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Abstract A very general class of axially symmetric met-
rics in general relativity (GR) that includes rotations is used
to discuss the dynamics of rotationally supported galaxies.
The exact vacuum solutions of the Einstein equations for this
extended Weyl class of metrics allow us to rigorously deduce
the following: (i) GR rotational velocity always exceeds the
Newtonian velocity (thanks to Lenz’s law in GR). (ii) A
non-vanishing intrinsic angular momentum (J ) for a galaxy
demands the asymptotic constancy of the Weyl (vectorial)
length parameter (a)—a behaviour identical to that found
for the Kerr metric. (iii) Asymptotic constancy of the same
parameter a also demands a plateau in the rotational veloc-
ity. Unlike the Kerr metric, the extended Weyl metric can and
has been continued within the galaxy, and it has been shown
under what conditions Gauß and Ampére laws emerge along
with Ludwig’s extended gravito-electromagnetism (GEM)
theory with its attendant non-linear rate equations for the
velocity field. Better estimates (than that from the Newto-
nian theory) for the escape velocity of the Sun have been
presented.

1 Introduction

The velocities of the ionized gases circling many galaxies,
as a function of the distance from their centre (the rotation
curves), do not appear to follow a Kepler law and drop as
1/

√
r , but on the contrary tend to reach a plateau velocity

(vϕ). This experimental fact, first discovered by Vera Rubin
[1,2] in the 1980s and confirmed by many later observations,
poses one of the most interesting theoretical questions of
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today’s physics. The most common explanation is to sup-
pose that the observed mass and volume of a galaxy is only a
small part of the total, with the rest being a vast (spherically
symmetric) distribution of hypothetical dark matter (DM),
which interacts only gravitationally. This is the basis of the
widely accepted �CDM model [3] (cosmological constant
plus cold dark matter) that is itself anchored upon general rel-
ativity with a cosmological constant suitably chosen to yield
a cosmologically flat universe. By contrast, its applications to
the detailed phenomenology of rotating galaxies in the DM
framework are based on the Newtonian theory.

The DM model when applied to (rotating) galaxies has
its problems. First of all, in spite of extensive searches, no
trace of this mysterious DM has been found. Secondly, there
is an empirical but successful relation, the (baryonic) Opik–
Tully–Fischer law [4–6], between the velocity of the gas at
the edge of the optical region (v̄) and the visible—hence
baryonic—mass of the galaxy: (Mbaryonic ∝ v̄4), even in
cases with substantial DM. We recall that in DM, an asymp-
totic vϕ is generated by the dark mass, not the baryonic mass,
and Salucci has succeeded in finding more general relation-
ships [7]. Thirdly, there has been no satisfactory explanation
offered—in DM—for the magnitude of the intrinsic angu-
lar momentum (Jz) of a galaxy. By contrast, in GR, we can
compute Jz in terms of the rotation velocity and the baryonic
mass-current density that only extends over the visible size
of any galaxy [8].

What we propose and show in this paper, building on previ-
ous work by other authors [9–17], is that GR, when appropri-
ately applied, is perfectly capable of explaining the observed
phenomena above, provided one takes into account the finite
size (and a non-spherical mass distribution) of most galaxies
and the basic fact that they rotate and radiate gravitational
radiation.
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To be concrete, let us consider our own galaxy [18]. The
Milky Way has a diameter of 25 kiloparsecs and a thick-
ness of 2 kiloparsecs, with a visible baryonic mass of about
(1÷2.5)×1011M�. The considerably non-spherical geome-
try fixes the (stable) axis of rotation, and our galaxy acquires
a rotational velocity of about 200 km/s at the edge (of the
diameter). Rotations bring about a well-known but oft for-
gotten fundamental difference between the Newtonian theory
and GR.

In the Newtonian theory, there is no dependence of the
gravitational field upon the rotation of a body [19]. In GR, on
the other hand, the rotation of a system makes the metric non-
diagonal (i.e., the time-space component g0,i ∝ Ai becomes
non-zero and a 3-vector-field Ai is generated). A preferred
direction (in space) is thus chosen and the sense of rota-
tion (clockwise or anti-clockwise) established and fixed. This
leads to the introduction of parity (P) and time-reversal (T )
violating but PT conserving terms. Thus, a geo-magnetic
field B = ∇ ∧ A emerges (already at the linearized level in
GR) that gives rise to the GEM (geo-electromagnetic) the-
ory of Thirring and Lense [20–22]. (The ensuing Lense–
Thirring effect was beautifully confirmed experimentally in
Ref. [23].) An angular momentum J is generated (through
the non-diagonal term). These issues are discussed in detail
in later sections.

The paper is organized as follows. In Sect. 2, we anchor
our formalism upon the most general class of stationary, axi-
ally symmetric metrics found by Weyl [24,25]. In this sec-
tion, we discuss the Einstein equations valid in the vacuum
(i.e., outside the galaxy). In Sect. 3, we consider the choice
of the matter energy–momentum density appropriate for a
galaxy that is supported entirely by rotations with zero pres-
sure. The nature of the solutions of the Einstein equations
for the matter within the galaxy are explored. In Sect. 4, we
highlight a key role that Lenz’s law plays in always boost-
ing the rotation velocity. In Sect. 5, we continue our dis-
cussion of Ludwig’s extended GEM theory arising from the
exact Weyl type constraints. We discuss the affinity between
the Weyl class of metrics and the specialized Kerr metric in
Sect. 6, in particular the appearance of an angular momen-
tum whose value is computed for both. It is important to note
that the Schwarzschild metric has zero angular momentum
simply because it is spherical and thus lacks a vector field fix-
ing a direction in space. In Sect. 8, we briefly discuss some
alternatives to DM that have been proposed in the literature.
The paper is concluded in Sect. 9 with a summary of results
obtained, work in progress, and future prospects.

2 The Weyl metric

We shall write the axially symmetric Weyl metric for a
cylindrically symmetric space-time [26], with coordinates

(ct, ϕ, ρ, z), including explicitly the rotation term (see for
example Ref. [19]):

ds2 = −e2U (cdt − adϕ)2 + e−2Uρ2dϕ2

+e2ν−2U (dρ2 + dz2),

gμν =

⎛
⎜⎜⎝

−e2U e2Ua 0 0
e2Ua −e2Ua2 + e−2Uρ2 0 0

0 0 e2ν−2U 0
0 0 0 e2ν−2U

⎞
⎟⎟⎠ ;

g = det gμν = −e4ν−4Uρ2; (2.1)

the inverse metric has the form:

gμν =

⎛
⎜⎜⎜⎝

e2Ua2

ρ2 − e−2U e2Ua
ρ2 0 0

e2Ua
ρ2

e2U

ρ2 0 0

0 0 e2U−2ν 0
0 0 0 e2U−2ν

⎞
⎟⎟⎟⎠ ;

and the invariant (spatial) volume element reads

dV = (dρ)(dϕ)(dz)
√−g = e−2(U−ν)(ρdρdzdϕ);

dV ≥ dVflat. (2.2)

Below, we list some salient aspects of the above axially sym-
metric metric.

1. U, a, and ν are functions only of ρ = √
x2 + y2 and z,

independent of ϕ. Hence, there are two Killing vectors of
the system, one time-like and the other space-like (out-
side of the horizon).

2. The function U is related to the Newtonian potential �

through e2U = 1 + 2�/c2.
3. The function a would be related to the angular momen-

tum of the system.
4. The gravito-magnetic potential field Aφ = ca/ρ is a

vector potential = (0, ca/ρ, 0).
5. The three potential fields (U, a, and ν) characterizing the

metric are not all independent. The Einstein equations in
the vacuum, that is, outside the boundaries of a confined
system such as a galaxy, impose the following exact non-
linear differential constraints on these functions [19]:

Rμν = 0; in the vacuum of the system implies:
[∂2U

∂ρ2 + ∂U

ρ∂ρ
+ ∂2U

∂z2

]
= −e4U

2ρ2

×
[(∂a

∂ρ

)2 +
(∂a

∂z

)2]; (i)

∂

∂z

(e4U

ρ

∂a

∂z

)
+ ∂

∂ρ

(e4U

ρ

∂a

∂ρ

)
= 0; (i i)

and
∂ν

ρ∂ρ
=

[(∂U

∂ρ

)2 −
(∂U

∂z

)2]
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−e4U

4ρ2

[(∂a

∂ρ

)2 −
(∂a

∂z

)2]; (i i i)

( ∂ν

ρ∂z

)
= 2

(∂U

∂ρ

)(∂U

∂z

)
−

(e4U

2ρ2

)(∂a

∂ρ

)(∂a

∂z

)
; (iv)

(2.3)

N.B.: Since U and a begin at order G, ν begins at second
order (i.e., is of order G2). Once U and a satisfy the top
two equations relating them, Eqs. (2.3(i),(ii)), a solution
for ν exists since the last two Eqs. (2.3(iii),(iv)) become
the integrability conditions for it; ν → 0 as ρ → 0 for
any z.

6. The inequality in Eq. (2.2) that tells us that the invariant
spatial volume element is larger than its value in the flat
limit is useful for proving bounds on integrals of (positive
definite) integrands in gravitational asymptotic perturba-
tion theory such as that developed by Landau–Lifshitz
[26] and by Weinberg [8].

7. A test particle in this axially symmetric metric would
have two constants of motion, which we shall indicate
as p0 = E/c for time translations, and pφ = J/c for
rotational motion in the xy plane. We shall write E =
γmc2, or E = mc2 + EN R to study the non-relativistic
limit.

We now write the geodesic equation for a test particle of mass
m for the above metric. The simplest formalism that extends
to a Riemannian space blessed with a metric is through the
action principle. Calling the action S, m the mass, and τ the
proper time, we have

dS = −(mc2)dτ ; (dS)2 = (mc)2(cdτ)2;
let pμ = ∂S

∂xμ
; Hamilton − Jacobi equation implies :

gμν ∂S

∂xμ

∂S

∂xν
= −(mc)2;

we have pμ pνg
μν = −(mc)2. (2.4)

As stated earlier, an axially symmetric system has two con-
served quantities, the energy E and the component of angu-
lar momentum Jz , say, for rotational motion in the xy-plane.
Hence, the dependence on time interval (t) and that on ϕ can
be prescribed as

S(ct; ρ;ϕ; z) = −Et + Jϕ + Ŝ(ρ; z);
− ∂S

∂ct
= E/c; ∂S

∂ϕ
= J ; ∂S

∂ρ
= pρ; ∂S

∂z
= pz . (2.5)

Thus, for the Weyl metric, we have

(mc)2 =
( E

c

)2[
e−2U −

(a
ρ

)2
e2U

]
−2

a

ρ

J

ρ

E

c
e2U

−
( J

ρ

)2
e2U − e2(U−ν)[p2

ρ + p2
z ]; (i)

( E

c

)2
e−2U −

[ J
ρ

+ a

ρ

E

c

]2
e2U = (mc)2

+e2(U−ν)[p2
ρ + p2

z ]; (i i)

Or :
[ E
c

(
e−U + a

ρ
eU

)
+ J

ρ
eU

]

×
[ E
c

(
e−U − a

ρ
eU

)
− J

ρ
eU

]

= (mc)2 + e2(U−ν)(p2
ρ + p2

z ). (i i i) (2.6)

Let E = mc2γ , and as both E and J are constants of motion,
we can define a reduced (a dimensional) angular momentum,
i.e., angular momentum per unit energy per unit ρ (the per-
pendicular distance, or the impact parameter), j ≡ (Jc/Eρ),
and through it a rotational velocity vϕ ≡ ( jc). Similarly, the
rotational parameter a from the metric can be employed to
define a vector potential, Aϕ ≡ (ca/ρ), that has the dimen-
sions of a velocity. With these definitions, Eq. (2.6;(ii)) reads:

J = ρ
( E

c

)
j; vϕ = (cj); a = ρ

( Aϕ

c

)
;πϕ ≡ (vϕ + Aφ);

γ 2
[
e−2U −

(πϕ

c

)2
e2U

]
= 1 + e2(U−ν)

[ (p2
ρ + p2

z )

(mc)2

]
. (2.7)

For a galaxy supported totally by rotations along ϕ, which is
the focus of this paper, we set pz = 0 and pρ = 0. Then the
above equation is reduced to

γ = 1√
[e−2U − (πϕ/c)2e2U ]

;

keeping leading terms only : γ ≈ 1√[1 − 2U − (πϕ/c)2] ;

test particle energy : E = γ (mc2) ≈ mc2 + EN R;
EN R = m� + m

2
π2

ϕ; πϕ = (vϕ + Aϕ).(i i) (2.8)

Equation (2.8(ii)) clearly shows what the Newtonian theory
leaves out that GR supplies, i.e., the vector potential Aϕ ,
which in turn generates the GEM magnetic field. The lack
of the dynamics generated by mass current density in the
Newtonian theory is a serious lacuna that has important con-
sequences. We discuss one such important improvement that
GR provides.

As U < 0, the particle will remain bound so long as
|vϕ + Aϕ | <

√−2� and not vϕ <
√−2� (their values

at the coordinates ρ, z in question) as the Newtonian theory
asserts.

This leads to the well-known quandary when one
computes—using Newtonian gravity—the escape velocity
of our Sun were it to escape from our galaxy. The mean rota-
tional velocity of our Sun is about 220 km/s and it is approx-
imately 8.2 kiloparsecs away from the centre of our galaxy.
There is apparently very little (baryonic) mass beyond this
distance. Thus, Newtonian theory for the Sun’s escape veloc-
ity predicts

√
2 × (220) ≈ 310 km/s [27] in the vicinity of
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our Sun, and experimental astrophysicists estimate the Sun’s
escape velocity to be between (500 ÷ 550) km/s [27].

In GEM, by contrast, the escape velocity reads: vescape ≈
−Aϕ + √−2�. As we shall discuss later in more detail,
Lenz’s law (reminding us that all masses attract so that the
GEM magnetic field obeys the left-hand rule) forces us to
have Aϕ < 0, thus boosting the escape velocity (see Sect.
4). From a simple phenomenology of the Milky Way, we
estimate the magnetic term to add about 200 km/sec, thereby
bringing the escape velocity much closer to its estimated
experimental value. A quantitative analysis of this matter
shall be presented in a later work.

Having delineated a few important aspects that distinguish
GR from the Newtonian theory regarding the dynamics of a
rotation-supported galaxy, let us return to a discussion of the
exact Weyl constraints.

At first glance, Eqs. (2.3(i–iv)) appear quite opaque and
daunting, but they acquire a physically more appealing aspect
through the following dictionary in terms of the GEM electric
E and magnetic B fields of order G, along with a higher-order
field B̂ that is of order G2. They are defined as follows:

E = (Eρ, 0, Ez) =
(

− ∂�

∂ρ
, 0,−∂�

∂z

)
= −∇ �; (i)

B = (Bρ, 0, Bz) =
(

− ∂Aϕ

∂z
, 0,

∂Aϕ

∂ρ

)
= ∇ ∧ A; (i i)

B̂ = (B̂ρ, 0, B̂z) =
(

− 1

ρ

∂ν

∂z
, 0,

1

ρ

∂ν

∂ρ

)
; (i i i);

thus, we have : B̂2 = 1

ρ2 (ν2
ρ + ν2

z ); (iv);

& − ρ(∇ ∧ B̂)ϕ = νρρ + νzz − 1

ρ
νρ; (v). (2.9)

Before considering the equations they obey, let us pause to
say a few words about the genesis of the nomenclature in
Eq. (2.9). This electromagnetic analogy was first noticed
and Eqs. (2.9(i–ii)) used by Thirring. His initial purpose was
to compute the gravitational field inside a hollow rotating
sphere (in linearized GR). Later, with Lense, he extended the
analysis of the effect of proper rotation of a central body on
the motion of other celestial bodies, which led to the discov-
ery of the Lense–Thirring effect [23]. In a set of three beau-
tiful papers, Ludwig [15–17] has extended GEM by includ-
ing additional field energy (that is second order in G) and
obtained a closed set of non-linear equations for the rota-
tional velocity (vϕ) in terms of the Newtonian velocity (via
its acceleration) and the matter distribution within the galaxy.
We shall return to discuss them in a later section and show
that they are indeed reproduced in the appropriate limit.

In terms of the field variables defined in Eq. (2.9), the
Weyl equations—in the vacuum—given in Eq. (2.3) read:

∇ · E = −
( 2

c2

)
e−2UE2 +

(c2

2

)
e6UB2; (i);

∇ ∧ B = −
( 4

c2

)(
E ∧ B

)
; (i i);

B̂ρ =
( ρ

c2

)[
E2
z − E2

ρ

]
+ e4U

4

[
B2

ρ − B2
z

]
; (i i i);

B̂z = 2
( ρ

c2

)(
EρEz

)
+

(e4U

2

)(
BρBz

)
; (iv). (2.10)

Within the galaxy, the Gauß law in Eq. (2.10(i)) will obtain
the mass density term on the right-hand side (−4πρm). Sim-
ilarly the Ampere law in Eq. (2.10(ii)) will obtain the mass
current density (−4πρmvϕ) when we continue the solution
within the galaxy. On the other hand, Eqs. (2.10(iii–iv))
remain valid both inside and outside of the galaxy, due to
our choice of the matter energy–momentum density, as dis-
cussed later in Sect. 3 in detail.

The various exponentials in these expressions add on
higher-order polynomials in the Newtonian potential due
to the non-linearity of GR. In all four equations above,
the quadratic terms in E and B appear; these are easily
interpretable as different components of the field energy–
momentum density.

An attentive reader might wonder how (and why) one can
possibly succeed in describing the dynamics of a spin-2 grav-
itational field in terms of just the GEM-electric and magnetic
(spin-1 vector) fields. The answer to this question lies in the
non-linearity of GR. Already at the second order (in G), there
are constraints between the E-field (whose longitudinal part
is defined through the gradient of the Newtonian potential
� and whose transverse part arises through the time deriva-
tive of the transverse part of the vector potential, ∂AT /∂t)
and there are constraints between them, see Eqs. (2.3(i–ii)).
Further on, at order G2, a subsidiary field ν appears in the
metric as well as in the equations of motion, which is com-
pletely constrained by the behaviour of the GEM fields and
the boundary condition that ν(ρ = 0; z) ≡ 0. Thus, in the
far-field region, once the origin is appropriately chosen, the
gravitational field is limited to its two degrees of freedom
and its multipole expansion beginning with the quadrupole.
Not so in the near field within or in the vicinity of the galaxy,
where both longitudinal and transverse fields are present,
with constraints between them playing a crucial role in lim-
iting the dynamics, as the following discussion illustrates.

The assumption that there is no motion along the (radial)
ρ-direction or along the z-direction brings in constraints for
the dynamical system. Weinberg’s Eq. (9.12) [8] gives the
following expression for a particle’s (spatial) accelerationAi

( i = 2, 3, 4 with coordinates labelled as xμ :(x1 = ct, x2 =
ϕ; x3 = ρ; x4 = z)

Ai = −�i
1,1 − 2�i

1, j

(dx j

dt

)
− �i

j,k

(dx j

dt

)(dxk

dt

)

+
(dxi

dt

)(
�1

1,1 + 2�1
1, j

(dx j

dt

)
+ �1

j,k

(dx j

dt

)(dxk

dt

))
.

(2.11)
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Assuming only circular motion (about the z-axis), we have
non-vanishing velocity only along the ϕ-axis: dϕ/dt = v/ρ

and dxi/dt = 0 for i = 3, 4. Under this premise, the accel-
erations along the 3- and 4-axes must vanish as well:

(i) Aρ = −c2e4U−2νU,ρ + ce4U−2ν
( v

ρ

)(
a,ρ + 2aU,ρ

)

− e−2ν
( v

ρ

)2 − ρ + e4Uaa,ρ +ρ2U,ρ + e4Ua2U,ρ =0;

(i i) Az = −c2e4U−2νU,z + ce4U−2ν(
v

ρ
)[a,z + 2aU,z]

− e−2ν
( v

ρ

)2(
ρ2U,z + e4Ua2U,z + e4Uaa,z

)
= 0.

(2.12)

Equation (2.12), along with Eqs. (2.3(i,ii)), allows us to
obtain an exact non-linear, first-order differential equation
for the velocity field β(ρ, z = 0) = v(ρ, z = 0)/c on
the equatorial plane in terms of the (normalized dimen-
sionless) Newtonian (velocity squared) defined as usual
g(ρ) = (ρ/c2)(∂�(ρ, 0)/∂ρ), where �(ρ, 0) is the Newto-
nian potential in the equatorial plane. We relegate this rather
complicated expression to Appendix A. Here we shall illus-
trate the strategy employed to derive the result valid to the
lowest non-vanishing order. To the desired order of accuracy,
Eq. (2.12) yields the following expressions for a, ρ, and a,z :

a,ρ

ρ
= −

(β

ρ

)
+

( 1

β
+ β

)(�,ρ

c2

)
;

a,z

ρ
= +

( 1

β
+ β

)(�,z

c2

)
. (2.13)

We can thus eliminate a,ρ; a,z in Eq. [2.3(ii)], to obtain an
expression for the second derivatives of U . To the desired
order of accuracy:

[
e4U

( 1

β
+β

)
U,z

]
,z

+
[
e4U

{
− β

ρ
+

( 1

β
+β

)
U,ρ

}]
,ρ

= 0;
(2.14)

keeping only terms linear in the U -field:

( 1

β
+ β

)
[U,ρ,ρ +U,z,z] =

(1 − β2

β2

)
(β,zU,z)

+
(1 − β2

β2

)
(β,ρU,ρ) − β

ρ2 + β,ρ

ρ
; (2.15)

thus:
[
U,ρ,ρ +U,z,z +

(U,ρ

ρ

)]
=

[ 1 − β2

β(1 + β2)

]
(β,zU,z)

−
( β2

ρ2(1 + β2)

)
+

(ρβ,ρ

ρ2

)[β2 + (1 − β2)g(ρ, z)

β(1 + β2)

]

+g(ρ, z)

ρ2 . (2.16)

According to Eq. ((2.3)(i)), the left-hand side is of order G2,
outside the galaxy. Thus, to linear order in G, we have at
z = 0 upon using the up-down symmetry, for the rate of
increase of β(ρ) (outside the galaxy)

(
ρ

∂β

∂ρ

)
= β

[
β2 − g(ρ)(1 − β2)

β2 + g(ρ(1 + β2))

]
. (2.17)

Equation (2.17) is of course only valid outside the galaxy.
It agrees exactly with Ludwig’s Eq. (4.13) [15] when his
solution is continued to outside the galaxy where the matter
density term f = 0.

It is easy to obtain the rate equation inside the galaxy (to
linear order) upon including the matter density term on the
right-hand side of Eq. (2.3(i)). To lowest order, the (two-
dimensional) Laplacian of U receives the matter field contri-
bution (4πGρm). Explicitly, inside the galaxy, we have

∇2U (ρ, z) =
(4πGρm(ρ, z)

c2

)
+ terms of order G2;

define for z = 0; f (ρ) =
(4πGρm(ρ, z = 0)ρ2

c2

)
;

eq.2.14 → ( f − g) + β2

1 + β2 = 1

β(1 + β2)

(
ρ

∂β

∂ρ

)

[
β2 + g(1 − β2)

]
;

(
ρ

∂β

∂ρ

)
= β

[β2 + (1 − β2)( f − g)

β2 + g(1 + β2)

]
. (2.18)

This essentially reproduces Ludwig’s result inside the galaxy
and reduces to Eq. (2.17) outside the galaxy for which f = 0.

3 Matter energy–momentum density

Within the boundaries of the galaxy, the dynamics of course
changes:

Eμν(ρ, z) = Rμν −
(1

2

)
R gμν =

(8πG

c4

)
Tμν; (3.1)

and thus we need a model for the energy–momentum den-
sity of the rotating galaxy and a choice for the metric inside.
Hoping that no confusion ensues, we shall continue to use the
same form of the metric as given in Eq. (2.1). The simplest
and most commonly used model for matter is that of free dust
with in general an equation of state relating the mass density
to the pressure. We shall further assume that our galaxy has
zero-pressure, which implies that it is totally supported by
rotations around its stable axis, with no further extraneous
motion. Choosing the axis of rotation along the z-axis (with
an angular velocity ϕ̇), our extremely simplifying assump-
tions allow us to restrict the matter energy–momentum den-
sity to the following form (with coordinates (o, ϕ, ρ, z)):

Tμν = ρmu
μuν;
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uμ(ρ, z) = (γ c)
(

1,
β

ρ
, 0, 0

)
;

uo = −(γ c)e2U
[
1 − β

a

ρ

]
; uϕ = (γ c)

[
e2Ua

(
1 − β

a

ρ

)
+ (βρ)e−2U

]
; uρ = 0; uz = 0;

the trace : Tμ
μ = −(ρmc

2) ⇒
[ 1

γ 2

]
=

[(
1 − β

a

ρ

)2
e2U − β2e−2U

]
. (3.2)

While lack of motion along the ρ (radial) and z (verti-
cal) directions simplifies the structure of the matter energy–
momentum density tensor from a (4 × 4) matrix to a (2 × 2)
matrix form, this simplification also brings some unexpected
peculiarities:

1. Even though the reduced matrix Tμν is real-Hermitian, it
is non-diagonal, and because it is factorizable, its deter-
minant is zero. We recall that in the general case, this
matrix has four eigenvalues: a positive definite (time-
like) mass density, with three (space-like) pressures
(p1, p2, p3 along its principal axes). By setting all pres-
sures pi to zero, we have made the matrix singular, with
the lone non-vanishing eigenvalue the scalar (generally
invariant) mass density ρmc2.

2. For any finite β, the Lorentz factor γ in Eq. (3.2) does
not reduce to its expected value (1 − β2)−1/2 unless the
rotation parameter a → 0. However, if we let a = 0, the
metric becomes diagonal, since then goϕ = 0, thereby
rendering the (matter+field) angular momentum zero.
Clearly, this is unphysical and thus unacceptable. We
must havea �= 0 (it can be positive or negative, of course).

3. In the expression for γ , the linear term in β induced by a
non-vanishing length parameter a �= 0 would exceed the
expected β2 correction unless, for any value of ρ ≤ ρedge
within the galaxy, 2|a(ρ)/ρ| < β(ρ). In short, β cannot
be too small if the rotational velocity alone has to support
a galaxy with zero internal pressure.

4. The metric and its first derivatives must be matched at
the boundary for their inside versus outside values.

Thus, β just outside cannot be too small either. A clear indi-
cation from GR that Newtonian values for β are becoming
too small at the edge must be supplemented by (the mass
current density) contributions to stabilize the system.

To emphasize the affinity and the difference between Ein-
stein gravity and electromagnetism, and partly to follow the
works by Ludwig [15–17], it is convenient to write the Ein-
stein equations for this metric in terms of the three vectors
E, B, B̂ defined earlier. Overall we have a dictionary with
which we can write the Einstein equations

Eμν ≡ Rμν − 1

2
gμνR = 8πG

c4 Tμν. (3.3)

We have:

R = gμνRμν = 8πG

c4 gμνTμν = e2U−2ν

(
2∇2U+ e4U

ρ2 (a2
,ρ +a2

,z) − 2(ν,ρ,ρ +a,zz +U 2
ρ +U 2

,z)

)

= e2U−2ν

(
−2

e−2U

c2 ∇ · E − 4
e−4U

c4 E2 + 16
e4U

c2 B2

+2ρ(∇ ∧ B̂)ϕ + B̂ρ

)

and therefore a “Gauß law”

∇ · E = −4πGρme
2ν

(
1 + e−2U (βγ )2

)
− 2

e−2U

c2 E2

+8e6UB2 + ρc2e2U (∇ ∧ B̂)ϕ − 1

2
c2e2U B̂z . (3.4)

To single out the non-diagonal part of Eμν in terms of the
matter current density Jm = ρmvϕ , we consider the combi-
nation

aEct ct + Ect ϕ = 8πG

c2 (aTct ct + Tct ϕ)

= 8πG

c2

[
− (Jm)ϕγ 2ρ

(
1 − a

ρ
β
)]

= −1

2
e4U−2ν

[
a,ρ,ρ +a,z,z − 1

ρ
a,ρ +4(a,ρU,ρ +a,zU,z)

]

= 2ρ

c
e4U−2ν

(
(∇ ∧ B)ϕ − 4(E ∧ B)ϕ

)
. (3.5)

and therefore an “Ampère law” emerges:

∇ ∧ B= 4πG

c
e−4U+2ν

[
− Jmγ 2

(
1 − a

ρ
)β

)]
+ c

2ρ
e−4U+2νE ∧ B (3.6)

For the convenience of the reader, in Appendix B, we have
reproduced some details of the traditional iterative scheme in
GR (developed over a century ago). Anyone interested can
readily compare the higher-order contributions as they arise
from the perturbative scheme with the exact Einstein–Weyl
equations.

Neglecting the higher-order term in G and (special) rel-
ativistic corrections, we can summarize Gauß and Ampère
law as:

∇ · E = −4πGρm, ∇ ∧ B = −4πG

c
Jm . (3.7)

It is important to note (and very useful to remember to imple-
ment) the negative sign of the matter fields on the right-hand
side of Eqs. (3.7), especially in the Ampére, law which leads
to a left-hand rule for the GEM magnetic field. Precisely
because gravitation has only attraction (unlike E&M that has
both), the Lenz law for gravity implies that there is a net
boost to the acceleration due to other masses. We illustrate
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in Sect. 4 that the model obeying Lenz’s law produces a rota-
tion velocity curve consistent with mass-to-luminosity data,
whereas another model, while successful in producing the
rotation curve, was inconsistent with the light intensity data.

4 Lenz’s law always boosts rotational velocities for
stable galaxies

An attentive reader might rightly wonder why there is always
a counter-rotating GEM magnetic field produced by the
velocity field of material masses. Such is not always the case
in Maxwellian electrodynamics because both attractive and
repulsive forces are generated, as both positive and negative
charges exist in Maxwell’s electromagnetic theory. In GEM,
however, the force is always attractive [28,29]. For the prob-
lem at hand, it is most easily seen in the equation for the
GEM magnetic field

∇ × B = −
(4πG

c2

)
ρv + ∂E

c2∂t
e (4.1)

The minus sign in the first term on the right-hand side of
Eq. (7.1) tells us that the magnetic field induced on the
left side (due to the velocity field) always follows the left-
hand rule. In standard electrodynamics with different signs
of charge, Lenz’s law implies that a negatively charged elec-
tron in a beam of co-moving electrons loses momentum due
to other negatively charged electrons in the beam. On the
other hand, the same Lenz law implies that an electron gains
momentum if there are, say, positively charged parallel mov-
ing protons. In GEM, there is only attraction between masses,
and thus the situation is similar to that between an electron
and a proton. Ergo, Lenz’s law implies that there is always an
increase in the rotational velocity of galaxies due to GEM.
In the following sections, we shall explicitly confirm that
the resultant rotational velocity is indeed boosted through a
GEM magnetic term Bz < 0.

We discuss it below and show that the model obeying
Lenz’s law produces a rotation velocity curve consistent with
mass-to-luminosity data, whereas another model, while suc-
cessful in producing the rotation curve, was inconsistent with
the light intensity data.

The example of galaxy NGC 1560 has been discussed at
length in [15] using two different parameterizations, which
we shall call model I and model II:

model I : Rs = 7 × 10−6 kpc; a = 0.373 kpc;
b = 0.300 kpc;

normalization point : β(8.29 kpc)

= 2.67 × 10−4;
model II : Rs = 1.46 × 10−6 kpc; a = 7.19 kpc;
b = 0.567 kpc;
normalization point : β(8.29 kpc) = 2.67 × 10−4. (4.2)

Fig. 1 Newtonian g-functions for the two models as defined in Eq.(4.4)
in the text are shown in this figure with gI in red and gI I in blue

Fig. 2 Bz for model I and −Bz for model II are shown in this figure.
Model I has the wrong sign while Model II has the correct sign according
to Lenz’s law

They both produce roughly the same β(ρ). To illustrate our
point as simply as possible, we made a simple interpolation
of the numerical result that Ludwig found from his rate equa-
tion. The interpolation reads

β(ρ)≈(2.64×10−4)
[ ρ2

(ρ2 + 2.92)

]
; (all distances in kpc).

(4.3)
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Fig. 3 We show the normalized Newtonian velocities β-functions, gI
in red and gI I in blue

The Newtonian g-functions for the two models are as follows:

gI (ρ) = (3.5 × 10−6)

[
ρ2

(ρ2 + 0.45)3/2

]
;

gI I (ρ) = (7.3 × 10−7)

[
ρ2

(ρ2 + 60.17)3/2

]
. (4.4)

These are shown in Fig. 1. The GEM magnetic field is defined
as

Bz

c
= g(ρ) − β2

βρ
. (4.5)

For model I, Bz > 0, and for model II, Bz < 0. In Fig. 2,
we show the magnetic fields, BzI for model I and −Bz,I I

for model II. Lenz’s law is not obeyed in model I, but it is in
model II. In Fig. 3, we show the corresponding Newtonian
velocities.

Ludwig’s model II obeys Lenz’s law and at the same time
is also consistent with the mass-to-luminosity data, whereas
model I does not agree with the mass-to-luminosity data.
This shows the efficacy of Lenz’s law in limiting the class of
solutions.

5 More on rotation velocity and the Tully–Fisher law

As discussed in Sect. 4, the induced GEM magnetic field B
is always counter-rotating (follows the left-hand rule) with
respect to the velocity field of material masses that produce it.
Also, as shown earlier, the Einstein–Weyl equations acquire
the form of Gau-like and Ampère-like laws, even at the lin-
earized level.

Upon assuming that Ag = Aϕϕ̂; v = v ϕ̂ and that we are
in stationary conditions, the equations (in cylindrical coordi-

nates) read [15]:

φg =
( �

c2

)
;

1

ρ

∂

∂ρ

(
r
∂φg

∂ρ

)
+ ∂2φg

∂z2 = ∇2φg = 4πGρm;
∂

∂ρ

( 1

ρ

∂(ρAϕ)

∂ρ

)
+ ∂2Aϕ

∂z2 = 4πG

c2 ρm v. (5.1)

The assumption is that v(ρ, z) continuously describes the
motion of the rotating matter inside the galaxy and the motion
of the ionized gas that circles round it. While the geodesic
equations for the (spatial) acceleration of a particle Ai have
been shown to be non-linear and complicated, we want to
limit our discussion here and consider only equatorial circular
motion around the z-axis with dϕ/dt = v/ρ and Aρ =
Az = 0. Under these provisions, to lowest order we have the
Lorentz force equations:

∂�

∂ρ
− v2

ρ
= v

ρ

∂(ca)

∂ρ
,

∂�

∂z
= v

ρ

∂(ca)

∂z
↔

Ez − vBρ = 0; Eρ + vBz = −v2

ρ
;

define a magnetic velocity term: βmag ≡ ρ(−Bz)

c
≥ 0;

thus, with g the Newtonian velocity squared :
β2 = g + (ββmag) ≥ g; (i)

β = (
1

2
)
[
βmag +

√
(4g + β2

mag)
]; (i i) (5.2)

Thus, as we proposed to show in Sect. 1, GR with its inherent
Lenz’s law does indeed produce the remarkable result that
the rotational velocity always exceeds its Newtonian value:(
β2 ≥ g Eq. (5.2(i))

)
.

To put it in perspective, this relationship is amply con-
firmed through 2700 data points from 153 SPARC galaxies.
For details, we refer the reader to Ref. [6], especially its Fig. 3.

We have also shown that up to the order of required accu-
racy, Ludwig’s rate equations for the rotation velocity emerge
from the Weyl metric, thereby giving strong support to Lud-
wig’s computational program. We shall return to it in Sect. 7.

A simple qualitative argument for constant asymptotic
velocity can be deduced from these equations, with a New-
tonian term augmented by the magnetic term. At small dis-
tances from the centre, the Newtonian term dominates, but
as one proceeds further towards the edge of the galaxy, the
picture changes dramatically due to the onset of the magnetic
term.

If we consider our own galaxy, the Newtonian velocity
has, roughly speaking, two bumps, and then it goes down in
the Keplerian fashion as 1/

√
ρ. If we simply add a magnetic

term that begins from zero and grows near the edge to pro-
duce a constant (negative) vector potential Aϕ in obedience
to Lenz’s law, we have the desired result of a constant rota-
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tional velocity, the now well-established result, first found
experimentally by Vera Rubin.

We also notice that the same asymptotically constant vec-
tor potential allows us to obtain a reasonable estimate for
both the rotation velocity and the angular momentum of our
galaxy.

For our galaxy, the maximum of the Newtonian term
coincides approximately with the onset of asymptotic veloc-
ity, β2(∞) = ( Rs

2Redge
), where the Schwarzschild radius

Rs = (2GM/c2), with M denoting the baryonic mass (plus
that of the gravitational field). For a pillbox-like galaxy, V =
(πR2

edge)h, M = (ρmV ), so that β2(∞) ∼ ( M
M1/2 ) ∼ M1/2,

reproducing the Tully–Fisher law: M ∝ β4.

6 Weyl class of metrics and the particular Kerr metric

We wish to investigate the similarities and differences
between the large-distance behaviour of the Weyl class of
metrics and the particular one of the Kerr solution of the
Einstein equations [19]. This solution apparently describes
a rotating black hole in terms of a mass M and a (constant)
length parameter a that is known to be linearly related to its
angular momentum.

Taking ẑ as the axis of rotation, gμν ≡ ημν +hμν , at large
distance, the Kerr metric asymptotic behaviour is given by p.
240 of Ref. [8]):

hi j → − Rs

r3 xi x j , h0i → Rs

r2

(
xi + 1

r
(a ∧ x)i

)
,

Rs ≡ 2GM

c2 . a = (0, 0, a), i, j = 1, 2, 3 (6.1)

As amply discussed in Appendix B, this is quite generally
all that one needs in order to calculate the total mass and
angular momentum. For the Kerr metric (6.1), Eq. (9.12)
yields Etot = Mc2, J = (Mc)a, as expected. If a = 0, the
Kerr metric coincides with the Schwarzschild metric and J
is zero. We can see that for the system to have a finite angu-
lar momentum—and a rotating galaxy certainly has that—it
is crucial that the space-time part of hμν does not vanish
asymptotically beyond 1/r2.

Let us now consider the general class of Weyl’s axially
symmetric metrics as in Sect. 2 focusing on their space-time
part in the equatorial plane (i.e., at z = 0, so that ρ = r ), and
we have:

g0,ϕ(r) = a(r)

c
e2U (r), can be written in pseudo

−Euclidean coordinates as the special case of

g0,i = εi jka j xk(
e2U

r2 );
with Weyl′s being the special case a = (0, 0, a);
Expanding in perturbation theory:

g0,i = g(1)
0,i + g(2)

0,i = εi jk
a j xk
r2 (1 + 2U (r) + . . .),

with g(1)
0,i = εi jk

a j xk
r2 ; and g(2)

0,i = εi jk
a j xk
r2 (2U (r); (6.2)

We are interested in the second part (g(2)
0,i ) that relates to the

angular momentum (J) of the system. Asymptotically, we
have (see [8]) for the second term,

g(2)
0,i =

(2G

r3 )(r × J
)

i
;

we find Jz = (Mc)a; (6.3)

exactly the same as that for the Kerr metric, provided we
associate the (constant) Kerr length parameter a with the
(asymptotic) Weyl length parameter a.

The implication is that a finite value of the total (material
plus that of the gravitational field) angular momentum of the
galaxy requires that the rotational velocity is asmyptotic to a
constant value and vice versa.

A mental picture of what is happening may be formed
through the following rough guide about the Weyl parameter
a. For small r , a increases from zero linearly until the edge,
beyond which—while continuous at the edge—it eventually
becomes a constant. At very large r , as expected, the GEM
magnetic field (−Bz → 1/r ), as all radiation fields do.

7 Ludwig’s non-linear differential equation for the
velocity field

Whereas in Sect. 5 Eq. (5.2) we have tried to keep our equa-
tions linear by keeping both the Newtonian and the magnetic
contributions at the same level, the strategy followed by Lud-
wig [15] (see also [30,31]) has been to eliminate the magnetic
term entirely, at the expense of course of ending up with a
non-linear equation for the velocity field. Below we follow
his formalism to pinpoint a few aspects.

As stated in the last paragraph, we can use Eq. (5.1) to
eliminate Aϕ from the expression of the Ampère law, which
becomes

∂

∂ρ

(1

v

∂φ

∂ρ
− v

ρ

)
+ ∂

∂z

(1

v

∂φ

∂z

)
= 4πG

c2 ρmv. (7.1)

This equation multiplied by v and subtracted from the expres-
sion of Gauß’ law given earlier, eliminates the double deriva-
tives and yields:

4πGρm

(
1− v2

c2

)
=

( 1

ρ
+ 1

v

∂v

∂ρ

)∂φg

∂ρ
+ 1

v

∂v

∂z

∂φg

∂z
+v

∂

∂ρ

v

ρ

(7.2)

a non-linear first-order differential equation for v(ρ, z) for
given ρ(ρ, z)m, �g(ρ, z). In the equatorial plane z = 0, by
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the up-down symmetry we can drop the ∂φg
∂z ; then:

(
β2 + ρ

∂ϕ

∂ρ

)
ρ

∂β

∂ρ
= β

ρ[(
β2 − ρ

∂ϕ

∂ρ

)
+ 4πGρm

c2 ρ2(1 − β2)
]
;

β = v(ρ, 0)

c
, ϕ = φg

c2 .

Outside the galaxy, where ρ(ρ, 0)m = 0, the equation
becomes

ρ

β

∂β

∂ρ
= β2 − ρ

∂ϕ
∂ρ

β2 + ρ
∂ϕ
∂ρ

= β2 − g(ρ)

(β2 + g(ρ))
. (7.3)

This equation shows the key role played by the GEM mag-
netic field, which is now:

Bz

c
= ρ

∂ϕ
∂ρ

− β2

β ρ
= g(ρ) − β2

βρ
. (7.4)

Equation (7.3) is an elegant rate equation for the velocity out-
side the galaxy. However, in any phenomenology, care must
be taken to ensure that the GEM magnetic field employed
(see Eq. (7.4) Bz < 0 is indeed negative. A counter example
has already been provided in Sect. 4.

8 Alternatives to �CDM

In his excellent review of the phenomenology of rotationally
supported galaxies, Salucci warns us to end our fascination
with the �CDM weakly interacting massive particles sce-
nario and concludes, on a somber note: It seems impossible
to explain the observational evidences gathered so far in
a simple dark matter framework. Through a reverse engi-
neering approach, he arrives at the notion of luminous-dark
matter interactions along with interactions between different
types of DM particles all transcending the simple notion of
non-interacting DM particles.

Instead of DM, the MOND approach [32] that modifies
Newtonian potential at large distances has been invoked to
discuss the observational baryonic Tully–Fischer and Trim-
ble relations, and an extension of GR with further degrees of
freedom has been proposed in Ref. [33] for an explanation of
baryonic Tully–Fischer relations. Higher-order GR in Ref.
[34] and a natural approach to extend Newtonian gravity in
Ref. [35] have been proposed as alternatives to dark mat-
ter. Also, a tensorial formulation of GR has recently been
invoked for the possible replacement of DM [36].

By contrast to the alternate schemes mentioned above,
Ludwig’s extended GEM theory is able to avoid the Keplerian
falloff of the rotation velocity at large distances from the

centre of a rotating galaxy through the geomagnetic field
generated by the matter current density.

9 Conclusions and future prospects

Here we first summarize results obtained, then describe
research in progress and close with prospects for the future.

1. Our work began with the most general framework in GR
to discuss rotationally supported galaxies. Fortunately,
there is the Weyl class of axisymmetric metrics for whom
the solutions to the Einstein–Weyl equations in the vac-
uum are known in terms of a few differential equations.
Even more fortunately, for what we call the extended
Weyl class that includes rotations explicitly, exact differ-
ential equations are also known.

2. Unlike the Kerr metric, the Weyl metric can easily be
(and has been) continued within the galaxy and physically
meaningful results obtained,

3. Armed with exact solutions, it became possible to show
how Gauß and Ampére laws emerged and under what
conditions Ludwig’s extended GEM theory and his non-
linear rate equations for the rotation velocity field could
be deduced.

4. Using the century-old iterative procedure in GR and fur-
ther elaborated by Weinberg, we could discuss the value
of the mass M (baryonic mass + that of the gravitational
field) and that of the intrinsic angular momentum J of a
rotationally supported galaxy. The extended Weyl metric
analysis allowed us to rigorously conclude that Weyl’s
(vectorial) length parameter a must have a finite limit to
obtain a finite J . As the same parameter also controls the
asymptotic limit of the rotation velocity, we can conclude
that GR is indeed capable of obtaining a flat plateau in
the rotation velocity.

5. We have attempted an alternative strategy to that of Lud-
wig as far as the phenomenology of the rotation curves is
concerned. Ludwig eliminated the magnetic contribution
to obtain his non-linear rate equation for the velocity field
in terms of the input from the Newtonian potential and the
mass distribution within the galaxy. Instead, we kept the
Newtonian input and the magnetic input together—thus
our velocity equations remained linear. This allowed us
to provide a clear physical picture: at small distances, the
velocity is basically described by the Newtonian term,
and as it begins to fall off, it is supported near the edge
by essentially a constant vector potential. It also brought
to focus the crucial role of Lenz’s law and the left-hand
rule for the GEM magnetic field.

6. As by-products of our analysis, we have deduced a
few other practical results: (i) imposition of Lenz’s law
implies the rigorous inequality: β2 ≥ g, the Newto-
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nian value, a result supported by 2700 data points from
153 rotating galaxies; (ii) a better estimate (≥ 500
km/s) for our Sun’s escape velocity from our galaxy;
(iii) an easy-to-remember pneumonic for the asymptotic
velocity β2 ≈ (Rs/(2Redge)); (iv) how Tully–Fisher
law emerges from a rotating pill-box galaxy; (v) simple
dimensional analysis implies J ∝ M7/4 if Tully–Fischer
holds.

Our present focus is fourfold:

A: A satisfactory GR description of the deflection of light
from large galaxies and from galaxy clusters.

B: To obtain a better understanding of the Tully–Fischer law
(M ∝ β4) and the Virginia Trimble law (J ∝ M1.9), the
latter covering data that run over 50 orders of magni-
tude [37].

C: A comprehensive phenomenology of the rotation curves
with realistic densities and more refined Newtonian
inputs.

D: Testing our conjecture that spiral arms in rotating galax-
ies such as ours are generated dynamically through non-
linear effects inherent in GR.

On the broader horizon, it is reasonable to hope for fur-
ther yet more brilliant advances in astrophysical observations
(for example, via renewed investigations involving Hanbury–
Brown–Twiss techniques) so as to reduce the error bars in
rotation curves. Only then would it be possible to truly dis-
tinguish between different theoretical models.
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Appendix A: Exact non-linear expression for the velocity
field

The exact expressions for a,ρ and a,z read

a,ρ

ρ
= −

(we−4U

ρ

)
+

( 1

w
+ we−4U

)
U,ρ;

a,z

ρ
= +

( 1

w
+ we−4U

)
U,z;

where : w = β

1 − β( a
ρ
)
. (9.1)

Following exactly the steps described in Eqs. (2.13–2.17) et
sec. in Sect. 3, we find two expressions for [U,ρ,ρ + U,z,z],
which we equate and find

−U,ρ

ρ
−

(e4U

2

)

{( 1

w
+we−4U

)2
U 2

,z+
[
− we−4U

ρ
+

( 1

w
+ we−4U

)
U,ρ

]2
}

=
( we−4U

1 + w2e−4U

)(w

ρ

)
,ρ

−
(

ln

(
e4U

w
+ w

))

,ρ

U,ρ

−
(

ln

(
e4U

w
+ w

))

,z

U,z . (9.2)

Once again, on the equatorial plane z = 0, using the up-down
symmetry, we can drop all terms such as w,z andU,z and thus
remain with

−U,ρ

ρ
−

(e4U

2

)[
− we−4U

ρ
+

( 1

w
+ we−4U

)
U,ρ

]2

=
( we−4U

1 + w2e−4U

)(w

ρ

)
,ρ

−
(

ln
[e4U

w
+ w

])
,ρ
U,ρ;

(w2e−4U

ρ

)
U,ρ + e−2Uβ2

w2γ 2 =
( we−4U

1 + w2e−4U

)(w,ρ

ρ

)

−
(

ln
[e4U

w
+ w

])
,ρ
U,ρ +

(e4U

2

)( 1

w
+ we−4U

)2
U 2

,ρ .

(9.3)

Appendix B: Iterative computational procedure in GR

Over the past century, a detailed program [often dubbed post-
Newtonian, post-post Newtonian, etc.] was developed to sys-
tematically compute the metric, the Ricci tensor, and the like
in a perturbation expansion in powers of the Newton con-
stant G. The procedure is somewhat involved but technically
straightforward albeit cumbersome. And it does require the
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introduction of a non-tensorial object first introduced by Ein-
stein and which he called the pseudo-energy momentum ten-
sor for the gravitational field. It was formalized by Landau
and Lifshitz [26] and is amply discussed in the excellent text-
books such as those by Weinberg [8] and by Stephani [19]. In
order not to duplicate some long expressions, we shall refer
the reader to these references abbreviated as (L&L), W, or S.

A few words are in order as to the reason for this appendix.
While well known to physicists of the last generation, our
own experience has been that the detailed procedures are
largely forgotten by a vast majority of practicing physi-
cists. Thus, to bring out the differences with the traditional
post-Newtonian theory and to stress the importance of what
is involved in the very definition of the far field, we here
review the iterative formalism in some detail. Another point
to stress here is that the exact Weyl solutions for the vacuum
that are discussed here appear to be analytically continuable
within the system (say, a galaxy) and exchanges of energy–
momentum emerge at order G2. Thus, a diligent reader can
compare for herself the exact results with pieces constructed
from higher-order iterative solutions.

Consider the Einstein equation with its prescribed source,
a matter energy–momentum tensor that is limited in its spatial
and temporal extent.

Gμν ≡ Rμν − 1

2
gμν

R =
(8πG

c4

)
Tμν; Rμν =

(8πG

c4

)[
Tμν − 1

2
gμνT

]
; (i)

T ν
μ;ν = 1√−g

∂(T ν
μ

√−g)

∂xν
− 1

2

(∂gνλ

∂xμ

)
T νλ = 0; (i i)

Rμν = R(1)
μν + R(2)

μν ; (i i i)

R(1)
μν = ∂�λ

μν

∂xλ
− ∂�λ

μλ

∂xν
= 1

2
gλσ

[ ∂2gμλ

∂xν∂xσ
+ ∂2gνλ

∂xμ∂xσ
− ∂2gλσ

∂xμ∂xν
− ∂2gμν

∂xλ∂xσ

]; (iv)

R(2)
μν =

[
�λ

μν�
σ λσ − �σ

μλ�
λ
νσ

]
(v). (9.4)

Note that the vanishing of the covariant divergence of the
(material) energy–momentum tensor T ν

μ as given in Eq.
(9.4(ii)) does not lead to a local energy–momentum—or
angular momentum—conservation law. This reflects the
physical fact that in a gravitational field, the 4-momentum
of the matter field alone is not conserved, but rather the
4-momentum of matter plus that of the gravitational field;
the latter is not included in T ν

μ. Thus, one defines a pseudo
energy–momentum tensor tμν for the gravitational field [38],
so that the following condition holds:

∂ν(T
μν + tμν) = 0; (9.5)

We know that tμν is not a tensor; ordinary derivative in
Eq. (9.5) confirms this fact. However, we can devise a recipe

so that, asymptotically, the fields are Lorentz-covariant.
Below are the steps of the perturbative recipe:

Step I:
We know that there exists a space-time point at which all the
�s can be made to vanish (the first derivatives of the metric
but not the metric itself can be made to vanish). But this
implies the following:

(a) Through Eq. (9.4(ii)), the last term disappears, and the
determinant of the metric can be taken out of the par-
tial derivative in the first term, rendering the covariant
derivative to an ordinary derivative, i.e., ∂νTμν = 0 at
this point.

(b) Simultaneously, we learn from Eq. (9.4(v)) that R(2)
μν van-

ishes at this point. Thus the entire Einstein Eq. (9.4(i)) is
reduced (at this space-time point) to

Gμν → G(1)
μν = R(1)

μν − 1

2
gμνR

(1) = (
8πG

c4 )Tμν. (9.6)

Consider the special case (certainly valid for weak gravity)
that the metric can be expanded around its flat Minkowski
limit ημν and for computational simplicity choose harmonic
coordinates (indices being raised and lowered by ημν).

harmonic coordinates : gμν�λ
μν = 0; picking the gauge :

coordinate conditions; (i)

gμν = ημν +hμν; h̄μν =hμν −
(1

2

)
hημν; h = hμ

μ = −h̄;

gμν = ημν + h̄μν −
(1

2

)
ημν h̄;

So : R(1)
μν = 1

2
(h̄λ

μ,ν,λ+h̄λ
ν,μ,λ−(∂λ∂

λ)h̄μν

+1

2
ημν(∂λ∂

λ)h̄);

and : G(1)
μν = R(1)

μν − 1

2
ημνR

(1) =−1

2
(∂λ∂

λ)h̄μν + Xμν;

where Xμν = 1

2

(
h̄λ

μ,ν,λ + h̄λ
ν,μ,λ − ημν h̄

λσ
,λ,σ

)
. (9.7)

We can eliminate Xμν through the following 4-coordinate
condition choice allowed by Eq. (9.7(i)). (Details can be
checked via Eqs. (Stephani 13.8–13.14)):

harmonic coordinates defined by :
curvilinear D′Alembertian(xμ) = 1√−g

(
√−g gνλxμ, λ),ν

= 0; (i) implies (
√−g gμν),ν = 0; (i i)

thus, if
√−g gμν = ημν − ˜̄hμν

, we have ˜̄hμν

,ν = 0.(i i i)

(9.8)

To accomplish it, we need to make a coordinate change as
follows:

Let x̄μ = xμ + bμ;
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implying a change in the metric ḡμν = (9.9)

gλσ (δ
μ
λ + bμ

,λ)(δ
ν
σ + bν

,σ ) ≈ gμν + gλνbμ
,λ + gλμbν

,λ;
and a change in the metric determinant ḡ = |ḡμν |−1 ≈
g(1 + 2bλ

,λ)
−1;

˜̄hμν = h̄μν − bμ ,ν − bν ,μ + ημνbλ
,λ;

imposing h̄μν
,ν = (∂σ ∂σ )bμ;

so that G(1)
μν →

(
− 1

2

)
(∂σ ∂σ )

(h̄μν − bμ ,ν − bν ,μ + ημνb
λ
,λ) =

(
− 1

2

)
(∂σ ∂σ )̃h̄μν;

and ˜̄hμν

,ν = 0; (9.10)

by virtue of Eq. (9.8(iii)). This completes the proof and we
have (dropping the tilde and the bar on h), in harmonic coor-
dinates:

G(1)
μν =

(
− 1

2

)
(∂σ ∂σ )hμν =

(8πG

c4

)
Tμν; (i)

(∂σ ∂σ )hμν =
(

− 16πG

c4

)
Tμν.(i i)

Step II:
By definition

G(1)
μν =

(8πG

c4

)
[Tμν + tμν];

(i) where the gravitational energy − momentum tensor

is given by

tμν = −
( c4

8πG

)
[Gμν − G(1)

μν ];
(ii) the total matter + gravitational energy − momentum

tensor

τλσ ≡ ηλμησν(Tμν + tμν);
that is locally conserved τλσ

,σ = 0. (9.11)

Let us note here the convention that indices for quantities
such as hμν;G(1)

μν and ∂
∂xλ are raised and lowered by the η’s,

whereas on true tensors such as Rμν are raised and lowered
with g’s as usual.

Weinberg Chapter 7 (Sec. 6) describes in detail the defini-
tion of total momentum, total energy, and the angular momen-
tum, as well as the computational strategy for a perturbative
expansion of tμν . We list some of them below for reference:

total 4 − momentum Pμ =
∫
V

τ oμ(d3x); and τ iν

is the flux;
total Angular − momentum density and flux

Mμνλ = τμλxν − τμνxλ;
∂μM

μνλ = 0; since τ νλ = τλν andτμν
,ν = 0;

total Angular − Momentum

J νλ = −Jλν =
∫
V
(d3x)Moνλ (a constant if no surface terms);

(9.12)

In Weinberg (Eqs. (7.6.14–15)), a power series for tμν in h
is developed up to terms of order h2:

tμν =
( c4

8πG

)[
−

(1

2

)
hμνR

(1) λ
λ + 1

2
ημνh

λσ R(1)
λσ + R(2)

μν

−1

2
ημνη

λσ R(2)
λσ

]
+ ©(h3);

(9.13)

where R(2) is given by the terms of order h2 in Eq. (9.4(v))
and written out in detail in Weinberg (Eq.(7.6.15)).

Far away from the finite material system that produces the
gravitational field, Tμν vanishes, and since tμν is of order h2,
the source terms on the rhs of Eq. (9.11) are confined to a
finite region. Thus, we expect them to behave as electrostatic
potentials or as in Newtonian gravitational theory. Typically,
we expect for large distances from the source that

hμν → ©
(1

r

)
; ∂hμν

∂xλ
→ ©

( 1

r2

)
; ∂hμν

∂xλ∂xσ
→ ©

( 1

r3

)
;

Hence tμν → ©
( 1

r4

)
; (9.14)

so that the integrals for the total momentum and energy
as given in Eqs. (9.12) should converge. In fact, there are
very simple expressions for the total energy and the angular
momentum of a finite system (to linear order in the metric
perturbations):

ETotal = Poc=−
( c4

16πG

) ∫ [∂h j j

∂xi
− ∂hi j

∂x j

])
(nir

2d�);

J jk = −
( c3

16πG

) ∫
Ki jk(nir

2d�);
ni is the outward normal;
Ki jk = (−x j hok,i + xkhoj,i ) + (x j hki,o − xkh ji,o)

+(hokδi j − hojδik); J1 = J 23, ... (9.15)

For the above computations, only the asymptotic behaviour
of the metric is required (at large distances from the source).
It should also be noted that, while the total energy can be
proven to be positive (provided there is a mass in the system),
total angular momentum is strictly zero unless (asymptoti-
cally) either (i) the purely spatial metric is time-dependent
or (ii) there is a non-trivial (i.e., non-removable by a coordi-
nate transformation) hoi . As important examples, one finds
by explicit calculation that for both the Schwarzschild met-
ric and the Kerr metric, the total energy Etotal = Mc2.
On the other hand, the total angular momentum for the
Schwarzschild case is zero, whereas for the Kerr metric,
J = (Mc)a, where a is a length parameter associated with
rotations.

Of course, as Weinberg explicitly cautions, Eq. (9.14) need
not always be true. He gives the standard example of a system
that has been continuously radiating energy (as gravitational
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waves) and so the total energy is indeed infinite: It shows
up theoretically in that various derivatives become all of the
same order, violating Eq. (9.14).

While the above is evidently acceptable on physics
grounds, there are other more subtle effects that can invali-
date or certainly modify the reasonable-sounding estimates
provided by Eq. (9.14) augmented by our deep-seated New-
tonian bias. One of them concerns rotations [39]. Simply
because rotation about a fixed axis differentiates between
clockwise and anti-clockwise motion, suppose the rotation
is about the z-axis confined to the (x y) plane, and if the sys-
tem is axially symmetric, Jz would be conserved. It would
appear that PT would be conserved but not P or T separately,
because by assumption, our system is rotating with respect
to an external inertial observer. For rotations that are mea-
surable in the far field, traditional power counting methods
need to be critically examined.

For the problem at hand i.e., the dynamics of rotation-
supported galaxies, it is obviously not only convenient but
appears mandatory that the kernel of the perturbative solu-
tion include not only the Newtonian potential U but also
Weyl’s rotation field a explicitly. Technically, this means that
the “asymptotic” metric is not Galilean but augmented by the
Weyl field in such a manner that a finite total angular momen-
tum of the system is simply reproduced.
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world indices that are “rotated” in a coordinate transformation. It
is only in Abelian theories such as the Maxwell field where the
vector potential does not carry a “charge” only the charged matter
fields do. Thus Gauss law in QCD for the color-electric field reads
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is the quark color charge density; Aa are the gluon-fields carrying
color charge (a = 1, 2, ....8).

The analog of the pseudo-tensor being discussed in the text is mir-
rored here if one considers (−ig f abcAb ·Ec) as the gluon color field.
It is important to note that while ρa is a true gauge-covariant quan-
tity, the color charge field of the gluon defined in the last sentence
is not
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