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Abstract We develop a mechanism to build the light-front
wavefunctions (LFWFs) of meson bound states on a small-
sized basis function representation. Unlike in a standard
Hamiltonian formalism, the Hamiltonian in this method is
implicit, and the information of the system is carried directly
by the functional form and adjustable parameters of the
LFWFs. In this work, we model the LFWFs for four char-
monium states, ηc, J/ψ , ψ ′, and ψ(3770) as superpositions
of orthonormal basis functions. We choose the basis func-
tions as eigenfunctions of an effective Hamiltonian, which
has a longitudinal confining potential in addition to the trans-
verse confining potential from light-front holographic QCD.
We determine the basis function parameters and superposi-
tion coefficients by employing both guidance from the non-
relativistic description of the meson states and the exper-
imental measurements of the meson decay widths. With
the obtained wavefunctions, we study the features of those
meson states, including charge radii and parton distribution
functions. We use the J/ψ LFWF to calculate the meson
production in diffractive deep inelastic scattering and ultra-
peripheral heavy-ion collisions, and the ηc LFWF to calcu-
late its diphoton transition form factor. Both results show
good agreement with experiments. The obtained LFWFs
have simple-functional forms and can be readily used to pre-
dict additional experimental observables.
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1 Introduction

Understanding and describing hadrons, the bound states of
quantum chromodynamics (QCD), is crucial to increase our
comprehension of the strong interaction and the constitution
of matter. The charmonium sector has attracted extensive
experimental investigations, including the mass spectrum,
transitions between excited and low-lying states, and photo-
production of the vector mesons in heavy-ion collisions [1–
6]. Theoretical efforts also contribute from an array of com-
plementary perspectives, both Euclidean and Minkowskian
formalisms. Euclidean formulations of quantum field theo-
ries such as Dyson–Schwinger equations [7,8] and lattice
gauge theory [9,10] offer methods of performing a first-
principles computation of the charmonium spectrum and
other observables. On the other hand, Hamiltonian methods
formulated in Minkowski spacetime also provide a detailed
description of the meson’s internal structure and dynamics
through wavefunctions. The wavefunctions play a central
role in describing the bound states and computing the phys-
ical observables in Hamiltonian formalism.

In a standard Hamiltonian formalism, the wavefunctions
are solved from the Schrödinger(-like) equations where the
Hamiltonian governs the physics of the system. Since the
discovery of the J/ψ resonance in 1974 [11], various poten-
tial models were developed to describe the heavy quarko-
nium system, including the Buchmüller–Tye potential [12],
power-law potential [13], logarithmic potential [14], and the
Cornell potential [15]. These phenomenological models from
the early years were inspired by various aspects of QCD, and
they successfully described the spectrum, especially the ψ

family and the ϒ family.
Later on, nonrelativistic QCD (NRQCD) was developed as

an effective field theory by incorporating standard quantum
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field theory techniques such as dimensional regularization
[16–18]. It captures the nonrelativistic nature of the heavy
system, and the relativistic corrections can be incorporated
systematically, although calculations show that the relativis-
tic corrections may be large for selected charmonium observ-
ables [19].

One shared feature of these studies is that the meson
wavefunctions are given in their rest frames. Hadrons in
high-energy processes, however, are correctly described by
wavefunctions on the light front. A Lorentz transforma-
tion is required to apply rest-frame wavefunctions to mod-
ern deep inelastic scattering (DIS) experiments. In princi-
ple, the light-front wavefunctions can be generated directly
from the light-front Hamiltonian approach [20–22], which
combines light-front quantization and affords boost-invariant
light-front wavefunctions (LFWFs). Light-front holography
(LFH) exploits the AdS/CFT correspondence between string
states in anti-de Sitter (AdS) space and conformal field the-
ories (CFT) in physical space-time to obtain a semiclassical
first approximation to QCD [23,24]. It generates effective
potentials for valence quarks of hadron bound states, and the
resulting LFWFs are relativistic and analytically tractable.
Basis light-front quantization (BLFQ) [25] has been used to
improve LFH by incorporating a longitudinal confinement
and a realistic one-gluon exchange interaction [26–28].

A different path to obtain the meson LFWF is to model
it directly or determine it from other formalisms. In such
an approach, the LFWF is not solved from an eigenvalue
equation and does not require one to assume a specific form
for the Hamiltonian. However, the functional form can be
inspired by a phenomenological Hamiltonian. The vector
meson wavefunction is modeled as predominantly a quark-
antiquark state. The Dosch, Gousset, Kulzinger, and Pirner
(DGKP) model [29], and the widely used boosted Gaussian
[3,30,31] are in this category. In these parametrizations, the
helicity and polarization structure is the same as in the pho-
ton perturbatively calculated in QCD. One main advantage
of such modeled wavefunctions is their simplicity. They have
become an important element for calculating meson produc-
tion cross sections, e.g., exclusive processes at the electron-
ion collider (EIC) [32]. LFWFs determined from the Dyson–
Schwinger and Bethe–Salpeter approach embed information
from higher Fock states, which is achieved by projecting the
covariant Bethe–Salpeter wavefunctions onto the light front
[33–36]. Insights from NRQCD could also be carried through
LFWFs by boosting the meson wavefunctions from the rest
frame to the light-front frame and employing Melosh rota-
tions on the spin structure [37,38].

As a complementary study to the existing modeled
LFWFs, we propose a method of designing the LFWFs of
meson bound states with a simple-functional form. These
wave functions, by design, are invariant under all seven kine-
matical generators of the Poincaré group. The obtained wave

functions are readily used to access a number of hadronic
observables, e.g. decay constant, electromagnetic form fac-
tors, radiative transitions and the parton distributions. A
unique feature of the formalism in this work is its close rela-
tion to the light-front Hamiltonians through the choice of
basis functions. More specifically, for designing the char-
monium LFWFs, we choose eigenfunctions of a generalized
light-front holographic confining potential as the basis func-
tions, which were first introduced in a study on heavy quarko-
nia by the BLFQ approach [26,27]. Consequently, this work
is closely related to the light-front Hamiltonians through the
choice of basis functions, and shares several advantages of
the LFH framework and the BLFQ framework. Additionally,
this choice of functional forms provides us with some guid-
ance on interpreting the meson’s internal structure. While the
works on and based on LFH give connections and predictions
across the entire mass spectrum of hadrons [24,26–28,39–
49], our proposed approach has more flexibility in adjust-
ing the wavefunctions and facilitates a better agreement with
targeted experimental observables such as the dilepton and
diphoton decay widths studied in this work.

The implicit Hamiltonian that describes the designed sys-
tem is thereby understood as an effective Hamiltonian which
is an extension of the LFH/BLFQ Hamiltonian, and its infor-
mation is carried directly by the functional form and the
adjustable parameters in the wavefunctions. We determine
the parameters and basis coefficients by adopting guidance
from the nonrelativistic description of the meson states and
the experimental measurements of the meson’s decay widths.

In designing the charmonia LFWFs, our major consider-
ations and motivations are the following:

• Approximation to QCD. The designed LFWFs inherit an
approximation to QCD from LFH through the basis func-
tions.

• Symmetries. The designed states are invariant under kine-
matical symmetries, including mirror parity m̂P and
charge conjugation C, and approximately under rota-
tional symmetries, including the total spin J and parity
P. In addition, when calculating Lorentz invariants, rota-
tional symmetry is respected by using different current
components and different polarized states.

• Matching theNR limit. In the NR limit, the LFWFs reduce
to the solutions of the Schrödinger equation with a spher-
ically symmetric harmonic oscillator potential, and the
three-dimensional rotational symmetry is restored.

• Decay widths. The LFWFs give the correct diphoton
decay width for the pseudoscalar and the dilepton decay
width for the vector meson. These constraints are most
sensitive to the behavior of the wavefunctions at short
distances, which is also the most important region for
perturbative scattering processes.
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We call our approach “by design”, because we are choos-
ing by hand to apply exactly the constraints that we consider
to be the most important for phenomenological applications
of the wavefunctions. It is an alternative phenomenological
approach to obtain LFWFs that is not uniquely determined.
This involves a certain amount of judgement as to how many
basis functions to include and which constraints to impose.
We make these choices in such a way that we can exactly sat-
isfy all the constraints that we are using. Alternative schemes
are also possible, for example, having the number of observ-
ables exceeds the number of parameters, and one then need
to choose weights for different observables. One primary
advantage of our approach is that the resulting LFWFs are
analytically tractable and can be used to calculate a wide
variety of physical observables.

In this paper, we calculate the charge radii and parton dis-
tribution functions of those meson states with the obtained
wavefunctions. We estimate the masses of those designed
states by evaluating their expectation with existing Hamil-
tonians, and they are in a reasonable range compared with
experimental values. We use the wavefunction of J/ψ to cal-
culate meson production in heavy-ion collisions and compare
it with other model calculations. We use the wavefunction of
ηc to calculate the diphoton transition form factor. We found
that all observables calculated are in reasonable agreement
with experimental measurements.

The layout of this paper is as follows. We first introduce the
formalism of the basis function representation in Sect. 2. We
then construct the LFWFs for J/ψ , ηc, ψ ′, and ψ(3770) in
Sect. 3. With the obtained wavefunctions, we study selected
key features of those meson states in Sect. 4 and calculate the
J/ψ production in high-energy scattering and the ηc dipho-
ton decay. We conclude the work in Sect. 5.

2 Basis function representation

In this section, we introduce our formalism of designing the
meson LFWFs in a basis function representation and the basis
functions we use in this work.

2.1 Light-front wavefunctions in a basis space

Consider a meson state h consisting of a quark and an anti-
quark, with momentum (P+, �P⊥), and expand its wavefunc-
tion on an orthonormal basis {β1, β2, . . . , βNβ },

ψh(�k⊥, x) =
Nβ∑

i=1

Ch,iβi (�k⊥, x), (1)

where Ch,i are the basis coefficients for h and Nβ is the num-
ber of basis states. Here we are writing the wavefunction in
a relative coordinate, where x = p+

q /P+ is the longitudinal

momentum fraction of the quark and �k⊥ = �kq⊥ − x �P⊥ is the
relative transverse momentum.

The wavefunctions should satisfy the orthonormalization
relation

Nβ∑

i=1

Ch,iC
∗
h′,i = δh,h′ . (2)

Physical quantities and observables (O) such as decay widths
and charge radius are functions ( fO ) of the basis coefficients,

Oh = fO(Ch,i ). (3)

The constraints Eqs. (2) and (3) form a system of equations,
and the unknowns are the basis coefficients Ch,i and could
also include parameters in the basis functions. The procedure
of designing LFWFs is, in essence, solving such a system of
equations.

In the continuum limit of Nβ → ∞, both the number of
constraints and the number of unknowns are infinite. For the
purpose of designing LFWFs with a simple-functional form,
it is favorable to use a small number of basis states. At the
same time, the constraints are chosen from observables that
are most relevant to the physics one wants the wavefunctions
to describe. A solution can be determined uniquely when the
number of equations is equal to the number of unknowns.
It could also be true that the system is overdetermined if
there are more equations than unknowns, in which case one
could obtain a solution by using optimization algorithms to
minimize the deviation from the constraint. If there are more
unknowns than equations, such that the system is underdeter-
mined, one might obtain multiple solutions, with additional
criteria needed to choose the preferred one. The approach
we choose in this paper is to work in a relatively small basis
and to impose exactly enough constraints to obtain a unique
solution that is a physically reasonable description of the low-
est states J/ψ,ψ ′, ψ(3770) and ηc. In the future, this work
could be extended to a larger basis and to include additional
constraints.

2.2 A generalized holographic basis representation

In this paper, we are working with a highly truncated basis
space, and our goal is to describe the charmonium bound
states in a simple-functional form. It is, therefore, crucial to
choose a basis function that has been successfully adopted
for solving light-front Hamiltonian problems. For this pur-
pose, we take the basis introduced in BLFQ studies on heavy
quarkonia [26,27]. These basis functions are the eigenfunc-
tions of a generalized holographic confining potential,

H0 =
�k2⊥ + m2

q

x
+

�k2⊥ + m2
q̄

1 − x
+ κ4x(1 − x)r2⊥
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− κ4

(mq + mq̄)2 ∂x (x(1 − x)∂x ), (4)

where mq (mq̄ ) is the mass of the quark (antiquark), and for
charmonium we have mq = mq̄ = m f . The first two terms
are the light-front kinetic energy of the constituent quark
and antiquark, the third term is a transverse holographic con-
fining potential, and the last term is a longitudinal confin-
ing potential. The confining strength is characterized by the
parameter κ . This Hamiltonian, although with independent
strength parameters for the transverse and longitudinal con-
fining terms, is referred to as BLFQ0 in a recent work on light
mesons [28].

This basis, obtained from the eigenfunctions of the Hamil-
tonian (4), consists of a two-dimensional (2D) harmonic
oscillator (HO) function φnm in the transverse direction and a
modified Jacobi polynomial χl in the longitudinal direction.
The transverse basis function in the momentum space reads

φnm(�k⊥) = κ−1

√
4πn!

(n + |m|)!
(
k⊥
κ

)|m|
e−k2⊥/(2κ2)

× L |m|
n (k⊥2/κ2)eimθk , (5)

where k⊥ = |�k⊥|, θk = arg(kx + ik y), n = 0, 1, 2, . . . is
the principal number, and m = 0,±1,±2, . . . is the orbital
number. The transverse confining strength κ functions as the
basis parameter here. The orthonormality relation is

∫
d2�k⊥
(2π)2 φ∗

n′m′(�k⊥)φnm(�k⊥) = δnn′δmm′ . (6)

Note that the HO functions are a natural generalization of the
Gaussian type wavefunctions widely adopted in the literature
[3,29]. The longitudinal basis function is

χl(x) = √
4π(2l + α + β + 1)

×
√

�(l + 1)�(l + α + β + 1)

�(l + α + 1)�(l + β + 1)

× xβ/2(1 − x)α/2P(α,β)
l (2x − 1) , (7)

where P(α,β)
l is the Jacobi polynomial with l = 0, 1, 2, . . ..

The dimensionless basis parameters α and β are related to
the longitudinal confining strength and the fermion mass in
H0 as α = 4m2

q/κ and β = 4m2
q̄/κ . For charmonia, α = β.

The orthonormality relation is

1

4π

∫ 1

0
dxχl(x)χl ′(x) = δll ′ . (8)

Each basis state is characterized by five quantum num-
bers, {n,m, l, s, s̄}, where s (s̄) is the light-front helicity

of the quark (antiquark). The basis is constructed to con-
serve the magnetic projection of the total angular momen-
tum: m j = m + s + s̄, and m is interpreted as the orbital
angular momentum projection.

The LFWF of a meson state h is written as an expansion
on this basis function representation:

ψ
(m j )

h (�k⊥, x) =
∑

n,m,l,s,s̄

ψ
(m j )

h (n,m, l, s, s̄)

× βn,m,l,s,s̄(�k⊥, x), (9)

where ψh(n,m, l, s, s̄) is the basis coefficient, and the basis
function is defined as βn,m,l,s,s̄(�k⊥, x) ≡ ψnml(�k⊥, x)σss̄ .
The spatial dependence is in ψnml(�k⊥, x), which combines
the transverse and the longitudinal basis functions as

ψnml(�k⊥, x) ≡ φnm(�k⊥/
√
x(1 − x))χl(x). (10)

The parameters in the transverse basis function and those in
the longitudinal basis function are connected by α = β =
4m2

f /κ , so we have two adjustable parameters for the basis
function, κ and m f . Figure 1 presents some special cases of
the basis function ψnml(�k⊥, x) as functions of k⊥ and x .

The helicity configuration of the quark and the antiquark
is denoted by σss̄ , and we use ↑ (↓) to indicate 1/2(−1/2),
the value of s and s̄. We also define σ± ≡ 1/

√
2(σ↑↓ ±σ↓↑).

It is convenient to write out the wavefunction for a specific
spin component,

ψ
(m j )

ss̄/h (�k⊥, x) =
∑

n,m,l

ψ
(m j )

h (n,m, l, s, s̄) ψnml(�k⊥, x). (11)

The orthonormalization of the LFWF in Eq. (11) reads,

∑

s,s̄

∫ 1

0

dx

2x(1 − x)

∫
d2k⊥
(2π)3 ψ

(m′
j )∗

ss̄/h′ (�k⊥, x)

× ψ
(m j )

ss̄/h (�k⊥, x) = δhh′δm j ,m′
j
. (12)

The LFWF in the transverse coordinate space is obtained
by performing a two-dimensional Fourier transformation,

ψ̃ss̄(�r⊥, x)

≡ 1√
x(1 − x)

∫
d2k⊥
(2π)2 e

i �k⊥·�r⊥ψss̄(�k⊥, x). (13)

The corresponding orthonormalization is,

∑

s,s̄

∫ 1

0

dx

4π

∫
d2r⊥ ψ̃

(m′
j )∗

ss̄/h′ (�r⊥, x)ψ̃
(m j )

ss̄/h (�r⊥, x)

= δhh′δm j ,m′
j
. (14)
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(a)

(b)

Fig. 1 The basis function ψnml (�k⊥, x) [defined in Eq. (10)]: a as a
function of k⊥ (in the unit of κ) at θk = 0 and x = 0.5, and b as a
function of x at �k⊥ = �0⊥. Note that in b, the curves of ψ000 and ψ100
are the same, and ψ0,±1,0 is zero. In the plots, we take α = β = 4, and
the basis function is in the unit of κ−1

The basis function representation becomes

ψ̃
(m j )

ss′/h(�r⊥, x) = √
x(1 − x)

∑

n,m,l

ψ
(m j )

h (n,m, l, s, s′)

× φ̃nm(
√
x(1 − x)�r⊥)χl(x), (15)

and the transverse basis function in the coordinate space reads

φ̃nm(�r⊥) = κ

√
n!

π(n + |m|)! (κr⊥)|m|e−κ2r2⊥/2

× L |m|
n (κ2r2⊥)eimθr+iπ(n+|m|/2), (16)

where r⊥ = |�r⊥| and θr = arg(r x + ir y).
The parity and charge conjugation can be evaluated from

this basis representation of the LFWFs [26]. We exploit
the mirror parity m̂P = R̂x (π)P̂ that is related to P as,

m̂P|ψ(m j )

h 〉 = (−1) jP|ψ(−m j )

h 〉. It follows that,

(−1) jP = 〈ψ(−m j )

h |m̂ P |ψ(m j )

h 〉
=

∑

n,m,l,s,s̄

(−1)mψ
(−m j )∗
h (n,−m, l,−s,−s̄)

× ψ
(m j )

h (n,m, l, s, s̄). (17)

We categorize the basis states ψnmlσss̄ by mirror parity in
Table 1.

The charge conjugation on the basis reads

C = 〈ψ(m j )

h |Ĉ |ψ(m j )

h 〉
=

∑

n,m,l,s,s̄

(−1)m+l+1ψ
(m j )∗
h (n,m, l, s̄, s)

× ψ
(m j )

h (n,m, l, s, s̄). (18)

The basis states ψnmlσss̄ are categorized by charge conjuga-
tion in Table 2.

We use those eigenstates of mirror parity and charge con-
jugation as building blocks to construct meson states.

2.2.1 Light-front spectroscopic state

We have seen that the spatial part of the basis function, ψnml ,
is the eigenfunction of H0 in Eq (4). In the nonrelativistic
limitm f � κ , the potential in H0 reduces to the 3D harmonic
oscillator potential. Consequently, the basis functions ψnml

are also related to the 3D harmonic oscillators (HOs). Such a
relation is helpful in designing the LFWFs of charmonium,
which has been studied extensively in the NRQCD frame-
work. We shall first use this nonrelativistic limit to construct
approximate orbital angular momentum states (denoted by
ψLF−W ) as combinations of our basis functions. We will then
combine these spatial wavefunctions with the helicity struc-
ture to construct what we call light-front spectroscopic states
ψLF−n�, jPC. These states are exact eigenstates of mirror par-
ity and charge conjugation, which are good symmetries on the
light front. Although they do not exactly correspond to orbital
angular momentum � eigenstates, they are close enough to
be clearly identified with states of specific n (the principle
number), j (the total angular momentum), � and s (the parton
spin).

We first construct the light-front spatial state ψLF−W that
has an approximate orbital angular momentum, using the
basis function ψnml . The “W” part contains the informa-
tion of the orbital angular momentum � and its projection
m(= −�,−� + 1, . . . , �), and the principal number n. We
take the spectroscopic notation, in which � = 0, 1, 2 cor-
responds to the S, P, and D, respectively, and n = 1, 2, . . .

labels the energy level in the ascending order. The notation
LF − W distinguishes the light-front spatial state from the
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Table 1 Basis states ψnmlσss̄ categorized by the mirror parity mP according to Eq. (17)

m j m mP = 1 mP = −1

0 0 ψn,0,lσ+ ψn,0,lσ−
±1 1√

2
(ψn,−1,lσ↑↑ − ψn,1,lσ↓↓) 1√

2
(ψn,−1,lσ↑↑ + ψn,1,lσ↓↓)

1,−1 0 ψn,0,lσ↑↑, ψn,0,lσ↓↓ ψn,0,lσ↑↑, −ψn,0,lσ↓↓
±1 ψn,1,lσ±, ∓ψn,−1,lσ± ψn,1,lσ±, ±ψn,−1,lσ±
±2 ψn,2,lσ↓↓, ψn,−2,lσ↑↑ ψn,2,lσ↓↓, −ψn,−2,lσ↑↑

spectroscopic W state of the 3D HO. In the nonrelativistic
limit, the former should reduce to the latter with the corre-
sponding n, �,m numbers. Building ψLF−W , therefore, sug-
gests a transformation between the 3D HO and the light-front
functional basis ψnml . Such a transformation is non-trivial
and not exact since angular momentum is dynamical on the
light front. However, considering the similarity of our basis
function and the 3D HO in the cylindrical coordinates, we
could use the transformation of 3D HO from the spherical
coordinates to the cylindrical coordinates as a guidance. The
transformation coefficients are calculated in Appendix B.

The lowest basis state in the chosen basis function repre-
sentation is the ground state ψ0,0,0. We expect it to provide
a close approximation to the 1S state,

ψLF−1S = ψ0,0,0. (19)

The 1P state has three components differing by magnetic
projections, and their light-front basis correspondences are

ψLF−1P0 = ψ0,0,1, (20a)

ψLF−1P±1 = −ψ0,±1,0. (20b)

In the 3D HOs, the radial excited state and the angular excited
state are distinct from each other, whereas in the light-front
basis, the radial and angular excitations mix automatically.
The first radial excited state, the 2S state, can be approxi-
mated as a linear superposition of ψ1,0,0 and ψ0,0,2. We take
their relative coefficients from the cylindrical representation,
which leads to

ψLF−2S =
√

2

3
ψ1,0,0 −

√
1

3
ψ0,0,2. (21)

The 1D state has five components differentiated by magnetic
projections, and their light-front basis correspondences are

ψLF−1D0 =
√

1

3
ψ1,0,0 +

√
2

3
ψ0,0,2, (22a)

ψLF−1D±1 = −ψ0,±1,1, (22b)

ψLF−1D±2 = ψ0,±2,0. (22c)

Table 2 Basis states ψnmlσss̄ categorized by the charge conjugation C
according to Eq. (18)

m + l C = 1 C = −1

Even ψn,m,lσ− ψn,m,lσ+, ψn,m,lσ↑↑, ψn,m,lσ↓↓
Odd ψn,m,lσ+, ψn,m,lσ↑↑, ψn,m,lσ↓↓ψn,m,lσ−

These light-front spatial states ψLF−W are orthogonal to each
other. In the nonrelativistic limit, they reduce to the spher-
ical harmonics with their corresponding angular numbers
(see the derivation in Appendix C). We assume that these
ψLF−W states are the spatial components of the physical
heavy quarkonia LFWFs.

We now combine the spatially dependent part with
the quark-antiquark helicity structure into the form of
ψLF−Wσss̄ . Each of these states inherits the principal quan-
tum number n, the approximate orbital number �, and its pro-
jectionm from the spatial part, and the parton spin projection
ms(= s+ s̄) from the helicity part. Consequently, it acquires
the m j (= m +ms) number as well. We know from Sect. 2.2
that we can further combine these components into eigen-
states of mirror parity m̂P and charge conjugation C (see the
eigenstates listed in Tables 1, 2). Then by specifying the total
spin j , we can construct the light-front spectroscopic state
ψLF−n�, jPC, which is identified by jPC values. The total spin
is a vector summation of the orbital angular momentum and
the parton spin, �j = �� + �s. Note that for the light-front basis
state, the value of orbital angular momentum � is approxi-
mate, and the parton spin number s is 0 (1) for the singlet
σ− (triplet {σ↑↑, σ+, σ↓↓}) configuration. In the following,
we find the light-front spectroscopic states for meson states
with jPC = 0−+ and 1−−.

A pseudoscalar state with quantum number jPC = 0−+
(recall that j is only approximated in the valence sector)
could be a LF-nS state or LF-nP state. The LF-nS component
is

ψLF−nS,0−+ = ψLF−nSσ−. (23)

The LF-nP component is

ψLF−nP,0−+ = ψLF−nP−1σ↑↑
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+ ψLF−nP1σ↓↓. (24)

The vector state with jPC = 1−− could be a LF-S state or
LF-D state. Each LF-nS m j state has one component:

ψ
(m j=0)

LF−nS,1−− = ψLF−nSσ+,

ψ
(m j=1)

LF−nS,1−− = ψLF−nSσ↑↑,

ψ
(m j=−1)

LF−nS,1−− = ψLF−nSσ↓↓. (25)

Each LF-1D m j state has multiple components with differ-
ent helicity structures, and the relative magnitude and phase
among those components are not determined. Here we take
the Clebsch–Gordan (CG) coefficients such that in the non-
relativistic limit, the light-front wavefunction components
reduce to the spectroscopic state with j = 1, � = 2, s = 1,

ψ
(m j=0)

LF−1D,1−− = −
√

3

10
ψLF−1D−1σ↑↑

−
√

2

5
ψLF−1D0σ+ +

√
3

10
ψLF−1D1σ↓↓,

ψ
(m j=1)

LF−1D,1−− =
√

3

5
ψLF−1D2σ↓↓

−
√

3

10
ψLF−1D1σ+ +

√
1

10
ψLF−1D0σ↑↑,

ψ
(m j=−1)

LF−1D,1−− =
√

3

5
ψLF−1D−2σ↑↑

+
√

3

10
ψLF−1D−1σ+ +

√
1

10
ψLF−1D0σ↓↓.

(26)

We will use these light-front spectroscopic states as compo-
nents in designing the charmonium LFWFs.

2.2.2 The Hamiltonian is implicit

Unlike the standard Hamiltonian approach, the heavy quarko-
nia LFWFs in this work are constructed directly on a chosen
basis representation, without solving the eigenvalue equa-
tion of an explicit Hamiltonian. The advantage of doing so
is that we are free from interpretating any modeled Hamil-
tonian as the physical Hamitonian responsible for the mass
spectroscopy. Instead, we use quantities that can be directly
calculated from the wavefunction. The basis space we use to
design the wavefunctions is much smaller than in the com-
putational method BLFQ. Instead, our approach here is rem-
iniscent of a mean-field theory where a many-body problem
could be reduced into an effective one-body problem, and
there is a simplified reference Hamiltonian with an effec-
tive interaction correction. The basis states βn,m,l,s,s̄(�k⊥, x)
are a chosen subset of the eigenfunctions of a generalized

holographic Hamiltonian H0, as in Eq. (4). We could take
H0 as a reference Hamiltonian, and interpret the full implicit
Hamiltonian as H0 plus an effective interaction �H ,

H = H0 + �H. (27)

The effective interaction �H should contain all the remain-
ing interaction effects from truncated states, including inter-
action effects from higher Fock sectors.

We could estimate the invariant mass for a designed state
by calculating its expectation value of H , which gives a range
instead of a definite value since �H is unknown. The expec-
tation value of H0 for a basis state βn,m,l,s,s̄ is

M2
n,m,l(κ,mq ,mq̄) = (mq + mq̄)

2

+ 2κ2
(

2n + |m| + l + 3

2

)

+ κ4

(mq + mq̄)2 l(l + 1). (28)

The expectation value of H for a state by design is therefore

(
M̃

(m j )

h

)2

=
∑

n,m,l,s,s̄

∑

n′,m′,l ′,s′,s̄′
ψ

(m j )

h (n,m, l, s, s̄)

× ψ
(m j )∗
h (n′,m′, l ′, s′, s̄′)

×
[
M2

n,m,lδn,n′δm,m′δl,l ′δs,s′δs̄,s̄′

+ 〈βn′,m′,l ′,s′,s̄′ |�H |βn,m,l,s,s̄〉
]
. (29)

Here we give a tentative interpretation on �H by approx-
imating it as an effective one-gluon exchange interaction
VOGE from Ref. [26]. The one-gluon exchange interaction
includes contributions from the |qq̄g〉 sector. This corre-
sponds to approximately interpreting the implicit Hamilto-
nian as the BLFQ Hamiltonian, which is HBLFQ = H0 +
VOGE [26]. The effective one-gluon-exchange interaction,
written explicitly, is

VOGE = −CF4παs(q2)

q2 ūs′(k
′)γμus(k)v̄s̄(k̄)γ

μvs̄′(k̄
′),

(30)

where CF = (N 2
c − 1)/(2Nc) = 4/3 is the color factor, and

the energy denominator is the average 4-momentum squared
carried by the exchanged gluon q2 = [−(k′ − k)2 − (k̄′ −
k̄)2]/2 (see the details of the form and parameters in Ref.
[27]).
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Fig. 2 The dilepton decay process of a vector meson V (such as J/ψ ,
ϒ)

3 Wavefunction and the decay width

In this section, we design the LFWFs for the four charmo-
nium states, ηc, J/ψ , ψ ′, and ψ(3770) in the basis function
representation developed in Sect. 2.2. We determine the basis
parameters and remaining coefficients in the wavefunctions
by matching the calculated decay widths to the experimental
values, in particular, the diphoton decay width for the pseu-
doscalar meson, and the dilepton decay width for the vector
meson.

3.1 The vector meson dilepton decay and the decay
constant

The vector meson can decay into a dilepton pair via a virtual
photon, see Fig. 2 for the process. The transition amplitude
is factorized into the decay constant, which is defined with
the electromagnetic current via the local vacuum-to-hadron
matrix element

〈0|�̄(0)γ μ�(0)|V(P,m j )〉 (31)

= mVeμ(P,m j ) fV. (32)

Here mV is the mass of the vector meson V and fV the decay
constant. It is related to the experimental decay width in the
particle rest frame as [50,51]

�V→l+l− = 4π

3
Q2

f α
2
em

f 2
V

mV
. (33)

Here, Q f is the dimensionless fractional charge of the con-
stituent quarks, Qc = +2/3 for the charm quark and Qb =
−1/3 for the bottom quark. The decay width sums over the
contributions from all polarized states of the vector meson
and the virtual photon, and the size of the individual con-
tribution depends on the reference frame. On the contrary,
the decay constant defined from Eq. (31) is Lorentz invari-
ant and should not depend on the polarization of the vec-
tor meson or the current component in the calculation. As
a result, for the LFWFs obtained from the Hamiltonian for-
malism or model calculations, the decay constants extracted
from different polarized states could provide a measure of the
violations of rotational symmetry in the system, for exam-
ple, in Ref. [52]. For the formalism we are developing here,
this provides a powerful constraint in designing the LFWF;

that is, we require the decay constant calculated from dif-
ferent polarized states of the vector meson to be the same
as the experimental value. In this way, we impose rotational
invariance in the LFWF at the level of electromagnetic decay
width.

In the LFWF representation, the decay constant extracted
from Eq. (31) is an integral of the meson LFWF. The cal-
culations using different current components in combination
with different polarized states have been analyzed and dis-
cussed in Chapter 2 of Ref. [53]. In brief, for the m j = 0
state, using the J+ and the J⊥ current components are equiv-
alent, and the result from the J− current only agrees with the
two on the condition that the meson mass equals the invari-
ant mass of the constituent quark and antiquark. The latter
is not guaranteed for the LFWF in the valence sector since
the bound state mass also contains interactions besides the
kinetic energy of the valence particles. We therefore adopt
the J+ or equivalently the J⊥ current to calculate the decay
constant from the m j = 0 state,

fV|m j=0 = √
2Nc

∫ 1

0

dx√
x(1 − x)

∫
d2k⊥
(2π)3

× ψ
(m j=0)

+/V (�k⊥, x), (34)

Recall that we adopt the notations for spin configurations as
ψ± ≡ (ψ↑↓ ± ψ↓↑)/

√
2. For the m j = ±1 states, the J+

channel is not available since e+(P,m j = ±1) = 0, and
using the J⊥ and J− currents give the same result,

fV|m j=1 =
√
Nc

2mV

∫ 1

0

dx

[x(1 − x)]3/2

∫
d2k⊥
(2π)3

×
{
kL [(1 − 2x)ψ

(m j=1)

+/V (�k⊥, x) − ψ
(m j=1)

−/V (�k⊥, x)]

− √
2m f ψ

(m j=1)

↑↑/V (�k⊥, x)

}
, (35a)

fV|m j=−1 =
√
Nc

2mV

∫ 1

0

dx

[x(1 − x)]3/2

∫
d2k⊥
(2π)3

×
{
kR[(1 − 2x)ψ

(m j=−1)

+/V (�k⊥, x) + ψ
(m j=−1)

−/V (�k⊥, x)]

+ √
2m f ψ

(m j=−1)

↓↓/V (�k⊥, x)

}
. (35b)

Here, we use the notations kR = kx + ik y = k⊥eiθk and
kL = kx − ik y = k⊥e−iθk with k⊥ = |�k⊥| (also see Eq. (A2)
in Appendix A.1 for the definitions of these quantities). Note
that Eqs. (35a) and (35b) are equivalent up to an overall
minus sign, but what matters in the decay width is the absolute
value of the decay constant, so the two equations give the
same constraint on the transverse polarized LFWF of the
vector meson. In the basis function representation introduced
in Sect. 2, the integrals in Eqs. (34) and (35) can be solved
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Fig. 3 The diphoton decay process of a neutral pseudoscalar meson
P0 (such as η, ηc and ηb)

analytically, and those equations reduce to a summation over
weighted basis coefficients. The expressions of the decay
constant in the basis function representation can be found in
Appendix D.

In the nonrelativistic (NR) limit of x → 1/2 + kz/(2m f ),
m f → mV/2 and m f � kz , only the dominant spin compo-

nents, ψ
(m j=0)

+/V , ψ
(m j=−1)

↓↓/V and ψ
(m j=1)

↑↑/V , survive as the NR

wavefunction ψN R
V (�k) [ ψ̃N R

V (�r) in the coordinate space].
The two choices of extracting the decay constants, Eqs. (34)
and (35), reduce to the same form,

f N R
V |m j=0 = f N R

V |m j=±1

=
√

2Nc

m f
ψ̃N R
V (�r = �0). (36)

In designing the LFWF of the vector mesons, we impose
the constraint that the decay constant calculated from differ-
ent polarized states of the vector meson to be the same as the
experimental value,

| fV|m j=0| = | fV|m j=±1| = fV,experiment. (37)

The significance of this condition is twofold. First, it matches
the structure of the designed LFWF to the physical state,
especially at short distances. Second, it enforces rotational
symmetry in the vector meson state examined by an electro-
magnetic probe.

3.2 The pseudoscalar meson diphoton decay

The simplest decay channel of a neutral pseudoscalar meson
for our purposes is the decay into two photons, P(P) →
γ (q1)+γ (q2) (see Fig. 3 for the process). It involves only one
transition form factor, FPγ (Q2

1, Q
2
2), where Q2

i = −q2
i ≥

0, i = 1, 2, from which the decay width �P→γ γ can be
extracted exactly at Q2

1 = Q2
2 = 0, i.e., taking both photons

on-shell. The width can also be approximately described by
a decay constant. Similar to the dilepton decay for the vector
meson, the diphoton decay provides a test of the structure of
the pseudoscalar meson.

In designing the pseudoscalar meson LFWF, we use the
decay width calculated through the transition form factor as a

constraint. However, it is also helpful to check the decay con-
stant, especially since this approximate route has a simpler
form in the basis function representation.

3.2.1 The diphoton decay width in terms of the
pseudoscalar-photon transition form factor

The transition form factor F(Q2
1, Q

2
2) for the P(P) →

γ ∗(q1)+γ ∗(q2) transition is defined from the Lorentz covari-
ant decomposition of the electromagnetic transition matrix
element [54,55],

Iμ
λ1

(P, q1) ≡ 〈γ ∗(q1, λ1)|Jμ(0)|P(P)〉
= −ie2FPγ (Q2

1, Q
2
2)ε

μαβσ Pαq1β

× ε∗
σ,λ1

(q1), (38)

where Pμ and q1
μ are the four momenta of the incoming

pseudoscalar meson and the outgoing photon, and q2
μ =

Pμ − q1
μ is the momentum of the other photon. Here, mP

is the meson mass, and eσ,λ1 the polarization vector of the
final photon γ ∗(q1, λ1), with λ1 = 0,±1 the magnetic pro-
jection. The transition amplitude P(P) → γ ∗(q1) + γ ∗(q2)

is obtained by contracting Iμ with the polarization vector of
the other photon,

Mλ1,λ2(P, q1) = Iμ
λ1

(P, q1)ε
∗
μ,λ2

(q2), (39)

where εμ,λ2 is the polarization vector of the final-state vir-
tual photon γ ∗(q2, λ2) with its spin projection λ2 = 0,±1.
The two-photon decay width is calculated by averaging over
the initial particle polarization (which is just 1 for the pseu-
doscalar) and summing over the final polarization (λ1 and
λ2),

�P→γ γ =
∫

d�q
1

32π2

|�q|
m2

P

∑

λ1,λ2

|Mλ1,λ2 |2

= e4m3
P

64π
|FPγ (0, 0)|2. (40)

The transition form factor defined by Eq. (38) is Lorentz
invariant and should not depend on the polarization of the
photons or the current component in the calculation. The
hadron matrix element has the same structure as that in the
electromagnetic transition between a vector meson and a
pseudoscalar P → V + γ , obtained by replacing the vector
meson by a photon. The studies of the transition form factor
in the LFWF representation have shown that there are only
two combinations of the current component and the polariza-
tion of the vector meson that could unambiguously extract
the transition form factor from the valence hadron matrix ele-
ment: the plus current J+ with the transverse polarized vector
meson (m j = ±1), and the transverse current J⊥ with the

123



1045 Page 10 of 31 Eur. Phys. J. C (2022) 82 :1045

longitudinally polarized vector meson (m j = 0) [52,53,56].
The transition form factors extracted from other choices are
not invariant under the transverse boost �P⊥ → �P⊥ + P+ �β⊥
( �β⊥ an arbitrary velocity vector), indicating the necessity of
higher Fock sector contributions to restore Lorentz invari-
ance. Here we take both choices and require the two derived
diphoton decay widths to be the same as the experimental
value. In this way, we impose rotational invariance in the
LFWF at the level of the electromagnetic decay width, in the
same spirit as what we do for the vector meson. Though the
pseudoscalar meson has only one polarization state m j = 0,
extracting the transition form factor using different current
components and polarized states of the photon probes the
pseudoscalar LFWF in different ways.

Taking the impulse approximation, in which the interac-
tion of the external current with the meson is the summa-
tion of its coupling to the quark and the antiquark, the tran-
sition matrix elements in the LFWF representation read as
an overlap of the pseudoscalar meson and the final photon
γ ∗(q1, λ1). Here we take the photon wavefunction calculated
from light-cone perturbation theory to the lowest order (see
the explicit expression in Appendix E). The transition form
factor at Q2

1 = Q2
2 = 0 using the transverse current J+ and

the transverse polarized photon (λ1 = ±1) is

FPγ (0, 0)|J+

= 2Q2
f

√
Nc

∫ ∞

0

k⊥ dk⊥
(2π)2

∫ 1

0

dx√
2x(1 − x)

× −m2
f φ0/P(k⊥, x) + √

2m f k⊥φ1/P(k⊥, x)

[k2⊥ + m2
f ]2

. (41)

For simplicity, we have introduced two scalar functions
that are related to the singlet and triplet helicity compo-
nents as φ0/P(k⊥, x) = ψ−/P(�k⊥, x) and φ1/P(k⊥, x) =
ψ↑↑/↓↓/P(�k⊥, x)e∓iθk . Using the transverse current J⊥ and
the longitudinally polarized photon (λ1 = 0), we get

FPγ (0, 0)|J⊥

= −2Q2
f

√
Nc

∫ ∞

0

k⊥ dk⊥
(2π)2

∫ 1

0

dx√
2x(1 − x)

× φ0/P(k⊥, x)

k2⊥ + m2
f

. (42)

According to the formalism of the covariant light-front
dynamics (CLFD), the general helicity structure of a two-
body pseudoscalar bound state takes the form ψss̄/P,CLFD

(�k⊥, x) = ūs(kq)φA(k⊥, x)γ5vs̄(kq̄), in which φA is a scalar
function, if we neglect the light-front orientation dependent
term [57,58]. It follows that the two spin components are
related as

−k⊥φ0/P,CLFD(k⊥, x) = √
2m f φ1/P,CLFD(k⊥, x). (43)

With this condition, the transition form factors extracted
using the two different currents, Eqs. (41) and (42), would
be equivalent.

In the nonrelativistic (NR) limit of x → 1/2 + kz/(2m f ),
m f → mP/2 and m f � kz , only the dominant spin com-

ponents, ψ
(m j=0)

−/P survive as the NR wavefunction ψN R
P (�k)

( ψ̃N R
P (�r) in the coordinate space). The two Eqs. (41) and

(42), reduce to the same form,

FNR
Pγ (0, 0)|J+ = FNR

Pγ (0, 0)|J⊥

= 8
√

2NcQ2
f

m3
P

ψ̃N R
P (�r = �0). (44)

In designing the LFWF of the pseudoscalar meson, we
impose the constraint that the transition form factors calcu-
lated from different currents are the same as the experimental
value converted from the diphoton decay width according to
Eq. (40),

|FPγ (0, 0)|J+| = |FPγ (0, 0)|J⊥|
= |FPγ,experiment(0, 0)|. (45)

In this constraint, the first equation enforces rotational sym-
metry in the pseudoscalar meson decay width (i.e. the integral
over k⊥, x), but not at the level of the wavefunction [as in the
CLFD condition for the integrand in Eq. (43)]. The second
equation then fixes coefficients in the LFWF based on the
experimental measurement.

3.2.2 The diphoton decay width in terms of the
pseudoscalar decay constant

The decay constant of the pseudoscalar fP is defined with the
axial current via the local vacuum-to-hadron matrix element,

〈0|�̄(0)γ μγ 5�(0)|P(P)〉 = i Pμ fP. (46)

In the LFWF representation, the pseudoscalar decay constant
is an integral of the meson LFWF. The calculation using the
J+ and the J⊥ current components are equivalent, whereas
the result extracted with the J− current has some nontriv-
ial dependence on the meson’s momentum (see Chapter 2 of
Ref. [53] for more details). Here, we take the J+ (or equiva-
lently the J⊥) current to calculate the decay constant of the
pseudoscalar,

fP =√
2Nc

∫ 1

0

dx√
x(1 − x)

∫
d2k⊥
(2π)3 φ0/P(k⊥, x). (47)
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Table 3 Experimental values of selected charmonia states. The values
of meson masses and decay widths are taken from the PDG [65]. The
values of decay constants and the transition from factor are calculated
from the corresponding decay widths according to Eqs. (33), (48), and
(40) with αem = 1/134 (αem = 1/137) for the vector meson dilepton
decay(the pseudoscalar meson diphoton decay). The uncertainties of
the converted values are calculated by propagation from those of the
meson masses and the decay widths. The numbers in parentheses are
the uncertainties, and they apply to the preceding significant digit or
digits

mP( GeV) �P→γ γ ( keV) fP( GeV), FPγ (0)( GeV−1)

ηc 2.9839(5) 5.06(37) 0.338(12), 0.067(2)

mV( GeV) �V→l+l− ( keV) fV( GeV)

J/ψ 3.096900(6) 5.53(10) 0.406(4)

ψ ′ 3.68610(6) 2.33(4) 0.288(2)

ψ(3770) 3.7737(4) 0.262(18) 0.0977(34)

The expressions of the decay constant in the basis function
representation can be found in Appendix D.

The decay constant of the pseudoscalar meson is related
to the diphoton decay width through a single pole fit to the
transition form factor [50,51], fP ≈ FPγ (0, 0)m2

P/(4Q2
f )

in the leading order approximation, thus

�P→γ γ ≈ 4πQ4
f α

2
em

f 2
P

mP
. (48)

We could also see this approximation explicitly in the LFWF
representation by comparing Eqs. (47)–(42). The left-hand
side of Eq. (48) would reduce to the right-hand side in
the nonrelativistic limit of mP = 2m f and m f >> k⊥.
The decay constant fηc could also be extracted from the B
meson decay channels by assuming factorization, �(B →
ηcK )/�(B → J/ψK ) ∝ ( fηc/ f J/ψ)2 [59–64].

As noted above, to design the pseudoscalar LFWF that
gives the correct diphoton decay width, we use the more accu-
rate equations from the transition form factor rather than the
decay constant here. Still, calculating the decay constant as a
simple analytical form provides an insightful approximation
and a cross-check, especially for heavy systems.

We list the experimental values of the meson masses and
the dilepton (diphoton) decay width for the vector (pseu-
doscalar) meson, of selected charmonium states, accord-
ing to the Particle Data Group (PDG) [65] in Table 3. The
decay constant of the vector meson is converted from the
associated dilepton decay width according to Eq. (33) with
αem = 1/134. Note that we take the effective electromag-
netic coupling at the meson mass scale. The decay constant
and transition form factor at zero four-momentum transfer of
the pseudoscalar meson are converted from the correspond-
ing diphoton decay width according to Eqs. (48), and (40)

with αem = 1/137. Note that for this process, the coupling
is taken at zero momentum transfer.

3.3 The LFWF of J/ψ as a 1−− state

In the charmonia system, J/ψ is the ground vector state
with J PC = 1−−. The dominant contribution to the J/ψ
state should be the ground light-front state, 1S state. For
instance, the BLFQ calculations predict that the probability
of finding the J/ψ in a LF-1S state is larger than 99% [26,27].
In consideration of that, we set the LFWF of J/ψ to be a
pure LF-1S state, ψLF−1S,1−−, such that all three polarization
states of J/ψ have the same spatial dependence:

ψ
(m j=0)

J/ψ = ψ
(m j=0)

LF−1S,1−−, (49a)

ψ
(m j=1)

J/ψ = ψ
(m j=1)

LF−1S,1−−, (49b)

ψ
(m j=−1)

J/ψ = ψ
(m j=−1)

LF−1S,1−−. (49c)

With the wavefunction of Eq. (49), the decay constants
of those states can be calculated as functions of m f and κ

according to Eqs. (D32)–(D31). The decay constant is plot-
ted as a function of m f and κ in Fig. 4. Perhaps surprisingly,
the lines of constant fV in the m f , κ-plane are very differ-
ent for the transverse and longitudinal polarization states of
the meson. Thus the point where the lines of experimentally
measured f J/ψ intersect (i.e. where the decay width is rota-
tional invariant and has the correct value) gives us a very tight
constraint on both m f and κ simultaneously. The agreement
of both decay constants happens at κ = κ̂ = 1.34(1) GeV
and m f = m̂ f = 1.27(4) GeV. We, therefore, adopt these
values of m f and κ in our basis representation. The LFWF
for J/ψ is now determined, and we present a plot of the
spatial wavefunction in Fig. 5.

Now that we have fixed the parameters in our basis func-
tions, we can, as a cross-check, look at the mass of the state,
using the two estimates H0 and HBLFQ for the effective
Hamiltonian. A calculation according to Eq. (29) yields

√〈H0〉J/ψ(m j=0) = 3.44 GeV,
√〈HBLFQ〉

J/ψ(m j=0) = 2.93 GeV,
√〈H0〉J/ψ(m j=±1) = 3.44 GeV,
√〈HBLFQ〉

J/ψ(m j=±1) = 2.96 GeV.

Note that these are not the mass eigenvalues of the designed
J/ψ state, since we are not working with some specific
Hamiltonian. These estimated masses are reasonably close
to the experimental value in Table 3.

Based on the nonrelativistic limit, we would expect the
ηc to be mostly a ψLF−1S,0−+ state with partons in the spin
singlet state, i.e. ψ0,0,0σ−. We would also expect the ψ ′ to
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(a) (b) (c)

Fig. 4 Decay constant of ηc, J/ψ and ψ ′ as single-basis states [see
Eq. (49) and the text], at different values of m f and κ . Panel a is calcu-
lated from the m j = 0 state, and panel b is from the m j = ±1 state. In
each panel, the curves are the contours where the calculated decay con-
stants equate to the PDG values in Table 3. There are three lines for each
state, the solid line in the middle is the mean value, and the two neighbor-

ing dashed lines are the lower and higher bounds by taking uncertainties
into account. The values of m f and κ from the BLFQ calculation [27],
κBLFQ = 0.966 GeV and m f,BLFQ = 1.603 GeV, are shown in thin
dashed black lines in panels a, b. In panel c, decay constants of J/ψ cal-
culated from the m j = 0 and the m j = ±1 states are plotted together.
The two bands join at κ = 1.34(1) GeV,m f = 1.27(4) GeV

Fig. 5 Plot of the J/ψ wavefunction according to Eq. (49) as a func-
tion of x and �k⊥ at θk = 0, π , with the basis parameter κ = 1.34 GeV.
All three polarized states of J/ψ have the same spatial dependence,

ψ
m j=0
↑↓+↓↑/J/ψ (�k⊥, x) = ψ

m j=1
↑↑/J/ψ (�k⊥, x) = ψ

m j=−1
↓↓/J/ψ (�k⊥, x). The mag-

nitude of the wavefunction is in GeV−1

be predominantly a ψLF−2S,1−− state, and thus have a large
ψ1,0,0 component [see Eq. (21)] with partons in the spin
triplet state, i.e. ψ1,0,0{σ↑↑, σ+, σ↓↓} for m j = 1, 0, and −1
states respectively. It turns out that out that the pseudoscalar
meson decay constant calculated from a ψ0,0,0 wavefunction,
and the vector meson decay constant calculated from ψ1,0,0

have exactly the same expressions as a function of κ and m f

as we have for the J/ψ [also see Eqs. (D30)–(D32) and the
associated discussions]. Since these LFWF’s are expected to
be close to ηc and ψ ′, it is interesting to plot also the curves
corresponding to the experimental values fψ ′ and fηc in the
same κ,m f plane. These curves are also shown in Fig. 4.

One immediately observes that, having fixed κ and m f using
the J/ψ decay, the decay widths of the ψ0,0,0σ− and ψ1,0,0

states do not match the experimental values for ηc and ψ ′.
Therefore, we must allow both of these mesons to have some
contribution from other basis states to fit their decay widths.

3.4 The LFWF of ηc as a 0−+ state

In the previous section, we have constructed the LFWF for
J/ψ as 1−− state in Eq. (49). We find the values of κ and m f

by fitting the calculated J/ψ decay constant to the experi-
mental value, and we will use the same values in constructing
other states. The pseudoscalar meson ηc with quantum num-
ber 0−+ is the ground state in the charmonium system. It is
a 1S state in the nonrelativistic limit. In this work, we build
the ηc LFWF as a relativistic bound state, admitting a pre-
dominant LF-1S component with admixtures of LF-2S and
LF-1P components,

ψηc = Cηc,1SψLF−1S,0−+ + Cηc,2SψLF−2S,0−+
+ Cηc,1PψLF−1P,0−+. (50)

The LF-1P component has a pure relativistic origin. It is
forbidden in the NR limit by the nonrelativistic parity relation
P = (−1)�+1 = 1 (� = 1 for the P wave), but allowed in
our case as long as the charge conjugation and mirror parity
symmetries are satisfied.

We determine the values of the basis coefficients by match-
ing the diphoton decay width �ηc→γ γ to the experimen-
tal value. Using the framework developed in Sect. 3.2, we
impose the constraint that the diphoton decay width calcu-
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Table 4 The wavefunction of ηc defined in Eq. (50). The values of basis
coefficients are obtained by fitting the diphoton decay width �ηc→γ γ to
the PDG value (see Table 3) at κ = κ̂,m f = m̂ f . Uncertainties come
from those of the parameters and the PDG decay width. In the second
column, the values of basis coefficients are obtained by fitting the dipho-
ton decay width via the decay constant formula according to Eq. (47).
There, the LF-1P component is taken away. In the third column, the
values of basis coefficients are obtained by fitting the diphoton decay

width via the transition form factor Fηcγ (0, 0) according to Eqs. (41)
and (42). The corresponding LFWF is what we provide from this work.
The percentage of each basis state is calculated by taking the square
of the corresponding basis coefficient. The BLFQ values are extracted
from the LFWF that is solved from the Hamiltonian formalism [27].
The meson mass is estimated by evaluating the expectation value of H
according to Eq. (27)

Value by fηc Value by Fηcγ (0, 0) pct. (%) BLFQ pct. (%) [27], normalized

Cηc,1S 0.987(7) 0.926(2) 85.8 64.3, 77.0

Cηc,2S 0.159(39) 0.157(71) 2.5 13.9, 16.6

Cηc,1P – 0.342(49) 11.7 5.4, 6.4√〈H0〉( GeV) 3.47(2) 3.00(3)
√〈HBLFQ〉( GeV) 3.53(2) 3.02(5)

lated through the transition form factor Fηcγ (0, 0)|J+ and
Fηcγ (0, 0)|J⊥ match the PDG value simultaneously, as illus-
trated in Eq. (45). For comparison, we also use the decay
constant formula, Eq. (47), to determine the basis coeffi-
cients by fitting to the diphoton decay width. In this case,
only the spin singlet component is involved, and the LF-1P
component is absent, i.e., Cηc,1P = 0. The results are pre-
sented in Table 4. The obtained ηc LFWF, for which the basis
coefficients are listed in the third column, has a large LF-1S
component and small LF-2S and LF-1P components. This
set of basis coefficients are very close to the one obtained via
the decay constant fit. However, there is an essential differ-
ence between the two; as we have discussed in Sect. 3.2, the
LF-1P component is necessary for preserving the rotational
symmetry detected via the diphoton decay. In comparison,
the BLFQ LFWF has a smaller percentage for the dominant
LF-1S component, leaving probability available for higher
excited modes.

We present a plot of the spatial wavefunction of ηc in
Fig. 6. In addition, we compare the relation of the two helicity
components to the condition from CLFD in Eq. (43) in Fig.
7. We see that the actual σ↑↑ component in our LFWF and the
one obtained from the σ− component via the CLFD condition
have the same overall form and roughly the same magnitude,
but are not exactly equal.

3.5 The LFWF of ψ ′ as a 1−− state

As the first excited vector state, ψ ′ should receive a dominant
contribution from the LF-2S state. However, mixing with
other states is also required to obtain the measured decay
constant. Thus, we allow admixture of the the LF-1S state.
Hence, we construct ψ ′ as a combination of LF-1S and LF-2S
states,

Fig. 6 Plot of the ηc wavefunction according to Eq. (50) as a function
of x and �k⊥ at θk = 0, π , with the basis parameter κ = 1.34 GeV, a
ψ↑↓−↓↑/ηc (

�k⊥, x), b ψ↑↑/ηc (
�k⊥, x) = ψ∗↓↓/ηc

(�k⊥, x)
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(a)

(b)

Fig. 7 Comparisons of different spin components ofηc . The wavefunc-
tions are defined in Eq. (50), with the basis parameter κ = 1.34 GeV
and m f = 1.27 GeV. (a) The spin component ψ↑↑ generated from ψ−
by the CLFD relation in Eq. (43) [contrast with Fig. 6b]; (b) comparison
of the ψ↑↑ component in this work and CLFD generated component at
x = 0.5

ψ
(m j=0)

ψ ′ = C
(m j=0)

ψ ′,1S ψ
(m j=0)

LF−1S,1−−

+ C
(m j=0)

ψ ′,2S ψ
(m j=0)

LF−2S,1−−, (51a)

ψ
(m j=1)

ψ ′ = C
(m j=1)

ψ ′,1S ψ
(m j=1)

LF−1S,1−−

+ C
(m j=1)

ψ ′,2S ψ
(m j=1)

LF−2S,1−−, (51b)

ψ
(m j=−1)

ψ ′ = C
(m j=−1)

ψ ′,1S ψ
(m j=−1)

LF−1S,1−−

+ C
(m j=−1)

ψ ′,2S ψ
(m j=−1)

LF−2S,1−−. (51c)

Note that we do not require exact orthogonality between our
J/ψ and ψ ′ states, which would require the admixture of
additional basis states and the corresponding parameters. The
basis coefficients are determined by fitting the decay constant
to the PDG value, at the values κ = κ̂,m f = m̂ f determined
from the J/ψ . We also estimate the meson mass by calcu-
lating the expectation value of H defined in Eq. (27). The
results are presented in Table 5.

Table 5 The wavefunction of ψ ′ defined in Eq. (51). The values of basis
coefficients are obtained by fitting the decay constant to the PDG value,
at κ = κ̂,m f = m̂ f . Uncertainties come from those of the parameters
and the PDG decay constants. The percentage of each basis state is
calculated by taking the square of the corresponding basis coefficient.
The BLFQ values are extracted from the LFWF that is solved from the
Hamiltonian formalism [27]. The meson mass is estimated by evaluating
the expectation value of H according to Eq. (27)

Value pct. (%) BLFQ pct. [27], nor-
malized (%)

C
(m j=0)

ψ ′,1S 0.240(5) 5.7 18, 22.8

C
(m j=0)

ψ ′,2S 0.971(2) 94.3 61.0,77.2
√〈H0〉( GeV) 4.42(0)
√〈HBLFQ〉( GeV) 4.01(0)

C
(m j=±1)

ψ ′,1S 0.302(18) 9.2 15.2, 19.5

C
(m j=±1)

ψ ′,2S 0.953(6) 90.8 62.7, 80.5
√〈H0〉( GeV) 4.39(1)
√〈HBLFQ〉( GeV) 4.00(1)

The LFWFs of ψ ′ are presented in Fig. 8. In addition,
we compare different m j states of ψ ′ in the longitudinal and

the transverse dimension separately in Fig. 9. The ψ ′(m j=0)

state and the ψ ′(m j=±1) state largely resemble each other in
both the x and �k⊥ directions. This is expected by looking
at their spatial decomposition, each being a predominantly
(> 90%, see Table 5) LF-2S state. The ψ ′(m j=±1) state has
a slightly higher peak at {x = 1/2, �k⊥ = �0⊥} compared to
the ψ ′(m j=0) state, due to the fact that the ψ ′(m j=±1) state
has a somewhat larger LF-1S component (9.2% compared to
5.7%, see Table 5).

3.6 The LFWF of ψ(3770) as a 1−− state

The vector meson ψ(3770) is recognized as primarily a 1D
wave, with admixtures such as 1S and 2S waves, in reference
to potential models and BLFQ calculation. Here, we design
the ψ(3770) state as a linear combination of the LF-1D, LF-
1S, and LF-2S states,

ψ
(m j=0)

ψ(3770) = C
(m j=0)

ψ(3770),1Sψ
(m j=0)

LF−1S,1−−

+ C
(m j=0)

ψ(3770),2Sψ
(m j=0)

LF−2S,1−−

+ C
(m j=0)

ψ(3770),1Dψ
(m j=0)

LF−1D,1−−, (52a)

ψ
(m j=1)

ψ(3770) = C
(m j=1)

ψ(3770),1Sψ
(m j=1)

LF−1S,1−−

+ C
(m j=1)

ψ(3770),2Sψ
(m j=1)

LF−2S,1−−

+ C
(m j=1)

ψ(3770),1Dψ
(m j=1)

LF−1D,1−−, (52b)
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Fig. 8 Plot of the ψ ′ wavefunction according to Eq. (51) as a function
of x and �k⊥ at θk = 0, π , with the basis parameter κ = 1.34 GeV. a

ψ
(m j=0)

↑↓+↓↑/ψ ′ (�k⊥, x), b ψ
(m j=1)

↑↑/ψ ′ (�k⊥, x) = ψ
(m j=−1)

↓↓/ψ ′ (�k⊥, x)

ψ
(m j=−1)

ψ(3770) = C
(m j=−1)

ψ(3770),1Sψ
(m j=−1)

LF−1S,1−−

+ C
(m j=−1)

ψ(3770),2Sψ
(m j=−1)

LF−2S,1−−

+ C
(m j=−1)

ψ(3770),1Dψ
(m j=−1)

LF−1D,1−−. (52c)

We impose two constraints: (1) the LF-1D component is
dominant, (2) ψ(3770) is orthogonal to ψ ′. With these con-
siderations, we solve the basis coefficients of ψ(3770) by fit-
ting its decay constant to the PDG value, at κ = κ̂,m f = m̂ f .
We also estimate the meson mass by calculating the expecta-
tion value of H defined in Eq. (27). The results are presented
in Table 6. We present the different spin components of the
ψ(3770) state in Fig. 10. Those plots display the features one
would expect from 1D and 2S states.

(b)

(a)

Fig. 9 Comparisons of different polarized states of ψ ′. The wavefunc-
tions are defined in Eq. (51), with the basis parameter κ = 1.34 GeV and
m f = 1.27 GeV. a Dependence of the wavefunction on x at �k⊥ = �0⊥,
b dependence of the wavefunction on �k⊥(θk = 0, π) at x = 0.5

Table 6 The wavefunction of ψ(3770) defined in Eq. (52). The values
of basis coefficients are obtained by fitting the decay constant to the
PDG value, at κ = κ̂,m f = m̂ f . Uncertainties come from those of the
parameters and those of the PDG decay constants. The percentage of
each basis state is calculated by taking the square of the corresponding
basis coefficient. The BLFQ values are extracted from the LFWF that
is solved from the Hamiltonian formalism [27]. The meson mass is
estimated by evaluating the expectation value of H according to Eq. (27)

Value pct. (%) BLFQ pct. [27],
normalized (%)

C
(m j=0)

ψ(3770),1S 0.015(10) 0.023 0.04, 0.04

C
(m j=0)

ψ(3770),2S − 0.004(3) 0.002 0.20, 0.23

C
(m j=0)

ψ(3770),1D 1.000(0) 99.975 87.59, 99.73
√〈H0〉( GeV) 4.52(0)
√〈HBLFQ〉( GeV) 4.15(0)

C
(m j=±1)

ψ(3770),1S 0.092(4) 0.84 0.007, 0.01

C
(m j=±1)

ψ(3770),2S − 0.029(1) 0.08 0.09, 0.10

C
(m j=±1)

ψ(3770),1D 0.995(1) 99.08 88.00, 99.89
√〈H0〉( GeV) 4.41(0)
√〈HBLFQ〉( GeV) 3.99(0)
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Fig. 10 Plot of the ψ(3770) wavefunction according to Eq. (52) as a function of x and �k⊥ at θk = 0, π , with the basis parameter κ = 1.34 GeV

4 Meson states and observables

In this section, we calculate several observables for the char-
monium states using the LFWFs we have constructed. For
the ηc observables, we adopt the amplitudes presented in the
third column of Table 4. With the meson LFWFs, we cal-
culate their charge radii, parton distribution functions, and
distribution amplitudes. We use the J/ψ wavefunction to cal-
culate exclusive meson production in DIS and ultraperipheral
heavy-ion collisions and compare with other model calcula-
tions. We use the ηc wavefunction to calculate the diphoton
transition form factor and compare it with the experimental
measurement.

4.1 Charge radii

The charge radius of the meson bound state is defined in terms
of the slope of the charge form factor at zero momentum
transfer. It provides important insight on the spatial structure
of the system,

〈r2
h 〉 = −6

∂

∂Q2 G0(Q
2)|Q→0. (53)

With the constructed LFWFs, the form factors can be
obtained from the Drell-Yan-West formula within the Drell-
Yan frame P ′+ = P+,

ImJ ,m′
J
(Q2)

= 〈ψ(m′
j )

h (P ′)|J+|ψ(m j )

h (P)〉/(2P+)

=
∑

s,s̄

∫ 1

0

dx

2x(1 − x)

∫
d2k⊥
(2π)3

× ψ
(m′

j )∗
ss̄/h (�k⊥ + (1 − x)�q⊥, x)ψ

(m j )

ss̄/h (�k⊥, x), (54)

where q = P ′ − P , and Q2 = −q2 = q2⊥. For the
pseudoscalar ηc, it directly produces the charge form fac-
tor G0(Q2) = I0,0(Q2). For vector mesons, we adopt the
prescription of Grach and Kondratyuk [66],

G0 = 1

3

[
(3 − 2η)I1,1 + 2

√
2ηI1,0 + I1,−1

]
, (55)

where η = Q2/(4M2
h ), Mh is the mass of the hadron. Table 7

lists the r.m.s. radii of the states studied in this work. The
values calculated from the BLFQ wavefunctions [27] are also
listed for comparison. From our results, the radius of ηc is
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Table 7 The mean squared radii (in fm2) of ηc, J/ψ , ψ ′ and ψ(3770) calculated from their constructed LFWFs

(fm2) 〈r2
ηc

〉 〈r2
J/ψ 〉 〈r2

ψ ′ 〉 〈r2
ψ(3770)〉

This work 0.098 0.046 0.154 0.138

BLFQ [27] 0.029 (1) 0.0402 (2) 0.13 (0) 0.13 (0)

about 46% larger than the radius of the J/ψ . This is because
the J/ψ is a LF-1S state by design, whereas ηc admits small
LF-2S and LF-1P components. Both the LF-2S and LF-1P
states have a larger radius than the LF-1S state.

4.2 Parton distributions

The quark Parton Distribution Functions (PDFs) represent
the probability of finding a quark carrying momentum frac-
tion x in the hadron state. They are essential ingredients in
describing the hadron structure for hard scattering processes
such as deep inelastic scattering from a hadron target and the
hadron-hadron Drell-Yan process [67,68]. In the light-front
formalism, the PDFs of a hadron state can be evaluated by
integrating out the transverse momentum of the wavefunc-
tion overlaps. For the pseudoscalar meson ηc, the quark’s
PDF is defined as

q(x) =
∑

s,s̄

∫
d2k⊥

2x(1 − x)(2π)3 |ψss̄/h(�k⊥, x)|2. (56)

This PDF is normalized to unity in our model in the sense
that there is one valence quark,

∫ 1

0
dx q(x) = 1. (57)

For vector mesons, the PDFs are defined in terms of the
quark–quark correlation function probed in the spin-one tar-
get lepton-hadron scattering [67–72]. The PDFs appear as the
parametrization coefficients in front of the Dirac γ -matrices,
and there are four time-reversal even distributions at the lead-
ing twist. We write those PDFs in terms of the light-front
helicity matrix elements, defined as

A
m′

j ,m j

s′,s (x)

=
∑

s̄

∫
d2k⊥

2x(1 − x)(2π)3 ψ
(m′

j )∗
s′ s̄/h (�k⊥, x)ψ

(m j )

ss̄/h (�k⊥, x),

(58)

where the initial (final) state helicity of the hadron ism j (m′
j )

and that of the quark is s (s′). The unpolarized PDF f1(x) is
expressed as

f1(x) =1

3

∑

s

[
A0,0
s,s (x) + A1,1

s,s (x) + A−1,−1
s,s (x)

]
. (59)

It represents the unpolarized quark distributions in the unpo-
larized spin-one hadron. Similar to the pseudoscalar PDF
q(x) in Eq. (56), f1(x) is also normalized to unity in our
model,

∫ 1

0
dx f1(x) = 1. (60)

The tensor polarized PDF f1LL(x) represents the difference
of unpolarized quark distributions in the transversely polar-
ized spin-one hadron with spin projection m j = 0 and
m j = ±1, and is sensitive to the quark’s orbital angular
momentum [73–75]. It is expressed as

f1LL(x) =
∑

s

[
A0,0
s,s (x) − 1

2
A1,1
s,s (x) − 1

2
A−1,−1
s,s (x)

]
.

(61)

The longitudinally polarized PDF h1(x) is expressed as

h1(x) = 1

2
√

2

[
A1,0

↑,↓(x) + A0,1
↓,↑(x)

+ A0,−1
↑,↓ (x) + A−1,0

↓,↑ (x)

]
. (62)

It describes the distribution of the longitudinally polarized
quark in the longitudinally polarized meson.

The transversely polarized PDF g1(x) is expressed as

g1(x) = 1

2

[
A1,1

↑,↑(x) − A1,1
↓,↓(x)

− A−1,−1
↑,↑ (x) + A−1,−1

↓,↓ (x)

]
. (63)

It describes the distribution of the transversely polarized
quark in the transversely polarized meson. Note that there
are different conventions in naming the polarized PDFs h1(x)
and g1(x). For example, in Ref. [76], the former is referred
to as the transversely polarized PDF whereas the latter as the
longitudinally polarized PDF, which is linked with calling
the λ = 1 nucleon a longitudinally polarized state.

Figure 11 shows the PDFs of ηc, J/ψ , ψ ′ and ψ(3770).
The PDF of ηc is peaked at x = 1/2, reflecting its structure
as a predominantly LF-1S wave. For J/ψ , the three PDFs
h1(x), g1(x), and f1(x) are identical, and the tensor polar-
ized PDF f1LL(x) is 0. This is because the designed J/ψ
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Fig. 11 PDFs of ηc, J/ψ , ψ ′ and ψ(3770), calculated from the constructed LFWFs according to Eq. (56) and Eqs. (59)–(61)

is a pure LF-1S wave with spin-triplet configuration, so its
spatial dependence of each polarized state is the same. In the
case of ψ ′, the three PDFs h1(x), g1(x), and f1(x) are only
slightly different, and they reflect excitations in the longitu-
dinal direction from the large LF-2S component. The ψ ′’s
tensor polarized PDF f1LL(x) deviates slightly from 0, indi-
cating the resemblance between the transversely and longitu-
dinally polarized states. The PDFs of ψ(3770) admit several
interesting features. The unpolarized PDF f1(x) of ψ(3770)

has an extensive flat region, indicating its large angular exci-
tation. A recent study on ρ meson PDF also reveal a large
flat region using the light-front holographic wavefunction
[72]. Compared to J/ψ and ψ ′, the polarized PDF h1(x) and
g1(x) of ψ(3770) are each different from f1(x). In addition,
the tensor polarized PDF f1LL(x) of ψ(3770) has a much
larger amplitude, indicating the difference between the spa-
tial dependences of different polarized states.

4.3 Distribution amplitudes

The distribution amplitudes (DAs) control the valence-
quark distributions in high-momentum-transfer exclusive
processes [55]. The quark DA, φh(x;μ) of meson h, is
defined from the light-like separated gauge invariant vacuum-
to-meson matrix elements, and it can be understood as the
amplitude for finding the constituent quark with longitudinal
momentum fraction x in the meson h which are collinear up

to the scale μ. The leading-twist DAs in the light-cone gauge
for pseudo-scalar and vector mesons are [77–79]:

〈0|�̄(z)γ +γ5�(−z)|P(P)〉μ = i P+ fP
∫ 1

0
dx ei P

+z−(x− 1
2 )φP(x;μ)

∣∣∣
z+,�z⊥=0

, (64)

〈0|�̄(z)γ +�(−z)|V(P,m j = 0)〉μ = e+(P,m j )

mV fV
∫ 1

0
dx ei P

+z−(x− 1
2 )φV(x;μ)

∣∣∣
z+,�z⊥=0

. (65)

Recall that fP,V are the decay constants, mV the meson mass,
and eμ(P,m j ) the polarization vector. The normalization of
DAs in this convention reads
∫ 1

0
dx φh(x;μ) = 1. (66)

In terms of LFWFs, DAs of the pseudoscalar and vector
mesons can be written as [27,55],

fP,V
2
√

2Nc
φP,V(x;μ)

= 1√
x(1 − x)

�μ2∫
d2k⊥

2(2π)3 ψ
(m j=0)

∓/P,V (x, �k⊥), (67)

where the upper limit on the integral indicates k⊥/
√
x(1 − x)

� μ. The basis functions we adopted provide a soft UV
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Fig. 12 Quark distribution amplitudes of ηc, J/ψ , ψ ′, and ψ(3770) calculated according to Eq. (67)

regulator μ ≈ 2κ , therefore we we integrate up to k⊥ = ∞
when calculating the DA using Eq. (67). As illustrated in
Fig. 1, the low lying φnm modes drop significantly when k⊥
goes beyond 2κ .

Figure 12 shows the DAs of ηc, J/ψ , ψ ′, and ψ(3770).
The DAs of ηc and J/ψ are both peaked at x = 1/2, reflect-
ing their structure as a predominantly LF-1S wave; a similar
behavior has been seen in their PDFs in Sect. 4. The DA of
the LF-2S dominated ψ ′ features two peaks, a consequence
of longitudinal excitation. The DA of ψ(3770) has two nodes
and a maximum at x = 1/2.

4.4 Vector meson production

In this section, we study exclusive charmonium production
in diffractive deep inelastic scattering and ultra-peripheral
heavy ion collisions within the dipole picture. We employ the
LFWF of J/ψ obtained in Sect. 3. We also make calculations
of charmonium production using the BLFQ LFWF [26] and
boosted-Gaussian LFWF for comparisons.

For exclusive heavy quarkonium production in DIS, the
amplitude in the dipole model can be calculated as [3]

Aγ ∗ p→hp
T,L (xB, Q, t) = i

∫
d2r⊥

∫ 1

0

dx

4π

∫
d2b⊥

(ψ∗
hψγ )T,L(�r⊥, x, Q)e−i[�b⊥−(1−x)�r⊥]· ��⊥ dσqq̄

d2b⊥
(xB, �r⊥),

(68)

where T and L specify the transverse and longitudinal polar-
ization of the virtual photon (with virtuality Q2) and the
produced quarkonium, and t = −| ��⊥|2 is the momentum
transfer squared. On the right-hand side, the transverse size
of the color dipole is denoted by �r⊥, the LF longitudinal
momentum fraction of the quark is denoted by x , the impact
parameter of the dipole relative to the proton is denoted by
�b⊥ and xB is the Bjorken variable. Here, ψγ and ψh are the
LFWFs of the virtual photon and the exclusively produced
quarkonium, respectively (see the explicit expression of the

photon LFWF in Appendix E). The cross section is related
to the amplitude via

dσ
γ ∗ p→hp
T,L

dt
(xB, Q) = 1

16π
|Aγ ∗ p→hp

T,L (xB, Q, t)|2 . (69)

Furthermore, we implement two phenomenological correc-
tions in the calculation of the cross section: the contribution
from the real part of the scattering amplitude [3], and the
skewedness correction [80], which takes into account the
fact that two gluons interacting with the dipole are carrying
slightly different momentum fractions (consult Ref. [81] for
the details of the implementations).

We take the leading order perturbative calculations to
obtain the photon’s wavefunction. With the J/ψ LFWF from
Eq. (49), the overlap functions are, written explicitly,

(ψ∗
J/ψψγ )L = Q f e

√
2Nc

π
Qx(1 − x)

K0(εr⊥) φ(r⊥, x), (70a)

(ψ∗
J/ψψγ )T = Q f e

√
2Nc

2π
m f

K0(εr⊥)φ(r⊥, x), (70b)

with

φ(r⊥, x) = κ
√

4(2α + 1)

√
�(2α + 1)

�(α + 1)

× exp

(
−κ2x(1 − x)r2⊥

2

)
[x(1 − x)] α+1

2 , (71)

where e = √
4παem, Q f = Qc = 2/3 is the charge fraction

carried by the quark, K0 the modified Bessel function of
the second kind, ε2 ≡ x(1 − x)Q2 + m2

f and Nc = 3 the
number of colours. In Fig. 13, we show the overlap between
the photon and the J/ψ wavefunctions integrated over x
at different photon virtualities. To be precise, we plot the
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Table 8 Parameters of the bCGC model in Eq. (73) determined from fits to combined HERA data [83]

BCGC ( GeV−2) mc ( GeV) γs N0 xB,0 λs χ2/d.o.f.

5.5 1.27 0.6599 0.3358 0.00105 0.2063 1.241

(a)

(b)

Fig. 13 The J/ψ-photon overlap functions [Eq. (72)] using three dif-
ferent J/ψ LFWFs at Q2 values representative of the data, for a the
longitudinal polarization and b the transverse polarization. Solid lines
are obtained using the small-basis LFWF (this work), dotted lines the
BLFQ LFWF [26], and dot-dashed lines the boosted Gaussian LFWF
[5]

quantity

2πr⊥
∫ 1

0

dx

4π
(ψ∗

J/ψψγ )T,L . (72)

We take three different versions of the J/ψ LFWF, the one
designed in this work (denoted as “1-basis” BLFQ in the fig-
ure), the BLFQ LFWF [26], and the boosted Gaussian with

mc = 1.27 GeV [5]. The LFWF in this work is built from
the same basis functions used in BLFQ. However, the BLFQ
LFWF is solved by diagonalizing the light-front Hamiltonian
in a much larger basis space and fitting to the meson mass
spectrum, whereas our LFWF and the boosted Gaussian are
obtained by fitting to the decay widths. Our LFWF exhibits
similarity with the boosted Gaussian by having a simple ana-
lytical form, but the structures are different. From Fig. 13, we
see that the J/ψ-photon overlaps calculated with the three
J/ψ LFWFs are of the same magnitude and similar overall
shape at each Q2. In the case of the longitudinally polar-
ized states, as in Fig. 13a, the overlaps from this work and
the boosted Gaussian are very close and slightly higher than
BLFQ. For the transversely polarized states, as in Fig. 13b,
the result from this work is roughly in between that from
BLFQ and boosted Gaussian.

We use the bCGC dipole model for the dipole cross sec-
tion,

dσqq̄

d2 �b⊥
= 2N(r⊥Qs, xB)

= 2

⎧
⎪⎨

⎪⎩
N0

(
r⊥Qs

2

)2γs+
2 ln 2

r⊥Qs
κsλs ln(1/xB )

, r⊥Qs ≤ 2

1 − e−A ln2(Br⊥Qs ), r⊥Qs > 2

. (73)

Here, Qs ≡ Qs(xB) = (xB,0/xB)λs/2Q0 and Q0 = 1 GeV;
γs , κs , λs are parameters to be determined by inclusive DIS
data [82]; A and B should be evaluated by continuity con-
ditions at r⊥Qs = 2. We use one of the parametrizations in
Ref. [83] for this investigation, which we provide in Table 8.

We then calculate the J/ψ production in the kinematic
range of the HERA experiment [84,85]. Various cross sec-
tions obtained as a function of the kinematic variables Q2,W ,
and t reasonably agree with experimental data. As an illus-
tration, we present some representative results in Fig. 14,
together with calculations using BLFQ and boosted Gaus-
sian wavefunctions for comparison. In all three panels, the
solid curves are calculated with the J/ψ’s LFWF designed
in this work, the dotted curves are calculated with BLFQ vec-
tor meson LFWF, and the dot-dashed curves are calculated
with the boosted Gaussian LFWF of Ref. [5], respectively.
The bCGC parametrization listed in Table 8 for dipole cross
section was used for all wavefunctions.

Figure 14a shows the total J/ψ cross section as function
of (Q2+m2

J/ψ) for photon-proton c.m. energyW = 90 GeV.
In Fig. 14b, we show the total J/ψ cross section as function
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(a) (b) (c)

Fig. 14 Predictions of the small-basis LFWF (solid curves), the BLFQ
LFWF [26] (dotted curves) and the boosted Gaussian LFWF [5] (dot-
dashed curves) compared to the HERA experimental data [84,85]. The
inner bars indicate the statistical uncertainties; the outer bars are the sta-

tistical and systematic uncertainties added in quadrature. a Total J/ψ
cross section for different value of (Q2 + M2

V ) at W = 90 GeV. b
Total J/ψ cross section for different values of Q2 and W . c The J/ψ
differential cross section dσ/ dt as a function of t

of W at various values of Q2. The differential cross section
dσ/ dt is shown in Fig. 14c as function of the momentum
transfer t . Qualitatively, all three wavefunctions provide rea-
sonable descriptions of the J/ψ cross section data at HERA.
The calculations using the small basis LFWF give very simi-
lar results to those using the boosted Gaussian LFWF except
at small Q2 regime. The BLFQ LFWF calculation gener-
ally underestimates the J/ψ production at HERA, especially
in the small Q2 regime. However, the J/ψ cross section at
small Q2 may has a stronger model dependence. For instance,
the overlap function between J/ψ and photon is dominated
by transverse LFWFs, as shown in Fig. 13. At small Q2,
the transverse LFWFs of both J/ψ and photon are sensitive
to the choice of quark mass [81]. As a result we observe a
larger discrepancy between predictions using small basis and
boosted Gaussian LFWFs.

We also apply the proposed J/ψ LFWF to calculate
the coherent production of J/ψ at LHC at mid-rapidity
in Fig. 15, using the same procedure we adopted in Refs.
[81,89]. Here, the solid curve, the dotted curve, and the dot-
dashed curve show the predictions of the small-basis LFWF,
the BLFQ LFWF [26], and the boosted Gaussian LFWF,
respectively, for the coherent production of J/ψ in Pb–Pb
ultra-peripheral collision at

√
sNN = 2.76 TeV, compared to

the measurements of the ALICE [86,87] and CMS collabo-
rations [88] at the LHC. The bCGC parametrization listed in

Table 8 for the dipole cross section was used for all wave-
functions. The prediction of the small-basis LFWF is within
the statistical uncertainty of the experimental data. The pre-
diction of the boosted Gaussian LFWF slightly overshoots
the data, and that of the BLFQ LFWF underestimates the
experimental data.

Based on the above discussion, we arrive at the conclusion
that the small-basis LFWF for J/ψ designed in this work
can make quantitatively reasonable predictions for diffrac-
tive charmonium production in both ep collisions and ultra-
peripheral collisions.

The ψ ′ cross section calculated with our designed LFWF
for ψ ′ is, on the other hand, far below the experimental data.
In contrast to the ground state J/ψ , the ψ ′ wavefunction
has a node in the r⊥ direction, so in calculating the scattering
amplitude in the dipole model, there is a cancellation between
the negative and the positive regions. The value of the ψ ′
cross section is therefore very sensitive to the location of
the node relative to the typical transverse separation of the
virtual cc̄ pair in the dipole model. This cancellation turns out
to be very dramatic with our designed ψ ′ LFWF, resulting
in a greatly suppressed cross section. For example, due to
the sensitivity to the location of this node, a 5% increase
(decrease) in κ (with no other changes) results in a factor of
∼ 3 increase (a factor of ∼ 5 decrease) in the ψ ′ production
in Pb–Pb ultra-peripheral collision at

√
sNN = 5.02 TeV.
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Fig. 15 Predictions of the small-basis LFWF (solid curves), the BLFQ
LFWF [26] (dotted curves) and the boosted Gaussian LFWF [5] (dot-
dashed curves) for the coherent production of J/ψ production in Pb–Pb
ultra-peripheral collision at

√
sNN = 2.76 TeV, compared with the mea-

surements by the ALICE collaboration [86,87] and CMS collaboration
[88] at LHC. Error bars show statistical uncertainties only

On the contrary, the J/� production is insensitive to such
a change of κ . We do not present the ψ ′ production in this
paper, and we hope to return to this aspect of the ψ ′ LFWF
in future work.

4.5 The γ ∗γ → ηctransition form factor

The ηc meson is produced at e+e− colliders in the process
e+e− → e+e−ηc via the diphoton production mechanism
[90]. In this section, we study the γ γ ∗ → ηc transition with
the LFWF of ηc obtained in Sect. 3. We have defined the
diphoton transition form factor FPγ (Q2

1, Q
2
2) for the process

P(P) → γ ∗(q1) + γ ∗(q2) in Sect. 3.2, and used its value at
Q2

1 = Q2
2 = 0 to determine the basis coefficients in the ηc

LFWF. We now use the obtained ηc LFWF to calculate the
transition form factor for the case of one photon on-shell and
the other being spacelike.

The transition form factor can be extracted with either the
J+ or the J⊥ current, and the results should be the same by
Lorentz invariance. Therefore, using both currents for the cal-
culation would help check the rotational symmetry embed-
ded in the LFWF. We take the Drell-Yan frame, such that the
vertex photon has zero longitudinal momentum, i.e., q+

2 = 0,
which is the preferred frame for LFWF in the valence sector
[91]. In the LFWF representation, the transition form factor
extracted from the J+ current reads

FP(Q2
1, Q

2
2)|J+

= 2Q2
f

√
Nc

∫ ∞

0

k⊥ dk⊥
(2π)2

∫ 1

0

dx√
2x(1 − x)

×
{

1√
A2 − B2

[
A − √

A2 − B2

BQ2
[φ0/P(k⊥, x)k⊥

+√
2m f φ1/P(k⊥, x)] − (1 − x)φ0/P(k⊥, x)

]

− 1√
Ā2 − B̄2

[
Ā −

√
Ā2 − B̄2

B̄Q2
[φ0/P(k⊥, x)k⊥

+√
2m f φ1/P(k⊥, x)] + xφ0/P(k⊥, x)

]}
, (74)

and the expression from the J⊥ current

FP(Q2
1, Q

2
2)|J⊥

= −2Q2
f

√
Nc

∫ ∞

0

k⊥ dk⊥
(2π)2

×
{∫ 1

0

dx√
2x(1 − x)

1 − x√
A2 − B2

φ0/P(k⊥, x)

+
∫ 1

0

dx√
2x(1 − x)

x√
Ā2 − B̄2

φ0/P(k⊥, x)

}
. (75)

In both expressions, A = k2⊥+(1−x)2Q2
2+m2

f +x(1−x)Q2
1,

B = 2(1 − x)k⊥Q2, Ā = k2⊥ + x2Q2
2 + m2

f + x(1 − x)Q2
1

and B̄ = −2xk⊥Q2. By Bose symmetry, the transition form
factor should also be symmetric under the exchange of Q2

1
and Q2

2. This means that in the limit of one on-shell photon,
we should have Fηcγ (Q2) ≡ Fηcγ (Q2, 0) = Fηcγ (0, Q2).
However, such a symmetry is not explicit in the expres-
sions (74) and (75). We examine this symmetry by taking
both the two limits of Q2

1 = 0 and Q2
2 = 0.

We present the results for the ηc diphoton transition form
factor in the format of the normalized transition form fac-
tor |Fηcγ (Q2)/Fηcγ (0)| in Fig. 16. We found that the results
calculated with the two different current components, and
by taking the two limits of Q2

i = 0(i = 1, 2) agree. This
indicates that the designed ηc LFWF quite closely preserves
both the rotational symmetry and the Bose symmetry for this
observable. We also compare our results with the experimen-
tal data from BaBar, finding a reasonable agreement.

5 Summary

We proposed a method to build the LFWFs of meson bound
states on a small-sized basis function representation. In this
work, the basis functions are the eigenfunctions of an effec-
tive Hamiltonian developed from light-front holography.
However, the basis coefficients and parameters of the basis
functions are obtained using constraints on the wavefunc-
tion directly, not through the Hamiltonian. We use physical
constraints, including the orthonormalization relation, sym-
metries, insights from nonrelativistic state identification, and
decay widths from experimental measurements, to determine
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Fig. 16 The normalized transition form factor of ηc calculated accord-
ing to Eqs. (74) and (75), in red and blue, respectively. We use the ηc
LFWF in Eq. (50) (see values of basis coefficient in Table 4). The
solid line is obtained by taking the limit of Q2

2 = 0 [Fηcγ (Q2) =
Fηcγ (Q2, 0)], and the dashed by taking Q2

1 = 0 [Fηcγ (Q2) =
Fηcγ (0, Q2)]. The BaBar experimental data is taken from Ref. [90]

the parameters within the basis function and the basis coeffi-
cients. The resulting LFWFs inherit the physical interpreta-
tion of relativistic bound states from the phenomenological
Hamiltonians of LFH and BLFQ, while admitting simple-
functional forms that are feasible in calculating observables.
We have adopted a “by design” approach where we choose
by hand a set of sufficiently many phenomenologically most
important constraints to achieve a unique determination of
the parameters.

With this formalism, we designed the LFWFs for ηc, J/ψ ,
ψ ′, and ψ(3770). First, we make the assumption that the
J/ψ state is the ground vector state of the charmonium sys-
tem and its spatial wavefunction is a LF-1S state. The two
adjustable parameters in the basis function are determined by
the J/ψ decay constant, which is established by its exper-
imental dilepton decay width. We then construct the pseu-
doscalar state ηc and the two excited vector states ψ ′ and
ψ(3770) as superpositions of the ground and excited light-
front basis states with proper spin structure assignments. The
basis coefficients are determined by their diphoton/dilepton
decay widths, as well as other theoretical considerations, such
as spatial symmetries and the orthogonality conditions. This
step-by-step approach could be extended by including further
constraints and could be developed towards a simultaneous
global analysis in the future.

Using the charmonium LFWFs by design, we calculate
several physical quantities that are accessible by experi-
mental measurements. For instance, we calculate the charge
radii and parton distribution functions; we also estimated
the masses of the charmonium states we designed by eval-
uating the expectation value of an approximated Hamilto-
nian guided by the full BLFQ formalism. Our predictions for
masses, charge radii, and parton distribution functions using
the constructed LFWFs are in reasonable agreement with the
experimental measurements and are quantitatively consistent

with other established methods such as Dyson–Schwinger
Equations and Lattice calculations. Furthermore, we calcu-
late the J/ψ production in DIS at HERA and UPC at LHC
using the constructed LFWF in the dipole model, the theo-
retical prediction is consistent with experiment data within
uncertainties, and are comparable to calculations using the
boosted Gaussian and BLFQ LFWFs. We calculate the ηc
diphoton transition form factor using the obtained LFWF
and find a reasonable agreement with experimental data.

With this work, we provided light-front wavefunctions of
mesons in a simple-functional form while retaining physical
interpretation and matching to a variety of selected experi-
mental observables. We anticipate these analytical LFWFs
can be used for making predictions of various physical pro-
cesses that involve the meson states, e.g., exclusive processes
at the EIC [32].
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Appendix A: Conventions

We follow the conventions of Refs. [27,52]. Here, we provide
a concise summary.
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A.1: Light-front coordinates

The light-front coordinates are defined as xμ = (x+, x−, x1,

x2), where x+ = x0+x3 is the light-front time, x− = x0−x3

is the longitudinal coordinate, and �x⊥ = (x1, x2) are the
transverse coordinates. We also write the transverse com-
ponents with subscript x (y) in place of 1 (2), for exam-
ple, �r⊥ = (r x , r y). The covariant vectors are obtained by
xμ = gμνxν , with the metric tensors gμν and gμν . The
nonzero components of the metric tensors are,

g+− = g−+ = 2, g+− = g−+ = 1

2
,

gii = gii = −1 (i = 1, 2). (A1)

The inner product of two 4-vectors is therefore a · b =
aμbμ = 1

2 (a+b− +a−b+)− �a⊥ · �b⊥. For a transverse vector
�k⊥ = (kx , ky), we will write its complex forms as

kR ≡kx + ik y = k⊥eiθk ,
kL ≡kx − ik y = k⊥e−iθk .

(A2)

where k⊥ = |�k⊥| and θk = arg kR .

A.2: The γ matrices

The Dirac matrices are four unitary traceless 4 × 4 matrices:

γ 0 = β =
(

0 −i
i 0

)
, γ i =

(−i σ̂ i 0
0 i σ̂ i

)
,

γ + =
(

0 0
2i 0

)
, γ − =

(
0 −2i
0 0

)
,

(A3)

in which the Pauli matrices are

σ̂ 1 = σ 2 =
(

0 −i
i 0

)
, σ̂ 2 = −σ 1 =

(
0 −1

−1 0

)
. (A4)

It is also convenient to define γ R ≡ γ 1 + iγ 2 and γ L ≡
γ 1 + iγ 2. The chiral matrix is γ 5 = iγ 0γ 1γ 2γ 3, in which
γ 3 = γ + − γ 0.

A.3: Polarization vectors

The polarization vector for a vector boson with momentum
kμ, mass m, and helicity λ is

ε
μ
λ=0(k) =

(
k+

m
,

�k2⊥ − m2

mk+ ,
�k⊥
m

)
,

ε
μ
λ=±1(k) =

(
0,

2ε⊥
λ · �k⊥
k+ , ε⊥

λ

)
, (A5)

where ε⊥± = (1,±i)/
√

2. The polarization vector for a pho-
ton with momentum qμ, virtuality Q2 = −q2 > 0, and

helicity λ is

ε
μ
λ=0(q) =

(
q+

Q
,

�q2⊥ + Q2

Qq+ ,
�q⊥
Q

)
,

ε
μ
λ=±1(q) =

(
0,

2ε⊥
λ · �q⊥
q+ , ε⊥

λ

)
. (A6)

Appendix B: Transformation coefficients of the three-
dimensional harmonic oscillator (3D HO)

In this Appendix, we calculate the transformation coefficients
of the three-dimensional harmonic oscillators (3D HOs) from
the spherical coordinate to the cylindrical coordinate. The
meson states, especially heavy quarkonia, are sometimes
identified as 3D-HO states in the spherical coordinate, e.g.,
1S wave, 1P wave, etc. On the other hand, the light-front
basis functions we take, as in Eq. (9), are very similar to the
3D HOs in the cylindrical coordinate. Therefore, we take the
transformation between the two coordinates as a guidance to
help us construct and identify 3D-HO states in the chosen
light-front basis functions.

A vector in the Cartesian coordinates is given by η =
(ηx , ηy, ηz) = ηx ex + ηyey + ηzez . Then in the cylindrical
coordinates, η = (ηρ, ηz, θ), and in the spherical coordi-
nates, η = (η, θ, φ), where

ηρ =
√

η2
y + η2

x ,

φ = tan−1
(

ηy

ηx

)
,

θ = tan−1
(

ηρ

ηz

)
.

The 3D-HO state in a spherical representation is written
as |n, �,m〉, where n is the radial quantum number, � and m
are the orbital angular momentum and its z component, and
the total energy of the state is N = 2n + �,

�n,�,m(η) ≡ 〈n, �,m〉η, θ, φ

= (−1)n

√
4π2�(n + �)!

n!(2n + 2� + 1)!η
2n+�Y�,m(θ, φ). (B7)

Note that the quantum numbers (n, �, m) here are different
from the (n, m, l) in the light-front basis functions as in
Eq. (9). Note especially that the “l” in the latter set is the
light-front longitudinal quantum number.

The spherical harmonics read

Y�,m(θ, φ)
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= (−1)m

√
(2� + 1)(� − m)!

4π(� + m)! Pm
� (cos θ)eimφ, (B8)

with the phase convention

Y�,−m(θ, φ) = (−1)mY ∗
�,−m(θ, φ), (B9)

where Pm
� are the associated Legendre polynomials without

the Condon–Shortley phase (−1)m (to avoid counting the
phase twice).

The 3D-HO state in a cylindrical representation is written
as |nρ,m, nz〉, where nρ is the quantum number for the ρ

coordinate, and the total energy of the state is N = 2nρ +
nz + |m|,

�̃nρ,m,nz (η) ≡ 〈nρ,m, nz〉ηρ, ηz, θ

= (−1)nρ

√
2π

22nρ+mnρ !(nρ + m)!
1√
nz !

× η
nz
z η

2nρ+m
ρ

1√
2π

eimφ. (B10)

The relation of the two representations is

|n, �,m〉
=

∑

nρ,nz

δ2n+�,2nρ+nz+|m|〈nρ,m, nz〉n, �,m|nρ,m, nz〉,

(B11)

and the transformation coefficient is derived in Ref. [92].
Written explicitly,

〈nρ,m, nz〉n, �,m = δ2n+�,2nρ+nz+|m|(−1)n+m+nρ

×
[

22nρ−�+m (2� + 1)(� − m)!(n + �)!(nρ + m)!
(� + m)!n!(2n + 2� + 1)!nρ !

] 1
2

× √
(2n − 2nρ + � − m)!

×
smax∑

s=smin

(−1)s
(2� − 2s)!(n + s)!

s!(� − s)!(� − 2s − m)!(n − nρ + s)! ,

(B12)

where

smin =
{

0, n ≥ nρ

nρ − n, n < nρ

, (B13)

and

smax =

⎧
⎪⎨

⎪⎩

� − m

2
, � − m is even

� − m − 1

2
, � − m is odd

. (B14)

Table 9 The transformation of S waves (states with � = 0) from the
spherical coordinate to the cylindrical coordinate

State |n, �,m〉 |nρ,m, nz〉
1S |0, 0, 0〉 |0, 0, 0〉
2S |1, 0, 0〉

√
2
3 |1, 0, 0〉 −

√
1
3 |0, 0, 2〉

3S |2, 0, 0〉
√

8
15 |2, 0, 0〉 +

√
1
5 |0, 0, 4〉

−
√

1
15 |1, 0, 2〉

Table 10 The transformation of the 1P wave (states with n = 0 and
� = 1) from the spherical coordinate to the cylindrical coordinate

State |n, �,m〉 |nρ,m, nz〉
1P |0, 1, 0〉 |0, 0, 1〉

|0, 1, 1〉 −|0, 1, 0〉
|0, 1,−1〉 −|0,−1, 0〉

Table 11 The transformation of the 1D wave (states with n = 0 and
� = 2) from the spherical coordinate to the cylindrical coordinate

State |n, �,m〉 |nρ,m, nz〉

1D |0, 2, 0〉
√

2
3 |0, 0, 2〉 +

√
1
3 |1, 0, 0〉

|0, 2, 1〉 −|0, 1, 1〉
|0, 2,−1〉 −|0,−1, 1〉
|0, 2, 2〉 |0, 2, 0〉
|0, 2,−2〉 |0,−2, 0〉

The transformation coefficients for selected states are cal-
culated according to Eqs. (B11) and (B12) and listed in
Tables 9, 10 and 11.

Appendix C: Nonrelativistic limit of the light-front spec-
troscopic states

In this Appendix, we write out the nonrelativistic (NR) limit
of the spatial part of the light-front spectroscopic states,
ψLF−W , and compare them to the spherical harmonic oscilla-
tors. In the NR limit of |�k| � m f and x → 1/2+kz/(2m f ),
the light-front basis function ψnml reduces to

ψnml,N R(�k) = Cnml R(k)

(
2k sin θ

κ

)|m|

× L |m|
n

(
2k2 sin2 θ

κ2

)

× eimφP(α,α)
l

(
k cos θ

m f

)
, (C15)
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where Cnml is a positive constant depending on n,m, and l,

Cnml = κ−1

√
4πn!

(n + |m|)!
√

4π(2l + 2α + 1)

×
√

�(l + 1)�(l + 2α + 1)

�(l + α + 1)2 2−α, (C16)

and R(k) is the Gaussian part,

R(k) = exp

(
−2k2⊥

κ2

)
. (C17)

Here the spherical polar angles θ and φ represent the colati-
tude and azimuthal angle of �k, respectively.

To compare the NR limit of the basis function with the
spherical harmonic oscillators, we expand them in the small
momentum region. The solutions of the Schrödinger equa-
tion with a spherically symmetric harmonic oscillator poten-
tial are in the form of �n�m(r, θr , φr ) = Rn�(r)Y�m(θr , φr ),
where Rn�(r) is the radial function. In the small momentum
limit of |�k| → 0, the spherical harmonic oscillator in the
momentum space has the following dependence on �k,

lim
k→0

�̃n�m(k, θ, φ) = f (n, �)k�Y�m(θ, φ), (C18)

where f (n, �) is some function of the n and � inherited from
the radial wavefunction. In the spectroscopic notation, � =
0, 1, 2 correspond to the S, P, and D wave, respectively, and
n = 1, 2, . . . labels the energy level in the ascending order.
For each LF spectroscopic state in the NR limit, we identify
its � quantum number by comparing its dependence on k to
the right hand side of Eq. (C18), and n by its energy level.

The NR limit of the LF-1S state is that of the ground basis
state ψ000

ψLF−1S,N R = lim
k→0

ψ000,N R(�k)
= C000 = Ck0Y0,0(θ, φ). (C19)

Here and in the following, we use C (and C ′, C ′′, . . .) to
indicate a positive constant. Thus the NR limit of the LF-1S
state is indeed a 1S state, by seeing the radial number n = 0
and Y0,0 as the S wave.

To find the NR limits of the LF-2S state and the LF-1D0
state, we first look at their components ψ100 and ψ002,

ψ100,N R(�k) = C100R(k)

(
1 − 4k2

κ2 sin2 θ

)
, (C20)

ψ002,N R(�k) = C002R(k)
α + 2

4

×
[
−1 + (2α + 3)

k2 cos2 θ

m2
f

]
. (C21)

The ratio of the coefficient of sin2 θ in ψ100,N R and that of
cos2 θ in ψ002,N R in the α → ∞ (i.e. m f → ∞ at fixed κ)
limit is

lim
α→∞ − 2αC100

(α + 2)(2α + 3)C002

= lim
α→∞ − 4α

(α + 2)(2α + 3)

×
√

(2α + 1)(α + 2)2(α + 1)2

(2α + 5)2(2α + 2)(2α + 1)

= − 1√
2
. (C22)

The ratio of the θ independent term in ψ100,N R and that in
ψ002,N R in the α → ∞ limit is

lim
α→∞ − 4C100

(α + 2)C002
= −√

2. (C23)

In the LF-2S state defined in Eq. (21), the angular depen-
dence in the coefficient of k2 vanishes by seeing that sin2 θ +
cos2 θ = 1. At k → 0 limit, the constant term outweighs
the k2 term, so the function is considered as proportional to
k0Y0,0,

ψLF−2S,N R = lim
k→0

(√
2

3
ψ1,0,0,N R −

√
1

3
ψ0,0,2,N R

)

= Ck0Y0,0(θ, φ). (C24)

Thus the NR limit of the LF-2S state is a 2S state, by seeing
the radial number n = 1 and Y0,0 as the S wave. On the
contrary, in the LF-1D0 state defined in Eq. (22a), the ratio
between ψ1,0,0 and ψ0,0,2 is

√
2. The constant term cancels,

and the angular dependence in the coefficient of k2 becomes
2 cos2 θ − sin2 θ ∝ Y2,0(θ, φ),

ψLF−1D0,N R = lim
k→0

(√
1

3
ψ1,0,0,N R +

√
2

3
ψ0,0,2,N R

)

= Ck2(− sin2 θ + 2 cos2 θ)

= C ′k2Y2,0(θ, φ). (C25)

Thus the NR limit of the LF-1D0 state is the m = 0 compo-
nent of the 1D wave.

The NR limit of LF-1D1 state and LF-1D-1 states are

ψLF−1D1,N R = lim
k→0

−ψ0,1,1,N R(�k)

= lim
k→0

−C0,1,1R(k)
2(α + 1)k2

κm f

× eiφ cos θ sin θ

= Ck2Y2,1(θ, φ),
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ψLF−1D−1,N R = lim
k→0

−ψ0,−1,1,N R(�k)

= lim
k→0

−C0,−1,1R(k)
2(α + 1)k2

κm f

× eiφ cos θ sin θ

= −Ck2Y2,−1(θ, φ). (C26)

Note that there is a ‘-’ sign on the NR limit of the LF-1D-1
state. It follows that the NR limit of the LF-1D1 state is the
m = 1 component of the 1D wave, and that of the LF-1D-1
state is negative of the m = −1 component of the 1D wave.

The NR limit of LF-1D2 state and LF-1D-2 states are

ψLF−1D2,N R = lim
k→0

ψ0,2,0,N R(�k)

= lim
k→0

C0,2,0R(k)
4k2

κ2 ei2φ sin2 θ

= Ck2Y2,2(θ, φ),

ψLF−1D−2,N R = lim
k→0

ψ0,−2,0,N R(�k)

= lim
k→0

C0,−2,0R(k)
4k2

κ2 e−i2φ sin2 θ

= Ck2Y2,−2(θ, φ). (C27)

Therefore the NR limit of the LF-1D±2 states are the m =
±2 components of the 1D state, respectively.

The NR limit of the LF-1P0 state is a 1P state with m = 0,

ψLF−1P0,N R = lim
k→0

ψ001,N R(�k)

= lim
k→0

C001R(k)(α + 1)
k

mq
cos θ

= CkY1,0(θ, φ). (C28)

The NR limit of the LF-1P±1 states are

ψLF−1P1,N R = lim
k→0

−ψ0,1,0,N R(�k)

= lim
k→0

−C0,1,0R(k)
2k

κ
eiφ sin θ

= CkY1,1(θ, φ),

ψLF−1P−1,N R = lim
k→0

−ψ0,−1,0,N R(�k)

= lim
k→0

−C0,−1,0R(k)
2k

κ
e−iφ sin θ

= −CkY1,−1(θ, φ). (C29)

Note that there is a ‘-’ sign on the NR limit of the LF-1P-1
state. It follows that the NR limit of the LF-1P1 state is the
m = 1 component of the 1P state, and that of the LF-1P-1
state is negative of the m = −1 component of the 1P state.

The above states are listed in Table 12.

Table 12 The NR limit of the LF spectroscopic states in comparison
with the spherical harmonics states

ψLF−W By design ψnml NR limit

ψLF−1S ψ000 �1S

ψLF−2S

√
2
3 ψ1,0,0 −

√
1
3 ψ0,0,2 �2S

ψLF−1P0 ψ0,0,1 �1P0

ψLF−1P1 −ψ0,1,0 �1P1

ψLF−1P−1 −ψ0,−1,0 −�1P−1

ψLF−1D0

√
1
3 ψ1,0,0 +

√
2
3 ψ0,0,2 �1D0

ψLF−1D1 −ψ0,1,1 �1D1

ψLF−1D−1 −ψ0,−1,1 −�1D−1

ψLF−1D2 ψ0,2,0 �1D2

ψLF−1D−2 ψ0,−2,0 �1D−2

Appendix D: Decay constant in the basis function repre-
sentation

In this Appendix, we write out the decay constants in the
basis function representation. The decay constant of the vec-
tor meson in Eqs. (34) and (35), after integrating out the basis
functions, reduce to,

fV|m j=0

= 2κ
√

3

π

∑

n,l

(−1)n

√
2l + 2α + 1

l!�(l + 2α + 1)
�((α + 3)/2)

×
l∑

k=0

(
l

k

)
(−1)k

�(l + k + 2α + 1)�(k + α/2 + 3/2)

�(k + α + 1)�(k + α + 3)

× ψ
(m j=0)

V

(
n,m = 0, l,

1

2
,−1

2

)
, (D30)

and

fV|m j=±1

= κ
√

3√
2π

m f

mV

∑

n,l

(−1)n

√
2l + 2α + 1

l!�(l + 2α + 1)
�((α + 1)/2)

×
l∑

k=0

(
l

k

)
(−1)k

�(l + k + 2α + 1)�(k + α/2 + 1/2)

�(k + α + 1)�(k + α + 1)

× ψ
(m j=−1)

V

(
n,m = 0, l,−1

2
,−1

2

)

+ κ2
√

6

πmV

∑

n,l

(−1)n
√
n + 1

√
2l + 2α + 1

l!�(l + 2α + 1)

�((α + 2)/2)

l∑

k=0

(
l

k

)
(−1)k
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�(l + k + 2α + 1)�(k + α/2 + 2)

�(k + α + 1)�(k + α + 3)

× ψ
(m j=−1)

V

(
n,m = −1, l,

1

2
,−1

2

)

− κ2
√

6

πmV

∑

n,l

(−1)n
√
n + 1

√
2l + 2α + 1

l!�(l + 2α + 1)

�(α/2 + 2)

l∑

k=0

(
l

k

)
(−1)k

�(l + k + 2α + 1)�(k + α/2 + 1)

�(k + α + 1)�(k + α + 3)

× ψ
(m j=−1)

V

(
n,m = −1, l,−1

2
,

1

2

)
. (D31)

The decay constant of the pseudoscalar meson in Eq. (47),
after integrating out the basis functions, reduce to,

fP = 2κ
√

3

π

∑

n,l

(−1)n

√
2l + 2α + 1

l!�(l + 2α + 1)

× �((α + 3)/2)

l∑

k=0

(
l

k

)
(−1)k

× �(l + k + 2α + 1)�(k + α/2 + 3/2)

�(k + α + 1)�(k + α + 3)

× ψP
(
n,m = 0, l,

1

2
,−1

2

)
. (D32)

By comparing Eqs. (D30) and (D32), we can see that the
decay constant of a pseudoscalar meson with a ψn,0,0σ−
wavefunction and that of a vector meson in the m j = 0 state
with a ψn′,0,0σ+ wavefunction have the same functional form
(taking the absolute value) in terms of κ and m f . Similarly,
from Eq. (D31), we can see that the decay constant of a vector
meson in the m j = ±1 state with a ψn,0,0σ↑↑(σ↓↓) wave-
function has the same functional form in terms of κ and m f

for different values of n.

Appendix E: The photon LFWF

We derive the photon wavefunction in the framework of light-
cone perturbation theory to lowest order [3,29,55],

ψ
(m j=0)

ss̄/γ (�r⊥, x, Q) =
Q f e

√
Ncδs,−s̄2Qx(1 − x)

K0(εr⊥)

2π
, (E33a)

ψ
(m j=1)

ss̄/γ (�r⊥, x, Q) = √
2Q f e

√
Nc

{−ieiθr [xδs,+δs̄,− − (1 − x)δs,−δs̄,+]∂r
+m f δs,+δs̄,+}K0(εr⊥)

2π
, (E33b)

ψ
(m j=−1)

ss̄/γ (�r⊥, x, Q) = −√
2Q f e

√
Nc{ie−iθr

[xδs,−δs̄,+ − (1 − x)δs,+δs̄,−]∂r
+m f δs,−δs̄,−}K0(εr⊥)

2π
, (E33c)

where r⊥ = |�r⊥| and θr = arg(r x +ir y), ε2 ≡ x(1−x)Q2 +
m2

f ,Q f e is the quark charge, and ∂r K0(εr⊥) = −εK1(εr⊥).
Note that there is a sign difference in the second equation
compared to that in Ref. [3] by the convention we use for
the spinors. The wavefunction in the momentum space is
obtained by the Fourier transformation as in Eq. (13). The
photon wavefunction in the momentum space, written explic-
itly, is

ψ
(m j=0)

ss̄/γ (�k⊥, x, Q) = Q f e
√
Ncδs,−s̄

√
x(1 − x)

2Qx(1 − x)

ε2 + k2⊥
, (E34a)

ψ
(m j=1)

ss̄/γ (�k⊥, x, Q) = Q f e
√

2Nc

√
x(1 − x)

ε2 + k2⊥
[xkRδs,+δs̄,− − (1 − x)kRδs,−δs̄,+
+m f δs,+δs̄,+], (E34b)

ψ
(m j=−1)

ss̄/γ (�k⊥, x, Q) = −Q f e
√

2Nc

√
x(1 − x)

ε2 + k2⊥
[ − xkLδs,−δs̄,+ + (1 − x)kLδs,+δs̄,−
+m f δs,−δs̄,−]. (E34c)
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