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Abstract The decay width of the D} meson is domi-
nated by the electromagnetic mode D} — Dyy, and it
is thus the longest-lived charged vector meson. In light of
this point, we perform the first QCD LCSRs calculation of
D} — ¢ helicity form factors and discuss the experiment
potential of discovering exclusive D} weak decays. The main
result is the partial decay widths, which read as I Di—>ly =
2.44 x 10712 GeV, I'psog = (3.287037) x 10714 GeV,
Iprogr = (3817133 x 107%GeV and I'proy, =
(1.161‘8:‘3%) x 10713 GeV. We show that these channels are
promising in the near future, serving as the first experimen-
tal observation of weak decays of a vector meson, and would
open up a new playground for precision test of the standard
model.

1 Introduction

The unitarity of Cabibbo—Kobayashi-Maskawa (CKM)
matrix is a crucial criterion of the validity of the Stan-
dard Model. Besides the well known unitarity triangles,
which indicate the orthogonality between different rows and
columns, the CKM unitarity can also be tested by the normal-
ization conditions of individual rows and columns. Nowa-
days the least precisely determinations are

Vs |? 4 | Ves | + [Vis|? = 1.026 + 0.022,
[Veal? + | Ves | + [Vep > = 1.025 +0.022, (1)

whose uncertainties are both dominated by that of | V| =
0.987 £ 0.011 [1]. The |V,s| values are typically extracted
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from semileptonic D decays and leptonic Dy decays, and
other independent channels, such as weak D} decays, are
highly anticipated to reduce the uncertainty.

Weak D} decays can also provide a platform for exam-
ining the heavy quark symmetry, which is the foundation
of the heavy quark effective theory [2—4]. The heavy quark
spin symmetry relates the ground-state pseudoscalar and vec-
tor mesons, e.g. D(s) and D) mesons. It has been checked

through the relation between the semileptonic decays B —
D¢b and B — D*¢b [5-8], where different spin states
appear in the final states. The weak DT — ¢¢*v decay,
together with D;f — @£ v, will create the first chance to
test the heavy quark spin symmetry with heavy mesons in
the initial states.

Practically, D;ki might be the first vector meson whose
weak decays will be discovered, because it is the longest-
lived charged vector meson indicated by the lattice eval-
uation of the partial width of its dominant decay channel
D¥ — Dyy [9]. Once the branching ratio of a weak decay
channel is measured, it can be used to indirectly determine the
total decay width of D}* with the theoretical calculation of
the weak decay width as an input, for which only an exper-
imental upper limit is currently given as I'px < 1900keV
[1]. Meanwhile, the electromagnetic decay width can also
be indirectly determined, from which the electromagnetic
coupling gpp,) can be extracted. This quantity has been
studied by various theoretical approaches (see e.g. [10]), but
they suffer large uncertainties due to the significant destruc-
tive interference between radiations of the photon from the
charm quark and from the strange quark, and also between
different QCD power corrections. We highlight the recent
LCSRs prediction with the complete NLO at twist-1 and
twist-2 level [11], the large cancellation between the charm
and strange quark contributions are verified and the large

result gprp,y = 0.601’8:%2 is obtained, which is waiting for
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the measurement of experiment. From another perspective,
the gpxp,, coupling is very sensitive to different contribu-
tions, so the indirect determination from weak D;"i decays
will subsequently act as an important benchmark to probe
the involved dynamics.

Evaluating the weak D} decays requires the input of the
corresponding heavy-to-light form factors, which are basic
physical quantities charactering the momentum redistribu-
tion of partons after the weak interaction. In this paper we
study the D} — ¢ form factors from QCD light-cone sum
rules (LCSRs) approach, which has been widely applied
to calculate form factors in charmed meson decays [12-
18], and this work is its first implementation in a vector-to-
vector transition. Different helicity form factors according to
explicit polarizations of the weak current and the ¢ meson
are calculated. From the small momentum transfer region
0< Q2 < 0.4 GeV? where the LCSRs predictions are reli-
able, proper parametrization of the form factors is inevitable
to extend them to the large region 0.4 < Q% < 1.2GeV>.
We employ both the simplified z-series expansion formal-
ism [19] and the two-pole parametrization [20], and it turns
out that the parametrization scheme does not bring additional
considerable uncertainties. With the helicity form factors, we
obtain the partial decay widths of D} weak decays consid-
ered here, they are Iprson = (3.284_'8:%) x 10714 GeV,
Iprogr = (3817133 x 107%GeV and I'proy, =
(1.164_'8:‘3%) x 10713 GeV. These predictions, together with
the partial decay width of the leptonic mode I'pr—;, =
2.44 x 10712 GeV, promote the experiments to measure the
weak decay of a vector meson with the great potential in the
near future. We remark that the main target of this work is
to suggest a feasible measurement of weak decay of vector
meson, rather than the precise calculation. The accuracy of
our prediction of D} — ¢ form factors is up to leading order
of strong coupling and twist five of two-particle LCDA of ¢
meson. The contributions form next-to-leading-order (NLO)
correction and three-particle LCDAs of ¢ meson could be
accomplished for the study of precise examination after the
discovery.

2 D} — ¢ helicity form factors

We start with the correlation function
Fua(q. p1) =i f d*x & (@ T{IY (x), 1) (0)}[0).  (2)

In the rest frame of the heavy meson D}, the vector current
JaV = cy,s and the weak current J;EV = Syu(l — ys)c carry
momentum py, and g, respectively, and hence the momen-
tum of ¢ meson is p» = p; — ¢. The kinematics in our
convention is arranged by

@ Springer

Pla = (mD;‘s 0), p2b = (E2,P), qu = (90, —P) ,
1

€14(0) = (0,0,0,1), €14(%) = 7 0,F1,—-i,0).
1 1
€25(0) = — (Ipl. 0,0, E3) , exp() = —= (0, F1, =i, 0),
25(0) g (Ip! 2), €p(E) \[2( F1,-i,0)
1 1
€,0) = — ,0,0, — , €p(E£) = — (0, x1, —1,0).
u(0) \/p(lpl q0) » €u(£) ﬁ( i,0)

3

We note that the timelike polarisation of leptonic current
€,() = (qo, 0,0, —|p|)/\/q7 o g, does not contribute in
the semileptonic decaying processes with massless leptons,
and the other three polarisations, picking up the spin-one
part of the off-shell W boson, satisfy g*€,, = 0. Further
constraints between these variables can be derived from the
kinematical analysis of 1 — 3 decaying processes, they are

2mD§E2 = m%j +m§) — q2,
) _ 2 2 9
mp=qo —mD;k m¢+q ,
2mpx|pl = A(m%?,mé,tf), “4)

with 2 being the killén function A(My, Ma, M3) = M} +
M3 + M3 —2M M, — 2M M3 — 2M> M3. Multiplying both
sides of Eq. (2) by the polarisation vector of the weak cur-
rent, we can decompose the correlation function in terms of
invariant helicity amplitudes,

& Fualq.p)= Y €i,0Fij(@ pD). )
i,j=0,%+

here the subscripts i, j and i’ = i + j denote the polarisation
directions of the weak current, ¢ meson and vector current,
respectively.

In the view of LCSRs, correlation functions can be for-
mulated in twofold ways, namely, at the quark level and
the hadronic level. Firstly, they can be evaluated directly at
the quark-gluon level in the Euclidean momenta space. The
QCD calculation of Eq. (2) is carried out with negative g2,
and the operator product expansion (OPE) is valid for large
energies of the final state vector mesons, which implies a
restriction to not too large momentum transfer squared as
0<l¢? < qﬁCSR,maX. In this region, the operator product of
the c-quark fields in the correlation function can be expanded
near the light cone x> ~ 0 due to the large virtuality, which
at leading order reduces to the free quark propagator.

In the QCD evaluation, only the final ¢ meson is on shell
so that p% =(p1—q)P = mé The OPE calculations obtain
the Lorentz decomposition in Eq. (5) where each invariant
amplitude can be written in a general convolution of hard
functions various LCDAs at different twists [21]
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E™ (@, (p2+@)7)
1
-y /0 du T (w. 4> (p2 +9)) 8" (w). ©)
t

The OPE amplitudes is further rewritten in a dispersion inte-
gral over the invariant mass of the interpolating heavy meson,

FG™ % i)
1o % mEOE(?, 5)
— [ as )3 ,

T Jm2 [uzmi — g%+ m?] u'ls — pi

(N
in which s = s(qz, u) = ﬁmé + (m% — ﬁqz)/u. As an
example, we present the imaginary parts of the helicity 00
amplitudes truncated to the third power n < 3, they are

1
- Ime?g(‘f(qz <0,u)

Vime fitmppy)  Num, +ig?) )¢5 @)
2mD;*\/|qTI 2mD§\/m
Vi, — g2 f) |8 - ¢
- 2mD*\/IQTI
f xfym3 s ®
4mD§\/|‘]7|

%Ime&’f(ﬁ <0, u)
Vi [zk + [y — q* + tmg)(m,, — mg + qz)}
4m pxy/ g2
13 (@Y — o3 w)
Vil md, = md — - 2¢?]
mp;lo’
fymg (w W+ 8w - 2¢§<u>)
+«/X(m2D;F —mé—i—q )
4mps/lg?|
b )
8mpry/lg?|

mcf¢ mg w (”)

fam3 (34w - d3w)

Vi 13 ( )
P epimd (v + 0k (u)—2¢ ()
2mpsy/1q°| ere\t ?
«/X(m%)ﬁ—tmé—qz)
- : me f3rme (V3 () — ¢3-(u)
4m pe/1g7] #mo (7 7 )
Vo (um?, + iig?
NG >f¢'m%¢¢§<u>

8m pry/1q°|

_mf/m Fym v, ©)
lImF?};‘f(q <0,u)
232 1 L 1
= (m ) + ¢3 () — 20} (u))
 fm 191 (Z) ) [m%ﬁ (m}, —?)

mpsv/1q?|
[tk Iy, — g + 3 londy, = m3 + g2 ]
2mp:/14°|
V' [ﬁuk - <”m20j — ﬁumé + ﬁqz) (m%§ - mé + qz)]
mpV/14?1
fym3 (w w0 + ¢ - 2¢3L(u))
Vi 3,13 1
S L )
4m pry/ |q2|me¢ sk
VA [usz; + ﬁq2]
—_ = m
4mp:v/1g?|
U
8mpsv/1g?|

+

—+

21ym3 ¢3@)

f ¢m l//5 (), (10)

where ¢ = 2u — 1, ¢2L(H)’ ¢3l(|\), &;-(H)’ ¢II i LD ¢5 1//5

are the LCDAs of ¢ meson at different twists [22-24],

the auxiliary functions ¢(u) = fou du'o) and @(u) =
S du [ du"p") with ¢ € {$, ¥} satisfy the boundary
conditions ¢(0) = ¢(1) = 0 and p(u = 0, 1) = 0, respec-
tively, and X refers to the killén function )»(m%);ﬁ, mé, q%).
The mass and decay constant are m Dr = 2.112GeV, my =
1.68 GeV [1] and fpr = 0.274 GeV [9]. The twist four and
twist five LCDAs begin to contribute at the subleading power
term (n = 2) according to the twist expansion of matrix ele-
ment from vacuum to ¢ meson state. The imaginary parts
of the other helicity amplitudes (0£, =0, £5F) are listed in
appendix B.

When ¢? shifts from deeply negative to positive, the typ-
ical distance grows between the two currents in Eq. (2),
hence the long-distance quark-gluon interaction begins to
form hadrons. In this respect, the correlation function can
be understood by the sum of contributions from all possible
intermediate states with appropriate subtractions. The dis-
persion relation of invariant amplitudes in variable p% >0
reads

Fi(@® p}) = — f PRLLIICRDY (11

m?2 S—Pl

@ Springer
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By inserting a complete set of hadronic states with the quan-
tum number of the cy, s current, the spectral function of the
ground state is obtained from the optical theorem and written
by means of two detached matrix elements

ety (@h) = |1}, | DD O)]0),  (12)

in which the latter one is parametrized by the D} decay con-
stant, and the former one is written in terms of the D} — ¢
transition form factors associated with orthogonal Lorentz
structures [25,26].

(@ (p2. €3)|5yu(l — y5)c| Di(e1, p1))
= (1D Pri@®) = pa@?)]

(e1-q)(€ - q)
+ 2 2

I’I’LD*< m¢
—(e1- 95, V5(@%) + (€2 - et Ve(a?)

—iguvpoel €37 [pffh(qz) + pEAz(qz)]

[P1V3@ + P2 Vaad)]

. P o
LEyvpo P1 P
+27122[ef(63‘ - A3(g?) — €Y (e} 'q)A4(q2)],

13)

here the form factors V; and .4; come from the vector and
axial-vector currents, respectively.
We introduce the helicity form factors

Hyj =& (|7} | DY) (14)

and write down the helicity invariant amplitudes as

< o2, s)
+/ ds L ——~. (15)
S

2
50 S =P

2 2 mp; fp; Hij
Fij(qg*, p1)) = —F——
Mpx — P1

The relations between helicity form factors and Lorentz
orthogonal form factors are collected as
Hoo(g* > 0)
2y +m3 = DA [ Vi) + V22
B 4\/q72m¢mD;ﬁ
— 3 = g2Vs(g) — (mdy, —m2 +q*)Ve(?)
4\/q>2m¢mD§;

12 [V3(@®) + Vi)

8\/q>2m¢mD;« (m2D§‘ - mé) '
Ho+ (g > 0)

12 [Vig?) = Vaa?)]

2/q?
[ —m3 + ) A1 @D + 2. —m2 — 4D Axq?)]

N

M2 [,

(16)

F . (I7)

Hig(q” > 0)
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A2y rA3(q%)

2mg 4m¢(m%)§5 - mé)
m2 . +m3 —q%) A1(g?)
+ {( b+~ ) +mp Ao | (18)
2m¢
Hz+(g* > 0)

_ M2V5(4%) rAa(g?)

Zmpy - dmp (ny = mg)

m2, +m2 —q%) A (g?)
( by e ) . (19)

2
F |:’”D§ Ag?) + 2mps
Equations (16—19) show explicitly the kinematical behavi-
ous of the helicity form factors, especially at the end-point

45 = (mps —my)?
Hoo(qd) =0, —Hox(gd) = Hio(qd) = Hez(qd). (20)

The endpoint relations as shown in Eq. (20) could be under-
stood in terms of rotational symmetry, reduction of invariant
and the Wigner—Eckart theorem [27-29], here we take the
last one to explain the relations. According to the Wigner—
Eckart theorem, the helicity information in helicity ampli-
tude is only governed by the Clebsch-Gordan (CG) coeffi-
cients, and the helicity independent dynamics information
is absorbed into the matrix elements M. In our case of
D (res) = o (Agp)[Iv](Ay) decays, the CG expansion reads
as

H,;, = Cijslkq%Mm. (21)
The helicity conservation equation Ac; = Ay +Ag With Ay =
— L is self-evident. With taking the CG coefficients C,{Zﬁjl{’q
in the particle data group [1], we obtain

Hoo(qd) o< Ciid =0,

11
Hoi(gp) : Hyp(gg) o Clg : Cji = -5
11
HIO(‘](%) . HTO(CI%) X Cllll(% . flilé = 5 . —E,
11
Hii(g3)  Hyi(gh) o< Copy : Copp = =5 1 5 (22)

which reproduce the end-point relations shown in Eq.(20)
if we consider the replacement 1(1) <> +(—) between the
helicity quantum numbers and the polarization directions.
Based on the quark-hadron duality, Eqs. (7) and (15)
describe the same correlation function from two parallel
views, so in principle we can solve the helicity form factors by
matching the two equations if we know the spectral functions
pl’j’ (s). We take the semi-local duality to offset the contribu-
tions from large s > s regions in the two dispersion relation
integrals, because the magnitude of timelike form factor is
close to the spacelike one when the momentum transfer is far
away from the resonant state regions, and they become equal
in the QCD limit [30-32]. We Borel-transform both sides
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of the residual contributions below sy to suppress the pol-
lutions from excited resonant states and continuum spectral,
and arrive at the sum rules of the helicity form factors,

mD;‘fD;‘Hij(qz)
oM/ M

l/ ds |:u(v)ImFlolPE(q ,5)
T [uz(s)m —q +m ] J
+ImF205E(q $) ImF3OlPIE(q s)]

M? 2u(s)M*
| o—s0/M? |:u0 ImFZOl};E(q 50)
n[u(z) ¢_q +mL] 50—112

(1 + x)ImFFF (g%, 50) —
+

uplm Fé?fE (42, 50) ]
2(s0 —¢%)? '
(23)

Here u is the solution of s = ﬁmz + (m2 — ﬁqz)/u Xy =
(s0—¢*)/M? andIm ;9% (g, 50) = 5 ImF3; (g,

The value of Borel mass squared is implied by the inter-
nal virtuality of propagator which is smaller than the cutoff
threshold value, saying M? ~ (’)(umD* +iaQ?— uum¢) <
S0, this value is a litter bit larger than the factorisation scale
we chosen at ,uf = m2D* — mg = 1.662GeV? with the
quark mass m.(m.) = 1. 30GeV. In practice the selection
of Borel mass is actually a compromise between the over-
whelming chosen of ground state in hadron spectral that
demands a small value and the convergence of OPE evalua-
tion that prefers a large one, which result in a region where
H;;(g?) shows an extremum in M2 [24,25]

InH;j(¢*) = 0. (24)

d
d(1/M?)
The continuum threshold is usually set to close to the out-
set of the first excited state with the same quantum number
as D} and characterised by so ~ (m pr + X)z, which is
finally determined by considering the maximal stable evolu-
tion of physical quantities on the Borel mass squared. From
the numerical side, the chose of these two parameters should
guaratee the convergence of twist expansion in the trun-
cated OPE calculation (high twists contributions are no more
than thirty percents) and simultaneously the high energy cut-
off in the hadron interpolating (the contributions from high
excited state and continuum spectral is smaller than thirty
percents). We finally set them at M2 = 4.5 + 1.0 GeV? and
so =6.8=+1.0 GeV? in this work. The value of Borel mass
is a litter bit larger than it chosen in the Dy — m, K tran-
sition [13], while a litter bit smaller than it chosen in the
Ds; — ¢, fo(980) transition [16], and close to it chosen in
the Dy — n’ transition [15].

The tree level LCSRs prediction of modified helicity form
factors H;; (g% = \/? Hi; (g?) are depicted in Fig. 1 where
the uncertainties from the Borel mass and the continuum

S)|s:so-

Table1 The anatomy of the LCSRs uncertainty of helicity form factors
Hij (q ), the center value (CV) is obtained by setting M 2 = 4.5GeV?
and so = 6.8 GeV?

Hij(q) cv M?1Hg sol*1
Ho0(0.04) 1.99 Ton s
H00(0.20) 2.03 016 009
Ho0(0.40) 2.07 1020 009
Ho(0.04) 2.85 e s
Ho(0.20) 2.82 +0.05 03
Ho.+(0.40) 2.78 iy 05
Ho_(0.04) 0.19 % 00
Ho—(0.20) 0.18 +0.08 o
Ho_ (0.40) 0.17 .04 M
H10(0.04) 0.53 1009 001
H.0(0.20) 1.07 o o
H.40(0.40) 161 103 003
H_0(0.04) ~0.59 % 004
H_0(0.20) ~1.36 e 1008
H_0(0.40) ~2.00 +0.20 o0
H—(0.04) 0.42 ool o
M. (0.20) 0.94 i 0.8
M (0.40) 131 ool o
H—+(0.04) —0.04 1002 T001
H-4(0.20) ~0.07 1003 002
H-1(0.40) —0.09 004 1003

threshold are presented by iteration. The Borel mass depen-
dence of these modified helicity form factors are plotted in
Fig. 2. The anatomy of the LCSRs uncertainty are presented
in Table 1 by taking the result at three momentum transfer
points, saying g2 = 0.04, 0.20 and 0.40 GeV?2. It shows that

(1) Our choice of Borel mass brings 5-10% uncertainty to
the helicity form factor Hop, 10-20% uncertainty to Hq
and H_g, 20-30% uncertainty to Ho— and H_, and
less than 5% uncertainty to Ho4, it almost does not bring
uncertainty to the helicity form factor H_.

(2) Our choice of continuum threshold brings another 5%-
10% uncertainty to the helicity form factor Hog, 10%
uncertainty to Ho4 and Hy_, 20-30% uncertainty to
‘H_+, and 30-40% uncertainty to Ho—, it does not bring
additional uncertainty to the helicity form factors H_g
and H_o.

(3) The LCSRs uncertainty of form factors Hoo, H+o and
‘H_+ mainly comes from the Borel mass, the LCSRs
uncertainty of Ho— comes equivalently from Borel mass
and continuum threshold, meanwhile it in form factors

@ Springer
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Fig. 1 The LCSRs predictions 3.0

of modified helicity form factors

Hij(q®) = v/q? Hij(¢*) with 25/

varying Borel mass in ©

continuum threshold at Ss

5o = 6.8 GeV? (Gray), with o

varying Borel mass in Tl W M2=4.5+1.0GeV?

45+1.0 GeV2 and continuum M2=4.511.OGeV2,30:6.8i1.OGeV2

threshold in %05 010 0.15 020 0.25 030 035 0.40

50 = 6.8 & 1.0 GeV? @

(LightGray) 4.0 ‘ ‘ ‘ 05 ‘ ‘ ‘
m M2=4.5+1.0GeV? H M2=4.5:1.0GeV?

MZ2=4.5+1.0GeV?,5,=6.8+1.0GeV? 0.4} m M?=4.5+1.0GeV?,5,=6.8+1.0GeV?

25
200 ‘ ‘ ‘ ‘ ‘ ‘ 0.0 ‘ ‘ ‘ ‘ ‘ ‘
005 010 015 0.20 0.25 030 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
7 7
3.0 : : : 00
W M?=4.5+1.0GeV?
25} 1 M224.5+1.0GeV?,5,=6.8+1.0GeV? -05
c\é 0 o -1.0
£ 15 g _
£, go 15
T 1.0 T -2.0
05 o5 @ M2=4.5+1.0GeV?
B M?=4.5+1.0GeV?,5,=6.8+1.0GeV2
0.05 s s ‘ ‘ ‘ ‘ _3.05 s s ‘ ‘ ‘ ‘
005 0.10 015 020 0.25 030 0.35 0.40 30005 010 0.15 020 025 030 035 040
7T 7
20
B M2=4.5:1.0GeV? 0.00
15 | MP=45+1.0GeV?,5=6.8+1.0GeV? ~0.05
T G 010
£ 10 by
8, g, 018
T os T -0.20
’ _0.05 B M?=4.5+1.0GeV?
M?=4.5+1.0GeV? 5,=6.8+1.0GeV?
0.0 -0.30

7

‘Ho+ and H4— mainly arises from the continuum thresh-
old.

These modified helicity form factors have different
monotonicities on the two LCSRs parameters, for exam-
ple, Ho+, H_o and H_ are monotonically increasing
on M?, others are monotonically decreasing on M2, as
shown in Fig. 2 where the Borel mass dependence of
these seven helicity form factors are presented at three
different momentum transfer points ¢ = 0.04, 0.20 and
0.40 GeV2. The magnitudes of all seven modified helic-
ity form factors are all monotonically increasing on the
continuum threshold.

“4)

In Table 2, we show the LCSRs prediction of modified
helicity form factors at the fixed momentum transfer points,
saying from 0.04 to 0.4 GeV with the step 0.04 GeV. The

@ Springer

005 010 015 0.20 025 0.30 035 0.40

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

7

first uncertainties come from the LCSRs parameters M
and so which is added by the quadratic sum. In order to
estimate the effect from the missing radiative corrections,
we vary the charm quark mass in the intervel m.(m.) =
1.30 +0.10 GeV and regard this possible NLO effect as the
second uncertainty. The facotrization scale is then varied in
= 1.6610.08 GeV correspondingly. It brings about 10%
additional uncertainty to the modified helicity form factors
H1o and H_ 4, 15% additional uncertainty to Hoo and Ho-,
20% additional uncertainty to H4_, meanwhile 40% addi-
tional uncertainty to Ho—. We examined the affect to the
Borel mass determination from the quark mass variation and
found that M? = 4.5 4 1.0 GeV? is still the optimal choice.
We do not present the uncertainty from the nonperturbative
parameters in ¢ meson LCDAs as shown in Table 4, since
the decay constants from the lattice evaluation almost do not
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Fig. 2 The Borel mass 3.0 ‘ ‘ ‘ ‘ ‘
dependence of all seven — ?=0.04GeV?> — ¢?=0.20GeV?
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Table 2 The modified helicity form factor H;; (¢ = q2H; i (¢?) in the large recoiled regions from LCSRs
q*(GeV?)  Hoo(g?) Ho+(q?) Ho—(g%) Hio(g?) H_0(g%) Hi (g% Hy(q%)
+0.16+0.32 +0.21+0.48 +0.06+0.09 +0.09+0.06 —0.11-0.07 +0.03+0.08 —0.01-0.00
0.04 19975172072 2.855035 047 0-19%5 09 "0.07 0.53%0520.06 _0-59+0.07+0.07 0.4275 05 "0.07 _O-O4+0.02+0.00
+0.17+0.31 +0.21+0.48 +0.06+0.09 +0.13+0.08 —0.15-0.10 +0.05+0.11 —0.02-0.00
0.08 2.00551750729 2.855035 047 0-19%5 10 0.07 0.75%0,070.08 —0.84 5104000 060 008 0 10 —0.051 0,03 1001
+0.17+0.31 +0.2240.47 +0.07+0.08 40.16+0.10 —0.19-0.12 +0.06+0.14 —0.02—-0.01
0.12 2.01%518 70729 2.847535 046 0.19%4710 007 0.91% 09 0.10 =104 515012 073Z000 013 —0.067 0,03 0,01
+0.18+0.30 +0.22+0.47 +0.07+0.08 +0.19+0.11 —0.22-0.14 +0.07+0.16 —0.02-0.01
0.16 2.02551850729 2.835035 2046 0.18Z4711 20107 LOSZo 1 011 =121 00013 0.8475711 5015 —0.07 9041001
+0.19+0.30 +0.22+0.46 +0.07+0.08 +0.21+0.12 —0.25-0.15 +0.08+0.17 —0.02-0.01
0.20 2.03%41550728 2.827535 046 0.18%4711 20,07 LO7Z0 15 012 —1.36 0154015 0.9470 15 016 —0.07 9041001
+0.19+0.29 +0.2240.46 +0.08+0.08 +0.23+0.13 —0.28—0.17 +0.09+0.19 —0.02-0.01
0.24 2.03%418 0728 2.827035 045 0.18%¢711 2007 1277013 0,13 —1.50, 07174016 LO3%9 13 018 —0.08 . 9:040.01
+0.20+0.29 +0.22+0.45 +0.08+0.08 40.25+0.14 —0.31-0.18 +0.09+0.20 —0.03-0.01
0.28 2.04%5718 0728 2.815035 045 0.18%4711 2007 1375013 014 —1.63 101040117 L0714 010 —0.08 5054001
+0.2140.29 +0.2240.45 +0.08+0.08 +0.27+0.14 —0.34—0.19 +0.104+0.22 —0.03-0.01
0.32 2.05%5719 0227 2.802035 045 0.18%4715 007 14570715 0,15 —1.76 5501019 L1815 0720 —0.08 5054001
+0.2140.28 +0.2240.45 +0.08+0.08 40.29+0.15 —0.36-0.21 +0.1140.23 —0.03-0.01
0.36 2.065571950727 2.797036 044 0.18%4715 007 15370762015 —1.88. 03140220 L2575 16 021 —0.09. 050,01
+0.22+0.28 +0.2240.44 +0.09+0.08 +0.3140.15 —0.39-0.22 +0.1140.24 —0.03-0.01
0.40 2.07%519 0727 2.78036 044 017571270107 1617577 50.16 —2.00, 9340221 L3155 17502 —0.09. 050,01
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bring additional uncertainty and the the uncertainty associ-
ated to strange quark mass is less than two percent.

We remark again that the main target of this work is to
discuss a feasible measurement of the weak decay of vector
meson, so the staring point for the calculation is the mul-
tiplied correlation function in Eq. (5) which deduces to the
helicity form factors. Moreover, what we have indeed cal-
culated is the seven helicity form factors involved in the
semileptonic weak decay, and hence we can not obtain the
ten orthogonal Lorentz form factors corresponding to the cor-
relation function in Eq. (2) by a linearly variation. But their
relations as shown in Eqgs. (16—-19) provide some constraints
to deduce the orthogonal Lorentz form factors. For example,
the (modified) helicity form factors at the full recoiled point
g% =0are

Hoo(0) = 1.997013+033

Ho4(0) = 2.8610214048 9/ () — (.1910-05+0.09

—0.35—0.48° —0.09—0.07°
+0.47+0.31 —0.53-0.35
Hi0(0) =2.675)56 059, H-0(0) = =2.9215331 (3.
He© =2008508, 10 = 019,500
(25)

from which we can deduce the center values of several
orthogonal Lorentz form factors as 1V (0) — V,(0) = —1.86,
V5(0) = 2.46,V6(0) = —0.26,and A (0)+.42(0) = —1.63.
These value can be compared with the result obtained from
other approaches such as the light-front quark model [26],
and in fact they show a good consistence after considering
the different definitions of V;—;_¢ and A;—;_4 in Eq. (13)
here and Eqs. (2.1, 2.2) there.

To extrapolate to the whole kinematic region [0, qg], we
adopt the SSE parameterisation [19] which is required not
only to reproduce the result obtained from LCSRs calcu-
lation in the lower interval [0, quSRVmaX] with good accu-
racy, but also to provide an extrapolation to the up inter-
val [qﬁCSR’max, qg] with the expected analytical properties
of the helicity form factors. For the maximal momentum
transfer squared where LCSRs is still applicable, we take
it at m2 — 2mex ~ 0.4GeV? with x ~ 0.5GeV being
a typical hadronic scale, as what have been done in D)
decays [13,14]. We truncate the simplified z-series expan-
sion after the linear term for the Lorentz orthogonal form
factors F; = Vi_¢, Ai_4,

ar

Fi(g* > 0) =
1 —q?/mp,

{1 + by [2(¢?) — z(O)]},
(26)

the quadratic term is checked could be negligible here. In the
expansion, 1/(1 — g2 /szl) denotes the simple pole corre-
sponding to the lowest-lying resonance in the D} ¢ spectrum
with mp; = 2.77GeV [1], ar, = F;(0) indicates the nor-
malization conditions. The SSE formula bases on a rapidly

@ Springer

converging series

Ve —q? — Jty — i o7
Vir — ¢+ Jir — 1o

with 14 = (mpr £ Wl¢)2 andro =t (1 — /1 —t_/ty).

We parameterize the helicity form factors by considering
their general kinematical behavious in Egs. (16—19) and their
end-point relations in Eq. (20), their expressions are

HistE(qz) = \/f]»zHij(qz)
1+ bz’ (¢%) [
(1 - ‘12/’"%1)

2
as: A
ij +ai3j)~1/2]

2% =

143/2
aij)‘

+—
(mpy —mg)
1 +61°2(¢%)

1+ 5507 (%)
(1 - ‘12/’"%)1)

e (1 - q2/m%)1)
(28)

+kKijqo [m D

Here z'(¢%) = z(¢?) — z(0) and ¢} = g3 — ¢*. The kine-
matical functions/factors read as

)\’1/2

Koot =

koo = 0;

Kijzo0 =15 xk0x(q?) = kx0(q?) = kaz(g?) = £1;
aéi = al_LO = alﬂ =0, agi =0. (29)

We can see that the terms in the third line on the right hand
side give the result of form factors H; ;g9 at the kinematical
end-point with the universal parameters b{ﬂz), and the general
terms in the first two lines hint the end-pbint constraint of
Hoo(q5) = 0.

With setting g7 cgr max = 0-4 GeV?, the fit result of SSE
parameters are shown in Table 3. We mark that the super-
script and subscript numbers are not the errors, but the dif-
ferences to the central value fitted by the upper and lower
predictions of the helicity form factors from LCSRs, respec-
tively. We depict the modified helicity form factors in Fig. 2,
where the result obtained directly from LCSRs calculation
is shown by lightblue bands, and the extrapolation by z-
series parameterisation is shown by red bands. The form
factors at end-point are obtained as H(S)EE (qg) = 0 and
IH;-Q’J-S;EOO (qé) | = 0.231’8:;?. The end-point constraints play an
important role to set down the shapes of helicity form factors
in the small recoiled regions where the LCSRs calculation
is failed, in coordination with the kinematical structures in
Eqgs. (16-19). Besides the SSE parameterisation of the form
factors, we have also tested the Becirevic and Kaidalov (BK)
parameterisation [20] and found almost the same fit result of
the helicity form factors.
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Table 3 The SSE parameters of the helicity form factors 7;; (g%

Para. Hoo(q?) Ho+(q?) Ho-(¢*) H+0(q%) H-0(q?) Hi-(q%) Hoi(q%)
al; 0.70%03% 0 0 0 0 0 0
2 —0.79 —0.76 —2.29 —0.24 —0.09
4aij —2.550.58 0 0 —2.00 27 3.46. 060 —1.561024 096004
3 +0.52 +0.16 +0.03 +0.78 +2.30 +0.26 +0.09
aij 1817557 1.8375 16 =0.95% 03 110759 =2.5657; 0.647524 0.03%5,04
bij —17.483%2 2207502 18.08,0:%8 42.18%534 23.85%002 36.2714 % 0.087 541
ED —2.10 -2.10 —2.10
bt 0 39.247740 39.247 %40 39.2477 4
ED ~1L13 113 ~1.13
bE 0 18.85, 113 1885113 18.85, 113
Fig. 3 The helicity form 3.0
factors H;; (qz) obtained from 3h
the LCSRs calculation in the ] SR ——
large recoiled regions and the 20/ — 0 ——— ~ ol
extrapolating to the whole
kinematical region by SSE 1.5
parameterization 10t T
05 — Ha6oo(a®) o
080 02 04 0.0
2.0
2+
15}
1
o — HE() 10p
L HE?) - 05},
1L .
0.0}
-2+
0.0 12 080 02 04 06 08 10 12

3 Exclusive D} weak decays

The leptonic decays Di — {v (£ = e, ) have the decay
width

G2
Ipspy = 12—F|vm|2fg*m§)* —2.44 x 10712 GeV, (30)
JT 5 s

if we accept the lattice result of the decay constant fpr =
0.274 GeV [9] and neglect the lepton masses. The differential
decay width of semileptonic decays of a particular polariza-
tion mode is written as

dry;
dg?

GE|Ves P4 24
19273m3),

M (g% 31)

With the helicity form factors obtained above, we obtain the
spin averaged total decay width

2
1 [% dFij
Ips—piy = —/ dq* E —
s 3 0 B dq2
i,j=0,£

= (328705 x 10714 GeV. (32)

The leptonic and semileptonic D} weak decays, meanwhile,
extent the investigation of lepton flavour university (LFU)
study [33-35].

Under the naive factorisation hypothesis with consider-
ing only the color singlet operator at tree level, the decay
amplitudes of D} — ¢, ¢pp channels are detached into two
matrix elements,

G
ADAf+~>¢7z+ = (_i)T;Vcsalmnfn Z Hoj(myzr),

Jj=0.+

ﬁVmalmpf/‘)l Z Hij(m;z;)'

i,j=0,%

‘ADj+~>¢p+ = (33)

Considering the wilson coefficient a; = 0.999 at the factori-
sation scale u = (m%* —mg)l/ 2 [36] and the decay constants

fr = 0.130GeV [1] and fll,‘ = 0.210 GeV [24], we obtain
the partial widths of nonleptonic decays as

Tyt pet = (3.817139) x 107 GeV,

Tyt gpe = (1.167035) x 1077 GeV. (34)

@ Springer
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The large uncertainty (40%) in ¢r channel comes from the
LCSRs predictions of the helicity form factors at the momen-
tum transfer point g2 = m%, meanwhile the uncertainty
(~ 40%) in ¢p channel comes from the extrapolation by
simplified z-series expansion at the momentum transfer point
g% = m%. The prediction of I'p+_, ot is marginally con-
sistent with the recent calculation based on the perturbative
QCD approach [37], but is half smaller in the magnitude.
We mark that the color mixing operator (ay proportional)
at tree level and the non-perturbative contributions are usu-
ally significant, and could give sizable contributions to the
hadronic decays, accompanying with the contribution from
timelike polarisation of leptonic current €,,(f). We postpone
these contributions for the further study. If we take the total
width I'pr = (7.0 £2.8) x 10~8 GeV evaluated from lattice

QCD [9], the branching fractions of D} weak decays are
B(D} — Iv) = (3.49 £ 0.14) x 1073,
B(D} — ¢lv) = (0477012 £0.19) x 107°,
B(D} — ¢m) = (0.547075 £0.22) x 107°,
B(D} — ¢p) = (1.65795! +£0.66) x 107°. (35)

Let us give a brief discussion on the experimental poten-
tial of D] weak decays. The integrated luminosity at Belle
IT would achieve 10ab~! after the phase 3 running (2024-
2026) [38], which would produce an available Dg(D})
sample at order O(10°) by considering O(10%) D; —
¢ (K K)m signals (with efficiency 22%) are obtained based
on 921 fb~! data sample [39,40] and the branching fraction
B(Ds — ¢(KK)m) = 2.24% [1]. With this sample, about
O(107) (O(10%)) signals of Ds(D}) — ¢(KK)w would
be obtained, which indicates the feasibility of searching for
D} — ¢ at Belle II. Meanwhile, about 3.07 x 10° D
mesons have been collected by BESIII with the integrated
luminosity 3.2 fb~! at4.178 GeV [41]. They are directly pro-
duced from the eTe™ collision at the Dy D} threshold with
lower background, and it provides a good chance to mea-
sure the leptonic decays D} — [v and to further determine
I'p:. Note that the photon-radiation effect is tiny in the lep-
tonic D decays since these channels are not helicity sup-
pressed in contrast to the Dy — [v decays. For the hadronic
decay channels, we hope LHCb, with the excellent particle
identification to distinguish K, 7 and w, would study the
D} — ¢(K K)m channel with D} producing from semilep-
tonic decay By — D v [42].

4 Summary
In this work we calculate the D} — ¢ helicity form factors
from LCSRs with the accuracy up to two-particle twist-5

DAs of the ¢ meson at the leading order of o, with which
we study the experimental potential of discovering D weak

@ Springer

decays. The result shows that the leptonic decays D} — [v
are the most hopeful channels to be measured at BESIII, the
semileptonic decays D} — ¢lv could be accessible at Belle
IT after the phase 3 running, and the hadronic D} — ¢n
decays are promising at LHCb. The measurement of purely
leptonic decays would determine the total width of the D}
meson and hence clarify some fundamental properties of the
D7 meson, such as the electromagnetic and strong couplings
gpr D,y and gpxp, 5. It is highly hopeful that these channels
will promote the first observation of weak decays of a vector
meson, opening up a new playground to test the standard
model and pushing us to higher precision studies.
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A Definition of ¢ meson on the light cone

In order to facilitate the light-cone expansion, the meson
four-momentum (p,,) and close to lightlike separation (x,,)
are expressed as linear combinations of the lightlike vectors

(ﬁu’ Zu) [32],

1 m%,l
Pu = Pu 2Z;LA .
2.2 2
x“my, 1. x 4
Zu=x, |1 — — =pu—+0x"). 36
n " 4(}?-2)2 QPMP-Z (x™) (36)
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Meanwhile, the polarization vectors decompose into three
terms,

A A. ~
)L_G - X - p
Gu'_ﬁ-z M+ ZZ/L+€J_M
2
cX) — X, ;m
_ (6)" x) pu(P ) why 37)

2
(p - x)? — x2m3,

Here A is the polarisation of meson and we use the symbols
I, L to denote the longitudinal and transversal directions of
the polarizations, respectively.

LCDA s are rigorously defined by the matrix element sand-
wiched with the quark bilinears with light-cone separation,
and then switch to the actual momenta and the near light-
like distance x for the practise of phenomenas. In Refs.
[24,43,44], high twist LCDAs of vector mesons are system-
atical studied in QCD based on conformal expansion with
taking into account meson and quark mass corrections. The
complete analysis of the parameters from QCD sum rules and
a renormalon based model are presented in Refs. [22,23].
Considering the polarisation decomposition in Eq. (37) to
the vector Dirac structure, the matrix element sandwiched
between vacuum and vector meson state takes the following
parameterisation

(@(p, OI5(x)ys(0)[0)

1 . m2x?
= q‘b‘mdb/ due'P* {eu [¢3l(u) + T6¢§'(u)}

1 mgx? o 1
+p Pl - oF @) + —— (4w - ¢ @)
(€ -x)m
30 x);’x,t [vh @ - 208 @ + ¢} <u>]} (38)
(#(p, O (1)0,15(0)[0)
1 ) méxz
= _if;/O dueP™ {(eﬂpu —€vPu) [%l(u) 6 ¢4l(u)}
(€ - x)mg 1 1
= (prxy = o) = x);’ [¢! @) = 5¢3 @) — wa(u)]
m2
3y (G = ev) [ - ¢é<u>]} : (39)

(p(p, )5 (x)yYuyss(0)[0)
I
= _f¢m¢8/l"ﬂ0€*vppxo /1 duettr
4 0
2 2

[% @) + V3 (u)} (40)

1 l . ~
<<z><p,e)|f<x)s(0)|0>=—%ﬁ,}(e-x>m§> /0 due™"* Y ). (41)

‘We use the conventions

0123 i
& =1, = ZSMUPGVquVpVﬁ- (42)
The quark mass effects are taken into account in the last two

parameterisations of matrix elements with the Dirac struc-

€0123 = — V5

tures y, 5 and 1, and the auxillary DAs read as

) = (1= ryds) vy ),
Tigs) () = (1= r184) s (), 43)

with r = f)/f3. 11 = fiH/f,) and 65 = (ms £ my) /m.
The DAs ¢ = {¢”(J‘) (])“(J') 1//”“‘) wII(J-)} satisfy the nor-
malisations
u u u
/ o Wdu' =1, [ du/f o Wdu” =1
0 u=1 0 0 u=1
(44

and also the equation of motions (EOM) of the LCDAs. The
DAs¢' = {¢, . , ¢, Y3} are not subject to a particular nor-

malisation while [ du’ (d:ﬂ - ¢5l) i

and they relates to DAs ¢, at first order of O(mé) expansion,
by [44]

I :_4/” i — Dol (!
oi = ~4 | | @' = gbu)]

u u’
+4/d//d//L//_||
[ [ (g3 0 - v

= 0 is necessary,

= 3¢)wh).

r =_4/u 2u’ — gy ('
o =4 | [@ - Dof )]
+4/ud//-ud// J_//_J_//’

[ [ au [vi @ - o3 @]
1 =_4/u 2w —1 1,7 .
o3 =4 [ [ = g3 )]

u
vt =4 [ e = vt ). (45)

We notice that the last two relation equations hold only for
asymptotic LCDAs [24].

The lower twists DAs are conventionally expanded in con-
formal spin which is analogous to the partial wave expansion
of SO(3), and write in terms of Gegenbauer polynomials with
corresponding moments. In this work we take the truncation
to the second order of leading twist DAs expansion,

¢||(J_)(u) = 6u(l — 1) [1 +a{|(L)C13/2(t) +a II(L)C%/z(t)] '
(46)

The twist 3 DAs contributed from the leading twist DAs are

cited as [43]
e 1 [
Lo W) w, (u')
I ’ 2
== du - du'———,
300 =3 /0 7 2 /u YT

/ WG]

u u/ '

u e s
Mo =i [ (a2 4

0
N _l/u ,‘I/J‘(u/) /1 ,lI»/zJ‘(u/)
¢)3 (u)_ 4 0 d u/ +4 , du ],[/ 5

u J_ / 1 1
&;(u)mz/ aw 22 u/ du’%—(/u), (47)
0 u’ u u
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Table 4 Notations of the LCDASs of light vector mesons (up tabular) and nonperturbative parameters at the factorization scale s = 1.66 GeV of
the ¢ meson LCDAs taken in our evaluation (low tabular)

Notations ¢, ¢ 2 v o s I A R
Twist 2 2 3 3 3 3 4 4 4 4 5 5
Dirac Y Oy Oy 1 n YuYs n Y Ouv Opv n YuYs
Expressions (46) (46) (47) (47) (47) (47) (54) (53) (54) (53) (54) (54)
Para. s (GeV)  mg(GeV)  f)(GeV)  fHGeV) a4} al
Value 0.101(8) 1.68 0.233(4) 0.184(4) 0 0.243(80) 0.148(70)
with the auxiliary functions +60u* +3 log(1 — u) + 3log u] . (52)
o Lo (3 —2u) 5_ | a3 () In the asymptotic limit, the twist 4 DAs contributed at the
V) =20 () +r) | —F—b++ | ———> -2 -
2 2 ou' order O((p - x)~7) are given by
A5 (u') V) = 6ui, () = 6ui, 53
W) = 20 4 [ — 1 s | 2D Va0 = u Vi () = bus &)

(48) the twist 4 and twist 5 DAs ¢’ contributed at the order
O(mixz) read from Eq. (45) as
We here present their explicit expressions truncated to the
second term of gegenbauer polynormias of qbg/ ) ¢4|1|(M) =24u’i?, @i (u) = 24u*ic®,
b3 (u) = 6uit (1 —uit), Vi (u) = 12uit’. (54)
¢4 (u) = 3 — 6u + 6u’ . . _
3 ) For the sake of convenient we list the DAs at different
+5 0+ [—6 +12u — 4u” +log(1 — u) — 3log M] twists with corresponding Dirac structures in Table 4, and
also we present the nonperturbaive parameters of LCDAs
taken in our evaluation. The mass of ¢ meson and strange
+a§‘(u)3r”8+ [_33 + 126u — 22242 + 20043 quark in the MS scheme are taken from PDG [1]. The longitu-
dinal decay constant f (/l)l is mainly determined directly by the

+ad () [3(1 —12u + 42u% — 6043 + 30u4)]

4
—60u” +3log(l —u) — 910gu] ’ (49) experiment measurement of channel ete™ — ¢(— PP)
12,3H ) = 2(1 — u) [3 — 6u + 6u> [24], the sc?lle slependent. transversal decay lconstant is c”ho—
3 sen by considering the ratio r) (1 GeV) = f¢ 1GeV)/f, =
+%8+(—6 + 120 — 4u? + log(1 —u) — 3log u)} 0.820 obtained from lattice QCD simulated by using Ny =
2 4+ 1 domain-wall fermions at the spacing a = 0.114 fm
+af‘(,u)6u [1 — 12u + 42u® — 60u> + 30u4] and masses down to m, = 330 MeV [45]. The Gegenbauer
(L) .
n 2 3 moments a, ~ are taken from Ref. [46] where a combined
6ur|d4 | —33 + 126u — 222 200
Fay ()burydt [ +1sou U 2u analysis is performed on the lattice simulation and QCD sum
—60u* + 31og(1 —u) — 9 logu] , (50)  rule calculation [47].
1
Loy s 2
¢ (u) = 2{3 61 + 6u

3r, 84 [2 — du + 4u® +1og(1 — u) + log u] B Imaginary part of OPE invariant amplitudes
+ag ()3 [1 — 12u + 42u” — 60u> + 30u4] In the case of transversal helicity with longitudinal leptonic
current and transversal ¢ meson, the imaginary part of OPE

1 _ 2 3
+ay ()6r1 8+ [11 42u + 102u” — 120u invariant amplitudes are

+60u* + 31og(1 —u)+310gu] } (51) .
— ImFl(?g:E(qz <0,u)
U3 = 2(1 — ) [3—6u+6u2 7 o
2 Vi (n1D§—m¢—q> Ll

131842 — du + 4u? +log(1 — u) + log u)] =2 + N me £ ¢3 (u)
-l—ag(u)fm [l — 12u + 42u® — 60 + 30u4] Wi (m%) - q2> 4242

s I 1

+ m (u)

tad(u)12ur) 8y [11 — 42u + 102u® — 12013 2/ Wi Toms 93
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2 2
(’"D;‘ — My~

o
2/1¢%1 2/1g?1

Vi I 7L
+ Jpme ¥s (u),
aig?l

1
—ImFEE (g% < 0, u)
. :

_ [ﬁ [# (b =~ ) +202] | o }

+
2192 219
[fimwé(u) fym3 o3 )
4 T
me fmg (Vi () — éﬂu))]
i VA

NG = =
f\”ﬁf ( (u)+¢'2<u>2¢§<u>)

T Vi <m%) —mg = qz)
sl 8Y1g
VA

2
: )} fhms (S — ¢t @)

}f’ 3 (B —fw)

2 2
VA i(’”D;"”V

fo 2 (Bl - ¢t w)
I2

55) — [ﬁq: (m%)* — mi . q2 + 2um§,)] f¢m¢ ¢§'(u)

—2f)m3 A (w <u>+¢ () — 23 <u>>

Fhymem} (wi W) + ¢ () — 29! <u>)

fym
+ (m%* —m¢ —q +2um¢) ¢

" (Fw - g w)

f . f” 4
+ T w1 (¢>()—¢5(u)) (59)

1
—Im F9M (g% < 0,u)
= [\/)T (m%,; - m¢ —¢*+ 2um42,) FAr i 2m?mﬂ
.2

fam _ _
S (i — g5 )

m2 NG (um%)* +ig® — uﬁmé)

7 f”m3 ]/”/J_(M)+
16y1g2 407

21q?| 2Vlq?|

Y
42)
(1# (u) + ¢ (u) —2¢3 (M))

f
f¢ m¢mc <W4 () + ¢2 (u) — 2¢ (W) (56) ¢74 (u) + f¢ mehnc A <¢4 (u) + d’z (u) — 2¢ ('U)
1 OPE -l 2
7ImF30i(q < 0,u) B [«/X:F (m%); *mi 7q2+2um42))] fo m2 m( oL, (60)
— Vi (m%)? — m‘?’ B qz) 3,12 41
W * 4147 mefgmg ox () For the transversal helicity form factor, the imaginary parts
are
uvn M <m%?‘ —my — qz) +2¢? 24003 1
+|- : 2
i 4,/|q7| il 44/19%| m f¢m¢ @5 (u) %ImFﬁ’iE;(qz <0,u)
. __ﬁ[Zm?Jru(sz; —m} = %) +24°] . avz ((l-i-u)m%)f —im3 + iiq?) s o0
16V/147| 16V/147] 2 2mp; oo 93 T
fim3 3w i (mhe+mi—a?)
B 4 4
N (m%* — mé - qz) * 2mD; 2mD;
= fhmim? () - ¢ w).
LIl la”] [ me o3 @ + fms ($ha) — ¢t @) |
(57) G
+m f£m¢ U3 (), (61)
The imaginary parts of OPE invariant amplitudes with 1 Im FOPE (4% < 0,u)
transversal leptonic and longitudinal ¢ currents are *
3 |:((1 +u)mD;6 —umé +ﬁq2) Vo N A :|
lImFPi‘f,(q <0,u) 2mp; 2mp;
I 7L I3
— ) I 2 ol f¢m¢ Y3 (u) f ¢5 (u)
T fyrmems ¢3w) F fym ($a) — 63 |(u)) L e
+ [ VA (mhy —m3 — >+ 2um3) | %o s, (58) - fymgme (Vg ) — ¢2l(“))]
s 2 \/X
1

7ImF205E%(q <0,u)

=—[ﬁ(m%)*—m¢ q* +2um )q:k]

s

NN ( Dy +m —q )
+ +
sz* szf
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-[f;jmgmc (Ilf}(u) + ot () — 24! (u))

fim3 (b - ¢ w)
B 4 ]
uf

" fim (w @) + 9l )—M}(u))

[
16m

- fymy Vs w), (62)

1
— ImF?i';(q2 <0,u)

ivx (1+u)m2j—ﬁm2+ﬁq2
_ _u[q:( D ¢ ) fm¢m ¢5(u)

4mpx 4dmp»

'<2m§+(1 + uymd, — im} +ﬁq2)ﬁ o
N

16m D} 16m D}

-fymgy ¥ w)
G + (m; +m3— )

4m px

[ mim? g + fhmim? (8w - g w) |

4m px

(63)
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