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Abstract We provide a simple computation in order to esti-
mate the probability of a given hierarchy between two scales.
In particular, we work in a model provided with a gauge
symmetry, with two scalar doublets. We start from a scale-
invariant classical Lagrangian, but by taking into account
the Coleman–Weinberg mechanism, we obtain masses for
the gauge bosons and the scalars. This approach typically
provides a light (L) and a heavy (H ) sector related to the
two different vacuum expectation values of the two scalars.
We compute the size of the hypervolume of the parameter
space of the model associated with an interval of mass ratios
between these two sectors. We define the probability as pro-
portional to this size and conclude that probabilities of very
large hierarchies are not negligible in the type of models
studied in this work.

1 Introduction

There exist different fundamental energy scales within our
present knowledge of physics. From a simplified point of
view, we can refer to the reduced Planck scale MP = 1018

GeV as the one that suppresses the non-renormalizable grav-
itational interactions; the electro-weak scale MEW = 102

GeV, as the one associated to the Higgs Vacuum Expectation
Value (vev); the neutrino scale Mν = 10−10 GeV, whose
square is of the order of the square difference of neutrino
masses deduced from oscillation experiments; and the cos-
mological constant scale M� = 10−12 GeV, that in the stan-
dard cosmological model is the scale related to the negative
pressure necessary to accelerate the late expansion of the
Universe.
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One of the main fundamental questions in theoretical
physics is to understand the origin of such scales. Indeed,
we are not sure if these scales can be explained in terms of
more fundamental physics, or they are given as inexplicable
fundamental parameters.

From the point of view of the Quantum Field Theory
(QFT), the situation is more involved. Typically, the above
scales are determined by fundamental constants in the action
of the theory. For instance, MP = 1018 GeV is related to the
Newton constant that appears in front of the Einstein-Hilbert
action in General Relativity (GR); MEW is given by the con-
stant associated to the quadratic term of the Higgs doublet
in the Standard Model (SM); M� is fixed by the cosmologi-
cal constant; and Mν is associated with the mass term of the
active neutrinos.1

In QFT, the above constants suffer from the renormaliza-
tion prescription. It means that the observed values measured
in experiments are not just given by the bare constants that
appear in the action, but they contain radiative corrections
[1–3]. Indeed, if one is not careful enough in the construc-
tion or extension of a particular QFT, these corrections can be
so important that can lead to the so-called quantum instabil-
ities and fine-tuning problems [4–7]. This is the most impor-
tant theoretical problem associated with the large hierarchies
between some of the above commented scales [8–10].

From a different approach, the energy scales may not be
present in the action, but they can be originated by the quan-
tum corrections themselves. Although the classical theory
were scale-invariant, this symmetry would be anomalous.
The possibility of producing all the fundamental scales by
quantum effects have been pursued in different frameworks,
with the Coleman–Weinberg effective potential mechanism

1 Although this scale, as the others, could be the result of other funda-
mental scales. This is the case in the well-known See-Saw (SS) models.
Roughly speaking, the SS scale is given by the mass of one or several
heavy sterile neutrinos, in such a way that MSS � M2

EW /Mν � 1014

GeV.
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one of the most popular approaches [1]. In this work, we do
not try to give a viable solution to this question, but rather
study the general problem of the existence of large scale
hierarchies. We will illustrate the issue with a toy model and
estimate the probability of generating a large separation of
scales from quantum origin. Alternative probabilistic anal-
yses of the naturalness problem can be found in Refs. [10–
12]. However, the latter are typically based in Bayesian stud-
ies that lead to a Barbieri–Giudice measure-type [5]. These
approaches determine the probability of a model under the
assumption of some set of data and prior distributions. In con-
trast, we focus on the calculation of the likelihood of having
a given mass ratio for concrete values of the model param-
eters. We find a logarithmic suppression at large hierarchies
that is not present in previous studies. This feature is related
to the absence of dimensionful parameters in the particular
model under study. In this sense, this type of theories seems
to be promising for alleviating naturalness problems.

Our proposal is to start from a massless Lagrangian and
make use of the Coleman–Weinberg (CW) mechanism [1,
13–16] to obtain Spontaneous Symmetry Breaking (SSB)
and generate the mass scales of the model. These authors [1]
showed how a theory that is symmetric when looking at the
interactions present in the tree level Lagrangian can develop
SSB when the radiative corrections are taken into account.
Thus it is possible to generate masses for some particles,
even in theories that do not explicitly include any energy
scale.2 The basic CW approach [1] considers only one-loop
corrections, but higher order contributions can also be studied
[3]. Within the CW mechanism, quantum loops yield the
dominant contributions that generate the SSB.

2 SU(2)L × SU(2)H × U(1)X model

We will work with one of the simplest models that can
provide two different scales from radiative corrections: we
will assume a model with a gauge symmetry group G =
SU (2)L × SU (2)H ×U (1)X containing two complex scalar
doublets under SU (2)L and SU (2)H , � and �, respectively.

Thus, we will have the following particle content: the SU (2)L
gauge boson triplet (W 1μ

L ,W 2μ
L ,W 3μ

L ); the SU (2)H gauge

boson triplet (W 1μ
H ,W 2μ

H ,W 3μ
H ); theU (1)X gauge boson sin-

glet Xμ; one (light sector) SU (2)L scalar complex doublet
�; and one (heavy sector) SU (2)H scalar complex doublet
�. These doublets � and � have, respectively, the Abelian
charges QL and QH under U (1)X , being both sectors con-
nected by the Xμ gauge boson. Eventually, without any loss

2 By contrast, the Standard Model Higgs potential contains an explicit
mass scale and the electroweak SSB is triggered at tree-level, with
quantum loops introducing small subdominant corrections.

of generality, it will be useful to choose the orientation of
these scalar fields as �T = (0, ϕ)/

√
2 and �T = (0, η)/

√
2.

The interactions in this model will be provided by the
renormalizable Lagrangian,

L0 = |Dμ�|2 + |Dμ�|2 − V0, (1)

which includes the potential,

V0(ϕ, η) = 1

4!λLϕ4 + 1

4!λHη4 + 1

4!λLHϕ2η2, (2)

with ϕ2 = 2|�|2, η2 = 2|�|2.
The covariant kinetic term provides the gauge boson mass

terms. In the LH decoupled limit with gX = 0, one has
mWL , j = gLϕ/2 and mWH, j = gHη/2 (with j = 1, 2, 3)
and mX = 0. For gX �= 0 the expressions of the masses are a
bit more involved: Wμ

L , 1, Wμ
L , 2, Wμ

H, 1 and Wμ
H, 2 masses are

the same as in the gX = 0 case but a mixing shows up between
the Wμ

L , 3, Wμ
H, 3 and Xμ gauge bosons, leading to the diag-

onalized mass eigenstates Zμ
L , Zμ

H and γ̂ μ. An eigenstate,
γ̂ μ, is always massless while the Zμ

L and Zμ
H masses depend

on a combination of the three gauge couplings.3 In any case,
in the gX → 0 limit, one has Zμ

L → Wμ
L , 3, Zμ

H → Wμ
H, 3

and γ̂ μ → Xμ, as expected.
Finally we can construct the effective potential, including

the tree level terms and logarithmic one-loop corrections.
In the Coleman–Weinberg approximation, scalar loops are
assumed to be negligible with respect to the gauge boson
ones. Thus, the one-loop corrections are determined by the
gauge bosons masses in the form [1],

V = V0 + 3

64π2

7∑

j=1

m4
j

[
ln

(
m2

j

μ2

)
− 5

6

]
, (3)

with m j (ϕ, η) the masses of each of the seven SU (2)L ×
SU (2)H ×U (1)X gauge bosons and with μ the renormaliza-
tion scale in the MS scheme. The m j (ϕ, η) functions depend
on the value of the scalar fields ϕ and η and become the phys-
ical gauge boson masses at the vev of these scalar fields, 〈ϕ〉
and 〈η〉, respectively. We want to study different cases and
limits, depending on the values of the different couplings.
Within these cases, we will analyze the probability of obtain-
ing a given mass hierarchy. For that we define the following
ratio:

3 The masses of the Zμ
L and Zμ

H gauge bosons are given by,

m2
ZL ,H

= M
2

2

[
1 ∓

√
1 − 4m2/M

2
]

,

M
2 = (g2

H + g2
X Q

2
H )η2 + (g2

L + g2
X Q

2
L )ϕ2,

m2 = (g2
H g

2
L + g2

X (Q2
H g

2
L + Q2

L g
2
H ))η2ϕ2/(4M

2
),

with mZL � m and mZH � M for large hierarchies (m 	 M).
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R = g2
H 〈η〉2

g2
L〈ϕ〉2

= m2
WH

(〈η〉)
m2

WL
(〈ϕ〉) , (4)

which gives us the hierarchy between the square masses of
the (non-mixed) heavy gauge bosons (H ) and light gauge
bosons (L). We are mainly interested in large hierarchies in
the masses without large hierarchies between the different
dimensionless couplings: in this scenario a large hierarchy
between mWH and mWL is equivalent to a large hierarchy
between mη and mϕ . This ratio R is simply more conve-
nient for the analytical derivation below. Therefore, the above
ratio is a good parameter not only to estimate the hierar-
chy between the masses of the two gauge bosons, but also
between the complete two sectors.

The phenomenology of the model depends on the values
of its different couplings. To make the analysis simpler, we
will study various scenarios, with different parameters set
to zero. This will allow us to separate the contributions of
each coupling to the potential and study its implications to
the hierarchies of the model. The CW potential discussion
in Ref. [15] for a closely related SU (2) × SU (2) model can
be useful for further clarifications, as it explores alternative
situations.

We are considering two main restrictions that limit the
possible values of the parameters in order to have a consistent
model:

CW approx.: |λ j | < εCW · g2
j ,

perturbative: g2
j < εg2 · 4π ≡ g2

max , (5)

where the different εi 	 1 are the tolerances associated to
each restriction. The first constrain ensures that λ2

j 	 g4
j

and, therefore, the validity of the CW approximation [1],
where radiative corrections are fully dominated by gauge
boson loops (scalar loops are neglected). The second restric-
tion implies that g2

j/(4π) 	 1, so higher loop corrections
can be safely ignored. Regarding perturbativity, in principle,
one might also consider a third constraint |λ j | < ελ · 4π ,
in such a way that ελ 	 1 ensures

∣∣λ j
∣∣/(4π) 	 1. How-

ever, the fulfilment of the first two conditions immediately
implies perturbativity in the λ j expansion and, hence, it will
be no longer discussed. These restrictions define a triangular
region in our (λH , g2

H ) parameter space –and similarly in the
(λL , g2

L) plane–, in which we will study the different hierar-
chies. The precise value of the tolerance parameters has no
large effects on the results as far as both are of a similar order
(in fact, they do not play any role if εg2 = εCW ).

3 Hierarchy probabilistic analysis

Our first approach consists on fixing the couplings of the L
sector instead of integrating the whole L–H space of param-

eters. We study the conditional probability for a set of given
L–couplings αL = {g2

L , λL}. One can observe this as a sce-
nario where we have a certain fixed knowledge of the theory
at low energies but still consider all possibly allowed con-
figurations for the H sector couplings. In this case, this con-
ditional probability P(αL ) of being between the hierarchies
R0 and R1 is proportional to the area between the curves
with constant R0 and R1 contained in the allowed (g2

H , λH )

region. For the decoupled scenario (gX = 0, λLH = 0), the
lines of constant R in the (g2

H , λH ) plane are given by

R = e
128π2

27

(
λL
g4
L

− λH
g4
H

)

. (6)

If we allow gX �= 0 (though keeping λLH = 0 at the given
μ), the curve of constant R still remains simple enough to be
dealt with analytically for the small gX expansion of V (ϕ, η)

in (3):

R = e

128π2
27

⎛

⎝

(
λL + 9

128π2 g2
L Q2

L g
2
X

)

(
g4
L + 2

3 g2
L Q2

L g
2
X

) − (L↔H)

⎞

⎠

. (7)

The case λLH �= 0 is a little more involved. It admits
an implicit analytical relation between 〈ϕ〉 and 〈η〉 which is
provided in Appendix A for gX = 0. A non-zero value of
λLH modifies the relations that determine the vev’s and the
R hierarchy ratio in Eq. (6). For R > 1, a positive λLH

always tends to make R even larger while, for negative λLH ,
the effect is just the opposite, reducing the value of R. For
the case with R < 1, these two behaviours are interchanged:
a positive λLH makes R smaller, whereas a negative λLH

makes it larger. Therefore, the measure of the parameter-
space hypervolume with large hierarchies will not be dras-
tically modified: the qualitative results later derived will not
change. However, the mathematical discussion is much more
involved and less straightforward. For this reason, for the
study of the coupling between the L and H sectors, we will
focus on gX �= 0 perturbations but with λLH = 0.

One can see that, even if we introduce small differences
between the couplings in the light (λL , gL ) and the heavy
sectors (λH , gH ), both huge or very small hierarchies can
be generated between them due to the exponential factor
(notice e128π2/27 ∼ 1020). Likewise, we note that if there
is a given hierarchy R (this is, between the gauge bosons
masses), the same approximate hierarchy appears between
the vev’s and between the physical scalar masses. On the
other hand, if both gauge groups have exactly the same cou-
plings with gL = gH and λL = λH in decoupled models,
both vev’s will be equal and the same will happen between
the scalar and gauge boson masses of the L and H sectors,
i.e., we would have R = 1. This is also generally true for
coupled models in which QL = QH with gX , λLH �= 0.
Figure 1 shows the constant R lines in the (g2

H , λH ) allowed
region for gL = 0.6, λL = 10−3, gX = 0 and λLH = 0, and
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Fig. 1 Illustration of the allowed parameter region in the (g2
H , λH )

plane and the lines with constant R for a given value of gL and λL . For
illustration, we show large hierarchies up to R = 105 (lower region of
the plot) and small hierarchies up to R = 10−5 (upper region of the
plot), while the hierarchyR = 1 remains in the middle of the plot. From
top to bottom, each line increases its R value by a factor ×10. The solid
blue lines correspond to the results with gX = 0 while the dashed green
ones correspond to gX = 0.2, QL = 2 and QH = 1. The restrictions
described in Eq. (5) are also represented for εCW = εg2 = 1: CW
restriction (diagonal purple lines) and g2

max (vertical red line)

also the shift that these lines suffer when mixing couplings
QLgX , QHgX �= 0 are included. The area of these regions
can be integrated analytically without much problem. The
conditional probability P(αL ) is provided by the ratio of the
area with R ∈ [R0,R1] and the total allowed area in the
(g2

H , λH ) plane (given by the CW-triangle in Fig. 1). The
cumulative probability from R0 up to ∞ is given for the
decoupled case (gX = λLH = 0) by4

P
(αL )
cumul = 1

6

(
27 lnR0

32π
− 4πλL

g4
L

)−2
R0�1� 0.44

(
log10 R0

)2 ,

(8)

for lnR0 > 128π2

27

(
λL
g4
L

+ εCW
4πεg2

)
. The form of P(αL )

cumul for

smaller R0 can also be easily derived. However, this is not
the R–range of interest in this article, so it will not be dis-
cussed in further detail. The differential probability to have a
hierarchy within an interval lnR ∈ [lnR0, lnR0 + d lnR0]
is in general related to the cumulative probability through

4 A global factor (εCW /εg2 )2 must be added to the results in (8) if
different tolerances are considered (εCW �= εg2 ).

Fig. 2 Comparison of the cumulative probability P
(αL )
cumul for fixed

λL = 10−3 and gL = 0.6, both for decoupled LH sectors (gX = 0)
and weakly interacting LH sectors (with gX = 0.2 and for different
couplings (QL , QH ) for each sector)

dP(αL ) = − dP(αL )
cumul

d lnR0
d lnR

R0�1� 0.38
(
log10 R0

)3 d lnR

(9)

for the decoupled system.
We have also studied the weakly coupled case with gX �= 0

(though keeping λLH = 0, for simplicity). If the full gX
contribution to the gauge boson masses m2

j (〈ϕ〉, 〈η〉) is
kept, the vev’s 〈ϕ〉 and 〈η〉, which determine R, can no
longer be analytically computed and they have to be cal-
culated numerically. Nevertheless, if one considers the per-
turbative expansion m2

j ≈ m2
j (0) + m2

j (2) g
2
X up to O(g2

X ),
we are able to extract the vev’s and the analytical relation
R = R(gL , λL , gH , λH , QLgX , QHgX ) in Eq. (7).

In the case in which we fix the αL = {g2
L , λL}

and {QLgX , QHgX } parameters, it is possible to analyti-
cally compute the previously discussed area integral in the
(g2

H , λH ) plane. For sake of clarity, the expression for P(αL )

is relegated to Eq. (B. 1) in Appendix B. It is not difficult to
observe that this result turns into (8) in the small gX limit.
We illustrate these results in Fig. 2, where we provide the
cumulative probability P

(αL )
cumul for gX = 0 (decoupled LH

sectors) and gX = 0.2 (weakly interacting LH sectors, for
different choices of QL , QH , with λLH = 0). In all cases,
we consider the inputs λL = 10−3 and gL = 0.6. We note
that the two curves with gX = 0.2 and QH = 1 (red dashed,
QL = 1, and green long-dashed, QL = 2) are very similar
at large R0 –though not identical– (further details are given
in Appendix B). We find that the probability corrections with
respect to the gX = 0 case are tiny at small and intermediate
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Fig. 3 Comparison of the cumulative probability (10) for the integra-
tion of the whole L–H hypervolume in the decoupled and coupled
scenarios (with gX = 0.2 and for different couplings (QL , QH ) for
each sector), both with λLH = 0

hierarchies (R � 1030). Nonetheless, although P
(αL )
cumul is not

quite affected by the gX corrections for small R, things are
different for very large R: we found that, asymptotically, the
numerically computed cumulative probability with the full
potential (3) (R � 1030) disagrees with the prediction pro-
vided by the analytical perturbative gX expressions in Eq. (B.
1). Therefore, the shape of the R → ∞ probability distribu-
tion becomes sensitive to the precise details of the “weak”
interaction between the L and H sectors and one should go
beyond perturbation theory in gX .5

The previous study of the αL–conditional probability
P

(αL )
cumul shows that the decoupled scenario (gX = λLH = 0)

seems to provide a fair enough approximation of the L–H
weakly interacting case for moderate hierarchies (R � 1030).
Hence, in what follows, our fully analytical approach will
just focus on the decoupled limit for our last analysis, where
we derive the R probability distribution from the integra-
tion to the whole (g2

L , λL , g2
H , λH ) allowed parameter space.

In addition, the coupled system with gX �= 0 is computed
numerically by including corrections up to O(g2

X ) for the
potential in Eq. (3). The total probability distribution for
weakly coupled models is plotted in Fig. 3 and discussed
below.

5 We want to emphasize that, in order to test the validity of our approx-
imations, all the analytical results in this article have been checked
against numerical evaluations of the vev’s 〈ϕ〉 and 〈η〉, and probabili-
ties. We found that asymptotically, for very largeR, the vev’s computed
numerically from the full potential (3) disagree with those obtained from
the perturbative gX analytical expressions.

In the decoupled case (gX = λLH = 0), the hypervolume
between two hypersurfaces with constant R0 and R1 can
be analytically computed. Thus, it is possible to compare
our numerical estimates with the exact analytical expression
for the hierarchy probability defined as the ratio between
this hypervolume in the L–H parameter space and the total
allowed hypervolume. Notice that both the integrated vol-
ume and the total volume are proportional to ε6 in the case
with identical tolerances εCW = εg2 ≡ ε, so the probability
calculated as their ratio turns out to be tolerance independent,
as commented. The cumulative probability from R0 up to ∞
is given by6

Pcumul = 1

3

(
32π

27 lnR0

)2
[

1 +
(

32π

27 lnR0

)2

ln

((
27 lnR0

32π

)2

− 1

)]
R0�1� 0.87

(log10 R0)2 , (10)

for lnR0 > 64π
27 . The form of Pcumul for smaller R0 can also

be computed without much problem. Figure 3 compares this
result and those for gX �= 0, computed numerically. While
all curves coincide for R0 ∼ 1, small deviations appear as
the hierarchy increases.

At very large R0, the small gX expansion of the poten-
tial fails and one must perform the analysis with the full CW
potential (3), not just the gX expansion up toO(g2

X ) shown in
Fig. 3. Thus, large hierarchies are sensitive to the integration
in the small gL ,H and λL ,H range, where the gX parame-
ter may become even dominant (in our fixed gX approach).
Nonetheless, for not that large hierarchies (R � 1030) per-
turbation theory on gX works fine. Thus, when this pertur-
bative expansion converges well, the constant R lines in the
(g2

H , λH ) plane shown in Fig. 1 are found to be close to those
for gX = 0. Hence, we consider one can trust our results for
the cumulative probability in that R range. We note that, as
it occurred with P

(αL )
cumul in Fig. 2, the two curves in Fig. 3

with gX = 0.2 and QH = 1 (red dashed, QL = 1, and green
long-dashed, QL = 2) are very similar at large R0, although
not exactly equal. The differential probability to have a hier-
archy within an interval lnR ∈ [lnR0, lnR0 + d lnR0] is
given for gX = 0 by,

dP = − dPcumul

d lnR0
d lnR

R0�1� 0.76

(log10 R0)3 d lnR. (11)

6 If the perturbativity and CW restrictions are taken to be different
(εCW �= εg2 ) the results in Eqs. (10) and (11) must be multiplied by a
global factor (εCW /εg2 )3.
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4 Conclusions and final remarks

In this article, we have studied a simple two doublet gauge
model that allows large hierarchies between scales. We have
constructed a probability that estimates how likely is to have
a given hierarchy, defined by the hypervolume of the region
of the parameter-space with that hierarchy R0. We have con-
sidered two different situations for our toy model. First, we
have estimated the probability to obtain a large hierarchy
having a fixed low energy sector (L), analysing the impact
of a weak coupling between both L ↔ H sectors. Second,
we have calculated the global probability to obtain a given
hierarchy, scanning all possible values of both L and H sec-
tor parameters. Corrections due to a weak L ↔ H mixing
coupling do not change our basic conclusions.

We conclude that a small hierarchy between sectors is
more likely, since these hierarchies cover the largest regions
of the parameter space; nevertheless, we have also shown
that the decreasing of the probability for larger hierarchies
is not sizeable, since the cumulative probability is only log-
arithmically suppressed, with Pcumul ∼ (log10 R)−2. This
behaviour is easy to understand observing Eq. (6), where
there is an exponential dependence of the hierarchy on the
couplings. As one can see in Fig. 1, whenR increases the area
trapped below the constant-R curve decreases, but at a loga-
rithmic rate. This feature is expected in a wide set of theories
with dynamical symmetry breaking, where the hypervolumes
that determine the probabilities vary logarithmically with the
hierarchy.

Therefore, very large hierarchies are less probable but not
as unlikely as one might a priori think. As an example, we can
see that hierarchies of the order R � (MP/MEW )2 ∼ 1032

or even R � (MP/M�)2 ∼ 1060 would be only suppressed
by probabilities Pcumul ∼ 10−3–10−4. In addition, we have
also shown that these results are robust against ambiguities
in the probability definition (tolerances) and the coupling
parameters (at least, as far as they are not in the strongly
coupled regime).

Finally, we would like to discuss how these results are
expected to change if different models are considered. In
particular, we can analyse different symmetry groups G .
The result in this article is indeed very general for mod-
els with symmetries with a more general product structure
G = ∏

χ SU (2)χ . In the limit when the various χ sectors are
decoupled or weakly interacting, one can consider exactly
the same arguments applied here for the L and H sectors.
Thus, for any two sectors L , H ∈ {χ} one would obtain for
the hierarchy ratios R ≡ m2

W,L/m2
W,H similar probability

distributions to those obtained in this work for the simpler
case with just the product of two SU (2) groups. Other inter-
esting variation is given by models where instead of SU (2)

products one considers different subgroup dimensionalities,
this is, G = ∏

χ SU (Nχ )χ with various Nχ . Ref. [17] finds

that, in models with very different dimensionalities Nχ –e.g.,
G = SU (2) × SU (100)–, one naturally produces large hier-
archies. We aim to discuss these ideas in a future work.
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Appenndix A Impact of λLH corrections on the η–ϕ hier-
archy

In the case with gX = 0, we find that the effective potential
has several critical points, being the global minimum given
by one of them. We restrict the analysis to the ϕ, η ≥ 0
quadrant. Due to the (ϕ ↔ −ϕ, η ↔ −η) symmetry of the
Lagrangian, the remaining three quadrants are mirror copies
of this one.

Two of these critical points are placed at the η and ϕ axes,

(ϕ = 0, η), with

(
−99

27
+ log

(
g2
Hη2

4μ2

)
+ 128π2

27

λH

g4
H

)
= 0,

(A.1)

(ϕ, η = 0), with

(
−99

27
+ log

(
g2
Lϕ2

4μ2

)
+ 128π2

27

λL

g4
L

)
= 0.

(A.2)
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The remaining critical points depend on the value of λLH

and have ϕ, η �= 0. They are given by the system of equa-
tions,

λLH = −27g4
Lϕ2

64π2η2

(
−99

27
+ log

(
g2
Lϕ2

4μ2

)
+ 128π2

27

λL

g4
L

)
,

(A.3)

λLH = −27g4
Hη2

64π2ϕ2

(
−99

27
+ log

(
g2
Hη2

4μ2

)
+ 128π2

27

λH

g4
H

)
.

(A.4)

In the case λLH = 0 the two brackets on the r.h.s. of
Eqs. (A.3) and (A.4) are zero and, therefore, equal. This iden-
tity provides the relation (in Eq. (6)),

logR = 128π2

27

(
λL

g4
L

− λH

g4
H

)
, (A.5)

with the hierarchy ratio R ≡ g2
Hη2

g2
Lϕ2 .

This relation is modified in the case with λLH �= 0, where
the two brackets on the r.h.s. of Eqs. (A.3) and (A.4) are
not zero any longer and are in general different. Nonethe-
less, dividing (A.4) by (A.3) is now allowed and leads to the
relation,

1 = g4
Hη4

g4
Lϕ4

(
− 99

27 + log

(
g2
Hη2

4μ2

)
+ 128π2

27
λH
g4
H

)

(
− 99

27 + log

(
g2
Lϕ2

4μ2

)
+ 128π2

27
λL
g4
L

) . (A.6)

It is not difficult to rewrite this expression in terms of R and
λLH in the form,

logR = 128π2

27

(
λL

g4
L

− λH

g4
H

)
+ 64π2

27

λLH

g2
Lg

2
H

(
R − 1

R

)
.

(A.7)

In general, the system in Eqs. (A.3) and (A.4) has either
one or three real critical point solutions (ϕ > 0 , η > 0),
which depend on the value of λLH . In order to understand
the physical meaning of these solutions and how they evolve
with λLH , we now discuss an example with fixed values
{λL = 0.001, gL = 0.6, λH = −0.001, gH = 0.6}. We
chose coupling values that allow a clear enough visualisa-
tion of the potential minimum evolution. Other values show
the same behaviour but transitions are much quicker and
not as illustrative. These values generate a local minimum
placed above the bisector ϕ = η. Through the interchanges
gL ↔ gH and λL ↔ λH , we would obtain the symmetric
case, with a minimum under the quadrant bisector.

Figure 4 shows the effect of including a λLH �= 0 param-
eter in the potential. First of all, in the background, we rep-
resent a contour-plot of the potential V (ϕ, η) for the initial
case λLH = 0 with the previous choice of parameters. The

Fig. 4 Effect of the λLH parameter in the position of the minimum. In
the background, a contourplot of the potential V (ϕ, η) is represented
for {λLH = 0, λL = 0.001, gL = 0.6, λH = −0.001, gH = 0.6}, with
its minimum (�). For λLH < 0, the minimum of the potential is slowly
displaced (red curve) towards the diagonal (black line). For λLH > 0,
apart from the original minimum, there is one additional local minimum
on each axis ϕ = 0 (•) and η = 0. As one increases λLH , the central
minimum remains at first the global one but its position is displaced
towards the ϕ = 0 axis (orange line). As the parameter increases, for
λLH > λ

cri t,A
LH (�), the central minimum turns into a local minimum

instead of the global one (blue line). When λLH > λ
cri t,B
LH (�), the

central (local) minimum disappears and only the minima at the axes
remain

hierarchy is not very large in order to properly visualise the
variations in the plot. We have an initial hierarchy R > 1
with the minimum (�) in a position 〈η〉 > 〈ϕ〉. If we include
a λLH �= 0 coupling this situation changes, but the effect
of this parameter is quite different depending on its sign.
For λLH < 0 (red line), the minimum of the potential is
slowly displaced towards the diagonal bisector (black line),
but the shape of the potential does not change with respect
to the λLH = 0 case. Therefore, the hierarchy decreases as
λLH gets more and more negative, approaching R = 1 for
λLH → ∞. However, for λLH > 0, both the position of
the minimum and the shape of the potential change. In addi-
tion to the original central minimum, the two critical points
at the ϕ = 0 and η = 0 axes also become local minima.
Furthermore, one saddle point appears, respectively, next to
each axis minima. Each of the two saddle points is placed
between the corresponding axis minimum and the central
minimum. Initially the central minimum is the global one, but
the potential gets further and further distorted as the value of
λLH increases, resulting on the three different regimes rep-
resented in Fig. 4:
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Fig. 5 Hierarchy R regimes depending on the value of λLH . For the
initial case {λLH = 0, λL = 0.001, gL = 0.6, λH = −0.001, gH =
0.6} we have a hierarchy depicted by �. For λLH < 0 the hierarchy
decreases slowly, as represented by the red line. On the other hand,
for λLH > 0 it increases as shown by the orange line for the case of
the central minimum being the global one up to λ

cri t,A
LH (�) and by the

blue line when the central minimum is a local one. When parameter
λLH > λ

cri t,B
LH (�), the central (local) minimum disappears and the

system enters into the infinite hierarchy regime. The green lines repre-
sent the hierarchy associated to the saddle points (one next to each axis)
that appear as additional solutions to Eq. (A.7) but do not represent a
physical hierarchy between the L − H sectors

• In the first one, the central minimum remains the global
one but it is displaced towards the ϕ = 0 axis (orange
line), i.e. the hierarchy R is increased but remains finite.
The system stays in this regime until the parameter λLH

is increased up to a value λ
cri t,A
LH (�).

• In the second one, the central minimum becomes less
deep (while those in the axes are λLH independent and
remain fixed). It eventually turns simply into a local min-
imum instead of the global one, which is now located on
the ϕ = 0 axis (•). The central minimum continues with
the same displacement as before (blue line) so the associ-
ated hierarchy is still growing. In addition, during these
two regimes, we have two more critical points, which
are saddle points located near the minima at the axes,
where the position of the saddle point close to the η axis
approaches the central minimum while increasing λLH .
We stay in this regime for values from λ

cri t,A
LH (�) up to

λ
cri t,B
LH (�).

• When we reach this value λ
cri t,B
LH we enter the third

regime: the saddle point reaches the central (local) min-
imum, resulting on the disappearance of both critical
points. For higher values of λLH only the minima at the
axes remain; we could say that in this regime, the finite
hierarchy that we previously had disappears, and we go
to an infinite hierarchy regime, ϕ = 0, η > 0 (•).

The behaviour of the potential can also be visualised
through Fig. 5, where we show the value of R for the solu-

tions of Eq. (A.7) as a function of λLH for the critical points
with ϕ, η �= 0. Note that there are two additional critical
points placed at the ϕ = 0 and η = 0 axes, not depicted in
Fig. 5. One can observe the same regimes described before
but in terms of R. The colours and markers in this figure are
the same as in Fig. 4. We can see that for λLH < 0, there
is only one critical point and the hierarchy slowly decreases
as λLH gets more and more negative. On the other hand, for
λLH > 0, one finds at first three critical points: one local
minimum and two saddle points (green lines). The hierarchy
of the central local minimum increases up to a maximum
value λ

crit, B
LH (�), which corresponds to the situation in which

the central minimum merges with one of the saddle points
and disappears. Beyond this point, there is only one criti-
cal point (a saddle point near the η = 0 axis) and we move
to the infinite hierarchy regime, with the global minimum
ϕ = 0, η > 0 (• in Fig. 4). The green lines represent the sad-
dle points (one next to each axis). These critical points appear
as (ϕ, η) solutions of the system of equations (A.3) and (A.4),
additionally to the central minimum for 0 < λLH < λ

crit, B
LH .

In summary, we find the scenario with λLH �= 0 very com-
pelling with a very rich phenomenology. The appearance of
different phases with a metastable vacuum in some ranges or
the presence of an infinite hierarchy deserve further investi-
gation but the topic goes beyond the scope of this article.

123



Eur. Phys. J. C (2022) 82 :1046 Page 9 of 9 1046

Appenndix B ProbabilityP(αL )
cumul fromO(g2

X ) corrections
to the effective potential

In this Appendix we provide the analytical expression of
the cumulative probability (for hierarchies from R0 up to
∞) when we fix the αL = {g2

L , λL} and {QLgX , QHgX }
parameters, with gX �= 0:

P
(αL )
cumul = (1 + a)3

6 (1 + b)

(
27 lnR0

32π
− 4πλL

g4
L

+ c

)−2

, (B. 1)

with the O(g2
X ) terms,

a = Q2
Hg

2
X

g2
L

[
− 9g2

L

128π2 (1 + 2 lnR0) + 2

3

− g2
X

64π2

(
19(Q2

L − Q2
H ) + 6Q2

H lnR0

)
+ 2λL

3g2
L

]
,

b = 2Q2
Hg

2
x

3g2
L

, c = 3g2
X

32πg2
L

(
19Q2

L − 22Q2
H + 6Q2

H lnR0

)
,

(B. 2)

for lnR0 ≥ 128π2

27

(
λL
g4
L

+ εCW
4πεg2

)
(1+O(g2

X )). The form for

smaller R0 can also be derived in a straightforward way. It
is easy to check that Eq. (B. 1) turns into (8) in the small gX
limit. For this approximation to be valid one needs g2

X/g2
L 	

1, g2
X/(4π) 	 1 and g2

X lnR0/(4π) 	 1. Hence, even for
small gX (g2

X 	 4π and g2
X 	 g2

L ), we expect Eq. (B. 1) to
fail for large enough lnR0, so its asymptotic expansion for
R0 → ∞ is not provided.

References

1. S.R. Coleman, E.J. Weinberg, Phys. Rev. D 7, 1888 (1973). https://
doi.org/10.1103/PhysRevD.7.1888

2. J.A. Casas, J.R. Espinosa, M. Quiros, Phys. Lett. B 342, 171 (1995).
https://doi.org/10.1016/0370-2693(94)01404-Z

3. D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A.
Salvio, A. Strumia, JHEP 12, 089 (2013). https://doi.org/10.1007/
JHEP12(2013)089

4. J.R. Ellis, K. Enqvist, D.V. Nanopoulos, F. Zwirner, Mod. Phys.
Lett. A 1, 57 (1986). https://doi.org/10.1142/S0217732386000105

5. R. Barbieri, G.F. Giudice, Nucl. Phys. B 306, 63 (1988). https://
doi.org/10.1016/0550-3213(88)90171-X

6. P. Ciafaloni, A. Strumia, Nucl. Phys. B 494, 41 (1997). https://doi.
org/10.1016/S0550-3213(97)00138-7

7. J.A. Casas, J.M. Moreno, S. Robles, K. Rolbiecki, B. Zaldívar,
JHEP 06, 070 (2015). https://doi.org/10.1007/JHEP06(2015)070

8. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989). https://doi.org/10.
1103/RevModPhys.61.1

9. W.A. Bardeen, in Ontake Summer Institute on Particle Physics
(1995)

10. S. Fichet, Phys. Rev. D 86, 125029 (2012). https://doi.org/10.1103/
PhysRevD.86.125029

11. M.E. Cabrera, J.A. Casas, R. Ruiz de Austri, JHEP 03, 075 (2009).
https://doi.org/10.1088/1126-6708/2009/03/075

12. D.M. Ghilencea, G.G. Ross, Nucl. Phys. B 868, 65 (2013). https://
doi.org/10.1016/j.nuclphysb.2012.11.007

13. E.J. Weinberg, Radiative corrections as the origin of spontaneous
symmetry breaking. Ph.D. thesis, Harvard University (1973).
http://inspirehep.net/record/85345/files/arXiv:hep-th_0507214.
pdf

14. E. Gildener, S. Weinberg, Phys. Rev. D 13, 3333 (1976). https://
doi.org/10.1103/PhysRevD.13.3333

15. L. Chataignier, T. Prokopec, M.G. Schmidt, B. Świeżewska, JHEP
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