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Abstract We present the first unquenched lattice-QCD cal-
culation of the form factors for the decay B → D∗�ν at
nonzero recoil. Our analysis includes 15 MILC ensembles
with N f = 2 + 1 flavors of asqtad sea quarks, with a strange
quark mass close to its physical mass. The lattice spacings
range from a ≈ 0.15 fm down to 0.045 fm, while the
ratio between the light- and the strange-quark masses ranges
from 0.05 to 0.4. The valence b and c quarks are treated
using the Wilson-clover action with the Fermilab interpre-
tation, whereas the light sector employs asqtad staggered
fermions. We extrapolate our results to the physical point
in the continuum limit using rooted staggered heavy-light
meson chiral perturbation theory. Then we apply a model-
independent parametrization to extend the form factors to the
full kinematic range. With this parametrization we perform
a joint lattice-QCD/experiment fit using several experimen-
tal datasets to determine the CKM matrix element |Vcb|. We
obtain |Vcb| = (38.40 ±0.68th ±0.34exp ±0.18EM)×10−3.
The first error is theoretical, the second comes from exper-
iment and the last one includes electromagnetic and elec-
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troweak uncertainties, with an overall χ2/dof = 126/84,
which illustrates the tensions between the experimental data
sets, and between theory and experiment. This result is in
agreement with previous exclusive determinations, but the
tension with the inclusive determination remains. Finally, we
integrate the differential decay rate obtained solely from lat-
tice data to predict R(D∗) = 0.265 ± 0.013, which confirms
the current tension between theory and experiment.

1 Introduction

High precision tests of the standard model (SM) offer excit-
ing possibilities for discovering new physics. In particular,
the flavor sector of the SM is very rich in phenomena that
can be used to explore physics beyond the standard model
(BSM). Most flavor physics revolves around the Cabibbo–
Kobayashi–Maskawa (CKM) matrix, which relates the mass
and flavor eigenstates of the quarks. Since it is a basis trans-
formation, the CKM matrix is constrained by unitarity, so
violations of this rule could indicate the influence of new
physics. Weak processes that are loop-suppressed in the SM
may also expose new physics. To determine CKM matrix ele-
ments to high precision and to perform precision tests of the
SM in measurements of rare decay processes, it is essential
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to know the strong-interaction environment in which these
processes occur.

Among the CKM matrix elements, |Vcb|has arguably been
one of the most perplexing. There is a long-standing ten-
sion between the determination of this element via exclusive
and inclusive decays. The operator product expansion (OPE)
is used to analyze inclusive decay experiments measuring
semileptonic decays B → Xc�ν, where Xc represents any
charmed hadron or combination of hadrons with a single c
quark. On the other hand, exclusive decay experiments focus
on decays with a specific charmed hadron in the final state,
for example, B → D�ν or B → D∗�ν. We expect both
types of experiments to yield consistent results for |Vcb|;
however, there is a ∼ 3σ discrepancy between the inclusive
and exclusive determinations [1,2]. Since contributions from
new physics are unlikely to explain these differences [3,4],
the disagreement presents an obstacle to higher precision
tests of the SM.

We turn now to the determination of |Vcb| from the exclu-
sive decay B → D∗�ν, which has an interesting history. As is
detailed below in Eq. (7), to determine |Vcb|, a measurement
of the differential decay rate dΓ/dw is needed and the form
factors must be computed by theory. Using lattice QCD, it has
been possible to determine the key form factor at zero recoil.
However, the differential decay rate vanishes at that point
because of kinematic factors, so it is necessary to use the dif-
ferential decay rate at nonzero recoil to extrapolate the form
factors to zero recoil. Since the 1990s, there have been two
parametrizations of the form factors, one by Boyd, Grinstein,
and Lebed (BGL) [5–7], and the other by Caprini, Lellouch,
and Neubert (CLN) [8]. The CLEO and BaBar experiments
[9–11], for example, relied on the CLN parametrization to
analyze the dependence of the recoil parameter of their data.
This was also true for earlier reviews from the Heavy Flavor
Averaging Group (HFLAV) [12].

The situation changed in 2017 with the publication of
unfolded data from a B → D∗�ν experiment by the Belle
Collaboration [13]. This data release was quickly followed
by several theoretical analyses [14–17] comparing the effect
of the choice of parametrization on |Vcb|. They found that the
CLN parametrization [8], at least as it is usually employed
to extrapolate the experimental data to the zero-recoil point
(see for instance, Sec.V.A of Ref. [18]), does not provide a
good description of the experimental data, whereas the BGL
parametrization [5–7] describes the data properly and yielded
exclusive determinations of |Vcb| that were compatible with
the inclusive ones [14–17]. However, more recent analyses
by the Belle Collaboration using the much larger untagged
dataset [18] and by the BaBar Collaboration performing a
new analysis of their old data [19] contradicted this pic-
ture and reinforced the long-standing tension between the
inclusive and the exclusive determinations. Newer theoreti-
cal analyses using Belle’s untagged dataset also found agree-

ment between CLN and BGL results [20,21]. These analyses
also conclude that CLN is still a useful parametrization given
the current errors in the experimental measurements. Unfor-
tunately, previous unquenched lattice-QCD calculations of
the B → D∗ form factor [22,23] cannot provide constraints
on the shape, because they are limited to zero recoil. Hence,
a precise calculation from first principles of the form factors
involved in the exclusive process performed for a range of
nonzero-recoil momenta, could be extremely helpful.

Another motivation to study this process is the existing
tension between experimental measurements and SM predic-
tions of several lepton-flavor-universality-violating (LFUV)
observables in B-meson semileptonic decays [24]. The ratios
of branching fractions of the semitauonic and other semilep-
tonic B → D(∗) transitions

R(D(∗)) ≡ B(B → D(∗)τντ )

B(B → D(∗)�ν�)
, � = e, μ (1)

disagree with the SM at the ∼ 3σ level when R(D) and
R(D∗) are taken together [1]. Although the last HFLAV
average [1] shows a large discrepancy between theory and
experiment, the most recent measurements from the BaBar,
Belle, and LHCb Collaborations find R(D∗) to be closer to
SM expectations [25–29]. However, a complete lattice-QCD
calculation of R(D∗) is still lacking. In view of current ten-
sions in these observables, the limitations of the available
theoretical predictions, and the future improvements on the
experimental side expected from LHCb and Belle II forth-
coming data, an independent theoretical calculation with a
tight control of systematic errors that could help to either
confirm or reduce the tension is urgently needed.

In this work, we use lattice QCD to address these two
points, i.e., tensions between exclusive and inclusive deter-
minations of |Vcb|, and between the SM theoretical predic-
tion and experiment for R(D∗). Although lattice QCD has
previously been used to extract |Vcb| from experimental data
for B → D∗�ν, the relevant decay amplitude has always
been computed at zero recoil [22,30–32], except for an early
study in the quenched approximation [33]. Here we compute
the form factors that contribute to the B → D∗�ν decay
for nonzero values of the recoil parameter in full QCD with
2 + 1 flavors of dynamical sea quarks and extrapolate their
behavior to the large recoil region. Instead of using the stan-
dard procedure of extrapolating experimental results to zero
recoil and then extracting |Vcb| using the calculated value
of the form factor at zero recoil, we do a joint fit of lattice
and experimental data where |Vcb| is one of the free param-
eters. Once the decay amplitude is determined, we integrate
over the whole kinematic space to find the branching ratios
with and without a τ in the decay. We calculate R(D∗) and
compare our results with existing experimental determina-
tions. Preliminary reports of this analysis were presented in
Refs. [34–38]. In keeping with previous work on the same
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ensembles [39–42], this analysis was blinded until a system-
atic error budget was finalized. The final results were then
frozen, apart from unblinding.

This article is organized as follows. In Sect. 2, we intro-
duce the formalism and present the form factors that take
part in our calculation. Section 3 gives details on the ensem-
bles available and also describes the analysis of the lattice
data up to the chiral-continuum extrapolation. In Sect. 4, we
discuss the systematic errors, and Sect. 5 shows the z expan-
sion and the joint fit with experimental data that leads to
our final results for |Vcb| and R(D∗). Section 6 presents our
conclusions. Appendix A includes details on the fit function,
employed in the chiral-continuum extrapolation. Appendix B
outlines the calculation of the matching factors and its errors.
Appendix C explains in detail how the κ tuning correction for
the heavy quarks was calculated. Finally, Appendix D pro-
vides a guide to ancillary files containing complete results
for the form factors, with a full correlation matrix.

2 Form factor definitions

In this section, we set the definitions and notation used in the
following sections for the form factors, ratio of correlators,
currents, and renormalization factors, among others.

2.1 Form factors in the continuum

The B → D∗�ν process is mediated by the axial Aμ =
c̄γμγ5b and the vector Vμ = c̄γμb electroweak currents.
The transition matrix for this process is usually decomposed
into form factors inspired by the heavy quark effective theory
(HQET) [43]:

〈D∗(pD∗ , ε)|Aμ|B(pB)〉√
MD∗MB

= iε∗
ν

[
gμν(w + 1) hA1(w)

− vν
B(v

μ
B hA2 (w) + v

μ
D∗ hA3(w))

]
,

(2)

〈D∗(pD∗ , ε)|Vμ|B(pB)〉√
MD∗MB

= ε
μν
ρσ ε∗

νv
ρ
Bvσ

D∗ hV (w), (3)

where ε is the polarization vector of the D∗ meson, MY is
the mass of the Y = B, D∗ meson and pY its respective
momentum. From the four-velocities vY = pY /MY , one can
define the recoil parameter w = vB · vD∗ .

To express the differential decay rate, it is convenient to
introduce helicity amplitudes according to the polarization
of the off-shell W boson [44]:

H±(w) = (w + 1)

[
hA1(w) ∓

√
w − 1

w + 1
hV (w)

]
, (4)

H0(w) = y(w + 1)
{
(w − r)hA1(w)

− (w − 1)
[
rhA2(w) + hA3(w)

] }
, (5)

HS(w) = y
√

w2 − 1
[
(w + 1)hA1(w)

− (1 − wr)hA2(w) − (w − r)hA3(w)
]
, (6)

where r = MD∗/MB and y2(1 − 2wr + r2) = 1. The dif-
ferential decay rate for B− → D0∗�−ν̄ is then

dΓ

dw
= |Vcb|2|ηEW|2 G

2
FM

5
B

16π3

(
1 − m2

�

q2

)2

r3(w2 − 1)1/2

×
{

1

3y2

(
1 + m2

�

2q2

)[
|H+|2 + |H−|2 + |H0|2

]

+ m2
�

2M2
B

|HS|2
}

, (7)

where ηEW is a short-distance electroweak correction [45],
GF is the Fermi constant determined from muon decay, and
m� is the charged lepton mass. Note that the scalar helic-
ity amplitude’s contribution is suppressed by (m�/MB)2. In
practice, it is neglected for semielectronic and semimuonic
decays. The process B̄0 → D+∗�−ν̄ needs an extra factor
(1+απ) on the right-hand side of Eq. (7) in order to account
for the Coulomb attraction among the charged decay products
[46–48]. Other electromagnetic effects, including structure-
dependent corrections, are smaller, of order α/π instead of
απ [46–48]. For the determination of |Vcb|, the full angular
information of the decay chain B → D∗�ν (D∗ → Dπ) is
used, as discussed in Sect. 5.2.

As noted in the introduction, experimental measurements
of the ratio of branching fractions in Eq. (1) are in tension
with the SM. To date, the B → D∗ form factors have been
estimated with HQET, QCD sum rules, and input from exper-
iment. With the results presented below, however, we can
compute this ratio directly from (lattice) QCD:

B(B → D∗�ν) = τB

∫ wMax,�

1
dw

dΓ

dw
, (8)

where wMax,� = (1 + r2 − m2
�/M

2
B)/2r . In R(D∗), the B-

meson lifetime τB drops out, so we form it from the ratio of
partial widths.

Many papers in the literature introduce a decay amplitude
F(w), defined by

|F(w)|2 = 1 − 2wr + r2

w + 1

|H+|2 + |H−|2 + |H0|2
(5w + 1)(1 − r)2 − 8rw(w − 1)

,

(9)

and refer to F as a “form factor.” For example, experimental
results are often reported as |Vcb|2|ηEW|2|F(w)|2. At zero
recoil, F(1) = hA1(1). Thus, previous work in lattice QCD
on this decay has focused on this single number, rather than
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the four independent functions, hA1(w), hV (w), hA2(w), and
hA3(w), computed in this work.

2.2 Extracting the form factors from lattice matrix elements

Our heavy quarks (b, c) are simulated using the Fermilab
action [49], as discussed in Sect. 3.1. In this framework, the
lattice currents for the quark transition y → x are

Vμ
xy = Ψ̄xγ

μΨy, (10)

Aμ
xy = Ψ̄xγ

μγ5Ψy, (11)

where x, y indicates the flavor c, b and Ψ is the Fermilab-
improved field,

Ψ = (1 + d1γ · Dlat)ψ. (12)

In this expression, the original heavy-quark field ψ is rotated
in order to reduce the discretization errors. In particular, the
coefficient d1 must be calculated for each value of the quark
mass in order to remove the O(a) terms.

The lattice current Jμ
xy is related to its equivalent in the

continuum J μ
xy through the renormalization factors,

J μ
xy =̇ Z Jμ

xy
Jμ
xy, (13)

where the =̇ symbol means that both sides of the equation
have the same matrix elements. In practice, the renormaliza-
tion factors are only calculated approximately up to some
order in a and αs . In this work, we use a technique called
mostly nonperturbative renormalization [50,51] that elimi-
nates most of the nonperturbative dependence of the renor-
malization factors by defining the factors,

ρ2
Jμ =

Z Jμ
cb
Z Jμ

bc

ZV 4
cc
ZV 4

bb

. (14)

When taking appropriate ratios of three-point correlators, the
dominant, nonperburbative contribution to the renormaliza-
tion of the currents, collected in the flavor-diagonal renor-
malization factors ZV 4

xx
, cancels. The remaining matching

factors ρJμ are amenable to a perturbative calculation [50].
We compute these matching factors to one-loop in perturba-
tion theory, with the full mca dependence at zero recoil, but
mca = 0 at nonzero recoil. Of course, these simplifications
introduce a variety of errors that must be kept under control.
The truncation in the perturbative expansion is expected to
be small, because αs ranges in our case from 0.20 to 0.35. In
addition, the coefficients of the expansion are small due to
several cancelations [50]. The errors coming from the other
two approximations are estimated in Appendix B and taken
into account accordingly.

Not only does the use of ratios reduce the error in the
calculation of the matching factors, but it also reduces the
statistical fluctuations from the correlators. We set up the

calculation in the rest frame of the B meson while the D∗
meson carries a momentum p, which determines the recoil w.
The first ratio is the nonzero-recoil version of the double ratio
[30],

R2
A1

= 〈D∗( p⊥)|A j |B(0)〉〈B(0)|A j |D∗( p⊥)〉
〈D∗(0)|V 4|D∗(0)〉〈B(0)|V 4|B(0)〉 , (15)

where the ⊥ symbol in the momentum p⊥ indicates that the
polarization of the D∗ is aligned with the current and per-
pendicular to the momentum (i.e., transverse polarization).
A parallel symbol ‖ is used for longitudinal polarization.
This double ratio yields hA1 , which is the only form factor
that survives at zero recoil.

The following single ratios

XV = 〈D∗( p⊥)|Vj |B(0)〉
〈D∗( p⊥)|A j |B(0)〉 , (16)

X0 = 〈D∗( p‖)|A4|B(0)〉
〈D∗( p⊥)|A j |B(0)〉 , (17)

X1 = 〈D∗( p‖)|A j |B(0)〉
〈D∗( p⊥)|A j |B(0)〉 , (18)

yield the remaining form factors. Last, the ratio [52,53]

x f = 〈D∗( p(α))|Vj |D∗(0)〉
〈D∗( p(α))|V 4|D∗(0)〉 (19)

yields the recoil parameter w and involves only the flavor-
diagonal transition D∗ → D∗. Here (α) = ⊥, ‖ is the polar-
ization, and must be the same in numerator and denominator
to achieve the right cancelation of form factors.

The ratio in Eq. (19) yields the three-velocity,

x f = vD∗

w + 1
, (20)

from which it is straightforward to calculate w. In the B-
meson rest frame (vB = 0),

w = 1 + x2
f

1 − x2
f

. (21)

The ratio X1 defined in Eq. (18) can be used to extract hA3(w)

as

X1(w) = w − (w2 − 1)hA3(w)

(w + 1)hA1(w)
. (22)

The matching factors for these two ratios, x f and X1, are ρ =
1 + O(α2

s ), and thus no renormalization is required at LO.
In contrast, the remaining ratios require several nontrivial
matching factors,

X0(w) = ρA j

ρA4

√
w2 − 1

(
1 − hA2(w) + whA3(w)

(w + 1)hA1(w)

)
,

(23)
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Table 1 List of ensembles used in this work. The columns, from left
to right, list the approximate lattice spacing, the scale-setting parame-
ter r1/a in lattice units, the ratio aml/ams between the light- and the
strange-quark masses, the spatial length of the lattice in fm, the mass of
the lightest pseudoscalar meson MP

π in MeV, the dimensionless factor

MP
π L , the dimensions of the lattice in lattice units, the total sample size

expressed as the number of sources × the number of configurations, and
the tadpole-improvement factor u0 obtained from the average plaquette

a (fm) r1/a aml/ams L (fm) MP
π (MeV) MP

π L Lattice size Sources Configs u0

≈ 0.15 2.2215(57) 0.0097/0.0484 2.4 340 3.9 163 × 48 24 × 631 0.8604

≈ 0.12 2.8211(28) 0.02/0.05 2.4 560 6.2 203 × 64 4 × 2052 0.8688

2.7386(33) 0.01/0.05 2.4 390 4.5 203 × 64 4 × 2259 0.8677

2.7386(33) 0.007/0.05 2.4 320 3.7 203 × 64 4 × 2110 0.8678

2.7386(33) 0.005/0.05 2.9 270 3.8 243 × 64 4 × 2099 0.8678

≈ 0.09 3.8577(32) 0.0124/0.031 2.4 500 5.8 283 × 96 4 × 1996 0.8788

3.7887(34) 0.0062/0.031 2.4 350 4.1 283 × 96 4 × 1931 0.8782

3.7716(34) 0.00465/0.031 2.7 310 4.1 323 × 96 4 × 984 0.8781

3.7546(34) 0.0031/0.031 3.4 250 4.2 403 × 96 4 × 1015 0.8779

3.7376(34) 0.00155/0.031 5.5 180 4.8 643 × 96 4 × 791 0.877805

≈ 0.06 5.399(17) 0.0072/0.018 2.9 450 6.3 483 × 144 4 × 593 0.8881

5.353(17) 0.0036/0.018 2.9 320 4.5 483 × 144 4 × 673 0.88788

5.330(16) 0.0025/0.018 3.4 260 4.4 563 × 144 4 × 801 0.88776

5.307(16) 0.0018/0.018 3.8 220 4.3 643 × 144 4 × 827 0.88764

≈ 0.045 7.208(54) 0.0028/0.014 2.9 320 4.6 643 × 192 4 × 801 0.89511

XV (w) = ρA j

ρVj

√
w − 1√
w + 1

hV (w)

hA1(w)
, (24)

RA1(w) = w + 1

2

hA1(w)

ρA j

. (25)

From these equations, it is quite easy to extract all form fac-
tors as a function of the ratios defined in Eqs. (15)–(19),

hA1(w) = ρA j

2RA1

w + 1
, (26)

hA2(w) = ρA j

2RA1

w2 − 1

(
wX1 −

√
w2 − 1

ρA4

ρA j

X0 − 1

)
,

(27)

hA3(w) = ρA j

2RA1

w2 − 1
(w − X1), (28)

hV (w) = ρA j

2RA1√
w2 − 1

ρVj

ρA j

XV . (29)

These expressions determine the four form factors up to dis-
cretization and matching errors.

3 Analysis

3.1 Lattice setup

In this analysis, we use 15 ensembles of gauge-field con-
figurations, generated by the MILC Collaboration [54–56].

Fig. 1 Ensembles used in this work. The vertical (horizontal) axis
shows the ratio between the light- and strange-quark masses (the lattice
spacing). The area of each circle is proportional to the total sample size
available on each ensemble. The horizontal line marks the value of the
ml/ms ratio that results in pions with physical mass

These ensembles include three flavors of asqtad-improved
staggered sea quarks at five different lattice spacings, rang-
ing from 0.15 fm in the coarsest case to 0.045 fm in the finest
case. The mass of the strange sea quark is tuned to be close
to its physical value, while the two light sea-quark masses
are set equal, and cover a range of values that correspond
to pion masses from Mπ ≈ 560 MeV to Mπ ≈ 180 MeV.
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Table 2 Parameters used on
each ensemble to generate the
propagators for the valence,
heavy quarks c and b. The
approximate lattice spacing and
the masses of the sea quarks
(light and strange) in the first
two columns identify the
ensemble. The remaining
columns show the clover term
coefficient cSW, the bare
hopping parameter κ , the
rotation parameter d1 of the
Fermilab action, and the values
of the available source/sink
Euclidean-time separations T in
lattice units for the computed
three-point correlators. The
primes on the κ indicates that
this is the value used in the
simulation, as opposed to the
physical (tuned) value, see
Appendix C

a (fm) aml /ams cSW κ ′
b d1b κ ′

c d1c Sink times

≈ 0.15 0.0097/0.0484 1.567 0.0781 0.08354 0.1218 0.08825 10,11

≈ 0.12 0.02/0.05 1.525 0.0918 0.09439 0.1259 0.07539 12,13

0.01/0.05 1.531 0.0901 0.09334 0.1254 0.07724 12,13

0.007/0.05 1.530 0.0901 0.09332 0.1254 0.07731 12,13

0.005/0.05 1.530 0.0901 0.09332 0.1254 0.07733 12,13

≈ 0.09 0.0124/0.031 1.473 0.0982 0.09681 0.1277 0.06420 17,18

0.0062/0.031 1.476 0.0979 0.09677 0.1276 0.06482 17,18

0.00465/0.031 1.477 0.0977 0.09671 0.1275 0.06523 17,18

0.0031/0.031 1.478 0.0976 0.09669 0.1275 0.06537 17,18

0.00155/0.031 1.4784 0.0976 0.09669 0.1275 0.06543 17,18

≈ 0.06 0.0072/0.018 1.4276 0.1048 0.09636 0.1295 0.05078 24,25

0.0036/0.018 1.4287 0.1052 0.09631 0.1296 0.05055 24,25

0.0025/0.018 1.4293 0.1052 0.09633 0.1296 0.05070 24,25

0.0018/0.018 1.4298 0.1052 0.09635 0.1296 0.05076 24,25

≈ 0.045 0.0028/0.014 1.3943 0.1143 0.08864 0.1310 0.03842 32,33

The simulation parameters of all ensembles employed in this
analysis are given in Table 1, while Fig. 1 provides a visual
summary of the range of lattice spacings, sea-quark light-to-
strange-mass ratios, and number of statistical samples.

In the light sector, we use the same value for the masses
of the valence and sea quarks. The heavy quarks employ the
clover action with the Fermilab interpretation, and since the
regularization used for the light quarks has a different Dirac
structure, we promote the staggered propagators to “naive”
ones, so we can apply the standard Dirac spin algebra and
combine them with the Wilson-like heavy quark propaga-
tors to construct heavy-light mesons [57]. The heavy quark
masses are tuned so that the kinetic masses of the Ds and the
Bs mesons are equal to their physical values (see Appendix C
of Ref. [22]). In Table 2, we gather the parameters we used
to calculate the heavy quark propagators for each ensemble.
The simulation values chosen for the heavy quark masses to
generate the meson correlators are close to, but not exactly
the same as, our best-tuned values, which were determined
a posteriori. Hence we apply a correction to the form fac-
tors to account for this slight mistuning which is described
in Appendix C.

3.2 Correlation functions

The two- and three-point correlation functions are calcu-
lated using four sources, equally-spaced in time, except for
the case of the coarsest ensemble that employs 24 sources.
The sources are randomly shifted in space and time from
one configuration to another in order to reduce correla-
tions between successive gauge-field configurations within
the same ensemble. A standard blocking analysis of the

correlator data, ranging from block size 1 to block size 8,
reveals that the autocorrelations in our ensembles are negli-
gible and that the errors in the correlator points stay approx-
imately constant as we increase the block size, in line with
our previous analyses that employed the same gauge con-
figurations, fermion formulations, and source set-up [22,39–
42,53,58,59]. Therefore, we do not block the data in this
work, and the correlators are processed through a single-
elimination jackknife.

Two previous analyses with the asqtad ensembles [31,60]
found that blocking the configurations by 4 or 8 was nec-
essary in order to suppress autocorrelations. However, these
analyses refer either to global observables (the topological
susceptibility), or did not use the randomization procedure
for the sources, which greatly reduces the autocorrelations
in our data.

Given that one of our ensembles has a very fine lattice
spacing a ≈ 0.045 fm, one might be worried about the topol-
ogy freezing and its effect in the final results of the form fac-
tors. We did not perform a topology freezing analysis in the
asqtad ensembles, but we expect the behavior to be similar
to that of the HISQ ensembles. Based on Refs. [61,62], we
expect topology freezing to introduce a negligible bias in the
chiral-continuum limit of the form factors.

The correlation functions described in the following two
subsections contain the desired ground-state matrix ele-
ments, energies and form factors, but they also include contri-
butions from excited states, which we must remove. For this
purpose, we use two different kinds of interpolating operators
per source: a local operatord and a smeared operator based on
the Richardson 1S wave function [63,64], and therefore we
fix the configuration to Coulomb gauge. For each meson, the
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radius of the smearing operator is the same in physical units
for all ensembles. We refer the reader to Ref. [64] for further
details. The smeared operator increases the overlap with the
ground state, allowing for a more precise determination of
the lowest energy level and its overlap factors. The inclusion
of a local operator gives us a useful handle on the excited
states. Further, to quantify excited-state contributions and
obtain robust estimates of the associated uncertainties, we
use Bayesian constraints with Gaussian priors and fit func-
tions that include varying numbers of excited states [65].

To implement the Bayesian constraints, we follow the pro-
cedure of Appendix B of Ref. [58]. We minimize the aug-
mented χ2

aug, as defined in Eq. (B3) of Ref. [58], but for the

goodness of fit use the data-only χ2 (evaluated at the min-
imum of χ2

aug) and subtract the number of parameters from

the number of data. Below we refer to this χ2 and counting
of degrees of freedom as the deaugmented χ2/dof. In our
experience, the p value calculated with a χ2 and a number
of dof as defined in Eq. (B5) of Ref. [58] is a good indica-
tor of goodness of fit, but it has not been proven rigorously
to follow a uniform distribution. When calculating p values,
we further process the χ2/dof ratio to take into account finite
sample size [66].

3.3 Two-point functions

The D∗ and B-meson two-point functions are needed to
extract the overlap factors and the energy states, for these are
required inputs for the ratio fits. The two-point functions are
constructed using interpolating operators OYa ( p, t), where
Y = {B, D∗} is the meson of interest, a = {d, 1S} represents
the smearing (point and Richardson), t is the time and p is
the spatial momentum. These operators are constructed with
the same quantum numbers as a pseudoscalar for Y = B and
a vector for Y = D∗. In terms of the interpolating operators,
the two-point correlators are then

C2pt
Ya→Yb

( p, t) =
〈
OYb ( p, t)O

†
Ya

( p, 0)
〉
. (30)

Inserting a complete set of states between the interpolating
operators, we obtain the spectral decomposition:

C2pt
Ya→Yb

( p, t) =
∑
n

sn(t)

√
ZYa ,n( p) ZYb,n( p)

2En( p)

×
(
e−En( p)t + e−En( p)(Lt−t)

)
, (31)

with
√
ZYa,b( p) the overlap factors, Lt the temporal extent

of our lattice and sn(t) the extra sign that arises due to the
presence of particles with the opposite parity in the staggered
regularization for the fermions,

sn(t) =
{

1 Correct parity
−(−1)t Opposite parity

. (32)

Most correlators are available in four different configurations
according to the smearing of the source and the sink: d-d,
d-1S, 1S-d and 1S-1S. In the case of the D∗ meson, eight
different momenta are available, namely, (0, 0, 0), (1, 0, 0),
(1, 1, 0), (1, 1, 1), (2, 0, 0),(2, 1, 0), (2, 2, 0), (2, 2, 1),
(3, 0, 0), and (4, 0, 0) in 2π/L units. Of these, only (0, 0, 0),
(1, 0, 0) and (2, 0, 0) are used to calculate the form factors;
the rest allow us to calculate the dispersion relation of the D∗.
For (1, 0, 0) and (2, 0, 0), two different orientations of the
momenta are considered, namely, parallel and perpendicular
to the D∗ polarization.

The outline of the analysis of the two-point functions,
explained in detail in the following subsections, is as fol-
lows. First the zero-momentum correlators are fit using phe-
nomenological guidance for the prior central values. For the
ground state, we set a prior similar to the physical mass of the
mesons, and the excited states differ by ΔE = 0.5 GeV. The
prior widths are large enough to accommodate significant
departures from these assumptions. These choices for the
central value and widths of the priors are such that they have
no influence on the fit result for the ground states. In fact, we
consider several variations of the energy priors to verify that
their only function is to guarantee the stability of the fits with-
out influencing the ground-state fit parameters. The results of
the zero-momentum fits are used to construct priors for the
dispersion-relation fits. In particular, the ground-state ener-
gies are expected to follow the continuum dispersion rela-
tion, and the overlap factors for the local operators should
be approximately constant, barring, in both cases, discretiza-
tion effects. Using data for a variety of momenta, we fit the
ground-state energies to a dispersion-relation expression that
includes discretization terms, see Eq. (36). The resulting fit
is used to calculate a prior for the energy of the ground state
of the two nonzero-momentum correlators.

3.3.1 Two-point function fits

For the two-point function fits, we employ the form

C2pt
Ya→Yb

(t) =
∑
i=0,1

(−1)i(t+1)Zi,aZi,b

(
e−Ei t + e−Ei (Lt−t)

)

+
2N−1∑
i=2

(−1)i(t+1)Z2
i,ab

(
e−Ei t + e−Ei (Lt−t)

)
,

(33)

where the state oscillates in time for odd i , but not for even i .
This kind of fit is denoted as N + N , meaning we include N
nonoscillating and N oscillating states. Both oscillating and
nonoscillating excited states are fitted as the logarithm of the
energy difference ΔEi = Ei − Ei−2 in order to avoid the
collapse of two energy levels. In the higher states, we never
interrelate energies of oscillating and nonoscillating states,
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i.e., the fitted ΔEi always refer to the difference between two
states of the same type. The overlap factors in Eq. (31) are
included in the fit function via

Z j = √Z j/2E j . (34)

For theZ factors of the ground states, we also use a logarithm,
forbidding the possibility Z ≤ 0.

We perform joint fits of all available correlators for a given
combination of meson and momentum. That gives us three
correlators corresponding to the d-d, 1S-1S, and the crossed
average between the d-1S and the 1S-d operators. In the
cases where we distinguish between different orientations of
the polarization of the D∗ meson with respect to its momen-
tum, the total number of correlators increases to six. The fitter
uses the covariance matrix of the whole set of data, where the
fit parameters are constrained with Gaussian priors. The prior
central values for the energy levels in the fit functions for the
zero-momentum correlators are guided by the experimental
values for the meson mass in question and an empirical anal-
ysis of the data. The prior width of the physical (oscillating)
ground state is chosen to be 140 MeV (520 MeV). In the
fit functions for the nonzero-momentum correlators used for
the dispersion relation, the ground-state energy prior central
values are set equal to

√
M2 + p2, where M is the poste-

rior ground state energy from the fit to the corresponding
zero-momentum correlator. The width of the prior is enlarged
to encompass the expected discretization errors O(αsa2 p2).
The prior central value for the energy difference between two
neighboring oscillating or nonoscillating states is taken to be
0.5 GeV. Their widths vary with the ensemble, but they are
always larger than 0.2 GeV. The fit functions for the nonzero-
momentum correlators employed in the three-point function
analysis, namely momenta 2π(1, 0, 0)/L and 2π(2, 0, 0)/L ,
use the dispersion-relation results as priors for the ground-
state energy.

The energy levels are constrained to be the same across
smearings, but the overlap factors are different, and they are
represented with different parameters. For the ground states
of the crossed average, we do not fit the Z j amplitudes, but
we impose the exact constraint

Z2
d,1S = Z1SZd . (35)

TheZ j amplitudes of the excited states of the crossed average
are treated as separate fit parameters as they may describe a
mix of excited states. Our Z j amplitudes are also allowed to
depend on the orientation of the momentum, when applica-
ble, and Eq. (35) applies independently to each orientation.
The priors for the Z j factors of the ground states follow a
log-normal distribution. Their central values are estimated
following an empirical examination of the data, and their
widths are large enough to accommodate significant depar-
tures from those original choices, roughly within one order
of magnitude. In particular, the width of the physical ground

state amplitude prior is set to 0.5 for all ensembles, and the
width of the posterior is usually 20 times smaller. The prior is
enlarged for the nonzero momentum correlators by a factor
≈ (1+2αs p2). In the case of the oscillating ground state, the
width of the amplitude is set to 1.2 for the zero momentum
correlators and 2.0 for the nonzero momentum ones, with a
typical posterior width of 0.5. In contrast, we use a Gaussian
distribution for the excited-state priors. The width is fixed to
be 3.5 for all ensembles, whereas the width of the resulting
posteriors is typically an order of magnitude smaller. We test
thoroughly that the fit results for the ground states are largely
unaffected by the choice of priors and prior widths, as long
as the fit remains stable.

The fit ranges are chosen following a systematic pro-
cedure: tMax is chosen such that the correlator points for
t < tMax have fractional errors smaller than ≈ 20–30%.
In this way, the covariance matrix is not contaminated by
excessive noise, but the value of tMax becomes ensemble
dependent. However, the correlator fits are generally insen-
sitive to variations of tMax within this constraint. In contrast,
tMin is chosen to have the same value in physical units for
all ensembles and momenta. We do this because we expect
the degree to which excited states influence the fit depends
on their physical separation from the ground state. We apply
the following four criteria to select the best tMin value: (1)
when including all ensembles and momenta, the p value must
follow a sufficiently flat distribution for 15 ensembles, (2)
the 2 + 2 and the 3 + 3 fits must agree on the nonoscillating
ground-state energy and overlap factors, (3) the fit result must
be stable under small variations of the fit range, and (4) the
product Zd

√
2E = Zd for the overlap factor of the ground

state should be approximately independent of the momen-
tum, barring discretization effects. When these conditions
are all fulfilled, we consider that the systematic errors due to
the omission of still further excited states have been included
in the statistical fit error. This usually leaves us with a small
range of possible values for tMin, we chose among those the
one that complies best with all these conditions. The selected
values are listed in Table 3. An example of the level of agree-
ment that is reached between our 2 + 2 and 3 + 3 two-point
correlator fits is shown in Table 4.

Previous experience [22,39,41,42,53,58], which also
applies to this study, has shown that it is better to impose
the four criteria introduced above on a set of fits, rather than
choosing, on a case-by-case basis, the fit with the smallest
χ2/dof, the smallest error, or some other notion of “best” fit.
The case-by-case approach amplifies meaningless statistical
fluctuations, which can introduce problems in subsequent
steps of the analysis (here, the chiral-continuum extrapola-
tion). Figure 2 shows the stability of 1 + 1, 2 + 2, and 3 + 3 fits
on ensembles at four lattice spacings, denoting the common
tMin. It illustrates that we could have chosen smaller values
of tMin on some ensembles, if we had adopted ensemble-by-
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Table 3 Fit ranges in physical units for the two-point function fits used
in the analysis of the form factors. As the number of included states
increases, tMin is reduced to include information from the rapidly decay-
ing excited states in the fit. For the coarsest ensembles and momentum
2π(4, 0, 0)/L , the fit ranges do not yield enough points to perform a
fit. In those cases the 2π(4, 0, 0)/L point is simply dropped

p (2π/L) Two-point

2 + 2 tMin (fm) 3 + 3 tMin (fm) tMax (fm)

(0, 0, 0) 1.021 0.631 3.301

(1, 0, 0) 3.241

(2, 0, 0) 2.431

(1, 1, 0) 1.021 0.631 2.836

(1, 1, 1) 2.551

(2, 1, 0) 2.251

(2, 1, 1) 2.161

(2, 2, 0) 1.921

(2, 2, 1) 1.801

(3, 0, 0) 1.681

(4, 0, 0) 1.201

ensemble criteria. Hence, our common tMin value is conser-
vatively chosen.

3.3.2 The dispersion relation

The calculation of the dispersion relation serves two pur-
poses: first, we can estimate a good prior for the two-point
functions that enter in the analysis of the form factors; second,
by checking the size of the deviations from the continuum
dispersion relation, we can test whether the discretization
errors due to the heavy quarks are under control. The dis-
persion relation which includes discretization effects can be
written as

a2E2( p) = (aM1)
2 + M1

M2
(a p)2

+ 1

4

[
1

(aM2)2 − aM1

(aM4)
3

]
(a2 p2)2

− aM1w4

3

3∑
i=1

(api )
4 + O(p6

i ), (36)

where M1 is the rest mass, M2 is the kinetic mass, and M4 is
a further mass-like quantity. A key observation of Ref. [49] is
that the matching of the relativistic Wilson action via HQET
or NRQCD to continuum QCD removes discretization effects
that grow uncontrollably with aM . In Eq. (36) discretization
effects are described by the coefficients of the (a p)n terms,
parameterized by w4, M1, M2 and M4, for which explicit
expressions are given in Ref. [49]. We tune the kinetic mass Ta
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M2 to match the experimentally observed mass, according to
the nonrelativistic interpretation of the clover action [49].1

The leading O(a2) discretization effects are due to
M1/M2 ∼ 1. Expectations for this ratio can be inferred from
perturbation theory for the quark masses [68] and by tracing
contributions to the binding energy [69,70]. On this basis, we
expect M1/M2 to be 1+O(αs, (am0c)

2), and we would like
to test whether the leading deviation from the continuum dis-
persion relation, E2 = p2 + M2, grows as O(αsa2 p2). We
can check whether our nonzero momentum fits show devi-
ations of order O(αsa2 p2) from the continuum dispersion
relation, and we can also fit the energies from our correla-
tor fits to Eq. (36), considering the coefficients in front of
the powers of momenta as fit parameters. These results are
used to guide the prior central values for the ground-state
energies of the two-point correlators with nonzero momen-
tum that are part of the three-point analysis which yields
the form factors. In order to make this prior independent
of the form-factor data, we exclude the p = 2π(1, 0, 0)/L ,
2π(2, 0, 0)/L momenta from the dispersion-relation calcula-
tion. As explained in Sect. 3.3, data for different polarizations
of the D∗ meson are available only for p = 2π(1, 0, 0)/L
and 2π(2, 0, 0)/L . Therefore, these are the only momenta
for which we obtaine the form factors at nonzero recoil.

In Table 5, we show the results of our two-point correlator
fits that enter in the dispersion-relation fit for a particular
ensemble. There is good agreement between the 2 + 2 and
the 3 + 3 state fits, indicating that the systematic error from
the omission of higher states is negligible. Results for other
ensembles show a similar behavior. Figure 3 compares the
continuum dispersion relation with our data. The data points
show small discretization errors, which tells us that, indeed,
these errors are under control.

3.4 Three-point functions

With our previously defined interpolating operators, we can
also construct three-point correlators by sandwiching a cur-
rent between two meson states,

C Jμ

Xa→Yb( p, t) =
〈
OYb (0, T )Jμ( p, t)O†

Xa
(− p, 0)

〉
. (37)

Using the same notation as in Eq. (31), we can write the
spectral decomposition of the three-point correlators for a
particular source-sink separation T as

C Jμ

Xa→Yb( p, t) =
∑
n

sn(t) sm(T − t)
√
ZYb,n( p)

e−En( p)t

2En( p)

1 In the Fermilab formulation, one can adjust M1 = M2 by introducing
an asymmetry parameter into the lattice action, but this is not necessary
for valence quarks. Adjusting M4 = M2 requires a more improved
action [67].

× 〈Yb, n, p|Jμ|Xa,m, 0
〉

×√ZXa ,m(0)
e−Mm (T−t)

2Mm
, (38)

where we choose t < T � Lt , such that wraparound terms
with t → Lt − t and T − t → Lt − (T − t) in the exponent
are completely negligible, at most ∼ 10−16,

In our three-point functions, we always use a Richardson
1S smearing for the B meson, but the D∗ meson operator is
either 1S-smeared or point d. This gives a variety of possi-
bilities for constructing ratios of correlators. For x f we use

x f ( p, t, T ) =
C

Vj

D∗
1S→D∗

a
( p⊥,‖, t, T )

CV4
D∗

1S→D∗
a
( p⊥,‖, t, T )

, (39)

where a = d, 1S and the orientation of the momentum can
be arbitrary, as long as it is the same for the correlator in the
numerator and denominator. These combinations cancel the
leading overlap factors and exponentials. The same cancela-
tion can be achieved in XV ,

XV ( p, t, T ) =
C

Vj
B1S→D∗

a
( p⊥, t, T )

C
A j
B1S→D∗

a
( p⊥, t, T )

. (40)

In these two ratios we can find the desired matrix element in
the limit t � 0 and T − t � 0, with t < T . The double ratio
and the other two single ratios can be expressed in the same
way

X0( p, t, T ) =
CA4
B1S→D∗

a
( p‖, t, T )

C
A j
B1S→D∗

a
( p⊥, t, T )

√
ZD∗,a(p⊥)

ZD∗,a(p‖)
, (41)

X1( p, t, T ) =
C

A j
B1S→D∗

a
( p‖, t, T )

C
A j
B1S→D∗

a
( p⊥, t, T )

√
ZD∗,a(p⊥)

ZD∗,a(p‖)
, (42)

RA1( p, t, T ) =
C

A j
B1S→D∗

a
( p⊥, t, T )C

A j
D∗
a→B1S

( p⊥, t, T )

CV 4

D∗
a→D∗

1S
(0, t, T )CV 4

B1S→B1S
(0, t, T )

× ZD∗,a(p⊥)√
ZD∗,a(0) ZD∗,1S(0)

× M2
D∗

E2
D∗( p)

e−(ED∗ ( p)−MD∗ )T , (43)

but in this case the computed ratios depend on extra fac-
tors that must be removed before extracting the matrix ele-
ments. The overlap factors are removed per jackknife bin
using the results of the two-point correlator fits. In this way
we can propagate correlations from one fit to the other. The
MD∗/ED∗ = 1/w factor in Eq. (43) is removed using the
value of the recoil parameter, as extracted from Eq. (21) per
jackknife bin.
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Fig. 2 Stability plots for the D∗-meson energy in lattice units with
zero momentum (i.e., the mass) for four different ensembles with
ml/ms = 0.2 and approximate lattice spacings 0.12 fm (upper left),
0.09 fm (upper right), 0.06 fm (lower left) and 0.045 fm (lower right).
The size of each point is proportional to the p value, and visible point
markers represent reasonable fits. The y axis represents the energy of the
ground state in lattice units on each ensemble, with a range that roughly

correspond to the same interval in physical units. The tMin chosen for
the analysis, which corresponds to 3 + 3 correlator fits, is marked by a
vertical dotted line. The point chosen is the closest one to the line. It is
evident that on some ensembles smaller choices of tMin are still in the
stability region, which means that our common tMin is conservatively
chosen

Table 5 Results for the D∗-meson two-point correlator fits on the
a = 0.12 fm, ml = 0.14ms ensemble. We compare the nonoscillat-
ing ground-state energy and overlap factors for the 2 + 2 and 3 + 3
state fits. We include here all fits that did not distinguish between the

different orientations of the momentum. Momentum 2π(4, 0, 0)/L did
not have enough degrees of freedom left for the 3+3 state fit, and hence
it is not shown. In the analysis we use the 3 + 3 state fit result

p (2π/L) aED∗ Z1S Zd χ2/dof

2 + 2 3 + 3 2 + 2 3 + 3 2 + 2 3 + 3 2 + 2 3 + 3

(0, 0, 0) 1.0419(17) 1.0405(17) 3.079(25) 3.052(24) 0.2865(26) 0.2835(30) 54.5/55 56.2/59

(1, 1, 0) 1.1205(31) 1.1215(26) 2.217(44) 2.215(44) 0.2786(56) 0.2782(51) 36.8/36 47.2/40

(1, 1, 1) 1.1569(36) 1.1576(30) 1.939(45) 1.928(43) 0.2769(61) 0.2760(53) 30.3/27 35.5/31

(2, 1, 0) 1.2191(43) 1.2202(35) 1.478(40) 1.477(41) 0.2682(64) 0.2683(55) 10.5/21 19.5/25

(2, 1, 1) 1.2513(47) 1.2536(38) 1.324(40) 1.323(39) 0.2666(67) 0.2663(56) 16.5/18 23.5/22

(2, 2, 0) 1.3089(65) 1.3100(49) 1.052(49) 1.050(44) 0.2611(68) 0.2607(57) 13.8/12 15.4/16

(2, 2, 1) 1.3378(72) 1.3402(58) 0.989(53) 0.959(44) 0.2598(68) 0.2596(58) 12.0/9 15.5/13

(3, 0, 0) 1.3168(79) 1.3168(79) 0.822(73) 0.83(12) 0.2523(68) 0.2513(59) 3.6/6 9.0/10
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Fig. 3 Ratio between the fitted energies and the expected energies from
the continuum dispersion relation. The color encodes the lattice spac-
ing, whereas the different symbols encode the light-to-strange mass
ratio. The cones show the expected size of the discretization errors per
lattice spacing for our lattice formulation. Hence, each cone follows
the equation αsa2 p2, where αs is different for each lattice spacing, and
it is calculated following Refs. [71,72]. The cones are color coded to
match points with the same lattice spacing. All plotted points for each
particular lattice spacing lie within their respective cones, which in turn
means that the discretization errors are well within the expected size

The double ratio RA1 deserves further comment. First,
we reanalyze the zero-momentum correlators [22] using
the criteria given above. That also implies the double ratio
RA1( p = 0) is constructed only for the a = 1S smearing.
Second, we did not generate three-point functions at nonzero

momentum of the form C
A j
D∗
a→B1S

( p⊥, t, T ), so we use the
time reversal operation T to obtain the missing correlator,

C
A j
B1S→D∗

a
( p⊥, t, T )

T−→ C
A j
D∗
a→B1S

( p⊥, T − t, T ). (44)

3.4.1 Three-point function fits

The three-point functions are also affected by the oscillating
states introduced by the staggered regularization. So are the
ratios constructed with such three-point correlators, but the
dependence on the oscillating states is not as clean as in the
case of the two-point functions. Our ratios do not show any
noticeable oscillatory behavior in source and sink, but states
that oscillate at both ends introduce a nonnegligible overall
shift on the ratio central value that depends on the sink time
T as (−1)T . In order to remove this contribution, we smooth
the data following Refs. [22,31,53,73], namely, we calculate
the three-point correlators at two different values of the sink
time T , and then we compute the following weighted average
to suppress this unwanted shift in most ratios:

R̄(t, T ) ≡ 1

2
R(t, T ) + 1

4
R(t, T + 1) + 1

4
R(t + 1, T + 1),

with R = X0, X1, XV , x f and RA1( p = 0). (45)

The contribution of the oscillating shift is then greatly sup-
pressed.

The double ratio at nonzero momentum, RA1( p �= 0),
requires the explicit removal of the sink-dependent exponen-
tials in order to avoid bias,

R̄A1( p �= 0, t, T )

≡ 1

2
RA1( p, t, T )e(ED∗ ( p)−MD∗ )T

+ 1

4
RA1( p, t, T + 1)e(ED∗ ( p)−MD∗ )(T+1)

+ 1

4
RA1( p, t + 1, T + 1)e(ED∗ ( p)−MD∗ )(T+1). (46)

These exponentials are removed using the energy and mass
values coming from the two-point correlator fits per jack-
knife bin. The ratio averages defined in Eqs. (45) and (46)
suppress the contributions from the unwanted oscillations to
a fraction of the statistical errors. Therefore, we henceforth
employ only the averaged ratios in our analysis and omit the
bar for simplicity. The data are then processed through a sin-
gle elimination jackknife, and the extra overlap factors and
exponentials are removed by using the values obtained in the
two-point correlator fits per jackknife bin. Then the ratios are
fitted to the functional form:

R( p, t, T ) = K
(

1 + A1e
−ΔE1

X t + A2e
−ΔE2

X t

+ B1e
−ΔE1

Y (T−t) + B2e
−ΔE2

Y (T−t)
)
, (47)

where K is the matrix element we want to extract, and the
extra terms take into account the presence of excited states,
assuming their contribution is small. The labels X , Y repre-
sent mesons at source and sink, respectively, and ΔE j

X,Y rep-
resents the energy difference between the ground state and the
j th excited state. The second excited states at source and sink
(included in the A2 and B2 terms) are necessary to remove
systematic errors due to unaccounted excited states. In order
to check this point, we computed the ratio x f with differ-
ent polarizations of the D∗ meson. We expect the extracted
matrix elements from different polarizations to agree, except
for discretization effects that should be reduced as the lattice
spacing decreases. Nonetheless, our results show a difference
between the analysis with a single excited state at source and
sink and the analysis with two excited states at each end. The
addition of extra excited states not only increases the error,
as expected, but also brings the central values calculated with
different polarizations closer. Overall there is a large reduc-
tion in the difference between the cases with polarization
parallel and perpendicular to the momentum. This behavior
depends only mildly on the lattice spacing, as can be checked
in Fig. 4.
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Fig. 4 Difference in sigmas between x f calculated with parallel and
perpendicular polarizations, for momenta p2 = 1, 4 and one (2 + 2)
and two (3 + 3) excited states at source and sink in the ratio. The gray
band corresponds to differences ≤ 1σ . It is clear that an increase in the
number of excited states reduces the difference between polarizations

to 1σ or less, whereas with a single excited state the difference can
reach as high as 2σ in some cases. Since we do not have any other way
to keep in check the systematics due to excited states for other ratios,
we take a conservative approach and use the 3 + 3 state fits for the rest
of the analysis

The two available sets of correlators with smearing oper-
ators a = d, 1S are fit simultaneously, so that they share
ΔE and K , but each smearing has its own A1,2 and B1,2.
We employ a loose prior for K with a central value roughly
set by the ratios at ≈ T/2, where the excited states are more
suppressed, and with a width large enough to accommodate
significant variations: in the case of the double ratio RA1

the width of the prior is set to 0.1, whereas the other ratios
use 0.05. In all cases, the width of the prior encompasses all
available correlator points for the single ratios. Except for
the double ratio, the excited states at source and sink carry
different signs, hence we ensure the prior covers the central
value of the matrix element. Typically, the posterior is almost
an order of magnitude narrower that the prior, although in
the least precise cases th the posterior width is ≈ 60% of
the prior. The priors for the ΔE of the first (second) excited
states are taken from the two-point function fits with 3 + 3
states, but we increase the error by a factor of three (eight) to
allow ΔE to differ from the two-point correlator values. This
increase takes into account the fact that the tMin in the ratio
fits is much smaller than in the two-point function fits, and the
excited-state pattern might be different as well. The priors for
A1,2 and B1,2 are taken to be 0(2) and 0(1) in the smeared
and point source cases respectively.2 As stated above, our
priors are conservative enough that significant variations of
their central values and/or widths do not result in a relevant
change in the posterior for the matrix element.

2 We observe that the local operators have a smaller overlap with the
excited states, and we reduce the width of their corresponding priors
for A1,2 and B1,2 accordingly.

The fit ranges are chosen following criteria similar to the
two-point function case. We use the same value of tMin and
tMax in physical units for all ensembles and all ratios, except
for the double ratio, where we use tMax = T −tMin to account
for the fact that the states on source and sink are exactly the
same. In this case, we take the same tMin as for the rest of the
ratios. We choose the fits that show stability over small varia-
tions of the fit range and result in a reasonably flat distribution
for the p values.

3.5 Calculation of the recoil parameter

As in previous work [52,53], we use the ratio x f to define
the recoil parameter, following Eq. (21). The disadvantage
of this method is that it introduces systematic errors due to
the renormalization of the currents. One could also use the
continuum dispersion relation to define the recoil parameter:

w =
√

M2
D∗ + p2

M2
D∗

, (48)

where p is the three-momentum of the D∗ meson, and the
mass is either M1 or M2. The different choices for the dif-
ferent definition of the mass are expected to result in slightly
different discretization errors that are resolved in our chiral-
continuum extrapolation, so the choice should not affect the
final results. As shown in Fig. 5, the error in the x f method
encompasses the differences in the rest- and the kinetic-mass
versions of Eq. (48). In this work, we take a conservative
approach and define w via Eq. (21), but we note that all
choices lead to results for the form factors, |Vcb|, and R(D∗)
that are compatible within errors.

123



1141 Page 14 of 45 Eur. Phys. J. C (2022) 82 :1141

Fig. 5 Comparison of different definitions of the recoil parameter. The
horizontal axis labels the ensemble, whereas the vertical axis shows
the recoil value w, calculated from the different definitions. The ratio
method is shown before (“Ratio”) and after (“Ratio matching”) includ-

ing the matching errors, whereas the points labeled as “Dispersion rela-
tion M1,2” use Eq. (48) and the fitted rest (M1) or kinetic (M2) mass
of the D∗ meson. The three-momentum is set to p = 2π(1, 0, 0)/L
[p = 2π(2, 0, 0)/L] in the lower (upper) panel

3.6 Current renormalization and blinding

As outlined in Sect. 2.2, the ratios described in Eqs. (39)–
(43) are constructed in such a way that the flavor-diagonal
renormalization factors ZV 4

cc
ZV 4

bb
from Eq. (14) cancel out.

Hence, what remains is only the computation of the different
matching factors ρX that enter in the ratios. These factors can
be calculated using perturbation theory, but the calculation
becomes cumbersome for w > 1. In this article, we use the
approximation am2c → 0, where am2c is the charm kinetic
mass, which removes the dependence on w, because a light
quark cannot modify the dynamics of a heavy quark in the
heavy quark limit (see Appendix C and Refs. [50,74]). Then
we incorporate errors coming from these approximations.

The w dependence introduces an error proportional to w−1,
and the am2c → 0 approximation increases the error by
O(αsam2c).

The calculation of the axial matching factor ρA j (1) then
follows exactly the procedure of Ref. [22]. The other ratios
require further calculations that are detailed in Appendix B.
The resulting values for all matching factors are gathered
in Table 6, where the errors shown are from the VEGAS
integration. The errors associated with the approximations
we make to obtain those factors are discussed in Appendix
B. They are added to those in Table 6 before carrying out the
chiral-continuum extrapolation.

We also calculate the matching factors for the ensem-
bles involved in the heavy-quark (HQ) mistuning corrections.
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Table 6 Matching factors
calculated at one loop in
perturbation theory for all
ensembles and form factors. The
errors shown in the table do not
include the systematic errors
coming from the
approximations employed in the
calculation of the matching
factors. They are nonetheless
included in the chiral-continuum
extrapolation. These errors and
more details on the calculation
are described in Appendix B.
The last two columns include
the values of αV and m2ca used
in Appendix B to estimate the
matching errors

a (fm) aml /ams ρA j ρA4/ρA j ρVj /ρA j αV m2ca

≈ 0.15 0.0097/0.0484 0.990864(48) 0.945800(10) 0.8835513(23) 0.3589 0.6000

≈ 0.12 0.02/0.05 0.994199(25) 0.961710(9) 0.9133327(20) 0.3047 0.4259

0.01/0.05 0.988811(22) 0.957865(9) 0.9096509(22) 0.3108 0.4460

0.007/0.05 0.993665(41) 0.960041(9) 0.9101966(21) 0.3102 0.4469

0.005/0.05 0.993640(23) 0.960038(9) 0.9101935(21) 0.3102 0.4471

≈ 0.09 0.0124/0.031 0.998292(13) 0.971160(5) 0.9320012(15) 0.2582 0.3269

0.0062/0.031 0.998077(13) 0.970701(6) 0.9310817(16) 0.2607 0.3317

0.00465/0.031 0.997956(18) 0.970559(6) 0.9308184(16) 0.2611 0.3350

0.0031/0.031 0.997901(12) 0.970405(7) 0.9305130(16) 0.2619 0.3361

0.00155/0.031 0.997889(16) 0.970353(7) 0.9303983(16) 0.2623 0.3365

≈ 0.06 0.0072/0.018 1.001973(7) 0.978328(4) 0.9460531(12) 0.2238 0.2343

0.0036/0.018 1.002050(11) 0.978408(4) 0.9461304(11) 0.2245 0.2327

0.0025/0.018 1.002013(13) 0.978356(5) 0.9460189(12) 0.2249 0.2336

0.0018/0.018 1.002015(6) 0.978309(4) 0.9459167(12) 0.2253 0.2339

≈ 0.045 0.0028/0.014 1.005588(8) 0.984902(2) 0.9578549(7) 0.2013 0.1647

This is a departure from Ref. [53], where the matching fac-
tors are applied after the HQ-mistuning correction. In this
way, we completely separate the HQ-mistuning corrections
from the matching errors.

During the analysis, we blinded the form-factor data by
multiplying the matching factor ρA j by an unknown, random
number close to 1. The ratios ρA4/ρA j and ρVj /ρA j are left
unchanged. Via the correlator ratios and Eqs. (26)–(29), all
form-factor values on all ensembles are thus multiplied by a
common factor. All stages of the analysis were tested either
through independent fits performed by two co-authors or by
using independent methods or codes. Only after the full anal-
ysis was complete, including construction of the systematic
error budget (Sect. 4) and z expansion (Sect. 5), the blinding
factor was removed from ρA j , and the analysis scripts were
rerun to extract the unblinded results for the form factors.

3.7 Heavy-quark-mass adjustment

The bare masses for the b and c quarks are tuned such that
the kinetic masses of the Bs and Ds meson on each ensemble
are equal to their physical values. Nonetheless, the tuning
procedure has errors that must be taken into account. The
procedure is explained in Appendix C and outlined here.
As we generate configurations, values for the heavy-quark
masses that give approximately the correct meson masses can
be estimated. These initial values are employed to compute
the two- and three-point functions that we analyze in this
work. At the end of the data generation, the much larger
statistical sample allows for a more precise determination of
the b and c quark masses by using the procedure detailed in
Ref. [22]. We must then correct for this mismatch.

The correction is calculated nonperturbatively by studying
the effect of a varying heavy-quark mass in a single ensemble
on all correlation functions. Since the heavy-quark mismatch
is small, a linear fit in 1/mQ for each flavor Q = c,b and form
factor is usually sufficient. Once the functions that describe
the evolution of the form factors with the quark masses are
known, we can apply the correction to all other ensembles.
Table 20 in Appendix C gathers all our adjustments. The error
in the correction comes from the error in the heavy-quark-
mass tuning procedure and from the error of the linear fit to
find the heavy-quark mass dependence.

3.8 Chiral-continuum extrapolation

After applying the renormalization factors and the heavy-
quark-mistuning corrections as described in previous sub-
sections, the resulting form factors still need to be corrected
for the fact that they are calculated at nonzero lattice spac-
ing and nonphysical values for the light-quark masses. An
extrapolation to both the continuum limit and the physical
value of the light-quark masses is thus necessary to extract
values that can be used in a physical calculation. The extrap-
olation should be based on an appropriate effective field the-
ory (EFT) description of lattice QCD. The relevant EFT for
the calculation at hand is rooted staggered chiral perturbation
theory (rSχPT), which describes how the form factors behave
as the lattice spacing and the light-quark masses approach the
desired limits, extended to include heavy-light observables
[75]. The unquenched MILC configurations generated with
2 + 1 flavors of improved staggered fermions make use of the
fourth-root procedure for eliminating the unwanted four-fold
degeneracy of staggered quarks. At nonzero lattice spacing,
this procedure has small violations of unitarity [76–80] and

123



1141 Page 16 of 45 Eur. Phys. J. C (2022) 82 :1141

locality [81]. Nevertheless, a careful treatment of the contin-
uum limit, in which all assumptions are made explicit, argues
that lattice QCD with rooted staggered quarks reproduces the
desired local theory of QCD as a → 0 [82,83]. When cou-
pled with other analytical and numerical evidence (see Refs.
[84–86] for reviews), this gives us confidence that the root-
ing procedure is indeed correct in the continuum limit. We
then use the following functions obtained in SU(3) rSχPT
to lowest nontrivial order in the heavy-quark expansion to fit
the different form factors:

hY (a,m,ms, w) =
(
KY + χY (Λχ)

mkY
c

+ f w
Y + f NLO

Y

+ f NNLO
Y

)
×
(

1 + f HQ
Y

)
, (49)

where Y = A1, A2, A3, and V ; KA2 = 0 but KY = 1 other-
wise; kA1 = 2 but kY = 1 otherwise. These expressions con-
tain the correct dependence in χPT on the light- and strange-
quark masses, the lattice spacing, and the recoil parameter w

at next-to-leading order (NLO). This result expands on the
one in Ref. [87] by adding the missing recoil dependence in
the relevant places. The terms

f NLO
Y = g2

D∗Dπ

48π2 f 2
π r

2
1

logsYSU(3)(a,m,ms, w,Λχ)

+ cm1,Y xl + ca1,Y xa2 , (50)

introduce nonanalytic dependence on the light and the
strange-quark masses through the chiral logarithms logsYSU(3).
Those terms also include the leading taste-breaking dis-
cretization effects from the light-quark sector. The explicit
expression of the logarithms for each form factor is given in
Appendix A and includes a dependence on the recoil param-
eter w. The coefficient of the chiral logarithms comes from
χPT and it is known, but the current determinations of the
coupling gD∗Dπ are not very accurate, hence we fit the cou-
pling with a Gaussian prior 0.53 ± 0.08, compatible with
experimental data [88–90] and lattice-QCD results [91–96].
We fix the pion decay constant appearing in the chiral logs in
Eq. (50), and elsewhere in the fit function to the three-flavor
FLAG 2019 average with the error increased by the estimated
0.7% charm sea-quark contribution fπ = 130.2 ± 1.2 MeV
[97].

The other terms in Eq. (50) introduce analytic NLO correc-
tions in the light-quark masses through xl = 2B0m/(8π2 f 2

π )

and in the lattice spacing through xa2 = [a/(4π fπr2
1 )]2,

where B0 is the low-energy-constant (LEC) of χPT that
relates the light- and strange-quark masses with the meson
masses. The value of B0 for each lattice spacing is the same as
in the earlier analysis at zero recoil [22], which uses exactly
the same ensembles, and is given in Appendix A. We take

into account truncation errors by including the term

f NNLO
Y = cc,Y xl xa2 + cm2,Y x

2
l + ca2,Y x

2
a2 , (51)

which describes the dependence on the light-quark
masses and the lattice spacing a at next-to-next-to-leading
order (NNLO), not including logarithmic terms. According
to χPT power-counting, these analytical terms are expected
to have coefficients of O(1), so we take them as fit parameters
with priors 0 ± 1. We don’t include analytical terms in the
strange-quark mass because we do not have data at different
values of ms and nonzero recoil, and our hA1(1) result using
only zero-recoil data agrees within errors with our previous
result from Ref. [22]. Also, χPT predicts a much milder
dependence on ms than on the light-quark masses.

We allow a simple NLO analytical dependence on w to
describe the behavior in our small-recoil range through the
term

f w
Y = −ρ2

Y (w − 1) + κY (w − 1)2, (52)

where the fit parameters ρY and κY are related to the slope
and curvature of the form factor hY respectively. We can
reasonably expect the slope of the form factors to be roughly
1, but in order to accommodate substantial deviations from
this value, we set the prior of ρY to 1 ± 2. The priors of κY
are chosen to be 0±3, and the posteriors are compatible with
zero within a fraction of a sigma.

The constant term χY (Λχ) in Eq. (49) is a LEC of the
chiral effective theory, and it is suppressed for hA1 by a fac-
tor of 1/m2

c due to Luke’s theorem [98], whereas the other
form factors receive contributions of order O(1/mc) in the
heavy-quark power counting. The dependence of this LEC
on the chiral scale Λχ cancels against the dependence of the
nonanalytical terms in Eq. (50). We set the prior of this LEC
to 0 ± 1, except for hA1 where we use 0.0 ± 0.2 to reflect the
suppression due to Luke’s theorem.

The last term in Eq. (49) accounts for the heavy quark
discretization errors,

f HQ
Y = β

αsa
Y αsaΛQCD + βa2

Y a2Λ2
QCD + βa3

Y a3Λ3
QCD, (53)

with β
p
Y the coefficient of the term of order O(p) correspond-

ing to the form factor hY , and ΛQCD = 0.6 GeV for normal-
ization purposes. In previous articles,3 we have employed the
universal functions described in Refs. [49,67]. But in those
cases there was only one heavy meson. Here we need to deal
with the B and the D∗, and our data are not accurate enough
to distinguish the different terms described by the universal
functions. In order to avoid terms that mimic the effect of
others, we consider it a better strategy to implement generic
discretization error terms, which would account for the same
dependence as the universal functions. A side effect of this

3 See, for instance, Ref. [64].
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approach is that the heavy- and NLO light-quark discretiza-
tion effects become mixed together through terms with the
same dependence on the lattice spacing. To avoid this, we
drop the O(a2) term from Eq. (53), which has the same
dependence as the O(a2) term already present in Eq. (50),
and we enlarge the prior of the latter assuming that both cor-
rections are independent, i.e., with a quadrature sum. The pri-
ors for the β

p
Y coefficients are set to 0±1, but the O(a2) coef-

ficients of Eqs. (50) and (53) have different normalizations.
For this reason, the final prior for ca2,Y becomes 0.0 ± 6.1.
This approach does not allow us to distinguish cleanly the
origin of the discretization errors, but it accounts for the cor-
rect dependence and size of discretization errors. However,
absorbing the O(a2) term from Eq. (53) in Eq. (50) may have
further effects, since the correction in Eq. (53) is applied to
the chiral-continuum fit function in Eq. (49). It is possible
that this procedure does not account for discretization effects
in the shapes of the form factors, which would give rise to
higher order terms of the form a2(w − 1) and a2(w − 1)2.
We test for such effects by performing two alternate chiral-
continuum fits. In the first, we add the terms xa2(w − 1) and
xa2(w − 1)2 to Eq. (52), where the priors for the coefficients
of these terms are chosen as 0(1). We find that the results of
this fit differ by at most 0.1σ in their central values from our
base fit, while the statistical fit uncertainty is unchanged. In
the second variation, we keep the O(a2) term in Eq. (53).
In this case, the central values are consistent with those of
our base fit within 0.25σ , again with an unchanged uncer-
tainty. Hence, we conclude that such discretization effects
are already accounted for in our base fit.

Since each ensemble is statistically independent from the
others, there are no correlations among them. On the other
hand, we keep track of correlations both between different
form factors within the same ensemble and within the same
form factor calculated at different momenta, by combining
the jackknife data of all form factors into a large, block-
diagonal dataset. Our large statistics allow us to resolve the
full covariance matrix without resorting to thinning proce-
dures or singular-value-decomposition cuts on its eigenval-
ues. Nonetheless, we use the shrinkage procedure described
in Refs. [99–102] to ensure the small eigenvalues of the
covariance matrix have the correct behavior, and we find that
our results do not change with respect to the analysis without
shrinkage.

The systematic errors coming from the heavy-quark mis-
tuning corrections and those introduced by the matching fac-
tors are built into our chiral-continuum extrapolation by con-
structing the combined covariance matrix,

Ci j = Cstat
i j + δ

(ρ)
i δ

(ρ)
j + δ

(κ)
i δ

(κ)
j , (54)

where the first term includes the statistical covariance, and the
second and the third ones account for the matching factor and

heavy-quark-mass mistuning correction errors respectively.
The i, j indices run over all form factors, ensembles, and
momenta. With δ

(ρ,κ)
i we represent either the shift in the i th

datum due to a correction the heavy-quark mass (κ) or the
propagated error of the form factor from the errors in the
matching factors (ρ) as calculated in Eqs. (B.49a)–(B.49d).
As a result, the systematic errors introduce new correlations
between all data points. In fact, Eq. (54) assumes the worst
case scenario that the matching systematic errors and the
errors coming from the heavy-quark mistuning are 100%
anticorrelated.

The extrapolation results for the four form factors are
shown in Fig. 6. As one can see, hA1 , which is protected
by Luke’s theorem, receives small corrections from 1 at
w = 1. The other form factors do not enjoy this privi-
lege, and for them the plots show large corrections from the
HQET limit. Figure 6 also shows the result of the previous
Fermilab-MILC calculation at zero recoil w = 1 for compar-
ison [22]. The agreement is good, although the errors have
increased, mainly due to more conservative choices in this
work, which stem from the data at nonzero recoil requiring an
extra excited state at source and sink in the ratio calculations,
which resulted in larger errors. For consistency, we employed
the same approach at zero recoil as well. The deaugmented
χ2/dof of the chiral-continuum extrapolation is 85.2/95.

4 Systematic errors

This section provides specific information on our estimates
of every source of systematic error in the determination of
the form factors hX . Even though only hA1 contributes to the
decay amplitude at zero recoil, all form factors are nonzero at
w = 1, and their errors need not be suppressed at small recoil.
Even if the errors of hV , hA2 , and hA3 become large, how-
ever, their contribution to the decay amplitude and, hence,
the resulting uncertainty in the decay amplitude is still sup-
pressed at small recoil.

Some general features of the uncertainties in the form
factors can be understood via HQET. The form factor hA1 is
protected by Luke’s theorem [98] and, indeed, we find HQET
corrections of a few percent. The form factors hV and hA3 ,
which are not protected by Luke’s theorem, receive HQET
corrections at the ∼ 30% level. The form factor hA2 starts in
HQET with terms of order αs and 1/mc, which is roughly
consistent with our data, hA2 ∼ − 1

2 . Figure 7 shows the
error budget for the different form factors in the continuum
as a function of the recoil parameter. The relative uncertainty
in each form factor follows the same pattern as the HQET
corrections: small for hA1 , moderate for hV and hA3 , and
large for hA2 . In the last case, the relative uncertainty is large,
because the overall value of hA2 is smaller than the others.
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Fig. 6 Chiral-continuum extrapolation for the form factors hA1 (top
left), hV (top right), hA2 (bottom left), and hA3 (bottom right). The
color encodes different lattice spacings, whereas the band shows the

result of the fit. The upper-left plot for hA1 also shows the zero-recoil
result from Ref. [22]. Note that correlations in w and between form
factors play an important role in controlling the final uncertainty

Our chiral-continuum extrapolation ansatz to NNLO
incorporates errors from statistics, choices in the chiral-
continuum extrapolation, discretization effects, O(amcαs)

matching errors, and heavy-quark parameter mistuning.
Thus, they are all entangled in the fit, and it is not straightfor-
ward to extract each particular contribution. In addition, our
treatment of the heavy-quark discretization errors includes a
term identical to one of gluon and light-quark discretization
errors. We can, however, roughly estimate each contribution

by making modifications to the fit. In this spirit, we define
the statistical contribution to the error as the error obtained
in a NLO fit without mistuning correction or matching-factor
errors included. We have a specific way to deal with the
matching factors, which is explained below. The contribu-
tion coming from the chiral-continuum extrapolations is esti-
mated by comparing the fit errors with and without NNLO
terms.
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Fig. 7 Contributions to the total error of the form factors hA1 (top
left), hV (top right), hA2 (bottom left), and hA3 (bottom right) as a func-
tion of the recoil parameter w. The two largest contribution come from
statistics, in blue, and quark discretization effects, in orange. These two

contributions overlap in the brown band in the plot, because of the com-
mon term of order a2 in Eqs. (50) and (53). The remaining contributions
do not overlap. Note the differences in vertical scales

There are more contributions to the final error that have
been taken into account: light-quark mass mistuning, scale
setting, isospin effects, and finite-volume effects. The final
error is taken to be the quadrature sum of these uncertainties
with that of the chiral-continuum extrapolation error, which
(again) includes statistical, chiral-continuum extrapolation,
discretization, heavy-quark mistuning, and matching errors,
as shown in Table 7. In the rest of this section, we discuss
each source of uncertainty one by one, explaining how they
enter this error budget.

4.1 Statistics and stability of the correlator fits

In principle, the determination of masses, energies, and form
factors depends on choices made in fitting the two- and three-
point correlation functions, but we argue that the associated
uncertainties are encompassed in the statistical component

of the first line of Table 7. We have analyzed the two-point
functions with both 2 + 2 and 3 + 3 states in the fit. Only
when the two results agree within statistical errors do we
select a particular fitting range. In this way, the influence of
excited states is reduced below the statistical uncertainty of
the B masses and D∗ energies. For the three-point-function
ratios, we find that excited states play a more important role,
as can be seen for the example of x f in Fig. 4. When fitting
the three-point functions, we therefore include extra states at
the source and sink in order to control this potential source
of systematic error.

Bias can arise from the choice of fitting ranges. To avoid
the problems that can come from choosing different fitting
ranges for different ensembles, we impose the same tMin in
physical units for all two-point correlator fits. Our tMax is
chosen differently and varies from ensemble to ensemble,
but the impact of a different tMax is much smaller, because
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Table 7 Error budget for all form factors at w = 1.11. The first row
shows the combined error coming from our chiral-continuum fit, which
encompasses the statistical errors, the matching errors, the system-
atics due to our chiral-continuum extrapolation, errors coming from
HQ-mistuning corrections, and discretization errors. The next several
rows show estimates of the individual contributions (in parentheses as
a reminder that they are contained in the first row). Since the terms that
describe the discretization errors come from both the (N)NLO terms in
the extrapolation and the HQ discretization terms, there is an overlap

between the statistical errors (determined as those of a chiral-continuum
extrapolation at NLO without any matching or heavy-quark mistuning
errors taken into account) and the discretization errors, and the sum in
quadrature of the numbers in parenthesis does not equal the first row.
The remaining rows show other contributions, which are added to the
first row in quadrature to obtain the total error in the last row. Dashes
represent terms so small that were not included in the final computation
of the error

Source hV (%) hA1 (%) hA2 (%) hA3 (%)

Chiral-continuum fit error 4.2 2.0 17.4 6.9

(Statistics) (3.7) (1.2) (16.9) (6.3)

(Chiral-continuum extr.) (0.8) (0.9) (1.7) (0.5)

(LQ and HQ discretization) (2.6) (1.3) (9.7) (4.4)

(HQ mistuning) (0.0) (0.0) (1.7) (0.0)

(Matching O(amcαs)) (0.3) (0.2) (1.7) (0.5)

LQ mistuning 0.0 0.0 0.1 0.0

Matching O(α2
s ) 0.7 0.3 0.5 0.3

Scale setting 0.0 0.0 0.3 0.1

Isospin effects 0.1 0.1 0.4 0.2

Finite volume – – – –

Total error 4.3 2.0 17.4 6.9

these points have much larger errors. We refer to the reader to
Sect. 3.3.1, where all the details are explained. For the form-
factor ratio fits, we employ the same range in physical units
for all ensembles and most ratios. For the double ratio RA1

and x f , where the same pattern of states is expected at source
and sink, we use a symmetric fit range with tMax = T − tMin.
Our fits also take into account all correlations between the
data points fitted, and, as pointed out in Sect. 3.2, we find
that autocorrelations in our data are negligible.

For each correlator fit, we compute a p value from the
deaugmented χ2 and number of degrees of freedom, as
explained in 3.2. We then verify that these p values follow
an approximately uniform distribution.

4.2 Stability of the chiral-continuum extrapolation

To assess the stability of the chiral-continuum extrapolation,
we repeat the fit for several different functional forms. Com-
pared with the base fit, we omit, in turn, the NNLO terms,
data at w > 1.10, the coarsest ensemble, the finest ensemble,
and heavy-quark discretization terms of order a3. The results
are very stable under modifications, as shown in Fig. 8. The
most dramatic changes occur when we remove the w > 1.10
data, leading to shifts of around one standard deviation in
the worst case. Obviously, the large-recoil extrapolation is
affected when removing data at larger recoil, but we find
that the z expansion, discussed below in Sect. 5.1, stabilizes
the final results for |Vcb| and R(D∗) in this respect. Table 8

shows that the quality of fit remains good, with χ2/dof � 1,
in all cases.

4.3 Discretization errors

The improved action in the ensemble simulations has light-
quark and gluon discretization errors of order αsa2. Sim-
ple power-counting arguments suggest that the discretiza-
tion errors range from ∼ 0.5% in the finest ensemble to
∼ 10% in the coarsest one. The chiral-continuum extrapo-
lation describes, however, such terms via the lattice-spacing
dependence of the chiral logarithms and the analytical terms
proportional to a2. Moreover, the form factors do not seem
to be sensitive to the lattice spacing. Hence, we expect the
chiral-continuum extrapolation to take all these errors into
account, and no further systematic uncertainties are added to
the final result.

In order to take into account the discretization errors com-
ing from the lattice treatment of the heavy quarks, we include
extra terms in the chiral-continuum extrapolation as shown
in Eq. (53). These terms are motivated by the HQET descrip-
tion of cutoff effects [50,103], which uses HQET to derive the
mismatch between the lattice gauge theory at hand and con-
tinuum QCD. The result is a set of functions that depend on
the heavy-quark mass, and that can account for discretization
effects of different sizes (in our case, order αsa, a2 and a3).

In our analysis, we would like to introduce these functions
for both the B and the D∗ mesons. Our data do not, however,
distinguish between the contributions of the two mesons, so
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Fig. 8 Changes in
chiral-continuum-extrapolated
values as a result of selected
variations in the analysis for hA1

(top left), hV (top right), hA2

(bottom left), and hA3 (bottom
right) as a function of the recoil
parameter. The gray band shows
the error band of the base fit.
The points at w = 1.00, 1.17,
1.34, and 1.50 show the
deviation between the form
factors calculated from the base
fit and each variation of the
chiral-continuum fit. The dotted
vertical lines show the
maximum w for which lattice
data are available and the limit
w = 1.10 used in one of our
stability tests

Table 8 Values of χ2/dof for several variations in the chiral-continuum extrapolation

Base W/o NNLO W/o large w W/o a = 0.15 fm W/o a = 0.045 fm W/o HQ O(a3)

χ2/dof 85.2/95 86.0/107 71.1/75 79.4/86 81.6/86 85.3/99

we instead use a single generic term for both mesons. Equa-
tion (53) shows the terms used in the end: αsa, a2, and a3.
Since the a2 term is already included in the light-quark dis-
cretization errors, it would be superfluous to include it again
here. The downside of this approach is that it is impossible for
us to disentangle light- and heavy-quark discretization errors
in the error budget, and as such, we report them together.

One can estimate the size of these individual effects from
variations of the chiral-continuum extrapolation with and
without the terms in Eq. (53), and also removing the O(a2)

term coming from NLO corrections in Eq. (50). Heavy- and
light-quark discretization errors turn out to be the largest con-
tribution to the total error in our analysis, and the inclusion
of the terms listed in Eq. (53) is key in order to account for
the heavy-quark systematic errors.

4.4 Matching errors

The matching factors are calculated at one-loop order in
perturbation theory. Appendix B explains how we esti-
mate the uncertainties, listed in Eqs. (B.49a)–(B.49d). They
are included in the chiral-continuum extrapolation through
Eq. (54). We can estimate the error introduced by the uncer-
tainty in the matching up to order amcαs by removing the
contribution of the matching factors to Eq. (54). The effect
of higher order contributions is estimated by including an
overall factor (1 + rhX2 α2

s + rhX3 α3
s ) multiplying Eq. (49) in

the fit and checking the shift in the central value of the form
factor. The priors for the rhX2,3 coefficients are set to 0(1); the
posteriors have central values and widths close to those of
the priors. We see no impact in including O(α3

s ) terms, but
the O(α2

s ) contribute to the final error at the subpercent level.
We collect all observed differences in the corresponding line
in Table 7.
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4.5 Heavy quark mistuning

The form factors are adjusted for the differences between
the simulated masses of the heavy quarks and the physical
ones before the chiral-continuum extrapolation. The correc-
tion procedure is detailed in Appendix C. The largest cor-
rection is about 1σ , but in general the correction is negligi-
ble. Equation (54) includes the contribution of the mistuning
in the chiral-continuum extrapolation, therefore, we do not
need to add any further error. Switching off these corrections
gives small variations in the results in our chiral-continuum
extrapolation, as shown in Table 7 and Fig. 7.

4.6 Light quark mistuning

The endpoint for the light quark masses in the chiral-
continuum extrapolation is set to r1ml = 0.003612(126)

[104]. We can determine the uncertainty in the form factors
coming from a mistuning in the light quark mass by varying
r1ml within 1σ and monitoring its effect on the form factors.
The resulting uncertainty is shown in Table 7 and Fig. 7.

4.7 Scale setting

In order to determine the relative lattice spacing, we use
the distance scale r1/a defined from the force between
static quarks [105,106], which has been extensively com-
puted [54]. Absolute scale setting is taken from the chi-
ral fπ analysis of the MILC Collaboration [64], leading to
r1 = 0.3117(22) fm. The form factors are dimensionless,
so uncertainties from scale setting appear indirectly through
the tuning of the heavy-quark masses, the setting of the light-
meson masses in the chiral logarithms, and in the approach
to the continuum limit.

We estimate the systematic error associated with r1/a and
r1 by propagating their errors to the final result. We find that
the form factors change only slightly when we vary r1 or
r1/a by ±1σ , and we include an extra error associated to
this variation as shown in Table 7 and Fig. 7.

4.8 Isospin effects

The whole calculation of the form factors has been done
assuming isospin symmetry. The main effect of isospin
breaking is to modify the endpoint of the chiral extrapolation
through a change in the pion mass. This effect could bring
the endpoint of the extrapolation closer to the Dπ -threshold
cusp described by the chiral logs. We estimate the errors
introduced by this approximation by varying the endpoint of
the extrapolation in the pion mass frommπ0 tomπ+ , by mod-
ifying the value of r1ml from 0.003612 to 0.004065. While
the pion-mass difference is mainly due to isospin breaking
QED effects, here we are using it as proxy for the valence

quark mass difference, to which we do not have direct access.
Following the resulting difference, we assign an error rang-
ing from 0.0% to 0.5%, depending on the form factor and the
value of the recoil parameter, as shown in Fig. 7 and Table 7.
This increase in the error has no impact in the final result for
the form factors.

As an alternative way of estimating these effects, we have
also tried to move the endpoint of the extrapolation to isospin
symmetric points with ml = mu and ml = md . The differ-
ence of the values of the form factors between these two
endpoints overestimates the isospin breaking errors, because
it includes sea-quark effects that cancel out at first order.
The estimate of the isospin breaking errors is larger with this
method, but it is still negligible. Hence we can safely assume
that isospin effects are insignificant at our current level of
precision.

4.9 Finite-volume effects

To estimate finite-volume effects in our heavy-light χPT
description of the form factors, we replace the loop inte-
grals by discrete sums. Following Refs. [87,107], we estimate
the correction to the integrals in the formulas appearing in
B → D∗ at zero recoil to be smaller than 0.01%. This comes
from the fact that the contribution of the chiral logarithms to
the form factors is quite small. We have not calculated the cor-
rections at nonzero recoil, and one also expects an increase
in the error close to the cusp of the chiral logs. Given that
Mπ L > 4 on most ensembles, and Mπ L ≥ 3.7 always, there
is no reason to expect such a large increase in the error as
to make the finite-volume corrections sizable. Hence, we do
not assign any additional error due to them.

5 Determination of |Vcb| and R(D∗)

After calculating the form factors, we can reconstruct the
decay amplitude using Eq. (9) and use experimental data
to extract |Vcb|. Similarly, the form factors lead directly to
R(D∗) via Eqs. (1), (7), and (8). There is a problem: the
form factors are obtained only at small values of the recoil
parameter, and an extrapolation to large w with the chiral--
continuum fit formula would greatly increase the error. To
bring the large w behavior under control we use a standard,
model-independent parametrization based on unitarity and
analyticity to extrapolate the form factors to the large recoil
region.

Historically the CLN parametrization [8] has been widely
used for this process. However, recent developments have
called into question the reliability of CLN fits, given the high
accuracy of the latest experiments and calculations [14,16].
Apart from using outdated data to derive the coefficients of
the expansions, the main criticism of CLN in its most com-
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mon usage is the lack of error estimates for theoretical ingre-
dients. Even though the original CLN article [8] includes
equations defining the covariance matrix of the slope and
the curvature of the reference form factor, the final expres-
sions omit this information. Finally, the strong unitarity con-
straints, based on heavy-quark symmetry, play an important
role in the CLN parametrization. Instead of introducing these
constraints as an additional assumption, we would rather per-
form a fit without imposing them at the outset and then use
them after the fits as a consistency check.

To perform the z expansion we therefore use the com-
pletely general BGL parametrization [5–7]. Nonetheless, we
compare our results with an updated version of CLN in
Sect. 5.4.2. For a review on the status of the parametriza-
tions for heavy-to-heavy decays, see Ref. [108].

5.1 z expansion with the BGL parametrization

The z expansion is based on a conformal map that takes w

to a variable z, which remains small over the physical region
for the decay process, namely,

z =
√

w + 1 − √
2N√

w + 1 + √
2N

. (55)

The value N = 1 is most commonly used, because it fixes
the point z = 0 at zero recoil, but a symmetric range has
been advocated, with the claim that it reduces errors in the
expansion [7,8]. With N = 1, the maximum recoil point for
massless leptons wMax ≈ 1.503 becomes zMax ≈ 0.056, so
indeed z � 1 in any case, and any reasonable expansion in z
with coefficients of order 1 converges with a few terms. The
conformal map given in Eq. (55) also pushes the branch cut
in the w plane onto the unit circle, |z| = 1, and subthresh-
old poles onto the real axis near z = −1. Since the nearest
threshold is very far (|z| ∼ 1) from the valid kinematic range
(0 ≤ z � 0.056) and higher-energy thresholds even farther,
there is no advantage in using an alternative parametrization,
such as the one proposed in Ref. [109], that would take care
of the behavior at such values of z.

The BGL parametrization does not apply directly to the
hX form factors, but to combinations with definite spin-parity
[108]:

g = hV
MB

√
r
, (56)

f = MB
√
r(1 + w)hA1, (57)

F1 = M2
B

√
r(1 + w)

[
(w − r)hA1

− (w − 1)
(
rhA2 + hA3

) ]
, (58)

F2 = 1√
r

[
(1 + w)hA1 + (rw − 1)hA2 + (r − w)hA3

]
,

(59)

where r = MD∗/MB . These form factors are proportional
to the helicity amplitudes H− − H+, H+ + H−, H0, and
HS , respectively [cf., Eqs. (4)-(6)]. Thus, the form factor F2

is important only with massive leptons, in particular in the
determination of R(D∗).

The BGL parametrization expresses the dependence of the
form factors on z as

fi (z) = 1

Pi (z) φi (z)

∞∑
j=0

ai, j z
j , (60)

where the functions Pi (z) are calledBlaschke factors, and the
φi are known as outer functions. As discussed below, wise
choices of φi (z) make the coefficients of the expansion ai, j
of order 1 and ensure rapid convergence of the series. The
Blaschke factors are given by

Pi (z) =
∏
p

z − z p
1 − zz p

, (61)

with

z p(Mp, N ) =

√
(1 + r)2 − M2

p

M2
B

− √
4Nr

√
(1 + r)2 − M2

p

M2
B

+ √
4Nr

. (62)

They include the explicit poles with mass Mp below the BD∗
threshold and with the appropriate quantum numbers. Table 9
shows the poles we use for the BGL form factors. Although
some analyses employ four 1− resonances, the fourth one is
very far from z > 0 and its value uncertain. We therefore
follow Ref. [15] and use only three.

The z-expansion coefficients of the BGL form factors are
then defined via

g = 1

P1−(z) φg(z)

∞∑
j=0

a j z
j , (63)

f = 1

P1+(z) φ f (z)

∞∑
j=0

b j z
j , (64)

F1 = 1

P1+(z) φF1(z)

∞∑
j=0

c j z
j , (65)

F2 = 1

P0−(z) φF2(z)

∞∑
j=0

d j z
j , (66)

where the Blaschke factors’ subscripts denote the J P of the
lν final state.

Setting N = 1, we choose the outer functions to be [5–7]

φg = 16r2

√
nI

3πχ̃T
1−(0)

(1 + z)2(1 − z)− 1
2

[
(1 + r)(1 − z) + 2

√
r(1 + z)

]4 ,

(67)
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Table 9 Poles for the Blaschke factors, taken from Ref. [15] and refer-
ences therein. For J P = 1−, 0− (1+), the first two (first only) resonances
are well determined from either a lattice calculation or experimental
measurements. All other masses are based on model estimates

Form factor J P Masses Mp (GeV)

g 1− 6.329, 6.920, 7.020

f , F1 1+ 6.739, 6.750, 7.145, 7.150

F2 0− 6.275, 6.842, 7.250

φ f = 4r

M2
B

√
nI

3πχT
1+(0)

(1 + z)(1 − z)
3
2

[
(1 + r)(1 − z) + 2

√
r(1 + z)

]4 ,

(68)

φF1 = 4r

M3
B

√
nI

6πχT
1+(0)

(1 + z)(1 − z)
5
2

[
(1 + r)(1 − z) + 2

√
r(1 + z)

]5 ,

(69)

φF2 = 8
√

2r2

√
nI

πχ̃ L
1+(0)

(1 + z)2(1 − z)− 1
2

[
(1 + r)(1 − z) + 2

√
r(1 + z)

]4 ,

(70)

where the undefined symbols under the square root are given
in Table 10, along with the numerical values we use for
MB and M∗

D . In testing the effect of this pole and various
other choices for the pole positions, we find that although
the numerical values of the z-expansion coefficients depend
on the details, the final curves for the form factors are largely
independent of such choices.

With these outer functions, the coefficients of the expan-
sion satisfy the following unitarity constraints [5–7],

∞∑
j=0

a2
j � 1,

∞∑
j=0

(
b2
j + c2

j

)
� 1,

∞∑
j=0

d2
j � 1, (71)

where the � symbols reflect the fact that the values for the
χ factors in Table 10 are not exact, so the bounds are not
precisely known. These constraints provide information from
unitarity and analyticity, which can be used together with the
output of the chiral-continuum extrapolation.

In this analysis, we do not impose the unitarity constraints,
Eq. (71), on the BGL coefficients, but we check that the final
results comply with the constraints within errors. We note that
uncertainties in the values of χ

T,L
J P provided in Table 10 com-

plicate strict unitarity constraints on the z expansion coeffi-
cients. Still, we find that an implementation of the unitarity
constraints using hard cutoffs (following, for instance, Ref.
[110]) leaves the fit results essentially unchanged.

There are two kinematic relations between the form fac-
tors, one at zero recoil and another at maximum recoil,

F1(1) = MB(1 − r) f (1), (72)

Table 10 Inputs for the outer functions, taken from Ref. [15] and ref-
erences therein. The χ parameters are calculated in perturbative QCD
through O(α2

s ), and depend on charm and bottom quark mass inputs,
see Ref. [111]

Input Value

MD∗ (GeV) 2.010

MB (GeV) 5.280

nI 2.6

χT
1+ (0) (GeV−2) 3.894 × 10−4

χ̃T
1− (0) (GeV−2) 5.131 × 10−4

χ̃ L
1+ (0) 1.9421 × 10−2

F2(wMax) = 1 + r

M2
B(1 + wMax)(1 − r)r

F1(wMax). (73)

These constraints follow trivially from the HQET basis of
form factors (the hX ), but the BGL parametrization does
not automatically impose them.4 Equation (72) is straightfor-
ward to implement for the BGL parametrization with N = 1
in Eq. (55), since it amounts to a relationship between the b0

and the c0 coefficients of the expansion,

1 − r√
2(1 + √

r)2
b0 = c0. (74)

On the other hand, Eq. (73) can be imposed by adding an extra
data point that enforces the constraint. Alternatively, we can
remove d0 and write it as a function of the remaining d j and
c j . The two approaches give compatible results. In our final
value, we choose not to impose the second constraint. The
results of the chiral-continuum extrapolation trivially build
in both constraints, so we would expect any well-behaved
expansion to keep this property, even when extrapolating to
the whole recoil range. Indeed, the zero-recoil constraint is
satisfied to very high accuracy, even if we do not impose it.
This happens because the z expansion is quite constrained by
the lattice-QCD values. For the maximum-recoil constraint,
we just check for compatibility within errors.

5.1.1 Synthetic data

The output of the chiral-continuum extrapolation is not a set
of points, but a set of functions that express the form factors at
any value of the recoil parameter. In order to make the results
amenable to a BGL fit with experimental data, we use syn-
thetic data, together with their covariance, based on selected
central values of the chiral-continuum fit, evaluated at zero

4 It is interesting to note that the CLN parametrization does include the
constraint at zero recoil given in Eq. (72). The constraint at maximum
recoil, Eq. (73), is not imposed in CLN, and indeed does not hold unless
the original CLN expressions are modified.
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lattice spacing and physical quark masses. The selected val-
ues with correlations are included in the ancillary files, as
explained in Appendix D. We choose data points at three
w values, {1.03, 1.10, 1.17}, as representative of the span of
our lattice-QCD data, but we have checked that varying these
values does not change significantly the curves generated for
the form factors from the z expansion, as long as there are
no w values too close to w = 1. This robust behavior is
not surprising, since the full covariance matrix is available,
and hence the same amount of information is provided. The
covariance matrix of the lattice data is well defined for all
recoil values, but at w = 1 the kinematic constraint given
in Eq. (72) is exactly satisfied. Therefore, the form factors
are no longer independent as w → 1, and the covariance
matrix becomes singular. The singularity can be avoided by
choosing any value slightly larger than w = 1. Also, we
cannot push w much higher than 1.17 without going outside
the region where lattice-QCD data are available, because the
uncertainty grows rapidly. We have selected three points per
form factor because in the continuum limit there are only
twelve free independent functions in our chiral-continuum
extrapolation, three per form factor. Adding more points does
not increase the accuracy of the z-expansion fits, because the
new points are not independent.

We first carry out BGL fits to our lattice-QCD form fac-
tors. The constant and linear coefficients are well determined
by the data, and no prior constraints are used for them. The
quadratic and cubic coefficents are constrained with priors
0(1) to stabilize the fit. Keeping terms up to quadratic (lin-
ear) order in z and imposing the kinematic relation given in
Eq. (72), leaves just one (three) degree(s) of freedom. Since
unitarity constrains the size of the coefficients, we can include
cubic terms with the unitary-inspired priors to check stabil-
ity of the results against truncation effects. Table 11 gathers
the coefficients for these three versions of the z expansion,
with the χ2/dof and unitarity sums. All fits satisfy the uni-
tarity constraints within errors. The unitarity sums are com-
puted by taking the median of the distributions obtained from
the Gaussian posteriors, along with the confidence levels,
± 34.1%, for the uncertainties. We note that the distributions
of the squares are not Gaussian when the errors on the pos-
teriors are large. This is the case for coefficients that are not
well determined by the underlying lattice data. The kinematic
constraint at z = 0, Eq. (72), is satisfied to very high accuracy,
even when it is not imposed. On the other hand, the constraint
at zMax, Eq. (73), is satisfied only within approximately one
standard deviation, unless, of course, it is imposed.

The cubic coefficients (a3, b3, c3, d3) shown in Table 11
are not well determined by our lattice data, resulting in unitar-
ity sums, with central values > 1, while still consistent with
unitarity within error. However, the cubic fit provides use-
ful information on truncation effects. We see that the lower-
order coefficients in the cubic fit are in very good agreement

with the coefficients in the quadratic fit. Further, we find,
that the cubic coefficients have little effect on the decay rate
and the form factors, as expected, since |z| � 1. In contrast,
and as Table 11 shows, the linear expansion leads to coeffi-
cients with nearly the same central values as in the quadratic
and cubic fits, but with slightly smaller errors, suggesting an
underestimation of the truncation error. We conclude that the
errors coming from the truncation of the series in Eqs. (63)–
(66) are already included in the uncertainties on the coef-
ficients of the quadratic fit, which we choose for the main
result of the z expansion. The full correlation matrix of the
quadratic fit, which can be used to reconstruct the output of
the z expansion, is included in the ancillary files in binary
format, as explained in Appendix D. Form factors from this
information can be used in phenomenology with no assump-
tion about the presence of new physics. Below we discuss z
fits incorporating shape information from experiment, which
are more precise but possibly contaminated by new physics
in the light semileptonic channel.

Experimentalists [18,19] usually adjust the order of the
z expansion to allow unconstrained fits to the form factors
without violating unitarity. Following this criterion we find
that we can remove the a2 and the d2 coefficients, and obtain
the same fit results as in our quadratic fit without including
any 0(1) priors for the higher order coefficients. This ensures
that our utilization of priors for some coefficients indeed does
not influence the fit results, and that their only function is to
stabilize the fit.

5.1.2 Functional method

A functional method can also be used to fit the result of the
chiral-continuum extrapolation to the BGL parametrization
[39]. The method exploits the fact that the chiral-continuum
fit functions are linear in the fit parameters. The covariance
in the fit parameters is then easily converted to the covariance
of the values of the resulting fitted form factors (at zero lat-
tice spacing and physical quark masses) at any pair of recoil
parameters (w,w′). Through the BGL parametrization, this
covariance is then converted to a covariance in the form fac-
tors values at any z pair, (z, z′). The method has the esthetic
property that information from the best fit continuum form
factors is spread over the entire physical region in z, rather
than at a few arbitrarily chosen discrete points.

We have compared form factors from the functional
approach with those from the synthetic data. They show
no discernible difference in the form factors, implying that
the systematic errors associated with the choice of synthetic
data from the chiral-continuum extrapolation are very small.
Since the functional fits do not provide any new insight, and
they make it difficult to combine data from several sources,
we focus on the synthetic-data results in the rest of the
paper.
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Table 11 Results of linear,
quadratic, and
unitarity-constrained cubic z
expansions using only
lattice-QCD data. The
coefficient c0 is fixed by the
constraint given in Eq. (72), and
it is shown for convenience

Linear Quadratic Cubic

a0 0.0330(12) 0.0330(12) 0.0330(12)

a1 − 0.157(52) − 0.156(55) − 0.155(55)

a2 − 0.12(98) − 0.12(98)

a3 − 0.004(1000)

b0 0.01229(23) 0.01229(23) 0.01229(23)

b1 − 0.002(10) − 0.003(12) − 0.003(12)

b2 0.07(53) 0.05(55)

b3 − 0.01(100)

c0 0.002059(38) 0.002059(38) 0.002059(38)

c1 − 0.0057(22) − 0.0058(25) − 0.0057(25)

c2 − 0.013(91) − 0.02(10)

c3 0.10(95)

d0 0.0508(15) 0.0509(15) 0.0509(15)

d1 − 0.317(59) − 0.328(67) − 0.327(67)

d2 − 0.02(96) − 0.02(96)

d3 − 0.0006(10000)

χ2/dof 0.83/5 0.63/1 0.61/-3
∑N

i a2
i 0.026+0.019

−0.013 0.47+1.51
−0.36 1.4+2.3

−1.0∑N
i (b2

i + c2
i ) 2.4+1.8

−0.6×10−4 0.13+0.44
−0.10 1.6+2.2

−1.1∑N
i d2

i 0.103+0.041
−0.034 0.54+1.40

−0.38 1.4+2.2
−1.0

5.2 Determination of |Vcb|

The lattice-QCD form factors can be used in conjunction
with experimental data to perform a joint fit to the BGL
parametrization, with an additional fit parameter for the rel-
ative normalization, which is nothing but |Vcb|. In these fits,
the low-recoil behavior is determined by lattice QCD, and the
large-recoil behavior by experiment. As experimental input,
we use the 2018 raw dataset from Belle [18] and the synthetic
data generated from the 2019 BaBar analysis [19]. These data
are combined with the lattice-QCD synthetic data. We do not
use Belle’s 2017 tagged dataset [13], because it is still unpub-
lished.

Experiments extract the fully differential decay rate, not
only with respect to the recoil parameter, but also to all angu-
lar variables in the decay chain B → D∗�ν, D∗ → Dπ

[14,18,112],

dΓ

dw d cos θv d cos θ� dχ

= |Vcb|2 |ηEW|2 3G2
FM

5
B

1024π4 r3
√

w2 − 1(1 − 2wr + r2)

×
[

(1 − cos θ�)
2 sin2 θvH

2+(w) + (1 + cos θ�)
2

× sin2 θvH
2−(w) + 4 sin2 θ� cos2 θvH

2
0 (w)

− 2 sin2 θ� sin2 θv cos 2χH+(w)H−(w) − 4 sin θ�

× (1 − cos θ�) sin θv cos θv cos χH+(w)H0(w)

+4 sin θ� (1 + cos θ�) sin θv cos θv cos χ

× H−(w)H0(w)

]
B(D∗ → Dπ), (75)

where B(D∗ → Dπ) is the branching fraction of the daugh-
ter D∗ decay; further, θv , θ�, and χ are the polar angle of
the D in the D∗ rest frame, the polar angle of the charged
lepton in the rest frame of the virtual W meson, and the
angle between the �ν and Dπ planes, respectively. As with
Eq. (7), for neutral B0 decays the right-hand side of Eq. (75)
should have an additional factor (1 + απ) for the Coulomb
attraction in the final state (see for example, Refs. [113,114]).
Other electromagnetic corrections are expected to be smaller,
and we will neglect them, keeping only |ηEW|2 and the
Coulomb factor.5 Following our previous estimates of EM
effects [22,53], as well as the HFLAV procedure [1,115], we
use ηEW = 1.0066(50) in our calculation.

Belle marginalizes on one variable at a time, integrat-
ing (binning) the rest. BaBar’s method consists of a full,
four-dimensional analysis without integrating over any vari-
able. The collaboration claims such an analysis is needed to
achieve correct results [19]. Nonetheless, both the Belle and

5 Both the Belle and BaBar experiments use the PHOTOS package to
account for low-energy EM radiation; to the best of our knowledge, the
EM interactions between charged particles in the final state, described
by the Coulomb factor, are not included in PHOTOS.
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BaBar Collaborations give compatible final values of |Vcb|
in their respective publications [18,19].

For Belle, we integrate Eq. (75) in the required bins, and
the BGL expressions are introduced in the integrated results.
Also, we multiply the right-hand side of Eq. (75) by the
Coulomb factor (1 + απ), because these data are for neu-
tral B mesons only. We perform a combined fit to both the
electron and muon modes, instead of averaging them.6 For
BaBar, we fit the lattice-QCD synthetic data with those in
Ref. [19]. BaBar publishes results for a BGL fit to their
data that includes both neutral and charged B-meson decays.
According to Ref. [117], 35.1% of the decays in this data set
correspond to B0 decays, and the remaining 64.9% corre-
spond to B± decays. These fractions imply that a Coulomb
factor of (1 + 0.351απ) should be applied to the B0 + B±
BaBar dataset.

BaBar uses the previous Fermilab-MILC result of hA1

at zero recoil to extract |Vcb| [19,22]. In order to minimize
the influence of the lattice-QCD results for hA1(1) from Ref.
[22] in the joint fit, we create synthetic data from Ref. [19] for
|ηEW |2|Vcb|2|F(w)|2 at five recoil values away from w = 1,
as shown in Fig. 9. Since the BaBar Collaboration employs
a linear fit for all form factors, we exhaust the number of
degrees of freedom with just five points. Each one of these
synthetic data points has a larger impact than each single
data point from Belle’s untagged dataset, because the Babar
synthetic data inherits its precision from the precision of the
underlying, full dataset. In the end, the green band for Belle
in Fig. 9 is noticeably narrower than BaBar’s, so it is expected
that the Belle untagged dataset has a larger impact in the final
results for |Vcb| and R(D∗).

The kinematic constraint in Eq. (72) is included in these
fits, and although there are no direct experimental measure-
ments that determineF2, experiments also have an impact on
the d j coefficients through the correlations between this and
other form factors. Our preferred fits, coming from quadratic
z expansions, are shown in Fig. 9 and Table 12. As in the
lattice-QCD-only fits, the fits in Table 12 include 0(1) pri-
ors for the quadratic and higher (if applicable) coefficients
of each form factor, while leaving the rest of the coefficients
unconstrained. Fig. 9 shows that the mean of the lattice esti-
mate falls below the experimental curves, but the errors are
large enough to make the difference remain at ≈ 2σ . The cor-
relations between the different lattice, synthetic data points
determine very precisely the slope of the decay amplitude,
forcing it to be noticeably larger than what we obtain from our
fits to experimental data. The full correlation matrix is pro-
vided in the ancillary files, as described in Appendix D. Form

6 The systematic correlation matrices given in Ref. [18] do not include
off-diagonal blocks for the correlated systematic errors between elec-
tron and muon modes. They can be reconstructed from the given data
[116], but we do not attempt such a reconstruction in our analysis.

factors from this information can be used in phenomenology,
under the assumption that only the τ couples to new physics.

Our final result for |Vcb| is obtained from the quadratic
BGL fit to the lattice-QCD form factors and both experi-
mental datasets (see the column labeled “Lattice+both” in
Table 12), which yields

|Vcb| = (38.40 ± 0.78) × 10−3, (76)

and a χ2/dof = 126/84. This relatively large χ2/dof indi-
cates tensions among the datasets: a combined fit of Belle
and BaBar data, using lattice-QCD input only for normal-
ization results in a large χ2/dof of 104/76. It is therefore to
be expected that the combined fit would result in a similarly
large χ2/dof. Further, we note that our fit to the lattice-QCD
form factors only has χ2/dof < 1, as shown in Table 12,
which also lists the results of joint fits of lattice-QCD form
factors with each experimental dataset separately, as well as
with the combined Belle and BaBar data. We find that all joint
lattice-QCD with experimental data fits have χ2/dof > 1,
including the one leading to Eq. (76), but the central values
of |Vcb| do not differ more than approximately one standard
deviation among these fits, and the sizes of the errors are sim-
ilar. We also see a general agreement in the coefficients of
the expansion, particularly in the important low-order ones.

Because most previous inclusive and exclusive determi-
nations of |Vcb| omit the Coulomb factor, we also perform
the BGL fits without it; the results are collected in Table 13.
Compared to the results for |Vcb| in Table 12, the central
values are shifted by the respective Coulomb factors. They
are consistent with previous exclusive determinations, for
example |Vcb|excl = (39.9 ± 0.9) × 10−3 from the PDG [2].
The long-standing tension with inclusive determinations thus
remains: |Vcb|incl = (42.2 ± 0.8) × 10−3 [2].

Since the Belle data are binned in different variables,
there is a normalization constraint between the different bins,
assuming that they contain the same underlying data. Then
only 37 of the 40 bins are truly independent for each mode
[116], because the sum of all bins for a particular variable
should give the same total number of events. Such constraints
should be reflected as zero eigenmodes, or – with rounding
errors – very small eigenvalues in the 40 × 40 statistical
correlation matrices. The correlation matrices provided in
Ref. [18] are constructed using Monte Carlo simulations,
and do not resolve these constraints due to the underlying
approximations. We therefore investigate the effect of remov-
ing the last bin on each one of the angular variables data
and reconstructing its value from the total normalization.
We find that this procedure correctly introduces the antic-
ipated constraints between the bins, while the values of the
reconstructed last bins are compatible with those given Ref.
[18]. Hence, the expected zero eigenvalues in the statisti-
cal correlation matrices are recovered. With this procedure
our combined Belle + lattice-QCD BGL fit does not yield
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Fig. 9 Results for separate fits to each dataset (left) and joint fit of all
data (right). On the left we compare the BaBar result (gray), the Belle
result from the untagged dataset (green), and the lattice-QCD result
coming from our synthetic data (red). To allow for an straightforward
comparison of lattice and experimental data, the data points and bands
have been normalized with the central value of |Vcb| as obtained in our

joint fit, and taking into account the Coulomb factor corresponding to
each case. All results agree within ≈ 2σ over the whole kinematic range.
There is tension between the slope predicted by the lattice calculation
and that of the experimental data. Since the lattice-QCD slope is well
determined, correlations in the joint fit cause the central lattice-QCD
values to fall slightly below the experimental values

Table 12 Quadratic z expansion results. The second column shows
results from a fit only to synthetic lattice-QCD data (the same as the
“quadratic” column in Table 11), the third, from a joint fit to lattice
QCD plus BaBar’s synthetic data, the fourth, from lattice QCD plus
Belle’s untagged dataset, the fifth, lattice QCD plus both experiments,

and the last, a combined fit of all experimental data using the value of
hA1 (1) extracted from our chiral-continuum extrapolation as normal-
ization. The coefficient c0 is fixed by the constraint given in Eq. (72),
and it is shown for convenience

Lattice QCD Lattice + BaBar Lattice + Belle Lattice + both hA1 (1) + both

a0 0.0330(12) 0.0331(12) 0.0325(11) 0.0321(10) 0.0262(42)

a1 − 0.156(55) − 0.091(41) − 0.160(45) − 0.147(31) 0.03(15)

a2 − 0.12(98) − 0.19(20) − 0.69(94) − 0.63(20) − 0.12(12)

b0 0.01229(23) 0.01229(22) 0.01238(22) 0.01249(22) 0.01228(23)

b1 − 0.003(12) 0.0104(72) 0.015(10) 0.0021(43) 0.0046(48)

b2 0.07(53) 0.44(17) − 0.30(24) 0.07(11) − 0.17(21)

c0 0.002059(38) 0.002058(37) 0.002073(37) 0.002092(37) 0.002056(38)

c1 − 0.0058(25) − 0.0010(11) 0.0010(17) 0.00062(86) 0.00163(92)

c2 − 0.013(91) 0.022(50) 0.035(57) 0.060(26) 0.017(37)

c3 0.24(77) − 0.34(76) − 0.94(48) − 0.66(62)

d0 0.0509(15) 0.0517(15) 0.0522(15) 0.0531(14)

d1 − 0.328(67) − 0.220(55) − 0.180(49) − 0.201(42)

d2 − 0.02(96) 0.20(92) − 0.01(90) 0.0007(8980)

χ2/dof 0.63/1 8.50/4 111/79 126/84 104/76
∑N

i a2
i 0.47+1.51

−0.36 0.05+0.12
−0.05 0.7+2.0

−0.7 0.43+0.30
−0.21 0.04+0.05

−0.03∑N
i (b2

i + c2
i ) 0.13+0.44

−0.10 0.56+0.98
−0.39 0.54+1.00

−0.43 0.90+1.17
−0.57 0.57+1.13

−0.55∑N
i d2

i 0.54+1.40
−0.38 0.46+1.35

−0.37 0.41+1.25
−0.34 0.41+1.25

−0.33

|Vcb| × 103 39.1(1.0) 38.17(85) 38.40(78) 39.35(91)
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Table 13 |Vcb| results for our
different BGL fits without
including the Coulomb factor

Lattice + BaBar Lattice + Belle Lattice + both hA1 (1) + both

|Vcb| × 103 39.3(1.1) 38.60(86) 38.74(78) 39.75(92)

χ2/dof 8.48/4 111/79 124/84 103/76

any significant changes in the final values and uncertainties
for |Vcb| and R(D∗), but we observe a substantial decrease
in χ2/dof from 111/79 to 96/73. In the case of our joint
fit, which includes Belle, BaBar and lattice-QCD data, the
χ2/dof decreases from 126/84 to 109/78. Nevertheless, the
results for |Vcb| and R(D∗) quoted in this work use the Belle
data and correlation matrices as given in Ref. [18].

The BGL fit to the BaBar data [19] includes fewer coef-
ficients than our BGL fit to the lattice-QCD form factors.
We test for the presence of truncation errors by performing
BGL fits to the BaBar data including higher coefficients with
priors of 0.0(5). This increases the errors in the BaBar data
points, most likely because the extra coefficients are com-
pletely uncorrelated with the rest of the BaBar data. Because
the joint fit to all data is currently dominated by the Belle
and lattice-QCD data, the addition of extra coefficients in the
BaBar expansion does not change our final results for |Vcb|
and R(D∗) in a meaningful way. Hence, for the our final
results quoted in this work, the synthetic data points from
Ref. [19] are generated without adding extra coefficients.

In the Belle and BaBar analyses the number of coefficients
in the BGL z expansion is limited to exclude those that can-
not be properly determined by their data, and thus avoiding
apparent unitarity violations. This procedure, however, does
not account for possible truncation errors. Repeating the fits
in Table 12 without the c3 and d2 coefficients yields similar
results with reduced errors and much smaller sums for the
unitarity constraints.

5.3 Determination of R(D∗)

From the fit results in Table 12 we can calculate R(D∗)
through direct integration of the differential decay rate over
the whole kinematic range. In Fig. 10, we show the differen-
tial decay rate as a function of the recoil parameter extracted
using lattice-only data (red and brown curves), compared
with that of our joint fit. The curves below (maroon and blue)
show the differential decay rate for the τ case. Our final result
for R(D∗) from our purely lattice-QCD calculation is

R(D∗)Lat = 0.265 ± 0.013. (77)

If we assume that new physics effects are visible only at
large lepton masses (i.e., the τ ), we can use our joint fit of
the lattice and light-lepton experimental data to obtain a more
precise SM value of R(D∗). We note that in our joint fit, the
curve corresponding to light leptons is determined mainly

from experiment, and the one corresponding to the τ comes
mainly from the lattice data. In that case, we obtain

R(D∗)Lat+Exp = 0.2484(13), (78)

where the Coulomb factor is included. Its removal does not
change significantly neither the central value nor the error.
We emphasize, however, that Eq. (77) is the SM predic-
tion, relying only on lattice QCD, while Eq. (78) is also
based on the shape information coming from experimental
data. In any case, the correlated difference between the two
results is 1.3σ . Our values also agree with previous theo-
retical determinations [20,21,118–120]. We note that more
recent experimental measurements have found R(D∗) to be
consistently smaller than before, hence reducing the tension
between theory and experiment [1]. The current status of the
R(D)-R(D∗) determinations is summarized in Fig. 11.

5.4 Tests

5.4.1 Imposing the constraint at maximum recoil

As we explained above, our preferred analysis does not
impose the kinematic constraint in Eq. (73), is trivially satis-
fied in the HQET basis of form factors (the hX ) used in our
chiral-continuum extrapolation. However, the BGL expan-
sion does not naturally incorporate it. Maximum recoil is far
from the region where lattice data are available, and there are
no experimental data available for this decay with a heavy
lepton � = τ . Thus, to the extent that the BGL expansion does
not match the HQET-basis form factors precisely, we expect
small deviations from Eq. (73) in the BGL fit. Such devia-
tions are tolerable because small violations of the constraint
do not have any physical consequences, as long as they are
within errors. Figure 10 shows that our fits, nonetheless, sat-
isfy the maximum-recoil constraint to within approximately
1σ .

Imposing the constraint in the fit model, we find new val-
ues for |Vcb| = 38.36(78) × 10−3 and R(D∗) = 0.274(10),
which are compatible with the values obtained in our pre-
ferred analysis. It is not surprising that the constraint does
not alter the value of |Vcb|. After all, the CKM matrix ele-
ment is extracted mainly from the behavior of the form factors
at small recoil and does not entail the form factor F2. The
error on R(D∗), on the other hand, is slightly reduced by the
constraint.
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Fig. 10 Top: differential decay rate calculated using only lattice data
(red and maroon) and lattice plus experimental data (green and blue).
The higher curves are for a massless lepton, whereas the lower curves
are for the τ . Although the pure-lattice curves are consistently below
the experimental ones, especially at large recoil, both of them agree
within 2σ . Bottom: test of the kinematic constraint at maximum recoil
Eq. (73). Shown is a contour plot up to 2σ of the form factors F1 and
F2 resulting from the lattice-data-only fit and the joint fit of lattice and
experimental data. The constraint is satisfied along the diagonal. We
see both fits satisfy the constraint within errors

A comparison of the BGL coefficients of the constrained
analysis with those of our preferred one is shown in Table 14.
We do not find significant changes, and the coefficients in
both analyses are compatible with each other within 1σ ,
although the differences increase with the order of the coef-
ficients. This behavior is expected, as the low-order coeffi-

Fig. 11 Current status of the evaluations of R(D) and R(D∗). The
contours show the 2019 HFLAV experimental average [1] at 1, 2, and
3σ . The red point with error bars uses our lattice-QCD prediction for
R(D∗) and R(D) = 0.284(14) calculated from lattice-QCD data [53]
(without correlations, which are not available but could be important).
The green point shows R(D∗) from the joint fit yielding |Vcb| with
R(D) = 0.299(3) from HFLAV [1], which is similarly based on a joint
fit to lattice-QCD and experimental data

cients are well determined by the data, and the higher-order
coefficients become more relevant at maximum recoil. The
new information does not improve the quality of the fit in a
significant way. This is particularly clear in the pure lattice
fit, where the χ2 almost doubles, but the number of degrees
of freedom increases just from three in the unconstrained fit
to four in the constrained one. It appears that the constraint
introduces small tensions with the BGL expansion. Because
of this, and since both the unconstrained and the constrained
fit give compatible results with only small differences, we
choose the unconstrained fit as our preferred result.

5.4.2 The z expansion with an improved CLN
parametrization

For the sake of completeness, we offer an alternative anal-
ysis, replacing the BGL parametrization with CLN. In the
CLN parametrization, the form factor hA1 is expressed as a
polynomial in z, and the other form factors appear as ratios
with respect to hA1 :

R0 = 1

1 + r

(
w + 1 + w

rhA2 − hA3

hA1

− hA2 − rhA3

hA1

)
,

(79)

R1 = hV
hA1

, (80)

R2 = rhA2 + hA3

hA1

. (81)
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Table 14 Comparison of results
of the z expansion fits with and
without the kinematic constraint
given in Eq. (73). The largest
differences appear in the
higher-order coefficients. The
coefficient c0 is fixed by the
constraint given in Eq. (72), and
it is shown for convenience. The
Coulomb factors are included in
the fits with experimental data
input

Lattice QCD alone Lattice QCD + Experiment

Unconstrained Constrained Unconstrained Constrained

a0 0.0330(12) 0.0330(12) 0.0321(10) 0.0320(10)

a1 − 0.156(55) − 0.156(55) − 0.147(31) − 0.142(31)

a2 − 0.12(98) − 0.12(98) − 0.63(20) − 0.60(19)

b0 0.01229(23) 0.01228(23) 0.01249(22) 0.01250(22)

b1 − 0.003(12) 0.001(11) 0.0021(43) 0.0031(42)

b2 0.07(53) − 0.23(41) 0.07(11) 0.05(10)

c0 0.002059(38) 0.002058(38) 0.002092(37) 0.002094(37)

c1 − 0.0058(25) − 0.0051(23) 0.00062(86) 0.00090(84)

c2 − 0.013(91) − 0.076(58) 0.060(26) 0.061(26)

c3 − 0.94(48) − 1.08(47)

d1 0.0509(15) 0.0509(15) 0.0531(14) 0.0531(14)

d1 − 0.328(67) − 0.331(67) − 0.201(42) − 0.187(41)

d2 − 0.02(96) 0.12(95) 0.0007(8980) 0.85(67)

χ2/dof 0.63/1 1.36/2 126/84 127/85
∑N

i a2
i 0.47+1.51

−0.36 0.47+1.51
−0.36 0.43+0.30

−0.21 0.39+0.28
−0.20∑N

i (b2
i + c2

i ) 0.13+0.44
−0.10 0.12+0.33

−0.16 0.90+1.17
−0.57 1.18+1.25

−0.75∑N
i d2

i 0.54+1.40
−0.38 0.51+1.42

−0.33 0.41+1.25
−0.33 0.77+1.60

−0.72

|Vcb|c 38.40(78) 38.36(78)

R(D∗) 0.265(13) 0.274(10) 0.2484(13) 0.2492(12)

We include a few improvements to address the weak points
of CLN: first we extract the full covariance matrix relating
the parameters ρA1 and cA1 from the original article [8] using
the data given for the one-sigma ellipsoids. With the full
covariance matrix, we can account for the strong correlations
between ρ2

A1
, cA1 and dA1 , which allows for small variations

of the fixed relations often used in CLN fits. Second, we use
updated results for the expansions in w − 1 of the ratios R j .
The form factors to be fit are

hA1(z) = hA1(1)
[
1 − 8ρ2

A1
z +
(

64cA1 − 16ρ2
A1

)
z2

+
(

512dA1 + 256cA1 − 24ρ2
A1

)
z3
]
, (82)

R0(w) = 1.25(35) − 0.183(77)(w − 1)

+ 0.063(23)(w − 1)2, (83)

R1(w) = 1.28(36) − 0.101(51)(w − 1)

+ 0.066(24)(w − 1)2, (84)

R2(w) = 0.740(44) + 0.128(38)(w − 1)

− 0.079(19)(w − 1)2, (85)

where to fit R0 to experimental data requires measurements
of the τ final state. The full correlation matrix of ρ2

A1
and

cA1 is given in Table 15, and we follow Ref. [8] to calculate
dA1 . In the following, we refer to the CLN parametrization
as “improved” when using Eqs. (82)–(85) and “base” when
using the coefficients of the original paper [8].

Fitting our lattice data with the improved CLN parametriza-
tion yields a result for R(D∗) that is compatible with
Eq. (77), but the χ2/dof of the fit increases spectacularly
to χ2/dof = 25.7/1. A base CLN fit is similarly bad, with
χ2/dof = 31.9/7. The combined fit using lattice and Belle
data again yields a compatible |Vcb| and is also very bad, with
χ2/dof = 133.5/80. Here too the base and the improved ver-
sions of CLN are equally incompatible with the lattice-QCD
form factors and Belle data. The CLN fits involving only
lattice-QCD data violate the kinematic constraint in Eq. (73)
by 2.7σ . The combined CLN fits satisfy it at around 1σ .
In light of these issues, the BGL parametrization provides a
much superior z expansion, so we have chosen it in our main
analysis.7

One can wonder why the improved CLN fit performs so
poorly. One possible point of tension between our data and
the improved CLN ansatz is the relationship between the
slope, the curvature and the cubic coefficient in hA1 , which
is much more constrained than in the BGL parametriza-
tion. We compare our fit results to only lattice data for both
parametrizations by calculating a Taylor expansion around
z = 0 up to cubic order of our BGL result for hA1 ∝ f , and
we present in Fig. 12 contour plots of the CLN priors, the
improved CLN fit result, and the BGL fit result. Our BGL
results for ρ2

A1
, cA1 anddA1 are compatible with our improved

7 The fits discussed include the Coulomb factor. Its removal does not
change the χ2/dof significantly.
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Table 15 Correlation matrix
relating ρ2

A1
and cA1 in the CLN

parametrization

ρ2
A1

cA1

ρ2
A1

1.0000 0.9834

cA1 0.9834 1.0000

CLN results within one sigma, suggesting that the tensions
with the improved CLN parametrization come from the other
form factors.

Figures 13 and 14 show the results for hA1 and R0,1,2 in
the BGL and the improved CLN cases, along with the lattice
data used in the fit. In general, the BGL fit shows a much
better agreement with our lattice data, and the ratios R0,2

are poorly fitted with the improved CLN ansatz. Also, the
improved CLN fit violates the constraint given by Eq. (73).
Imposing the constraint does not improve the fit quality, or
reduce the tensions in the R0,2 ratios.

Following Ref. [108], we advocate either a revision or a
deprecation of the CLN parametrization in favor of a truly
model-independent parametrization, such as BGL. Even if
we had found a good quality of fit with CLN, we would still
prefer the BGL results on theoretical grounds. The main rea-
son not to use the CLN parametrization in a first principles
analysis like this one is to test the theoretical assumptions that
makes CLN different from BGL. CLN imposes constraints
through crossing symmetry from the physical region of the
cross channel and constraints from heavy-quark effective the-
ory. The BGL parametrization does not. With the latter we are
able to verify ex post facto the reliability of these constraints.

Other limitations of the base CLN, such as an update of
its inputs, and a more careful treatment of the errors and
correlations of the CLN coefficients, have been addressed in
a few recent papers [119–121]. The HQET parametrization
discussed in those works also include corrections of order
1/m2

c . We refer the reader to those papers for further discus-
sion.

5.4.3 Comparison with LCSR

We can also test the validity of the light cone sum rules
(LCSR), often employed to constrain the form factors at max-
imum recoil. To this end, we take the latest results from Ref.
[122]. They present results for the form factors in a differ-
ent notation. For the reader’s convenience, we provide the
conversion formulae:

V (wMax) = 0.69(13), V (w) = hV (w)
1 + r

2
√
r

, (86)

A1(wMax) = 0.60(9), A1(w) = hA1(w)
(1 + w)

√
r

1 + r
,

(87)

A2(wMax) = 0.51(9),

Fig. 12 Contour plot of the slope (ρ2
A1

) versus curvature (cA1 ) of the
hA1 form factor in the CLN and BGL cases. We show the ellipsoids
corresponding to the CLN priors extracted from [8] and the results
of the improved CLN and BGL fits at one and two sigmas. There is
good agreement in all cases, and a numerical test shows that the differ-
ences in ρ2

A1
, cA1 and dA1 between the fit results of the improved CLN

parametrization and the BGL parametrization is close to 1σ

A2(w) = (rhA2(w) + hA3(w)
) 1 + r

2
√
r

. (88)

Our lattice-QCD only results for the aforementioned form
factors are:

V (wMax) = 0.65(10), (89)

A1(wMax) = 0.608(71), (90)

A2(wMax) = 0.71(11). (91)

The agreement is excellent for A1 and V , and the A2 form
factor also agrees within 1.4σ .

6 Discussion and outlook

Using the first unquenched lattice-QCD calculation of the
form factors describing the decay B → D∗�ν at nonzero
recoil, together with 2018 Belle [18] and 2019 BaBar [19]
measurements, we obtain the following results for the CKM
matrix element |Vcb|:
|Vcb| = (38.40 ± 0.78) × 10−3, (92)

which includes the Coulomb correction for neutral B-meson
decays. Omitting this correction leads to |Vcb| = (38.74 ±
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Fig. 13 Comparison between our fits to lattice data using BGL and the
improved CLN parametrization. We show hA1 (top) and R0 (bottom).
The differences between BGL and CLN are mild for hA1 , at least in the
region where there are data. In contrast, the improved CLN fit to R0
shows large tensions with the lattice data

0.78) × 10−3, which is the result that should be compared
with inclusive decays. The quoted uncertainty is from exper-
iment and theory together. As discussed in Sect. 5.2, this
result comes from a fit exhibiting tension among the datasets,
χ2/dof = 126/84. The tension is motivation for better exper-
imental measurements and lattice-QCD calculations, as a
∼ 2σ effect it is inconclusive. In order to disentangle the
contributions from experiment and theory, we run a BGL fit

Fig. 14 Comparison between our fits to lattice data using BGL and
the improved CLN parametrization. Here we show R1 (top) and R2
(bottom). In this case, the fit to the R1 data looks acceptable in both
cases, but the CLN fit to R2 shows large differences with the data

as described in Sect. 5.1, but assuming very small errors on
the synthetic lattice-QCD data, and then we run analogous fits
assuming very small experimental errors. By looking at how
the final error changes, we estimate each contribution, finding
0.34×10−3 from experiment, 0.67×10−3 from lattice QCD,
0.10 × 10−3 from the truncation of the BGL expansion, and
0.18×10−13 due to EW+EM effects. These partial values are
an approximation to guide how much improvement we can
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expect from future calculations and experiments. The final
error in Eq. (92) is an accurate estimate of the full uncertainty.

Belle II is expected to deliver experimental data for this
decay, although until there is a better understanding of its
detector performance and the systematics of the experiment,
it is not clear how much improvement on the error for
|Vcb| could come from these high statistics data [123]. An
improved result can be obtained from this or any other forth-
coming data, in combination with the synthetic data points
and covariance matrix that fully describe the output of our
chiral-continuum extrapolation, given in the ancillary files as
described in Appendix D.

The main result of this article is the behavior of the form
factors parametrizing semileptonic B → D∗�ν decays at
small, but nonzero recoil. It allows us to perform a much
more robust analysis of |Vcb| than when using just the value
of the decay amplitude at zero recoil. We find excellent
agreement between our current and previous results, both
from B → D∗�ν at zero recoil [22] and B → D�ν at
nonzero recoil [53]. Our result also agrees with other recent
B → D(∗)�ν exclusive determinations [32,124]. It is also
compatible with the recent extraction based on Bs → D(∗)

s �ν

decays measured by LHCb [125], and with form factors
recently calculated by HPQCD [23,126], but with much
smaller errors.

Our result for |Vcb| does not change the current status of
the inclusive-exclusive puzzle. The inclusive determination
was recently updated in [127], slightly reducing the uncer-
tainty, and preliminary results from Belle based on a data-
driven approach [128], and compatible with the current inclu-
sive world average [1], have been presented [129]. On the
other hand, it has been argued that it is very challenging for
BSM physics to accommodate such a tension [3,4]. A further
reduction in errors is necessary to extract conclusions. Inclu-
sive calculations of |Vcb| might also benefit in the longer term
from recent ideas in lattice QCD [130,131], which might lead
to calculations with very different systematics.

During the implementation of the joint experimental-
lattice fits we found issues in both experimental datasets used:
the BaBar Collaboration does not provide unfolded data, and
their z expansion uses only five coefficients to describe three
form factors, as opposed to the nine coefficients we use for
the same form factors in our lattice data only fit. As a result,
we are concerned that the truncation errors in the z expan-
sion could be underestimated in the synthetic data generated
from BaBar fits. However, the |Vcb| and R(D∗) fits are dom-
inated by the Belle and lattice-QCD data, and the effect of
including BaBar data is just a small reduction in the total
error in Eq. (92). The Belle Collaboration provides unfolded
data, but as pointed out in Ref. [116], the statistical correla-
tion matrices given in Ref. [18] seem inconsistent. We also
checked that this potential problem has no significant impact
on our results for either |Vcb| or R(D∗) (with form factors

from the |Vcb| fit). Thus, an improvement in the presentation
of the data from both collaborations would be very welcome.

Another benefit of the knowledge of all form factors at
nonzero recoil is the possibility of calculating R(D∗) from
first principles. Our result

R(D∗)Lat = 0.265 ± 0.013 (93)

reaches a similar precision to that of the B → D�ν analy-
sis for R(D). Even though our calculation of R(D∗) involves
integrals of extrapolated quantities with large errors, the com-
bined error is relatively small due to the large correlations
between B(B → D∗τν) and B(B → D∗�ν). In this case,
the form factor that enter only in the determination of the
decay to a τ was computed with lattice input only. We have
also calculated a more precise value using form factors from
the |Vcb| fit, R(D∗)Lat+Exp = 0.2484(13). Our preferred SM
value is the one given in Eq. (93), which comes exclusively
from lattice QCD and avoids any experimental decay-rate
input.

The result in Eq. (93) confirms previous theoretical esti-
mates of R(D∗), as well as the current tension between the
SM and experiment in the R(D)-R(D∗) plane. Recent exper-
imental determinations of R(D∗) tend to reduce the ten-
sion, however. In fact, before Belle published results from
their untagged dataset [29], the tension was as large as 4σ ,
but the newest analysis has reduced it to 3σ , and remain-
ing tensions come mainly because of the influence of the
BaBar R(D) result [132]. An updated measurement of R(D)

could cast some light on the current tensions. Also, future
high-precision experimental measurements from Belle II and
LHCb are bound to become critical to determine whether
these quantities will agree with the SM in the end.

Together with more precise experimental measurements,
lattice-QCD form factors with a smaller uncertainty will also
be crucial for shedding light to this theory-experiment ten-
sion, as well as to the exclusive–inclusive tension in the deter-
mination of |Vcb|. We expect to reduce the uncertainties in
the form factors at nonzero recoil in future work, the first of
which is already in progress at the time of this publication.
The main sources of uncertainty in this work come from
statistics and the quark discretization errors. An improve-
ment in this area will require a modification in both the light
and the heavy-quark actions to allow for smaller systemat-
ics. Chiral-continuum-extrapolation errors can be reduced
by using a better discretization for light quarks and physi-
cal pion masses. Another area where we can reduce errors
is the renormalization, by using a nonperturbative calcula-
tion of the renormalization factors. Further validation of our
lattice-QCD result will come with independent analyses cur-
rently in progress by other lattice-QCD collaborations [133].
Similar improvements, with an expected reduction of errors,
can be applied to our calculation of B → D�ν form factors
at nonzero recoil [53]. A correlated analysis of both decays
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will allow a correlated determination of R(D) and R(D∗)
that could provide tighter theoretical constraints.

In this work, we also assess the impact of using an
improved CLN parametrization to describe the shape of the
form factors. Instead of using the fixed coefficients published
in Ref. [8], we employ the full covariance matrix that relates
the slope and curvature coefficients of the reference form
factor using data from the original CLN paper [8], and pass
this information as priors to a CLN fit. We also compute
the errors in the cubic coefficient, and update the values of
the ratios with respect to the reference form factor with val-
ues coming from one of the latest HQET calculations [15],
assuming a 20% error on each coefficient. Our updated CLN
parametrization gives a very similar central value and error
bar, compared with that of the BGL parametrization, but the
quality of fit decreases greatly when the lattice-QCD data are
included. CLN is very restrictive with the shape of certain
form factors, and because the lattice-QCD data have rela-
tively small errors, they introduce serious constraints in the
parametrization. Our findings reinforce the current consen-
sus of the community [108] to abandon CLN in favor of the
more flexible and rigorous BGL parametrization. The impact
of using improved HQE parametrizations, such as the one in
Refs. [119–121], should be nevertheless investigated.
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Appendix A: The chiral logs in our chiral-continuum
extrapolation

In this Appendix, we give further details on the chiral-
continuum extrapolation. In particular, we discuss the stag-
gered version of the chiral logs corresponding to the B →
D∗�ν case at nonzero recoil.

The chiral logs employed in Eq. (50) are derived following
Refs. [87,134]. Since in this analysis we do not use partially
quenched ensembles, the expressions employed are those of
full QCD with 2 + 1 flavors. Here we reproduce the expres-
sion of the logs for the different form factors for the sake of
completeness,

logsY
SU(3) = 1

16

∑
�

(
2F̄Y

π�
+ F̄Y

K�

)
− 1

2
F̄Y
πI

+ 1

6
F̄Y
ηI

+
∑

Ξ=V,A

a2δ′
Ξ

( m2
SΞ

− m2
πΞ

(m2
ηΞ

− m2
πΞ

)(m2
πΞ

− m2
η′
Ξ

)
F̄Y
πΞ

+ m2
ηΞ

− m2
SΞ

(m2
ηΞ

− m2
η′
Ξ

)(m2
ηΞ

− m2
πΞ

)
F̄Y
ηΞ

+
m2
SΞ

− m2
η′
Ξ

(m2
ηΞ

− m2
η′
Ξ

)(m2
η′
Ξ

− m2
πΞ

)
F̄Y
η′
ξ

)
. (A.1)

In the expression above Y = A1,2,3, and for the vector form
factor logsV

SU(3) = logsA1
SU(3). The index � goes over all

pseudoscalar meson fields of the effective theory, whereas
Ξ labels vector and axial counterparts. Explicit expressions
for the mass of a pseudoscalar meson P with taste Ξ , mPΞ ,
in terms of the parameters of the rooted staggered theory can
be found in Ref. [135]. The hairpin parameters, which come
from χPT disconnected diagrams, are marked as δ′

V,A. Both
vector and axial hairpin parameters are defined for the light-
est coarse ensemble a ≈ 0.12 fm to be δ′

A = −0.28(6) and
δ′
V = 0.00(7), and their value is obtained for other ensem-

bles by rescaling this number, assuming the hairpin parameter
scales as the root mean square of the taste splittings. The taste
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splittings along with the tree-level LEC B0 depend solely on
the lattice spacing and are given in Table 16. The values for
the hairpin parameters, as well as those quoted in Table 16,
were determined from fits to light-quark quantities by the
MILC Collaboration in Ref. [54]. Our results are insensitive
to the errors in the parameters quoted in the table, as well
as the errors in the hairpin parameters, since the chiral logs
are a very small contribution to our fit function in the region
where we have data.

The functions appearing in Eq. (A.1) are given by

F̄Y
j ≡ FY (w,m j ,−Δ(c)/m j ), (A.2)

where Δ(c) is the D-D∗ mass splitting that we take from
the PDG [2], assuming a charged meson. The error from the
PDG uncertainty, even if enlarged to cover a neutral-meson
mass difference, also has a negligible impact in the final fit.
The FY functions are defined as

F A1(w,m, x) = −2

[
I1(w,m, x) − 1

2
I3(w,m, x)

+ (w + 1)I1(w,m, 0)

+ (w2 − 1)I2(w,m, 0)

− 5

2
I3(w,m, 0)

]
, (A.3)

F A2(w,m, x) = −2

[
I1(w,m, x) + (w + 1)I2(w,m, x)

− I1(w,m, 0) − (w + 1)I2(w,m, 0)

]
,

(A.4)

F A3(w,m, x) = −2

[
− (w + 1)I2(w,m, x)

− 1

2
I3(w,m, x) + (w + 2)I1(w,m, 0)

+ w(w + 1)I2(w,m, 0) − 5

2
I3(w,m, 0)

]
,

(A.5)

with

I j (w,m, x) = −
[
m2xE j (w) + m2x2ln

(
m2

Λ2
χ

)
G j (w)

+ m2x2Fj (w, x)

]
. (A.6)

The functions E j (w) and G j (w) are

E1(w) = π

w + 1
, G1(w) = r(w) − w

2(w2 − 1)
, (A.7)

E2(w) = −π

(w + 1)2 , G2(w) = w2 + 2 − 3wr(w)

2(w2 − 1)2 , (A.8)

E3(w) = π, G3(w) = −1. (A.9)

Here r(w) is

r(w) = 1√
w2 − 1

ln(w +
√

w2 − 1). (A.10)

The Fj functions in general cannot be expressed in closed
form, and are defined as integrals,

F1(w, x) = 1

x2

∫ π/2

0
dθ

a

1 + w sin 2θ

{
π

(√
1 − a2 − 1

)

−2

[
1

2

√
a2 − 1 ln

(
1 − 2a(a +

√
a2 − 1)

)
− a

]}
,

(A.11)

F2(w, x) = 1

x2

∫ π/2

0
dθ

a sin 2θ

(1 + w sin 2θ)2

×
{

− 3π

2

(√
1 − a2 − 1

)
+ πa2

2
√

1 − a2

+
[(

3 − 4a2
√
a2 − 1

)(
−1

2
ln
(

1 − 2a(a +
√
a2 − 1)

))

−3a

]}
, (A.12)

F3(w, x) = 1

x

{
π
(√

1 − x2 − 1
)

− 2

×
[

1

2

√
x2 − 1 ln

(
1 − 2x(x +

√
x2 − 1)

)
− x

]}
,

(A.13)

where

a = x cos θ√
1 + w sin 2θ

. (A.14)

AppendixB:Estimation of thematching factors and their
errors

In this Appendix, we derive the renormalization factors for
the vector and axial-vector currents using heavy-quark effec-
tive theory (HQET) as an intermediary between lattice gauge
theory and continuum QCD [50,103]. We have calculated
the renormalization factors at one loop in perturbation the-
ory, sometimes using an expedient approximation described
below. These one-loop results are shown in Table 6. Here, we
use the notation pB = p, vB = v, pD∗ = p′, and vD∗ = v′.

Appendix B.1: HQET matching

The HQET description of lattice-QCD currents is [50]

Vμ .= C̄LGT
V‖ (w)vμc̄v′bv + C̄LGT

V⊥ (w)c̄v′ iγ μ
⊥bv
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Table 16 Taste splittings and
B0 LEC used to compute the
meson masses at tree level in
χPT

a (fm) r2
1a

2ΔI r2
1a

2ΔV r2
1a

2ΔT r2
1a

2ΔA r1B0

0.15 0.9851 0.7962 0.6178 0.3915 6.761

0.12 0.6008 0.4803 0.3662 0.2270 6.832

0.09 0.2207 0.1593 0.1238 0.0747 6.639

0.06 0.0704 0.0574 0.0430 0.0263 6.487

0.045 0.0278 0.0227 0.0170 0.0104 6.417

Continuum – – – – 6.015

+ C̄LGT
Vv′ (w)v′⊥

μc̄v′bv, (B.15)

Aμ .= C̄LGT
V⊥ (w)c̄v′ iγ μ

⊥γ 5bv − C̄V‖(w)LGTvμc̄v′γ 5bv

− C̄LGT
Vv′ (w)v′⊥

μc̄v′γ 5bv. (B.16)

where
.= means “has the same matrix elements as”. The cur-

rents on the left-hand side are lattice operators, while the
bilinears on the right-hand side are HQET operators (e.g.,
built from fields satisfying v/bv = ibv). Similarly, HQET
can be used to describe continuum-QCD currents.

Vμ .= C̄V‖(w)vμc̄v′bv + C̄V⊥(w)c̄v′ iγ μ
⊥bv

+ C̄Vv′ (w)v′⊥
μc̄v′bv, (B.17)

Aμ .= C̄V⊥(w)c̄v′ iγ μ
⊥γ 5bv − C̄V‖(w)vμc̄v′γ 5bv

− C̄Vv′ (w)v′⊥
μc̄v′γ 5bv, (B.18)

The only difference between the lattice and the continuum
currents lies in the short-distance coefficients; for Wilson-
like fermions, as used here,

lim
a→0

C̄LGT
J (w) = C̄J (w). (B.19)

Equations (B.15)–(B.18) are valid at zeroth order in 1/mQ ,
Q = c, b, which suffices here.8

To continue with the analysis, it is advantageous to write
explicitly the velocity and polarization vectors of our mesons.
Assuming the B meson to be at rest, and the D∗ to have
momentum p′ along the z axis:

v = (0, 0, 0, i) = p/MB, (B.20)

v′ = (0, 0,
√

w2 − 1, iw) = p′/MD∗ , (B.21)

v′⊥ = (0, 0,
√

w2 − 1, 0), (B.22)

v̂′⊥ ≡ v′⊥/(v′⊥ · v′⊥)1/2 = (0, 0, 1, 0), (B.23)

8 Matching at the next order in 1/mQ is possible in principle but cum-
bersome beyond the tree level.

ε± = (ε±, 0, 0), (B.24)

ε3 = (0, 0, w, i
√

w2 − 1), (B.25)

εs = v′, (B.26)

where ε± are two-component unit vectors in the xy plane.
For momenta in other directions, such as v′ ∝ (1, 1, 0) or
(1,−1, 1), one can rotate the spatial components accord-
ingly. Note that we pick v̂′⊥, and then we deduce ε±.

In this notation, v · v = −1, v′ · v′ = −1, and v · v′ =
−w.9 The polarization vectors satisfy ε̄m · εn = gmn for
(m, n) ∈ {+,−, 3, s} with gmn = diag(1, 1, 1,−1). The
bar on a polarization vector means to complex-conjugate the
spatial components, which arises if (as usual) ε± corresponds
to D∗ helicity ±1. (We use linear polarizations with real ε

but keep the ± notation.) The polarization vectors satisfy
v′ · ε±,3 = 0, and also v · ε± = 0.

These vectors can be used to isolate parts of the currents
with different matching factors:

−v · V .= C̄LGT
V‖ (w)c̄v′bv, (B.27)

v̂′⊥ · V .= C̄LGT
V⊥ (w)c̄v′ i v̂/′⊥bv +

√
w2 − 1C̄LGT

Vv′ (w)c̄v′bv,

(B.28)

ε± · V .= C̄LGT
V⊥ (w)c̄v′ i ε/±⊥bv, (B.29)

and similarly for V (without the superscript “LGT”) and for
A and A with c̄v′ → c̄v′γ 5.

In HQET, the matrix elements can be worked out with the
“trace formalism” [43]:

〈D∗|c̄v′Γ bv|B〉 = √MD∗MB tr
[
M̄D∗ΓMB

]
ξ(w), (B.30)

where ξ(w) is a form factor known as the “Isgur-Wise func-
tion”, and

MB = −1

2
(1 − iv/)γ 5, M̄D∗ = ε̄/

1

2
(1 − iv/′), (B.31)

9 These conventions also hold in Minkowski space when using the
metric gμν = diag(−1, 1, 1, 1) [103]. NB: in Minkowski space, μ ∈
{0, 1, 2, 3}; in Euclidean space, gμν = δμν and μ ∈ {1, 2, 3, 4}; x4 =
i x0.
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and similarly for M̄D and MD∗ . Then

tr
[
M̄D∗MB

] = 0, (B.32a)

tr
[
M̄D∗ iγ μ

⊥MB
] = εμναβ ε̄νv

′
αvβ, (B.32b)

tr
[
M̄D∗(−γ 5)MB

]
= i ε̄ · v, (B.32c)

tr
[
M̄D∗ iγ μ

⊥γ 5MB

]
= −i
[
(w + 1)ε̄

μ
⊥ + ε̄ · vv′⊥

]
,

(B.32d)

tr
[
M̄DMB

] = w + 1, (B.32e)

tr
[
M̄Diγ

μ
⊥MB
] = v′⊥

μ
, (B.32f)

tr
[
M̄D(−γ 5)MB

]
= 0, (B.32g)

tr
[
M̄Diγ

μ
⊥γ 5MB

]
= 0, (B.32h)

tr
[
M̄D∗MB∗

] = (w + 1)ε̄′ · ε + ε̄′ · v ε · v′,
(B.32i)

tr
[
M̄D∗ iγ μ

⊥MB∗
] = v

′μ
⊥ ε̄′ · ε − ε

μ
⊥ε̄′ · v − ε̄

′μ
⊥ ε · v′,

(B.32j)

tr
[
M̄D∗(−γ 5)MB∗

]
= ενραβ ε̄′

νερv′
αvβ, (B.32k)

tr
[
M̄D∗ iγ μ

⊥γ 5MB∗
]

= (δμ
τ + vμvτ )ε

τνραε̄′
ν(v + v′)αερ.

(B.32l)

With these results, physical combinations of the decomposi-
tions in Eqs. (B.15)–(B.18) can be more easily tracked. Note
that the sign convention for ε cancels in ratios introduced
below.

These expressions can be used to relate matrix elements
of continuum and LGT currents to each other, via HQET
and Eqs. (B.15)–(B.18). Thus, ZV V and ZAA have the same
matrix elements as V and A if one chooses matching factors
such that

Z̄V‖(w)v · V .= v · V, (B.33a)

Z̄Vv′ (w)v̂′⊥ · V .= v̂′⊥ · V, (B.33b)

Z̄V⊥(w)ε± · V .= ε± · V, (B.33c)

Z̄ A‖(w)v · A .= v · A, (B.33d)

Z̄ Av′ (w)v̂′⊥ · A .= v̂′⊥ · A, (B.33e)

Z̄ A⊥(w)ε± · A .= ε± · A. (B.33f)

From these requirements one finds

Z̄V‖(w) = C̄V‖(w)

C̄LGT
V‖ (w)

, (B.34a)

Z̄Vv′ (w) = C̄V⊥(w) + (w + 1)C̄Vv′
C̄LGT
V⊥ (w) + (w + 1)C̄LGT

Vv′
, (B.34b)

Z̄V⊥(w) = C̄V⊥(w)

C̄LGT
V⊥ (w)

, (B.34c)

Z̄ A‖(w) = C̄A‖(w)

C̄LGT
A‖ (w)

, (B.34d)

Z̄ Av′ (w) = C̄A⊥(w) + (w − 1)C̄Av′
C̄LGT

A⊥ (w) + (w − 1)C̄LGT
Av′

, (B.34e)

Z̄ A⊥(w) = C̄A⊥(w)

C̄LGT
A⊥ (w)

, (B.34f)

In anticipation of one-loop perturbative calculations, it is con-
venient to define

ρ̄J (w) = Z̄ J (w)

Z̄1/2
V‖,b̄b

(1)Z̄1/2
V‖,c̄c(1)

(B.35)

to cancel conventional field-normalization factors as well as
potentially large tadpole diagrams. The denominators can
be computed nonperturbatively. With a quantitative method
to compute matrix elements, one can obtain the matching
factors. For example, one can use quark states and expand
them in perturbative QCD.

Appendix B.2: Useful ratios

We start with the original double ratio

|RA1(1)|2 = 〈D∗(0, ε)|ε ·A|B(0)〉 〈B(0)|ε̄ ·A|D∗(0, ε)〉
〈D∗(0, ε)|v · V |D∗(0, ε)〉〈B(0)|v · V |B(0)〉 ,

(B.36)

which requires the matching factor

ρ̄2
A⊥(1) = Z̄2

A⊥(1)

Z̄V‖,b̄b(1)Z̄V‖,c̄c(1)
. (B.37)

To obtain the w dependence of all four form factors, we
define several further ratios:

QA1(w) = 〈D∗( p, ε)|ε±·A|B(0)〉
〈D∗(0, ε)|ε±·A|B(0)〉 , (B.38a)

X0(w) = 〈D∗( p, ε)|(−v ·A)|B(0)〉
〈D∗( p, ε)|ε±·A|B(0)〉 , (B.38b)

X1(w) = 〈D∗( p, ε)|v̂′⊥ ·A|B(0)〉
〈D∗( p, ε)|ε±·A|B(0)〉 , (B.38c)

XV (w) = 〈D∗( p, ε)|ε±·V |B(0)〉
〈D∗( p, ε)|ε±·A|B(0)〉 , (B.38d)

which require, respectively, the matching factors

Z̄ A⊥(w)

Z̄ A⊥(1)
= ρ̄A⊥(w)

ρ̄A⊥(1)
, (B.39a)

Z̄ A‖(w)

Z̄ A⊥(w)
= ρ̄A‖(w)

ρ̄A⊥(w)
, (B.39b)

Z̄ Av′ (w)

Z̄ A⊥(w)
= ρ̄Av′ (w)

ρ̄A⊥(w)
, (B.39c)
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Z̄V⊥(w)

Z̄ A⊥(w)
= ρ̄V⊥(w)

ρ̄A⊥(w)
, (B.39d)

Note that the form factor A1(q2) ∝ hA1(w), defined in
Eq. (87), comes directly from RA1 QA1(w), and V (q2) ∝
hV (w), defined in Eq. (86), comes directly from RA1 QA1

(w)XV (w), while the helicity amplitudes H0 and Hs are lin-
ear combinations of RA1 QA1(w)X0(w) and RA1 QA1(w)X1

(w). The helicity amplitudes H± come from A1 and V , but
it is presumably more convenient (or just as convenient) to
keep the axial and vector parts separate.

For the dynamic velocity consider the vector-current
matrix element

〈D∗( p, ε′)|Vμ|D∗(0, ε)〉
= ε̄′ · ε(p′ + p)μ f1(w)

+ terms proportional to v′ · ε, v · ε′. (B.40)

If we take the same transverse polarization, ε′ = ε = ε±, for
the initial and final D∗s, then

〈D∗( p)|(−v · V)|D∗(0)〉 = MD∗(w + 1) f1(w), (B.41)

〈D∗( p)|v̂′⊥ · V|D∗(0)〉 = MD∗
√

w2 − 1 f1(w), (B.42)

where v̂′⊥, defined in Eq. (B.23), is a unit vector in the direc-
tion of p, such as (0, 0, 1) or (1, 1, 0)/

√
2. On the right-hand

side of the second equation,
√

w2 − 1 is nothing but |v′⊥|, the
magnitude of v′⊥; that is, v′⊥ = √

w2 − 1v̂′⊥. Because V is
properly normalized, it measures the flavor charge, so the
form factor satisfies
f1(1) = 1.

Using the trace formalism, it is easy to show

〈D∗( p)|(−v · V )|D∗(0)〉 = MD∗(w + 1)C̄LGT
V‖ (w)ξ(w),

(B.43)

〈D∗( p)|v̂′⊥ · V |D∗(0)〉 = MD∗
√

w2 − 1[
C̄LGT
V⊥ (w) + (w + 1)C̄LGT

Vv′ (w)
]
ξ(w).

(B.44)

Taking the ratio, the form factor drops out:

〈D∗( p)|v̂′⊥ · V |D∗(0)〉
〈D∗( p)|(−v · V )|D∗(0)〉

= |v′⊥|
w + 1

C̄LGT
V⊥ (w) + (w + 1)C̄LGT

Vv′ (w)

C̄LGT
V‖ (w)

, (B.45)

but a matching factor remains.10 The analogous equations
for V shows that f1(w) = C̄V‖(w)ξ(w) and C̄V‖(w) =
C̄V⊥(w) + (w + 1)C̄Vv′ (w).

Appendix B.3: Expedient approximation

Calculating the full w dependence of the Z̄ J at the one-loop
level is, in general, very cumbersome. From Ref. [50], how-
ever, we have

lim
mca→0

Z̄ J‖(w) = Z J‖ , (B.46)

lim
mca→0

Z̄ J⊥(w) = Z J⊥ , (B.47)

lim
mca→0

Z̄ J⊥C̄
LGT
Jv′ (w) = Z J⊥C̄Jv′ (w)

⇒ lim
mca→0

Z̄ Jv′ (w) = Z J⊥ . (B.48)

Then we can approximate,

ρ̄A⊥(w)

ρ̄A⊥(1)
≈ 1 ± αV (q∗)ρ[1]

max(w − 1)m2ca, (B.49a)

ρ̄A‖(w)

ρ̄A⊥(w)
≈ ρA‖

ρA⊥
± αV (q∗)ρ[1]

maxm2ca, (B.49b)

ρ̄Av′ (w)

ρ̄A⊥(w)
≈ 1 ± αV (q∗)ρ[1]

maxm2ca, (B.49c)

ρ̄V⊥(w)

ρ̄A⊥(w)
≈ ρV⊥

ρA⊥
± αV (q∗)ρ[1]

maxm2ca, (B.49d)

where ρ
[1]
max = 0.352 is the largest one-loop coefficient that

we find among the computable one-loop coefficients. For
lack of a better choice, we set q∗ = 2/a, as in other papers.

In the limit mca → 0, the matching factor in the veloc-
ity tends to 1. We could use an uncertainty like that in
Eq. (B.49c), but that seems to be an unecessary complica-
tion. A little algebra shows that the mismatch in w is very
small:

w ≈ wLGT ± αV (q∗)ρ[1]
max(w

2 − 1)m2ca, (B.50)

while the mismatch in z is

z ≈ zLGT
[

1 ± αV (q∗)2ρ[1]
max

1 + z

1 − z
m2ca

]
. (B.51)

Appendix C: Heavy quark mistuning corrections proce-
dure

We tune the heavy-quark masses (κb and κc) for clover quarks
in the Fermilab interpretation using the procedure described
in Ref. [22]. In brief, in a mass-independent scheme for the

10 We overlooked this factor in previous papers [52,53,136].
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Table 17 Simulation values κ ′
c

and κ ′
b employed in the

calculation of the form factors
compared with their more
precisely tuned values κc and κb
[22]. The first error in κb and κc
includes statistical and fitting
contributions; the second one
comes from scale setting

a (fm) aml/ams κ ′
b κb κ ′

c κc

≈ 0.15 0.0097/0.0484 0.0781 0.0775(16)(3) 0.1218 0.12237(26)(20)

≈ 0.12 0.02/0.05 0.0918 0.0868(9)(3) 0.1259 0.12423(15)(16)

0.01/0.05 0.0901 0.0868(9)(3) 0.1254 0.12423(15)(16)

0.007/0.05 0.0901 0.0868(9)(3) 0.1254 0.12423(15)(16)

0.005/0.05 0.0901 0.0879(9)(3) 0.1254 0.12452(15)(16)

≈ 0.09 0.0124/0.031 0.0982 0.0964(7)(3) 0.1277 0.12710(9)(14)

0.0062/0.031 0.0979 0.0965(7)(3) 0.1276 0.12714(9)(14)

0.00465/0.031 0.0977 0.0966(7)(3) 0.1275 0.12718(9)(14)

0.0031/0.031 0.0976 0.0967(7)(3) 0.1275 0.12722(9)(14)

0.00155/0.031 0.0976 0.0972(7)(3) 0.1275 0.12737(9)(14)

≈ 0.06 0.0072/0.018 0.1048 0.1050(5)(2) 0.1295 0.12955(4)(11)

0.0036/0.018 0.1052 0.1051(5)(2) 0.1296 0.12957(4)(11)

0.0025/0.018 0.1052 0.1052(5)(2) 0.1296 0.12960(4)(11)

0.0018/0.018 0.1052 0.1054(5)(2) 0.1296 0.12964(4)(11)

≈ 0.045 0.0028/0.014 0.1143 0.1116(3)(2) 0.1310 0.130921(16)(7)

Table 18 Ensemble and kappa parameters used to calculate the mistun-
ing correction [22]. The values in bold are the uncorrected simulation
values for this ensemble. Not all combinations are available, since we

change only one quark mass at a time while keeping the other quark
mass fixed to its uncorrected value

a (fm) aml/ams Available κ ′
b Available κ ′

c

≈ 0.12 0.01/0.05 0.0901, 0.860, 0.820 0.1254, 0.1280, 0.1230

lattice scale, set by r1 = 0.3117(22) fm [64], we tune the
heavy-quark masses so that the kinetic masses M2 of the Bs

and Ds mesons agree with their experimental values [64,70].
Historically, the tuning was done in two stages. A prelimi-
nary, lower-statistics study set the heavy-quark masses used
in the simulation to generate the two- and three-point cor-
relators in the present study. A subsequent, higher-statistics
study was then possible, and it gave slightly different kappa
values, as shown in Table 17. We denote the simulation val-
ues with κ ′

c and κ ′
b and the refined values with κc and κb. As

in Ref. [22], we proceed to correct our results for the slight
mistuning and, in the process, estimate the systematic error
associated with the correction.

The correction procedure is based on a single a ≈ 0.12
fm ensemble. A full set of two- and three-point correlation
functions were calculated at slightly shifted values of κ ′

b and
κ ′
c, as shown in Table 18. The shifted values were chosen

close to both the corrected and simulation kappa values. With
these data, we then estimate the derivatives of the form fac-
tors and the recoil parameter with respect to the heavy quark
masses. By expressing these results in dimensionless terms,
we can extrapolate them to other ensembles with different
light-quark masses and lattice spacings. As a departure from
Ref. [53], we perform the correction after the renormalization
factors have been applied.

The first step is to construct the combinations of ratios we
need to correct. Clever combinations can remove a depen-
dence on the recoil parameter or vanish at zero recoil. We
can use this information to improve the precision of the cor-
rections. In this case, we define the following quantities:

A = (1 − x2
f )RA1 , (C.52)

V = Xv

x f
, (C.53)

B0 = X0

x f
, (C.54)

B1 = X1 − 1

2x2
f

, (C.55)

C1 = X1 + 1

2
, (C.56)

At zero recoil we expectC1 → 1, since X1 → 1 in that limit.
Although x f vanishes when w → 1, the combinations are
designed to give a finite value at zero recoil. In fact, it is easy
to reconstruct the form factors using these building blocks,

hA1 = A, (C.57)

hV = AV, (C.58)

hA2 = A(C1 + B1 − B0), (C.59)

hA3 = A(C1 − B1). (C.60)
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Table 19 Results of the κ correction fits

Heavy quark aw aA bA bV bB0 bB1 aC1

Bottom – 1.6(1.5) − 0.23(13) 0.37(14) − 0.65(15) − 0.35(37) − 0.17(17)

Charm 1.14(11) − 0.79(55) − 0.010(31) 0.186(84) 0.297(78) − 0.47(30) − 0.38(14)

Table 20 Effect of the mistuning adjustments in the form factors and
the recoil parameter of the a ≈ 0.12 fm ensemble used to compute
the correction. Only the final error is shown in the table. The error for
w seems to decrease with the correction, but the relevant quantity is

w − 1, for which the error either stays the same or increases. The cor-
rection (and its error) is highly correlated with w − 1, as it is directly
proportional to it

Momentum (0, 0, 0) (1, 0, 0) (2, 0, 0)

Raw Tuned Raw Tuned Raw Tuned

w 1.0(0) 1.0(0) 1.0402(40) 1.0374(37) 1.134(21) 1.125(20)

hA1 0.901(13) 0.906(13) 0.858(21) 0.863(21) 0.816(30) 0.824(30)

hA2 – – − 0.43(15) − 0.40(16) − 0.49(17) − 0.46(17)

hA3 – – 0.98(12) 0.96(12) 1.02(12) 1.01(12)

hV – – 1.106(85) 1.098(85) 1.05(11) 1.04(11)

The last quantity corrected is the recoil parameter, defined as
in Eq. 21, with a trivial dependence on κb.

We estimate the derivative by taking finite differences
between the observables in Eqs. (C.52)–(C.56) calculated
in the standard run and one of the correction runs listed in
Table 18. The derivative is taken with respect to ξα = 1/am2α

with α = b, c, where the kinetic mass am2α is defined as

1

am2α

= 2

am0α(2 + am0α)
+ 1

1 + am0α

, (C.61)

and the bare quark mass is calculated using the tadpole-
improved, tree-level formula

am0α = 1

u0

(
1

2κα

− 1

2κcr

)
. (C.62)

Here u0 is the tadpole parameter, and κcr is the value of κ at
which the clover-quark pion becomes massless. We calculate
the derivatives of each observable for each available value of
the recoil parameter. When computing the correction for the
b quark, since the κ ′

b = 0.860 simulation value is so close to
the tuned value of κb, we do not use the data coming from
κ ′
b = 0.820.

In general, the calculated derivative is small for all recoil
values, and the errors are large enough that we can consider a
linear dependence on w − 1 for all derivatives. Nonetheless,
we can exploit some good properties of our observables in
order to reduce the number of free parameters. For instance,
dC1/dξα(w = 1) = 0, since C1 = 1 in that limit, so we
can set the constant term to zero. Also, the derivatives of
V, B0,1 change very little with w − 1 compared with their
errors. Thus, we can safely assume these derivatives behave
as constants in the small recoil range we are considering. In
fact, these quantities are derived from ratios of form factors

hX/hA1 , which should depend only weakly on w. These sim-
plifications are not only welcome, they are necessary since
for V, B0,1,C1 we have only two values of the recoil param-
eter available, so our fits can have one degree of freedom.
The observable A is not a ratio per se, but it is calculated
at zero recoil as well, and a clear dependence with w arises.
Finally, it is obvious that dw/dξc(w = 1) = 0, and we can
apply the same treatment as for C1. Summarizing, we fit our
data to the expressions,

dw

dξc
= aw,c(w − 1), (C.63)

d A

dξc
= aA,c(w − 1) + bA,c, (C.64)

dV

dξc
= bV,c, (C.65)

dB0

dξc
= bB0,c, (C.66)

dB1

dξc
= bB1,c, (C.67)

dC1

dξc
= aC1,c(w − 1), (C.68)

dw

dξb
= 0, (C.69)

d A

dξb
= aA,b(w − 1) + bA,b, (C.70)

dV

dξb
= bV,b, (C.71)

dB0

dξb
= bB0,b, (C.72)
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dB1

dξb
= bB1,b, (C.73)

dC1

dξb
= aC1,b(w − 1). (C.74)

All fits are unconstrained and result in a p value exceed-
ing 0.5. Our final corrections are gathered in Table 19. These
values are used to correct the form factors for all ensembles.
As an example, we show in Table 20 how this tuning modi-
fies the calculated form factors for the ensemble used in the
correction.

Appendix D: Full covariance matrix of the chiral-
continuum extrapolation results

Future work with the lattice-QCD form factors computed
here can start with the synthetic data generated for the
z expansion. We provide these data for the form factors in the
BGL and HQET notation, along with their correlation matrix,
in the ancillary files included in this paper. We also include the
values and correlation matrix of the BGL z expansion coeffi-
cients resulting from our preferred fits from Sects. 5.1.1 and
5.2, using only lattice-QCD data (the quadratic fit in Table 11)
and lattice QCD plus experimental data (the last column in
Table 12). Our BGL lattice-QCD-only fit can be reproduced
by fitting the included synthetic data in the BGL notation
to the BGL expansion described in Sect. 5.1, and using the
constraint at zero recoil given in Eq. (72) to remove c0.

Appendix D.1: Reading the data

The data is provided in Python format using the gvar pack-
age [137]. The synthetic data points can be read from the file
SynthData.PyDat using the following code:

import gvar

data = gvar . load("SynthData .PyDat")
corr = gvar . evalcorr (data)

After execution, data holds a dictionary whose keys are
in the format F(w), where F = g, f, F1 or F2 for
the g, f , F1 and F2 form factors in the BGL notation, or
F = hA1, hA2, hA3 or V for the hAi and hV form
factors in the HQET notation, and w is the recoil parameter,
w = 1.03, 1.10, 1.17. The hX form factors are also avail-
able at zero recoil, but the extra data point at w = 1.00 is not
independent and should be used only if one of the other avail-
able points is removed. The last line stores the correlations
between the different synthetic data points in a dictionary
called corr. One can access any correlation by invoking the

paircorr[F(w1),G(w2)], whereF andG are the two rel-
evant form factors, and w1 and w2 are the recoil parameters
at which the correlation should be evaluated.

The z-fit results are stored in the fileFitResults.PyDat
and can be read following the same procedure. The dictionary
keys in this case are in the formatFIT_xj, whereFIT can be
eitherLQCD for the lattice-QCD-only fit, orLQCDEXP for the
fit including lattice-QCD and experimental data, and xj =
a0, a1… are the different coefficients of the z expansion
a0, a1… Our final result for |ηEW|2|Vcb|2 is stored under the
key LQCDEXP_eVcb, and the results for R(D∗) are stored
as LQCD_RDst and LQCDEXP_RDst.
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