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Abstract Traversability in relation with tides in thin-
shell wormholes is revisited to investigate the possibility
of improving recently noted restrictive conditions for a
safe travel across a wormhole throat. We consider worm-
holes mathematically constructed starting from background
geometries which are solutions of scalar–tensor theories as
dilaton gravity and Brans–Dicke gravity. The advantages of
working within such frameworks are studied by examining
the dependence of the extrinsic curvature and tides at the
throat with the parameters determining the departure from
pure relativity; the associated behaviour of tides in the smooth
regions of the geometries is also analyzed. Other related but
different approaches within pure relativity are discussed in
the appendices.

1 Introduction

The recent study in [1] shows that the main difficulty with
tides across the throat of thin-shell wormholes does not come
from the contribution of the smooth parts of the geometries:
for points along both the radial or an angular direction, the
corresponding effects are finite and proportional to the spa-
tial separation of these points, and could be controlled by an
appropriate choice of the parameters defining the metrics at
each side of the shell placed at the throat radius (see also
Ref. [2]). Instead, the contribution coming from the jump in
the extrinsic curvature across the shell presents some sub-
tleties. For the radial tides this contribution is fixed and does
not vanish for infinitely close points; hence the quotient of the
relative acceleration and the separation between two points
at different sides of the throat �a/�x would, in principle,
diverge when �x → 0. For the angular tides the problem
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is different: though the contribution of the curvature jump is
proportional to the angular separation, it appears regulated
by the traveling time across the shell, which, in a plain for-
mal approach, is infinitely short. These results would seem
to rule out the possibility of a safe passage through such con-
figurations. However, in our previous work [1] we briefly
introduced an alternative point of view, in the spirit of taking
the formal results as a first approximation to more realistic
situations in which shells have a non vanishing – though still
very little – thickness.

Within this understanding of the problem, here we will
investigate the conditions to, at least, reduce the jump of the
components of the extrinsic curvature across the shell; when
such reduction is possible, we will also evaluate the effects
of these conditions on the curvature of the smooth regions.
In particular, we will explore the possible advantages, if any
exist, of considering wormhole constructions in the frame-
work of gravity theories beyond relativity including a scalar
field, as the so-called dilaton gravity and Brans–Dicke grav-
ity.

Dilaton gravity (as it results from the low energy action
of string theory) has been considered of interest for differ-
ent reasons and at different scales. For example, the 3 + 1
dimensional cosmological field equations make possible to
propose a pre-big bang phase for the universe [3]; in relation
with this, the quantization of string cosmological models has
been thoroughly analysed (see, for instance, Refs. [4–6]). At
a smaller scale, and also in four spacetime dimensions, black
hole solutions have been studied in [7–10]. In a line even
more related with ours, it was shown that, by means of an
appropriate parameter choice, the dilaton field can reduce the
amount of exotic matter in wormholes supported by charged
thin shells [11].

On the other hand, given the usual objection against worm-
hole geometries in Einstein’s gravity, i.e. the requirement of
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exotic matter, wormholes have been repeatedly considered
in alternative theories; in fact, it was shown that the require-
ment of exotic matter could in some cases be avoided (see
for example [12–14] or [15] and references therein). In par-
ticular, it was shown in [16] that, in Brans–Dicke gravity,
Lorentzian wormholes of the Morris–Thorne type are com-
patible with matter which, apart from the Brans–Dicke scalar
field, satisfies the energy conditions. An analogous result
was found in [17,18] for spherical thin-shell configurations.
Other related aspects of wormholes in Brans–Dicke or in
other scalar–tensor theories were also discussed in Refs. [19–
21].

The article is organized as follows: In Sect. 2 we review
some aspects of tides in thin-shell wormholes as they were
previously analyzed in [1], and we present the general expres-
sions for the proper tidal acceleration experienced by mov-
ing objects traversing across the thin throat of the geometry.
In Sect. 3 we apply the analysis to some specific solutions
of dilaton gravity and of Brans–Dicke gravity, respectively.
In Sect. 4 we summarize the results obtained for different
scalar–tensor theories in comparison with General Relativ-
ity. Finally, we include two appendices dealing with different
simple lines of analysis for other examples within the rela-
tivistic framework.

2 General aspects of tides in thin-shell wormholes

We restrict our analysis to static thin-shell wormholes con-
structed by pasting together two copies of the same geometry
at the throat’s timelike hypersurface defined by r = r0; the
line elements are

ds2 = g±
00 dt

2 + g±
rr dr

2± + g±
ζ ζ dζ 2 + g±

ϕϕ dϕ2, (1)

where the sign ± refers to each side of the throat with per-
pendicular radial coordinates r± � r0, respectively. The ζ

coordinate represents the polar coordinate θ ∈ [0, π) in the
case of spherical symmetry, or the axial coordinate z ∈ R

when we consider a cylindrical geometry. In the second case
the metric elements depend on r±; in the first one, the coeffi-
cient g±

ϕϕ depends also on θ . As usual, t ∈ R and ϕ ∈ [0, 2π).
The normal coordinate associated to the radial direction is
defined as

dη = ±
√
g±
rr dr±, (2)

i.e., (±)η measures the perpendicular proper distance at the
vicinities of the throat located at η = 0, for a static observer;
the unit normal vector to the shell is correspondingly defined
as nμ = ∂μη, pointing from − to +.

Tides acting on a body traversing a wormhole are best
described by the covariant relative acceleration usually

expressed as [22,23]

(�a)μ = −gρμRρανβV
α(�x)νV β (3)

where Rμ
ανβ is the Riemann tensor, Vμ is the four-velocity,

and (�x)μ is a vector which stands for the small separation
of two points in spacetime.1 The components of the Riemann
tensor can be put in the form2

Rμανβ = 
(−η)R−
μανβ + 
(η)R+

μανβ − δ(η)
[
καβ nμnν

+κμν nαnβ − καν nμnβ − κμβ nαnν

]
(4)

where R∓
μανβ is the smooth tensor at each side of the shell

and

καβ = 1

2

(
∂g+

αβ

∂η
− ∂g−

αβ

∂η

) ∣∣∣
r0

(5)

is the jump in the extrinsic curvature tensor at the shell. Given
the symmetry of the problem, the components of the Riemann
tensor which are relevant for our analysis are

Rr0
r0 = − 1

4grr g00

{
2g00,rr − g00,r

(g00grr ),r
g00grr

}
, (6)

Rϕ0
ϕ0 = − gϕϕ,r g00,r

4grr g00gϕϕ

, (7)

Rϕr
ϕr = Rϕ0

ϕ0 − 1

4grr gϕϕ

×
{

2gϕϕ,rr − gϕϕ,r

(
g00gϕϕgrr

)
,r

g00gϕϕgrr

}
(8)

and analogous expressions substituting ϕ by z for cylindri-
cally symmetric problems.

With these definitions, we can recall the result of [1] for
the proper tidal acceleration of a radially extended object
moving in the radial direction across the throat

�a =
[
Rr0

r0
− + Rr0

r0
+]

r0

�η̃

2
+ O(�η̃2) − κ0

0, (9)

where κ0
0 is the jump of the component K 0

0 of the extrinsic
curvature across the infinitely thin shell, and �η̃ is the proper
radial separation between points of the object traversing the
throat; this reduces to �η for a rest body, which is in the radial
direction. The smooth regions contribute with a term propor-
tional to �η̃ which typically describes a tension exerted on
the body. The jump in the extrinsic curvature, instead, adds
a finite contribution which is fixed for a given geometry, so
that it does not vanish for infinitely close points at different

1 The acceleration is exclusively given by the derivatives of the metric
function, in terms of the Riemann tensor, if the test body is not coupled
to any other field.
2 This corresponds to the standard result, as it is derived in [22], for
the Riemann tensor in the context of the thin-shell formalism. The first
derivatives of the metric carries two terms proportional to delta functions
with different sign, arising from 
′(±η) = ±δ(η), which cancel with
each other.
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sides of the throat; this implies not a tension but a compres-
sion, given that a point at each side of the throat is usually
attracted towards it. This particular nature of tides reflects the
discontinuous character of the gravitational field (i.e. of the
first derivatives of the metric) at r0; it suggests that such kind
of quite generic wormhole geometry, though traversable in
principle, presents the practical problem of great tides acting
on a body extended across the throat.

In an analogous way, we can write down the result in [1]
for the angular tide of a radially moving object, which is
conveniently decomposed as a finite part plus a divergent
one:

�a⊥ = �a f ini te
⊥ + �adiv⊥ , (10)

where

�a f ini te
⊥ = �x⊥

2

[
Rϕ0

ϕ0
− + γ 2β2

(
Rϕ0

ϕ0
− − Rϕr

ϕr
−)]

r0

+ �x⊥
2

[
Rϕ0

ϕ0
+ + γ 2β2

(
Rϕ0

ϕ0
+ − Rϕr

ϕr
+)]

r0
(11)

and introducing the infinitely-short travelling proper time δτ

of the object across the shell,

(�a⊥)div = �x⊥
γβ κϕ

ϕ

δτ
. (12)

Expressions with the coordinate z instead of ϕ hold for the
axial tide in the case of a problem with symmetry along the
z axis. Here, as usual in similar contexts, we use the velocity
V μ̂ = dx μ̂/dτ = (γ, γβ, 0, 0) as measured in an orthonor-
mal frame {�eμ̂} at rest at the vicinities of the throat to define

the parameters γ = 1/
√

1 − β2 and the positive radial speed
β of the object as measured in the orthonormal frame. The
divergent character of the result is apparent because of the
proper time δτ , which goes to zero for an infinitely thin shell,
in the denominator. Differing from the case of radial tides,
for tides in transverse directions to the radial one both contri-
butions are proportional to the transverse extension �x⊥ of
the object. For an angular tide, the finite term implies a com-
pression produced by the curvature of the smooth parts of the
geometry, while the divergent term corresponds to a stretch-
ing effect resulting from the jump in the extrinsic curvature
produced by the flare-out at the shell. This serious difficulty
could be avoided only in the case of a negligible velocity,
or if the geometry is chosen so that it presents no curvature
jump at the throat.

3 Scalar–tensor theories

Now we go beyond the analysis of simple corrections to the
metric functions, by leaving the relativistic framework. We
will consider two kinds of scalar–tensor gravity models: the
low energy limit of bosonic string theory, yielding the so-
called dilaton gravity, and the well known Brans–Dicke the-

ory in which the gravitational constant is replaced by a field
whose source is standard matter, and which together with it,
determines the spacetime geometry. We will not perform a
complete analysis of many cases, but we will restrict to two
simple configurations useful to exemplify different aspects
of the problem and possible suitable treatments. The central
role in our analysis will be that of the extrinsic curvature
tensor: these components are associated to the contribution
to the radial tide which does not vanish for infinitely close
points, and to the terms in the transverse tides which are for-
mally divergent. Problems in the smooth part can be more
easily controlled by suitably choosing certain parameters of
the problem (see [1]). However we will also examine how
the conditions on the extrinsic curvature are reflected in the
behaviour of the tides in these regions.

3.1 Dilaton gravity

The dilaton spherically symmetric black hole in the Einstein
frame is described by the metric [7–10]

ds2 = − f (r)dt2 + f −1(r)dr2 + h(r)(dθ2 + sin2 θdϕ2),

(13)

with functions

f (r) =
(

1 − A

r

)(
1 − B

r

) 1−b2

1+b2

,

h(r) = r2
(

1 − B

r

) 2b2

1+b2

. (14)

The constants A, B and the parameter b are related with the
mass and electric charge of the black hole by

M = A

2
+

(
1 − b2

1 + b2

)
B

2
,

Q =
√

AB

1 + b2 . (15)

The electromagnetic field tensor has non-null components
Ftr = −Frt = Q/r2, and the dilaton field is given by

e2φ =
(

1 − B

r

)2b/(1+b2)

, (16)

where the asymptotic value of the dilaton φ0 is taken as
zero. When b = 0, which corresponds to a uniform dila-
ton, the metric reduces to the Reissner–Nordström geom-
etry, while for b = 1, one obtains f (r) = 1 − 2M/r ,
h(r) = r2

[
1 − Q2/(Mr)

]
. In what follows, we shall con-

sider 0 ≤ b ≤ 1. B and A are, respectively, the inner and
outer horizons of the black hole; while the outer horizon is
a regular event horizon for any value of b, the inner one is
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singular for any b 	= 0. For such metric, the relevant compo-
nents of the Riemann tensor are:

Rr0
r0 = − f ′′(r)

2
(17)

Rϕ0
ϕ0 = − f ′(r)h′(r)

4h(r)
(18)

Rϕr
ϕr = Rϕ0

ϕ0 − f (r)

4h(r)

{
2h′′(r) − h′2(r)

h(r)

}
(19)

where we have adopted the notation of a prime for a derivative
with respect to the radial coordinate.

If the flare-out condition h′(r0) > 0 is fulfilled for r > r0

(with r0 a radius outside the larger horizon surface), two
copies of the exterior region can be joined at a thin shell
to define a Lorentzian wormhole. This thin-shell wormhole
geometry was considered in [11], where the explicit construc-
tion was done according to the Einstein equations on the shell
(Lanczos equations [24–29]). The induced surface stress ten-
sor Si j at the throat has the usual form: 8π Si j = κδi j −κ i

j ,
with κ the trace of the extrinsic curvature jump (see [11]
and references therein). The jump of the components of the
extrinsic curvature at the shell (second fundamental form) is
given by

κθ
θ = κϕ

ϕ = h′(r0)
√

f (r0)

h(r0)
(20)

and

κ0
0 = f ′(r0)√

f (r0)
. (21)

The latter results in a non-null energy density and transverse
pressures at the throat, as analyzed extensively in [11]. The
boundary condition for the scalar field is trivially satisfied for
the kind of mathematical construction we are dealing with:
from the field equation φ;μ;μ = − b

2e
−2bφF2, it is clear that

no jump in the first derivative of φ can result given the finite
character of Fμν and φ at the joining surface (see footnote 6
below).

Let us analyze the tides in both the radial and the angu-
lar directions at the throat of a thin-shell wormhole. As we
noted above, the central problem comes from the extrinsic
curvature jump, as the contributions from smooth parts are
finite and proportional to the separation between points. In
the radial case this jump leads to a finite, non-vanishing tide
between infinitely close points, while in the angular direc-
tion the curvature jump implies a divergent tide. In a practi-
cal approach, one would always be interested in reducing the
corresponding extrinsic curvature jumps κ0

0 and κϕ
ϕ . Then

we will evaluate these elements and examine the behaviour
of the quotients κ0

0
Dil

/κ0
0
RN

and κϕ
ϕ
Dil/κϕ

ϕ
RN , where

“Dil” stands for “dilaton” and “RN” refers to the pure rela-
tivity limit b → 0 corresponding to the Reissner–Nordström
geometry. If we simplify the notation by writing 1−b2

1+b2 = n

and 2b2

1+b2 = m, for the jump associated to the tide in the
radial direction we have

κ0
0
Dil = f ′(r0)√

f (r0)
= 1

r2
0

(
1 − A

r0

)− 1
2
(

1 − B

r0

) n
2 −1

×
[
A

(
1 − B

r0

)
+ nB

(
1 − A

r0

)]
(22)

and

κ0
0
Dil

κ0
0
RN

=
(
r0 − B

r0

) n
2 − 1

2 (A + nB)r0 − AB(n + 1)

(A + B)r0 − 2AB
. (23)

To understand this result let us consider two limits: a throat
very near the outer horizon, so that r0 → A, and a throat
radius very large compared with the horizon radius, for what
we take r0 → ∞. For r0 → A, both in the dilaton as in the
pure relativity cases the curvature jump involved in radial
tides becomes very large, and we have

κ0
0
Dil

κ0
0
RN

→
(
A − B

A

) n
2 − 1

2

> 1 (24)

because A−B < A and for b > 0 it is n < 1, and the dilaton
would not improve the situation with radial tides; in the other
limit, for r0 → ∞ we obtain

κ0
0
Dil

κ0
0
RN

→ A + nB

A + B
< 1. (25)

Therefore the traversability, at least for radially extended
objects, is improved in the dilaton framework if the throat
is very far from the outer horizon. Apart from these two lim-
its, one could wonder about the situation for intermediate
regions. In the particular case b = 1, which corresponds to
n = 0, we have

κ0
0
Dil (b=1)

κ0
0
RN

=
(
r0 − B

r0

)1/2 1

1 + B((r0 − 2A)/Ar0)
, (26)

and it is clear that for any r0 > 2A the quotient is smaller than
unity. This is a sufficient condition, but not a necessary one:
in fact, both the throat radius and the inner horizon radius
could be scaled in terms of the outer horizon by writing r0 =
α1A, α1 > 1 and B = α2A, α2 < 1 to show that the
condition to have a better situation with the dilaton field can
be written

κ0
0
Dil (b=1)

κ0
0
RN

=
(

α1 − α2

α1

)1/2
α1

α1 + α2(α1 − 2)
< 1. (27)

Now, one may wonder about the possibility that the improve-
ment of the radial tide across the wormhole throat is achieved
at the price of worsening the situation in the smooth regions
of the geometry. According to the general analysis of Sect. 2,
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answering this question requires to evaluate the behaviour of
only one component of the Riemann tensor:

Rr0
r0

Dil

Rr0
r0

RN
= (1 − B/r0)

nr0(AB2(1 + n)(2 + n) − B(1 + n)(4A + Bn)r0 + 2(A + Bn)r2
0 )

2(B − r0)2(−3AB + (A + B)r0)
. (28)

We immediately see that in the convenient limit r0 → ∞ we
have

Rr0
r0

Dil

Rr0
r0

RN
→ A + nB

A + B
< 1. (29)

For any r0, in the particular case b = 1 (n = 0) considered
above we have

Rr0
r0

Dil(b=1)

Rr0
r0

RN
= Ar0

Br0 + A(−3B + r0)
(30)

and we find that for α1 > 3 we obtain

∣∣∣ R
r0

r0
Dil(b=1)

Rr0
r0

RN

∣∣∣ = α1

α1 + α2(α1 − 3)
< 1. (31)

For these cases the improvement in the curvature jump asso-
ciated to the radial tide across the throat is then achieved
in correspondence with a reduction of the radial tide in the
smooth parts of the geometry.

For the jump determining the formally divergent tide in
the angular direction we have the analogous expressions

κϕ
ϕ
Dil = h′(r0)

√
f (r0)

h(r0)
= 1

r2
0

(
1 − A

r0

) 1
2
(

1 − B

r0

) n
2 −1

×
[

2r0

(
1 − B

r0

)
+ mB

]
(32)

and

κϕ
ϕ
Dil

κϕ
ϕ
RN

=
(
r0 − B

r0

) n
2 − 1

2 2(r0 − B) + mB

2(r0 − B)
. (33)

Now we can note that for any n < 1 andm > 0 both factors in
the product above are larger than unity, as long as r0 satisfies
the natural condition r0 > A > B. Hence no parameter
choice in the dilaton model allows to improve the situation
with the angular tide in relation with the pure relativistic
framework.

3.2 Brans–Dicke gravity

As an example of the problem of tides across shells within
the framework of Brans–Dicke scalar–tensor gravity, we con-
sider the cylindrically symmetric wormholes connecting sub-
manifolds of the form

ds2 = − f (r)dt2 + g(r)dr2 + h(r)dϕ2 + k(r)dz2, (34)

where f , g, h and k are positive functions. Two copies of the
outer region r ≥ r0 of this geometry joined at the hypersur-

face r = r0 constitute a Lorentzian wormhole as long as the
flare-out condition is satisfied. For cylindrical configurations
we can adopt two definitions of such condition: the usual in
which the area of a surface at the throat is minimum, or the
circular notion proposed in [30], defined by the existence of
a minimum of the function h(r) at r = r0 (see also [31]). To
examine the radial and transverse (angular and axial) tides
for a radially moving object we will need the following com-
ponents of the Riemann tensor, generically written as

Rr0
r0 = − 1

4 f (r)g(r)

{
2 f ′′(r) − f ′(r) ( f (r)g(r))′

f (r)g(r)

}
, (35)

Rϕ0
ϕ0 = − f ′(r)h′(r)

4 f (r)g(r)h(r)
, (36)

Rϕr
ϕr = Rϕ0

ϕ0 − 1

4g(r)h(r)

×
{

2h′′(r) − h′(r) ( f (r)g(r)h(r))′

f (r)g(r)h(r)

}
, (37)

and analogous expressions with k(r) instead of h(r) for the
components Rz0

z0 and Rzr
zr .

The Brans–Dicke equations on the shell are obtained,
in the Jordan frame, from the field equation φ;μ;μ =
8πT/(2ω + 3) relating the second derivatives of φ with the
trace of the stress tensor T , and the Einstein equations at
the shell. The first leads to the boundary condition 〈φ,N 〉 =
8π S/(2ω + 3) (see Refs. [32–34]), where N stands for the
direction normal to the surface of the throat, S is the trace
of the jump of the surface stress tensor, and ω is the Brans–
Dicke constant.3 The Lanczos equations relate the extrinsic
curvature jump, the field φ and the surface matter content at
the throat as 8π

(
Si j − δi j S/(2ω + 3)

)
φ−1 = κδi j − κ i

j .
For the cylindrically symmetric solutions, the jump of the
components of the extrinsic curvature across the shell are
given by

κ0
0 = f ′(r0)

f (r0)
√
g(r0)

, (38)

κϕ
ϕ = h′(r0)

h(r0)
√
g(r0)

, (39)

and

κ z
z = k′(r0)

k(r0)
√
g(r0)

. (40)

3 The equivalence principle is satisfied as the scalar field does not exert
any direct influence on the test particle; its only role is that of participant
in the field equations that determine the geometry of spacetime [35].
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We will carry out a detailed analysis for a class of geome-
tries previously considered in [36,37] given by4

f (r) = g(r) = r2d(d−n)+�(ω), (41)

h(r) = W 2r2(n−d), (42)

k(r) = r2d . (43)

Here �(ω) = [ω(n−1)+2n](n−1), with ω the Brans–Dicke
constant (we shall assume ω > −3/2 to avoid what could be
interpreted as a negative effective gravitational constant; see
[23]) and d and n are constants of integration: n is related to
the departure from pure general relativity – see below – and
d can be understood as a mass parameter; the case d = 0
within Einstein’s gravity describes a conical geometry. The
Brans–Dicke field has the behaviour

φ = φ0r
1−n . (44)

This geometry can be found in Ref. [36],5 and can be obtained
as the zero current limit of the magnetic solution in Ref. [38];
see also [39]. The Einstein’s gravity solutions (see for exam-
ple [40] and also [41]) are obtained for n = 1. The usual
areal flare-out condition demands

(√
h(r)k(r)

)′
> 0 at the

throat, while the circular condition requires
(√

h(r)
)′

> 0.
In the first case we would say that we have a throat at r0

as long as n > 0, while in the second case the inequality
n > d ≥ 0 should hold. In what follows we will restrict to
0 ≤ d < 1 to avoid a circumference decrease for increasing
r in the relativistic limit. The components of the jump of the
extrinsic curvature at the shell (second fundamental form)
take the form

κ0
0 = 2d(d − n) + �(ω, n)

rd(d−n)+1+�(ω,n)/2
0

, (45)

κϕ
ϕ = 2(n − d)

rd(d−n)+1+�(ω,n)/2
0

, (46)

κ z
z = 2d

rd(d−n)+1+�(ω,n)/2
0

. (47)

The relativity limit n = 1 reduces to

κ0
0 = 2d(d − 1)

rd(d−1)+1
0

, (48)

κϕ
ϕ = 2(1 − d)

rd(d−1)+1
0

, (49)

4 To keep dimensions consistent, the radial coordinate is defined as
r = ρ/ρ∗, where ρ∗ can be understood as a “core” radius fixing the
scale; in what follows we consider ρ > ρ∗, then r � r0 > 1, and work
with the dimensionless line element ds2 = (ds̃/ρ∗)2, where z ∈ R and
W 2 is a dimensionless constant.
5 There is a typo in Eq. (31) of that paper, where a factor (n − 1)

multiplying ω is missing, as can be deduced by comparison with the
immediately preceding equations.

κ z
z = 2d

rd(d−1)+1
0

. (50)

The second fundamental form determines the presence of a
surface energy density and pressures at the throat for the static
wormhole configuration. The stress tensor components were
analyzed in detail in [37]. Besides, as mentioned previously,
the relation between the jump of the scalar field across the
surface and the matter imposes the condition [37]

2ω
φ′(r0)

φ(r0)
= f ′(r0)

f (r0)
+ h′(r0)

h(r0)
+ k′(r0)

k(r0)
, (51)

which implies a constraint involving the throat radius r0 and
all the parameters that must be fulfilled by the wormhole
construction from a given metric.6 In this particular example
the condition turns to give only the relation

ω(1 − n2) = 2(d2 + n2 − nd) (52)

which can be used to write, for example, ω in terms of the
parameters n and d. We then obtain

κ0
0 = 4d(d − n) + 2n(n − 1)

(n + 1)r1+(2d(d−n)+n(n−1))/(n+1)
0

, (53)

κϕ
ϕ = 2(n − d)

r1+(2d(d−n)+n(n−1))/(n+1)
0

, (54)

κ z
z = 2d

r1+(2d(d−n)+n(n−1))/(n+1)
0

. (55)

Note that for d = 0, which in the pure relativistic frame-
work would correspond to a wormhole connecting two coni-
cal geometries, the component κ z

z determining the axial tide
vanishes.

Now the question would be how does each component
behave with the parameter n determining the departure from
pure relativity. Does n 	= 1 reduce the curvature jump? The
answer will, in principle, depend on the throat radius r0. A
straightforward way to perform the analysis could be to take
κ0

0 and κϕ
ϕ as functions of the parameter n and study the

derivatives at n = 1: the relativity (Rel) limit would give the
best conditions for traversability only if for n = 1 we find
a radius r0 such that there is a minimum of the elements of
the curvature jump. If this is not the case, the sign of the first
derivative of each component will indicate whether we must
consider a choice of n < 1 or n > 1 within the Brans–Dicke
(BD) gravity framework. This also seems to be the more

6 The jump of the normal derivative of φ comes from the fact that the
field equations of Brans–Dicke gravity relate the second derivatives of
the field to the trace of the energy-momentum tensor, which is singular
at r = r0. This is not the case in dilaton gravity, where the field equations
establish a proportionality of the second derivatives of the scalar field
with the trace of the electromagnetic field. Therefore no singular con-
tribution appears associated to the existence of an infinitely thin matter
layer, the normal derivative of the dilaton field is continuous across the
shell, and this is automatically satisfied so no related restrictions result.
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suitable approach for more general geometries in the same
framework; however, for this example we can obtain a direct
first insight in the dependence with n by writing quotients in
the same way of the preceding section:

κ0
0
BD

κ0
0
Rel

= [2d(d−n)+n(n−1)] r (d(n−1)(d+1)−!n(n−1))/(n+1)
0

d(d − 1)(n + 1)
,

(56)

κϕ
ϕ
BD

κϕ
ϕ
Rel

= (d − n)r (d(n−1)(d+1)−n(n−1))/(n+1)
0

(d − 1)
, (57)

κ z
z
BD

κ z
z
Rel

= r (d(n−1)(d+1)−n(n−1))/(n+1)
0 . (58)

We immediately see that for large n the quotient of radial
tides behaves in the form ∼ −nr−n

0 , for the angular tide it
is of the form ∼ nr−n

0 , while for the axial tide it is of the
form ∼ r−n

0 . Because r0 > 1, the ratios vanish in the limit
n → ∞ being the axial case the faster one. Hence, for all
possible orientations, the tides are weaker in the case of a
very large departure from pure relativity; the Brans–Dicke
framework thus constitutes a better situation in what regards
traversing the throat of this kind of wormhole geometry. The
behaviour of the radial tide for a radially moving object in the
smooth regions of the spacetime is inferred from the quotient

Rr0
r0

BD

Rr0
r0

Rel

= (2d2 − 2dn + (n − 1)n)r2(d(n−1)(d+1)−n(n−1))/(n+1)
0

(d − 1)d(n + 1)
.

(59)

For large n this behaves as ∼ −nr−2n
0 , so it vanishes for

n → ∞. The dependence of the angular tide in any of the two
smooth submanifolds joined at the throat can be described
by the quotient of the finite parts:

�a f ini te
⊥(ϕ) |BD

�a f ini te
⊥(ϕ) |Rel

= (d − n)(d2(2 + 4γβ) + (n − 1)(n + (n − 1)γβ) + d(γβ − n(2 + 3γβ)))

(d − 1)d(1 + n)(d − 1 − γβ + 2dγβ)

× r2(d(n−1)(d+1)−n(n−1))/(n+1)
0 , (60)

with the velocity dependent parameters β and γ defined as
above. The large n behaviour has the form ∼ n2r−2n

0 , and
vanishes in the limit n → ∞. For the tide along the symmetry
axis we have

�a f ini te
⊥(z) |BD

�a f ini te
⊥(z) |Rel

= (γβ + d2(2 + 4γβ) + n(n − 1 − γβ + 2nγβ) − d(γβ + n(2 + 5γβ)))

(d − 1)(n + 1)(d − γβ + 2dγβ)
r2(d(n−1)(d+1)−n(n−1))/(n+1)

0 . (61)

For large n we find a behaviour ∼ nr−2n
0 . Summarizing: for

this example, in Brans–Dicke gravity the reduction of tides

in the smooth regions of the geometry is in correspondence
with the improvement of tides across the throat.

4 Discussion

If taken literally, previous results [1] about tides across the
throat of thin-shell wormholes would rule out a safe travel
from one side to the other: as a result of the jump of the extrin-
sic curvature at the throat, angular tides are formally diver-
gent, and radial tides lead to a finite but non vanishing relative
acceleration between two infinitely close points. However, an
alternative more realistic interpretation of the formal results
as an approximation to wormholes supported by exotic mat-
ter shells of little but non vanishing thickness is a reasonable
possibility. Such point of view naturally leads to the problem
of determining the conditions to reduce the jump of the com-
ponents of the extrinsic curvature across the shell. We have
examined the consequences of extending the traversability
analysis to frameworks beyond relativity, as the scalar–tensor
theories known as dilaton gravity and Brans–Dicke gravity.
We have studied particular examples with spherical sym-
metry for the first, and with cylindrical symmetry for the
second. We have considered certain limits and shown that
in the dilaton example no general improvement is possible,
as the dependence of angular tides with the departure from
pure relativity is opposite to that of radial tides; however,
in the case in which a reduction of the extrinsic curvature
jump across the throat is possible, the suitable configurations
also reduce the corresponding tide in the smooth parts of the
geometry. In the Brans–Dicke cylindrical example, instead, a
large departure from relativity seems to improve the situation
with both transverse (i.e. angular and axial) and radial tides;
moreover, this is in correspondence with a reduction of tides

in the smooth regions of the geometry. An alternative anal-
ysis of other spherically and cylindrically symmetric exam-
ples within the relativistic framework can also be carried out.

Indeed, in the appendices we consider the behaviour of tides
in relation with certain parameters associated to the sources
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determining the geometries, both from the point of view of
the extrinsic curvature jump, as also in an approximate more
elementary study of the radial relative acceleration between
points at different sides of the wormhole throat.
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Appendix A: Corrections in spherical and cylindrical
symmetry

Let us begin studying the consequences of additional terms in
the metric coefficients of geometries with a given symmetry.
Take the spherically symmetric geometry

ds2 = − f (r)dt2 + f −1(r)dr2 + r2 (
dθ2 + sin2 θdϕ2) (62)

so that from two copies of it we construct a symmetric worm-
hole with extrinsic curvature jump at the throat given by

κϕ
ϕ = 2

r0

√
f (r0) (63)

and

κ0
0 = f ′(r0)√

f (r0)
. (64)

If we introduce a correction to the geometry changing f (r)
to f ∗(r) = f (r) + q(r), we will have the new jumps

κϕ
ϕ

∗ = 2

r0

√
f (r0) + q(r0) (65)

and

κ0
0
∗ = f ′(r0) + q ′(r0)√

f (r0) + q(r0)
. (66)

From this we immediately see that a negative q(r) at r0

improves the situation with the angular tide, while a posi-
tive addition to the original metric makes things worse in
this direction. However, with the component κ0

0 determin-
ing the radial tide the situation presents more possibilities:
the case q(r0) > 0 and q ′(r0) < 0 diminishes the radial

tide, while the opposite happens for the reverse signs, and
a particular analysis is required by the other two cases. A
clear example is provided by the Reissner–Nordström (RN)
wormhole [42], with the geometry at each side understood as
a correction Q2/r2 added to the Schwarzschild (Sch) metric
function f (r) = 1 − 2M/r :

ds2 = − f (r)dt2 + f −1(r)dr2 + r2
(
dθ2 + sin2 θdϕ2

)

(67)

with

f (r) = 1 − 2M

r
+ Q2

r2 , (68)

where Q is the electric charge. We then have

κϕ
ϕ
RN = 2

r0

√
f (r0) = 2

r0

√
1 − 2M

r0
+ Q2

r2
0

, (69)

and

κ0
0
RN = f ′(r0)√

f (r0)
= 2

r2
0

⎛
⎝ Mr0 − Q2

√
r2

0 − 2Mr0 + Q2

⎞
⎠ . (70)

A direct inspection shows that the Schwarzschild case (Q =
0) gives a smaller jump κϕ

ϕ to which the angular tide is
proportional. But the relation is reversed for κ0

0, which is
larger for Q = 0. Hence the addition of the charge improves
the situation for the radial tide, but makes things worse for
the angular tide. Note that, for a certain throat radius r0, a
decrease of κϕ

ϕ must necessarily come from a smaller value
of f (r0), which in turn implies an increase of κ0

0; this can
only be avoided by an appropriate decrease of f ′(r0).

A very similar analysis can be carried out in cylindrically
symmetric problems. Let us study the example associated
to a black string thin-shell wormhole [43]. In this case the
throat connects two exterior submanifolds with metrics (see
Ref. [44])

ds2 = −
(

α2r2 − 4m

αr
+ 4λ2

α2r2

)
dt2

+
(

α2r2 − 4m

αr
+ 4λ2

α2r2

)−1

dr2

+r2dϕ2 + α2r2dz2, (71)

where m and λ are respectively the mass and charge per unit
length, and α2 = −�/3 > 0 with � < 0 the cosmological
constant. This geometry is singular at the axis of symmetry
and depending on the values of these constants, the metric
(71) can present an event horizon at r = rh , which justifies
the black string denomination. Both the singularity and the
horizon are removed by the mathematical construction which
pastes two copies of the outer region r ≥ r0 > rh . The jump
of the components of the extrinsic curvature across the shell
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at the throat at r = r0 are

κ0
0 = 2

αr2
0

⎛
⎝ α4r4

0 + 2mαr0 − 4λ2

√
α4r4

0 − 4mαr0 + 4λ2

⎞
⎠ , (72)

κϕ
ϕ = 2

r0

√
α2r2

0 − 4m

αr0
+ 4λ2

α2r2
0

, (73)

κ z
z = κϕ

ϕ. (74)

We immediately find that the charge improves the situation
with the radial tide by reducing the extrinsic component jump
κ0

0, but it enlarges the troublesome contributions to the trans-
verse tides determined by the components κϕ

ϕ and κ z
z .

In general, we can pose the problem as follows: write the
metric coefficients as functions of r0 and a parameter p, and
study the behaviour of the derivatives ∂κα

β(r0, p)/∂p; the
best possible situation will be given in case that a parameter
p exists such that all these derivatives (two in the spherical
problem and three in the cylindrical one) have the same sign
for r0 an admissible throat radius. Then a suitable choice of
p allows to reduce tides in the radial and the transverse direc-
tions. When such possibility does not exist, as with the charge
in the Reissner–Nordström and black string examples, one
must select which is the most convenient direction to reduce
the corresponding tide. Of course, these considerations can
easily be extended to more general metrics and to more than
one parameter.

Appendix B: A fine tuning approach

The nature of the problems manifest in the infinitely thin
shell limit suggests a somewhat different analysis; the point
is that instead of assumptions about the dimensions of shells
involved, or the search for ways to reduce the extrinsic cur-
vature jumps, for negligible speeds we can try a fine tun-
ing which, of course, is not always desirable as a rule. For
radial tides on rest or moving objects the central point in
our traversability analysis is the necessity of a surmountable
relative acceleration between two infinitely close points sep-
arated by the wormhole throat. While this is automatically
achieved in locally flat geometries or in those spacetimes
with constant g00 and, thus, null acceleration, another possi-
bility could be to admit two geometries connected at a radius
r0 such that just at each side we have a locally vanishing
acceleration. The condition for a null acceleration at each
side implies g′

00(r0) = 0. The fact that near r0 no problems
arise associated to jumps of the acceleration is ensured by
the assumption that the submanifolds joined at the wormhole
throat are well behaved; as a practical rule, in order to avoid
large, though smooth, changes in g′

00 in the same vicinity, we
could include the condition of a small second derivative g′′

00.
Of course, nothing in these considerations points to solving

or at least improving the difficulties with angular tides; at this
point we should just rely on a quasi static crossing through
the throat.

Let us analyze some examples. In spherically symmet-
ric backgrounds, such behaviour of the metric is not possi-
ble, for example, for finite radii in a Schwarzschild geome-
try. But consider, again, the thin-shell wormhole connecting
two Reissner–Nordström geometries [42], now within this
approach. In this case the condition g′

00(r0) = − f ′(r0) = 0
is fulfilled at

r0 = Q2

M
; (75)

then a wormhole with such throat radius would present no
tidal problems, at least at the minimal area surface. Note that
if we insist in |Q| < M , which is usually required to avoid
a naked singularity in the complete Reissner–Nordström
geometry, this is not compatible with the condition of r0

greater than the event horizon radius rh = M +√
M2 − Q2.

Hence we should start this wormhole construction from two
geometries including a naked singularity; however, this is not
a problem within the context in which the regions r < r0 are
removed in the cut and paste mathematical construction.

In cylindrically symmetric backgrounds we have a simi-
lar situation: while the power-law behaviour of, for example,
the well known Levi-Civita metric excludes the possibility to
achieve the condition g′

00 = 0, more general axisymmetric
wormholes as those associated to Einstein–Maxwell space-
times (see [31] and also [40,41]) could provide the freedom
necessary to fulfil the conditions required, for certain values
of the parameters. The pure electric case corresponding to
a constant charge distribution along the symmetry axis and
a radial electric field does not allow for g′

00 = 0. However,
let us consider the geometry associated to a constant current
along the z axis giving an angular magnetic field, that is

ds2 = r2m2
G2(r)(−dt2 + dr2)

+r2G2(r)dϕ2 + G−2dz2 (76)

with

G(r) = k1r
m + k2r

−m (77)

and m, k1, k2 constants such that k1k2 > 0. This metric
admits g′

00 = 0 at a radius r0 satisfying

r2m
0 = k2(1 − mr0)

k1(1 + mr0)
; (78)

given the requirement k1k2 > 0, then there are two pos-
sibilities: m < 0, −mr0 < 1 and m > 0, mr0 < 1. If
two copies of the outer part of such spacetime are joined
at r0, then the resulting thin-shell wormhole would have no
traversability problems coming from radial strong tides at
the throat. In general, one should also verify the flare-out
condition at the radius r0 (that is, that we have a minimal
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area per unit length or minimal radius surface at r = r0); in
this pure magnetic case the mostly adopted areal version of
this condition is automatically fulfilled, as a direct inspection
shows. Note, however, that besides the fact that the angular
tides are not solved, differing from the gauge cosmic string
example where gzz = 1 ensured the absence of problems
associated with tides in the direction parallel to the axis, here
we have gzz = G−2(r) 	= 1; this implies a new difficulty
which cannot be simultaneously avoided. In fact, we must
choose between two directions which will be the safe one:
to avoid dangerous tensions or pressures along the z axis
we should demand (see below a strongly related calcula-
tion within the Brans–Dicke framework) g′

zz(r
∗
0 ) = 0, which

yields r∗
0 = (k2/k1)

1/(2m).
These considerations imply a fine tuning which is not

always the best solution. Nevertheless, it could be right if we
understand it as an operational simplification associated to a
more realistic condition, i.e. the requirement of a sufficiently
small acceleration a at each side of a shell of finite though
little thickness ε, so that the quotient �a/ε is admissible.
This approximation would be in the line of the “traversabil-
ity in practice” condition adopted in, for instance, Ref. [22]
for wormholes which are not of the thin-shell class, where
a maximum quotient g/ l is admitted if an object can with-
stand a maximum tidal acceleration g between two points
separated by a distance l.
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