 0.040 −0.5

W−
L ZL 0.059 ± 0.003 0.063 ± 0.016 −0.3

W−
L ZT 0.167 ± 0.014 0.11 ± 0.04 +1.3

W−
T ZL 0.155 ± 0.013 0.21 ± 0.04 −1.3

W−
T ZT 0.615 ± 0.041 0.62 ± 0.05 −0.1

Fig. 2 Distributions in cos θWZ
e (left) and cos θWZ

μ− (right). These
angles are calculated in the WZ center-of-mass system (more details are
provided in the text), hence denoted with the WZ superscript. The big
panel shows the absolute values of the cross sections at NLO QCD+EW.

The middle-up panel displays the ratio of the NLO QCD cross sections
to the corresponding LO ones. The middle-down panel shows δ̄EW, the
EW corrections relative to the NLO QCD cross sections, in percent. In
the bottom panel, the normalized shapes of the distributions are plotted
to highlight differences in shape

In Fig. 2 we present the differential cross sections in
cos θWZ

e (left) and cos θWZ
μ− (right). The polar angle θWZ

�

is defined as the angle between the momentum of the par-
ent gauge boson calculated in the WZ c.m.s ( �pWZ-cms

V ) and
the momentum of the lepton calculated in the gauge boson
rest frame ( �pV-rest

� ). These angles are chosen for our analy-
ses because the electron angle distribution is sensitive to the

W boson polarizations, while the muon angle distribution is
sensitive to the Z boson polarizations.

In the top panels, we display the NLO QCD+EW differ-
ential cross sections for the double polarizations LL (red),
LT (orange), TL (green), TT (blue). Their sum is plotted in
magenta (only shown in the top panels), while the unpo-
larized cross section is in black. The difference between
the unpolarized and the polarization sum is the interference
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shown in the last row of Table 1. As seen from these plots, the
interference effect is negligible across the full range of the
angle for both cases. Similar to the case of W+Z , the W−

T ZT

cross section is largest while the W−
L ZL smallest for both

distributions. Comparing the W−
L ZT to the W−

T ZL cos θWZ
e

distribution, we see that the transverse W mode is more dom-
inant at the edge regions where | cos θWZ

e | ≈ 1, while the
longitudinal W cross section is larger in the center region
| cos θWZ

e | < 0.5. The same features are observed in the right
plot of the muon angle. The depletion at | cos θWZ

μ− | ≈ 1 in
the WT ZT and WL ZT distributions in the right plot is due to
the pT and η cuts on the muon and anti-muon. These cuts do
not affect the shapes of the WT ZL and WL ZL polarizations
as observed in [37]. Similar results are seen in the left plot,
but there is no depletion at cos θWZ

e ≈ +1 because there are
no pT and η cuts on the neutrino.

The ratios of the NLO QCD cross section to the corre-
sponding LO one (K -factor) are plotted in the middle-up
panel, while the δ̄EW corrections are shown in the middle-
down panel. The QCD K -factor for the LL polarization is
the smallest (about 1.3) and rather flat in the whole range of
cos θWZ

e while it is larger for the other polarizations, with a
sharp rise in the region cos θWZ

e < −0.8 where there is a
stronger depletion of the differential cross section. The K -
factor is greater than 4 at cos θWZ

e = −1 for the WL ZT case.
For the muon angle distributions, the QCD K -factors are flat-
ter in the whole range, varying from 1.2 to 2.8. In the EW
correction panels, note that δ̄EW is defined with respect to
the NLO QCD result, see Eq. (5.2). On average, the |δ̄EW| is
smallest for the TL component and largest for the LL one.
They remain small in the whole range of cos θWZ

� and vary
from −4.2 to 0.1%.

Finally, in the bottom panels we show the distributions
dσ/d cos θ normalized to their corresponding integrated
cross sections presented in Table 1. This helps us to see the
differences in shape of the various polarizations. From the
cos θWZ

e distribution, we observe two distinct shapes: The
WL ZL and WL ZT have the same shape with a maximum at
cos θWZ

e = 0, while the WT ZL and WT ZT are similar with a
minimum at the center. This feature is well expected because
the cos θWZ

e distribution is sensitive to the polarizations of
the W boson and is not much affected by the polarization of
the Z boson. The same thing can be said for the cos θWZ

μ− case
where the longitudinal and transverse Z bosons produce two
different shapes.

In the same format and color code, we plot in Fig. 3 the
distributions in the azimuthal separation between the elec-
tron and the muon φμ−,e− (left), between the electron and
the anti-muon φμ+,e− (right). All polarizations show an
increase in the differential cross section with increasing sep-
aration, however the QCD K -factors decrease. As in the case
of the cos θWZ

� distributions, the QCD corrections are large
while the EW corrections are small, being less than 5% across

the full range of φ ∈ [0, π ]. The normalized shape panels
show that this distribution can give extra power to separate
the LL polarization as it has a different shape from the other
polarizations for both the left and the right plots.

The transverse momentum distributions of the electron
(left) and of the Z boson (right) are presented in Fig. 4. More
clearly than the above angular distributions, these distribu-
tions show that the QCD and EW corrections are not the
same for different polarizations. QCD correction is largest
for the WT ZL in the pT,e distribution, while the WL ZT is
largest in the pT,Z one. EW correction is largest for the LL
polarization for both distributions. The correction is negative
and its magnitude increasing with energy due to the double-
and single-Sudakov logarithms in the virtual contribution.
Compared to the NLO QCD prediction, the EW correction is
−10% at around 200 GeV and reaching−27% at 600 GeV for
the pT,e distribution. For the pT,Z distribution, the correction
is smaller, being −5% at 200 GeV and −20% at 600 GeV.
The normalized shapes of the four polarizations are indistin-
guishable for pT < 100 GeV and become more diverged at
large values.

Another interesting distribution which can help to distin-
guish the doubly longitudinal polarization is the rapidity sep-
aration between the electron and the Z boson. This is plotted
in Fig. 5 for both the W−Z (left) and W+Z (right) processes.
The latter was not shown in [39], hence it is here presented for
the sake of comparison. The normalized shape panels show
clearly that the LL polarization is different from the other
cases. Another remarkable feature is the large EW correction,
which increases with large rapidity separation, in the WT ZL

polarization. Since the photon-quark induced processes are
separated from the photon-radiation processes in our calcula-
tion, we can investigate the origin of this large EW correction.
We found that it is due to the photon-quark induced processes
with an extra jet in the final state. The jet allows for new kine-
matic configurations such as the jet recoiling against a hard
W boson leaving the Z boson the freedom to be soft, or the
hard jet recoiling against the Z boson while the W is soft. As
shown in [10], these kinds of configurations can lead to large
corrections proportional to α log2(p2

T, jet/M
2
V ) (V = W, Z ).

This argument also holds for the gluon–quark induced pro-
cesses in the QCD corrections. Figure 5 indeed shows that
the QCD corrections are large at large rapidity separation for
the WT ZL and WL ZT polarizations. Turning off the gluon–
quark induced processes makes this correction significantly
smaller. It is interesting to note that while the gluon–quark
induced processes affect both the WT ZL and WL ZT polar-
izations, the photon-quark induced processes increase only
the WT ZL case. This reminds us of the difference between
QCD and EW corrections. A key difference is the occurrence
of the t-channel W -exchange diagram where the final-state
W is radiated from the initial-state photon in the EW case.
Since the photon is transversely polarized, the radiated W
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Fig. 3 Same as Fig. 2 but for the azimuthal separation between the electron and the muon φμ−,e− (left) and between the electron and the
anti-muon φμ+,e− (right)

Fig. 4 Same as Fig. 2 but for the transverse momentum of the electron (left) and the Z boson (right)

123



Eur. Phys. J. C (2022) 82 :1103 Page 13 of 15 1103

Fig. 5 Same as Fig. 2 but for the rapidity separation (in absolute value) between the electron/positron and the Z boson. The left plot is for the
process W−Z while the right plot is W+Z

boson is mostly transverse, leading to an enhancement in
the WT ZL polarization and not in the WL ZT one. Unfortu-
nately, since the cross section is strongly suppressed in the
region of δ̄EW > 10%, it will be very difficult to detect this
effect in experiments. Nevertheless, with more data cumu-
lated together with novel analysis techniques using machine-
learning algorithms, it is not beyond hope that this effect may
be visible in the near future.

6 Conclusions

In this paper we have studied the doubly-polarized produc-
tion of W±Z pairs in fully-leptonic channels at the LHC
at NLO accuracy for both the QCD and EW corrections.
Numerical results for the W+Z process were already pre-
sented in the short letter [39]. Here we present a detailed
description of the calculation method behind the results of
Ref. [39] and provide further numerical results, mainly for
the W−Z process.

The method to calculate NLO QCD corrections for
doubly-polarized cross sections in di-boson productions has
been established in [36] using the double-pole approxima-
tion. NLO EW corrections are more complicated and have
been recently calculated in [38] for the Z Z process, also in

the DPA. In this work, we have extended this method to cover
the case of a charged current, namely the WZ process. The
method described here can also be straightforwardly used for
the W+W− process.

In the numerical result section, we have presented new
results for the W−Z process at the NLO QCD+EW level.
This has been done in such a way that the reader can easily
compare to the corresponding W+Z results provided in Ref.
[39]. We note that this is also the first time NLO QCD results
for the W−Z process are presented as Ref. [37] published
only the W+Z NLO QCD results.

Integrated doubly-polarized cross sections have been cal-
culated together with seven-point scale uncertainties. A com-
parison between our predictions and the new ATLAS mea-
surement [28] has been tabulated and discussed, showing
very good agreement within 1.5 standard deviations. How-
ever, the experimental precision is still limited, at the level
of tens of percents.

We have presented also differential distributions mainly
for the W−Z process together with a detailed analysis of the
results. New distributions of the rapidity separation between
the electron and the Z boson (yZ ,e) have been shown for
both W−Z and W+Z processes. The kinematic variables
chosen here are those which provide discrimination power
to separate different polarizations (mostly lepton angular
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observables) or those which show the importance of EW cor-
rections (lepton pT ). We have found that, as in the case of the
W+Z channel, EW corrections are most sizable in the pT,e

and pT,Z distributions of the doubly-longitudinal polariza-
tion in the W−Z channel. It is also found that the rapidity
separation yZ ,e can help to single out the LL polarization.
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