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Abstract We determine the bottom quark mass m̂b from
QCD sum rules of moments of the vector current correla-
tor calculated in perturbative QCD to O(α̂3

s ). Our approach
is based on the mutual consistency across a set of moments
where experimental data are required for the resonance con-
tributions only. Additional experimental information from
the continuum region can then be used for stability tests
and to assess the theoretical uncertainty. We find m̂b(m̂b) =
(4180.2 ± 7.9) MeV for α̂s(MZ ) = 0.1182.

1 Introduction

Highly precise values of the charm and bottom quark masses
can be obtained in QCD perturbation theory, because they are
sufficiently large to suppress non-perturbative effects. The
object of interest is the vector current correlation function,
which can be studied experimentally in a clean environment
in electron-positron annihilation. Furthermore, by consider-
ing moments of the correlator one arrives at theoretically
most accessible inclusive observables, which – at least in the
case of the vector current – offers excellent perturbative con-
vergence even in the context of the charm quark mass, mc,
where the strong coupling, αs(mc) ∼ 0.4, is not all that small.
By the specific method [1] reviewed in Sect. 2, which is a
concrete implementation of the general QCD sum rule idea
[2,3], we were able to determine mc with a controlled theory
uncertainty [4], competitive even with the results from lat-
tice gauge theory simulations [5], and in excellent agreement
with them [6].

In the case of the bottom quark mass, mb, lattice gauge
theory faces an impediment, as the strong interaction scale of
O(mρ) differs significantly from mb itself. By contrast, this
separation of scales is a virtue in any approach effectively uti-
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lizing the operator product expansion (OPE). Together with
the smaller value of the strong coupling, αs(mb) ∼ 0.23, this
turns the QCD sum rule approach into the method of choice
to determine mb.

On the other hand, much less experimental information is
available on the bottom quark current correlator compared
to that of the charm quark. This is because the bb̄ electro-
production cross section is by more than an order of mag-
nitude smaller than non-bb̄ quark production, so that B tag-
ging is needed in order to determine the exclusive cross sec-
tion. Furthermore, while formally the domain of the disper-
sion integration extends to infinite energy, the experimentally
scanned kinematical region for bottom meson pair produc-
tion does not exceed

√
s ≈ 11.2 GeV, leaving a roughly four

times smaller window in relative comparison to open charm
production. Fortunately, this problem can be solved by con-
sidering higher moments, which in contrast to the charm case
[4,7–9] is a viable option for mb.

The essential feature of our approach (Sect. 2) is that the
masses and electronic decay widths of the low-lying ϒ res-
onances provide sufficient experimental knowledge to deter-
mine mb, as long as the 0th moment is considered along-
side the more standard positive-n moments. We may then
use the limited experimental information from the contin-
uum region that is available to test the stability of our results
in Sect. 3 as a function of the moment number, and to con-
trol (in fact over-constrain) the theoretical uncertainty (see
Sect. 4). We present our conclusions and a comparison with
other approaches in Sect. 5.

2 Moment sum rules

The transverse part of the correlation function �̂q(t) (quan-
tities marked with a caret are defined in the MS renormaliza-
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tion scheme) of two heavy quark vector currents obeys the
subtracted dispersion relation [10],

12π2 �̂q(0) − �̂q(−t)

t
=

∞∫

4m̂2
q

ds

s

Rq(s)

s + t
, (1)

where Rq(s) = 12π Im�̂q(s), and where m̂q = m̂q(m̂q) is
the heavy quark mass. Taking derivatives in the limit t → 0,
one obtains the moments [2,3,11],

Mn := 12π2

n!
dn

dtn
�̂q(t)

∣∣∣∣
t=0

=
∞∫

4m̂2
q

ds

sn+1 Rq(s) (n ≥ 1).

(2)

A 0th moment [1] can also be defined,

M0 := − lim
t→∞

[
�̂(−t) − �̂∞(−t)

]

=
∞∫

m̂2
q

ds

s

[
Rq(s) − R∞

q (s)
]
, (3)

provided the limit t → ∞ and the integration over Im�̂(s)
at s → ∞ is regularized by properly chosen subtractions
�̂∞(−t) and R∞

q (s) [1,4].M0 is then obtained from the dis-

persion relation for the difference �̂q (−t)−�̂q(0) where the
(unphysical) constant �̂q(0) is subtracted. The subtraction
and the explicit sum rule for M0 will be given below.

The left-hand sides of Eqs. (2) and (3) can be calculated
in perturbative QCD (pQCD) order by order in the strong
coupling α̂s(m̂q) as a function of m̂q . On the right-hand side
one can use the optical theorem to relate Rq(s) to the cross
section for heavy quark production in e+e− annihilation. It
can be split into a contribution from a small number of narrow
resonances below the heavy quark production threshold and
a continuum contribution above,

Rq(s) = Rres
q (s) + Rcont

q (s). (4)

One possible method to determine m̂q is thus to combine
data, where available, for the evaluation of the integrals on
the right-hand side of Eqs. (2) and (3) with predictions from
pQCD at large s where there are no data. This approach has
been followed, for example, in Refs. [7,9,12–14]. A certain
amount of modeling is necessary since experimental infor-
mation about Rq(s) is restricted to relatively small energies.

Here, we will choose a different strategy. The idea is to
describe the continuum region above the heavy quark pro-
duction threshold on average only, not having to rely on local
quark-hadron duality. We follow Refs. [1,4] and use the sim-
ple ansatz,

Rcont
q (s) = 3Q2

qλ
q
1(s)

√
1 − 4 m̂2

q(2M)

s′

×
[

1 + λ
q
3

(
2 m̂2

q(2M)

s′

)]
, (5)

where 3Q2
qλ

q
1(s) is the zero-mass limit of Rq(s) and s′ :=

s+4[m̂2
q(2M)−M2]. Note that using the variable s′ ensures

that the physical threshold is at
√
s = 2M where M is taken

as the mass of the lightest pseudoscalar meson, i.e. in the
case of the bottom quark, M = MB± = 5.27934 GeV [6].
This ansatz guarantees a smooth transition between the onset
of the heavy quark production threshold at 2M and pQCD at
large s, including a leading m̂2

q/s pQCD correction. Since we
only need to consider moments, fine details of the ansatz are
not very important. However, we will also investigate varia-
tions of our ansatz where the resonances above the threshold
4M2, ϒ(4S), ϒ(5S), and ϒ(6S), are explicitly added to the
expression (5).

The two unknowns, namely the heavy quark mass m̂q (m̂q),
and the single free parameter in Eq. (5), λ

q
3 , will be deter-

mined from Eq. (3) and one of the Eqs. (2). The other
moments are then fixed and can be used to check the consis-
tency of the approach [4]. Thus, besides the value of M ,
only the masses and electronic decay widths of the low-
lying resonances are needed as the experimental input to
extract m̂q(m̂q). The quark mass and λ

q
3 can, in principle,

be determined from any combination of two moments. But
only including the 0th moment provides the leverage to suf-
ficiently break the correlation between λ

q
3 from m̂q . The par-

ticular details of the ansatz proposed in Eq.(5) are of minor
importance when consistency across pairs of moments is
found.

We now give the explicit expressions needed for our
numerical evaluation. From now on we particularize to
the bottom quark case, in which we may neglect higher-
dimensional operators in the OPE, such as from the gluon
condensate.1 Perturbative QCD predictions for the positive
moments can be cast into the form,

MpQCD
n = 1

4

(
1

2m̂b(m̂b)

)2n

Ĉn , (6)

with

Ĉn = C (0)
n +

(
α̂s

π
+ αem

12π

)
C (1)
n + α̂2

s

π2C
(2)
n

+ α̂3
s

π3C
(3)
n + O(α̂4

s ), (7)

where α̂s = α̂s(m̂b(m̂b)). The coefficients Ĉn are known
[15–20] up to O(α̂3

s ) for n ≤ 4, and up to O(α̂2
s ) for the rest

1 A positive gluon condensate reduces m̂b(m̂b) by at most 0.2 MeV with
only mild moment dependence, which is well below other uncertainties.
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Table 1 Coefficients C (i)
n for the perturbative expansion of the QCD

moments entering Eq. (7). The values quoted with an uncertainty are
taken from Ref. [23]

n C (0)
n C (1)

n C (2)
n C (3)

n

1 1.0667 2.5547 3.1590 −7.7624

2 0.4571 1.1096 3.2320 −2.6438

3 0.2709 0.5194 2.0677 −1.1745

4 0.1847 0.2031 1.2205 −1.386

5 0.1364 0.0106 0.7023 −2.29 ± 1.2

6 0.1061 −0.1159 0.4304 −2.73 ± 1.8

7 0.0856 −0.2033 0.3358 −2.85 ± 2.3

8 0.0709 −0.2660 0.3701 −2.80 ± 2.7

9 0.0601 −0.3122 0.4988 −2.75 ± 3.1

10 0.0517 −0.3470 0.6979 −2.68 ± 3.4

[21,22]. The numerical values required for our analysis are
collected in Table 1.

Since we evaluate the moments up to O(α̂3
s ), we use the

predictions for n > 4 provided in Ref. [23], inducing the
uncertainties shown in the table. In the approach of Ref. [23],
based on the Mellin–Barnes transform, the two-point corre-
lator at O(α3

s ) is reconstructed from the Taylor expansion
at q2 = 0, the threshold expansion at q2 = 4m̂2

q , and the
high-energy expansion at q2 → ∞. The reconstruction is
analytic and systematic, and is controlled by an error func-
tion which becomes smaller as more terms in the expansions
are known. Once the correlator is reconstructed, one can cal-
culate the moments in Eq. (2). An overview of our theory
errors for the moments up to n = 7 is shown in Fig. 1. An
alternative prediction of these coefficients in Ref. [24] has
quoted errors that are smaller by one order of magnitude or
more, leading to a total error in the extracted m̂b about an
MeV smaller, but we believe that the conservative approach
of Ref. [23] is a better reflection of the corresponding error.

We shall approximate the contributions of the narrow res-
onances by δ-functions,

Rres
b (s)=

∑
R=ϒ(1S),ϒ(2S),ϒ(3S)

9π

α2
em(MR)

MR	e
Rδ(s−M2

R),

(8)

where the masses MR and electronic widths 	e
R [6] are listed

in Table 2. The values of the running fine structure constant
at the resonance are also given in the table.2

Finally, we need the regularized expression for M0,
which requires to subtract the zero-mass limit of Rb(s) =
3Q2

bλ
b
1(s). While it is known to order O(α̂4

s ), we need only
the third-order expression [26],

2 The values forαem(MR)were determined with the help of the program
hadr5n12 [25].

λb1(s) = 1 + α̂s

π
+ 3Q2

bαem

4π

(
1 − 1

3

α̂s

π

)

+ α̂2
s

π2

[
365

24
− 11ζ(3) + nb

(
2

3
ζ(3) − 11

12

)]

+ α̂3
s

π3

[
87029

288
− 121

8
ζ(2) − 1103

4
ζ(3) + 275

6
ζ(5)

+ nb

(
−7847

216
+ 11

6
ζ(2) + 262

9
ζ(3) − 25

9
ζ(5)

)

+n2
b

(
151

162
− ζ(2)

18
− 19

27
ζ(3)

)]
, (9)

where α̂s = α̂s(
√
s), αem = αem(

√
s), and nb = 5 is the total

number of active flavors. Using the results of Refs. [27,28],
the sum rule for M0 defined in Eq. (3) reads explicitly,

∑
resonances

27π	e
R

MRα2
em(MR)

+
∞∫

4M2

ds

s

[
3Rcont

b (s) − λb1(s)
]

−
4M2∫

m̂2
b

ds

s
λb1(s) = −5

3
+ α̂s

π

[
4ζ(3) − 7

2

]
+ α̂2

s

π2

×
[

2429

48
ζ(3) − 25

3
ζ(5) − 2543

48
+ nb

(
677

216
− 19

9
ζ(3)

)]

+ α̂3
s

π3 A3 = −1.667 + 1.308
α̂s

π
+ 2.192

α̂2
s

π2 − 8.117
α̂3
s

π3 ,

(10)

where α̂s = α̂s(m̂b). The third-order coefficient A3 is avail-
able in numerical form [4,24,29],

A3 = −9.863 + 0.399 nb − 0.010 n2
b . (11)

In the last line of Eq. (10) we show the numerical values
for nb = 5. The onset of the continuum is at 2M , the pseu-
doscalar threshold. The lower integration limit in the subtrac-
tion term involving λb1(s) is, in principle, arbitrary, but is set
to m̂2

b in concordance with the choice to evaluate α̂s on the
right-hand side of Eq. (10) at scale m̂b. In our numerical anal-
ysis we use the reference value α̂s(MZ ) = 0.1182 as input.
With five-loop running [32–35] and four-loop matching [36]
of α̂s , this corresponds to α̂s(m̂b(m̂b)) = 0.225.

For both the theoretical predictions of the moments and
the contributions from resonances and continuum to the sum
rules one has to assess the uncertainties. To assign a trunca-
tion error to the pQCD prediction of the moments we follow
the method proposed in Refs. [1,4] and consider the largest
group theoretical factor in the next un-calculated perturbative
order,

�M(i)
n = ±Q2

q NCCFC
i−1
A

[
α̂s(m̂q)

π

]i [ 1

2m̂q(m̂q)

]2n

,

(12)
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Fig. 1 The theoretical
moments MpQCD

n in Eq. (6)
(multiplied by 102n+1 GeV4n+2)
for the reference value
m̂b(m̂b) = 4.180 GeV at
different orders in α̂s . Blue
squares show results at O(α̂s),
red circles include O(α̂2

s ) terms,
and green triangles refer to the
full O(α̂3

s ). The error bars are
the truncation uncertainties from
Eq. (12) at the given order

Table 2 Resonance data [6]
used in the analysis. The
uncertainties from the resonance
masses are negligible. The first
three resonances are below the
continuum threshold and define
Rres
b (s), while the higher ones

will be needed later when we
evaluate the theoretical
uncertainties

R MR [GeV] 	R 	e
R [keV] α2

em(0)/α2
em(MR)

ϒ(1S) 9.46030 54.02 (1.25) keV 1.340 (18) 0.931308

ϒ(2S) 10.02326 31.98 (2.63) keV 0.612 (11) 0.930113

ϒ(3S) 10.3552 20.32 (1.85) keV 0.443 (8) 0.929450

ϒ(4S) 10.5794 20.5 (2.5) MeV 0.272 (29) 0.929009

ϒ(5S) 10.8852 37 (4) MeV 0.31 (7) 0.928415

ϒ(6S) 11.000 24 (7) MeV 0.130 (30) 0.928195

(NC = CA = 3, CF = 4/3). Alternatively, the dependence
on the renormalization scale is often used to estimate theory
errors, where, for example, in Refs. [9,13] the scale was var-
ied between 5 and 15 GeV. Our prescription is more conser-
vative, as has already been observed in our previous analysis
[4] of the charm quark mass.

In order to determine the error from the continuum con-
tribution we proceed as follows. First, we choose a pair of
moments (M0,Mn) from which m̂b(m̂b) and λb3 are deter-
mined. Then we input this value of m̂b(m̂b) into Eq. (5) and
integrate with the weight corresponding to the 0th moment
as in Eq. (3), but with the energy integration range restricted
to the threshold region, 2MB ≤ √

s ≤ 11.20 GeV. As this is
a function of λb3, we can adjust its value to coincide with the
corresponding integral over the experimentally determined
threshold region (see Sect. 4) yielding an experimental value,
denoted λ

b,exp
3 . In the final step, we use λ

b,exp
3 in the nth

moment sum rule to re-calculate m̂b(m̂b), and treat the dif-
ference between these two m̂b(m̂b) values as an additional
uncertainty. It serves as a control of the error component asso-
ciated with the entire methodology which we will denote by
λb3 
= λ

b,exp
3 . For example, neglected non-perturbative con-

tributions to the moments such as from condensates or from

residual duality violations would become visible in the com-
parisons of the values λb3 from the theoretical moments with

λ
b,exp
3 . The experimental errors in the threshold data induce

an uncertainty �λ
b,exp
3 in λ

b,exp
3 itself, which we will also

need to account for.

3 Numerical results and determination of m̂b

We have analyzed the determination of m̂b(m̂b) from dif-
ferent pairs of moments and using different prescriptions to
include resonances on top of the continuum. The results are
shown in figures and tables in this section. We find that the
largest source of uncertainty is from the continuum contri-
bution. Indeed, the values of λb3 derived from the mutual

consistency of the moments deviate from λ
b,exp
3 determined

from data if none of the resonances above threshold are taken
into account explicitly. The lower moments are more sensi-
tive to the continuum region, and this deviation indicates that
the simple ansatz using only Rcont

q (s) from Eq. (5) does not
capture the strong onset of the cross section for energies just
above the threshold for open bottom production. As a con-
sequence, stable results are not reached for lower moments.
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Fig. 2 Rb(s) from ISR corrected BaBar [37] data (red points) and
from Belle [38] data (black points) compared with different choices
for our ansatz for continuum plus resonances. The blue dashed line is
the pQCD prediction for Rb(s). Upper plot: Continuum ansatz without
resonances extended up

√
s = 13 GeV above the range where data are

available. Middle row: Continuum ansatz including Gamma distribu-
tions for the ϒ(4S) and ϒ(5S) resonances. In the left plot (our default

choice) widths 	R from the PDG data are used (see Table 2), while
in the right plot the widths are tuned to match the local description
of the data, 	̃ϒ(4S) = 29 MeV and 	̃ϒ(5S) = 165 MeV. Lower row:
Alternative choices including only the ϒ(4S) resonance on top of the
continuum (left, 	̃ϒ(4S) = 29 MeV), or the three resonances ϒ(4S),
ϒ(5S), and ϒ(6S) (right, 	̃ϒ(4S) = 29 MeV, 	̃ϒ(5S) = 192 MeV,
	̃ϒ(6S) = 139 MeV)

However, the stability improves greatly with the inclusion of
the ϒ(4S) and ϒ(5S) states. We parametrize them as Gamma
distributions,

Rres,Gamma
b (s) =

∑
R=ϒ(4S),ϒ(5S)

× 9π

α2
em(MR)

	e
RMRGamma(s − 4M2

B |α, β), (13)

123
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Table 3 Above the double line: values of m̂b(m̂b) (in MeV), λb3 and

λ
b,exp
3 , determined from different pairs of moments as described in the

text, where the ϒ(4S) and ϒ(5S) resonances have been added explic-
itly to the ansatz in Eq (5). Below the double line: breakdown of the
uncertainties in m̂b(m̂b) followed by the total errors. The dependence

on α̂s is shown in the next-to-last line, where the minus sign indicates
that m̂b decreases when α̂s is increased relative to the reference value
α̂s(MZ ) = 0.1182. The last line contains the uncertainty induced from
�α̂s(MZ ) = ±0.0016, i.e. the error obtained from the global fit to elec-
troweak precision data [6]. See also Fig. 3 for a graphical representation
of these results

(M0,M1) (M0,M3) (M0,M5) (M0,M6) (M0,M7) (M0,M8)

m̂b(m̂b) 4224.0 4187.4 4181.1 4180.4 4180.2 4180.1

λb3 1.45 1.52 1.53 1.53 1.53 1.53

λ
b,exp
3 0.85 (20) 0.83 (20) 0.82 (20) 0.82 (20) 0.82 (20) 0.82 (20)

Resonances 12.3 6.8 4.3 3.7 3.2 2.8

Truncation 2.9 2.9 4.1 5.0 6.3 7.9

λb3 
= λ
b,exp
3 −113.7 −28.5 −9.3 −5.6 −3.5 −2.2

�λ
b,exp
3 39.0 8.2 2.6 1.6 1.0 0.6

Total 120.9 30.6 11.3 8.5 7.9 8.7

103�α̂s(MZ ) −5.54�α̂s −0.93�α̂s −0.28�α̂s −0.18�α̂s −0.11�α̂s −0.07�α̂s

EW fit ∓8.9 ∓1.5 ∓0.5 ∓0.3 ∓0.2 ∓0.1

where

Gamma(x |α, β) := βα

	(α)
xα−1e−βx , (α > 0, β > 0),

(14)

and α and β are chosen such that the peak location MR and
the second derivative coincide with those of a relativistic
Breit–Wigner distribution with width 	̃R ,

α = 1 + 2
3
√

π

(M2
R − 4M2

B)2

	̃2
RM

2
R

, β = α − 1

M2
R − 4M2

B

. (15)

We use the peak positions MR and total width 	R of the
resonances as given in Ref. [6] and collected above in Table 2.

In order to understand why the inclusion of resonances
above threshold leads to an improved determination of the b
quark mass, we provide in Fig. 2 a graphical account of the
landscape of Rb(s) above threshold. The upper plot shows
that the continuum alone does not describe the data in the
energy range of the ϒ(4S), ϒ(5S), and ϒ(6S) resonances
and the pQCD limit is reached only when

√
s is above thresh-

old by an amount of the order of the b quark mass, i.e. far
above the energy range where data are available.

The λb3 parameter controls how fast our ansatz Eq. (5)
reaches the asymptotic limit. If λb3 < 1, Eq. (5) reaches
that limit from below, while if λb3 > 1 the limit is reached
from above, thus crossing the perturbative result at some
energy. The optimal value for λb3 is found to be around 1.5
(c.f. Table 3). For a larger value of λb3, our model would
cross the perturbative result at lower energies, improving the
agreement of data just above threshold but worsening the
description in the perturbative region.

It is therefore not a surprise that with the continuum ansatz
alone one cannot obtain stable solutions from the set of sum
rules.

The second row of plots in Fig. 2 shows how the global
description of data for Rb(s) can be improved by the inclu-
sion of Gamma distributions, Eq. (13), for the ϒ(4S) and
ϒ(5S) resonances. If we use the total decay widths 	R in
Eq. (15) as given by the PDG [6] the local description of the
data is still not good; however, the moments, i.e. integrals
over Rb(s) can be matched. To see this more clearly one
can exploit the fact that moments do not change even if the
total widths are significantly increased (which we denote by
	̃R) if one aims at a better visual representation of the local
behavior of the data, as done for the right plot of the middle
row of Fig. 2. Here a good description of the data on aver-
age is clearly visible. The lower row of plots in Fig. 2 shows
other possible choices, namely to add only one resonance,
the ϒ(4S), or three resonances, ϒ(4S), ϒ(5S) and ϒ(6S),
on top of the continuum. The first (latter) choice would lead
to an underestimate (overestimate) of moments in the region
above threshold. As a consequence, these choices would lead
to solutions for λb3 from the set of sum rules in disagreement

with λ
b,exp
3 as determined from data.

We therefore determine the two free parameters, λb3 and
m̂b(m̂b) from pairs of sum rules using the continuum ansatz
where we include the ϒ(4S) and ϒ(5S) as described above.
The results are summarized in Table 3 and Fig. 3, includ-
ing the breakdown of the uncertainties from the different
sources as discussed before. Since our default description
slightly overshoots the experimental data in average, λ

b,exp
3

is smaller than λb3. Results for other options, (i) where we do
not include resonances on top of the continuum, (ii) where we

123
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Fig. 3 Results for m̂b(m̂b) using different combinations of moments,
where we added the ϒ(4S) and ϒ(5S) states explicitly to the ansatz
in Eq. (5), as described in the text. Blue bars represent the full error,
red bars are from the experimental uncertainties in the resonance

parameters, green bars indicate the truncation errors in the theoreti-
cal moments, cyan bars are the symmetrized error combinations due
to λb3 
= λ

b,exp
3 and �λb3 (see Table 3), and the uncertainty induced by

�α̂s(MZ ) = ±0.0016 is shown in purple

include only the ϒ(4S), (iii) or where we include addition-
ally the ϒ(6S) parametrized as a Gamma distribution as well,
are presented in Fig. 4. The shift of the value for the b quark
mass induced by these different options is small; for example
including three resonances above threshold, m̂b(m̂b) would
be reduced by 1.3 MeV, i.e. by much less than our error esti-
mate. The most stable result and smallest overall uncertainty
is obtained with our default option in Fig. 3.

A summary of the best determination in each scenario is
shown in Table 4. Our most precise and therefore final result
for m̂b(m̂b) is based on the pair of moments (M0,M7), and
reads,

m̂b(m̂b) = (4180.2 − 108.5�α̂s ± 7.9) MeV. (16)

We explicitly exhibit the dependence on the input value of the
strong coupling α̂s relative to the central value, i.e. �α̂s =
α̂s(MZ ) − 0.1182.

4 Experimental moments

Our determination of m̂b(m̂b) described above does not rely
on the details of experimental data for Rb except resonance
parameters. However, a comparison with data for Rb allows
us to calibrate the uncertainty of the m̂b(m̂b) determination.
As described above, this is done by calculating moments

from data and extracting an experimental value for λ
b,exp
3

which can be compared with the value of λb3 obtained from
the consistency relations for moments. In this section we
present the details of our determination of λ

b,exp
3 .

We take data from the BaBar Collaboration [37]. These
data cover the range of energies between

√
s = 10.54 and

11.20 GeV (cf. Fig. 5). Data from the Belle Collaboration
[38] will be used to obtain a cross-check, but they cover too
short a range in energies to be useful for a calculation of
moments for our purpose.

4.1 Data and corrections

The published experimental data for continuum heavy quark
production must be corrected for vacuum polarisation and
QED radiative effects before they can be used in our anal-
ysis. Corrections due to vacuum polarisation can be taken
into account by substituting the value for αem used in the
experimental work by the running fine structure constant,
αem(

√
s). Since the variation of αem(

√
s) in the considered

energy range is very small, we take it to be constant and
use (αem(0)/αem(MR))2 = 0.93, (see Table 2). This factor
should be multiplied with the measured Rb ratio.

BaBar experimental data are available for energies above
the open bottom threshold. In this energy range, the radiative
tails from the ϒ(1S), ϒ(2S), ϒ(3S) resonances contribute.
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Table 4 Values and uncertainties of the bottom quark mass when adding various resonances on top of the continuum ansatz. Only the values with
the smallest uncertainty and the corresponding pair of moments from which it is obtained are shown in each case

m̂b(m̂b) [MeV] Pair of moments

Only resonances below threshold 4186.7 − 39.5 �α̂s ± 12.7 (M0,M9)

+ ϒ(4S) 4183.8 − 68.0 �α̂s ± 9.7 (M0,M8)

+ ϒ(4S) + ϒ(5S) 4180.2 − 108.5 �α̂s ± 7.9 (M0,M7)

+ ϒ(4S) + ϒ(5S) + ϒ(6S) 4178.9 − 64.0 �α̂s ± 9.7 (M0,M8)

Fig. 4 Same as in Fig. 3 but including only the resonances below
threshold (top), with the ansatz modified to include the ϒ(4S) as a 	-
function (middle), and with the ansatz modified to include the ϒ(4S),
ϒ(5S) and ϒ(6S) as 	-functions (bottom)

The required corrections are provided by BaBar in supple-
mentary material to Ref. [37] and are easily subtracted from
the data.

To remove initial-state radiative (ISR) effects from the
continuum data after subtracting radiative tails from the reso-
nances, we use the prescription following Refs. [30,31] (see
also Refs. [9,14]). The measured R ratio, R̂, is given by a
convolution,

R̂(s) =
∫ 1

z0

dz

z
G(z, s)R(zs), (17)

of the true R ratio with the radiator function G(z, s) describ-
ing QED corrections. G(z, s) is taken from Ref. [14] and
includes next-to-next-to-leading order contributions. The
lower integration limit of the integral in Eq. (17) should
start at the onset of the continuum region, which we fix
at z0 = s0/s with s0 = (10.54 GeV)2. The true R ratio
must be determined by inverting (i.e. unfolding) Eq. (17).
This can be done iteratively imposing the boundary condi-
tion R(s0) = 0. This condition is automatically satisfied by
the BaBar data after subtraction of the radiative tails. The
BaBar data corrected for vacuum polarization, radiative tails
and ISR is shown in Fig. 6 (red points). We also show the
uncorrected data (blue points), which are the same as shown
in Fig. 5.

BaBar data contain an outlier at
√
s = 10.86 GeV

(not shown in Fig. 6). At this energy, there are two differ-
ent experimental measurements, separated by only �

√
s =

0.0005 GeV which disagree among themselves. Instead of
removing this point, as has been suggested in Ref. [9], we
take the average of the two points and ascribe, as an error, the
difference of the two measured R values. We have checked
that either option, removing the outlier or averaging with the
close-by point, translates into a tiny difference for the exper-
imental moments.

4.2 Numerical results for moments

Experimental moments are calculated as numerical integrals
over the ISR corrected R values, using the trapezoidal rule.
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Fig. 5 Data for Rb(s) (blue
points) from the BaBar
Collaboration. The orange
points show the initial-state
radiative tail of the first three
narrow states below threshold.
Both Rb data and ISR tail are
taken from Ref. [37]

Fig. 6 BaBar data for Rb(s)
corrected for vacuum
polarization, radiative tails and
ISR (red points). The blue
points are the same uncorrected
data as shown in Fig. 5

We collect our results in Table 5. The experimental moments
Mexp

n are affected by statistical and systematic uncertainties,
propagated from the corresponding data errors, and we take
into account correlated and uncorrelated systematic uncer-
tainties following the prescription given by the BaBar Col-
laboration [37]. For comparison, we show in Table 5 also
the moments calculated from Rb(s), but using the value
λb3 = 1.53. This value was obtained in our preferred scenario
where the ϒ(4S) and ϒ(5S) resonances are included on top
of the continuum and using the pair of moments (M0,M7).
In the last column of Table 5 we also show moments cal-
culated from uncorrected data. One can see that ISR correc-
tions are indeed very small and do not introduce an additional
source of uncertainties.

In Table 6 we compare our determination of moments with
those from Refs. [9] and [14]. To do so, we have to adjust the
energy range correspondingly. For both references the lower
limit of the energy range was chosen at

√
s = 10.62 GeV.

The upper integration limit was
√
s = 11.20 GeV in Ref.

[9] and
√
s = 11.24 GeV in Ref. [14]. We also follow Refs.

[9,14] and subtract the ϒ(4S) resonance, which is parame-
terized by a Breit–Wigner distribution, as well as its radiative
tail. Above

√
s = 11.20 GeV, we use our ansatz to extrapo-

late up to 11.24 GeV. As can be seen from Table 6, we find
good agreement with both references.
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Table 5 Contributions to the moments (×102n+1 GeV4n+2) from the
restricted energy range 2MB ≤ √

s ≤ 11.2 GeV. The column labeled
Mexp

n is obtained by direct integration over corrected data. The first
error is due to the uncorrelated statistical and systematic uncertainties
of the data, while the second is the correlated one. The third and fourth

columns show the moments calculated from our ansatz for Rb(s) with
λ
b,exp
3 = 0.82(20) (column 3) and λb3 = 1.53 (column 4) as input. In

both cases, m̂b = 4.1802 GeV was used. The last column collects the
experimental moments when BaBar data is used without any kind of
correction or subtraction

n Mexp
n λ

b,exp
3 = 0.82(20) λb3 = 1.53 Mexp,no corr.

n

0 0.446 (2) (11) 0.446 (11) 0.487 0.453 (12)

1 0.380 (2) (9) 0.381 (9) 0.416 0.384 (10)

2 0.324 (1) (8) 0.327 (8) 0.355 0.328 (9)

3 0.277 (1) (7) 0.280 (7) 0.304 0.279 (7)

4 0.237 (1) (6) 0.240 (6) 0.261 0.238 (6)

5 0.203 (1) (5) 0.207 (5) 0.224 0.204 (5)

6 0.174 (1) (4) 0.178 (4) 0.192 0.174 (5)

7 0.149 (1) (4) 0.153 (3) 0.165 0.149 (4)

8 0.128 (1) (3) 0.132 (3) 0.142 0.128 (3)

9 0.111 (0) (3) 0.114 (2) 0.123 0.110 (3)

10 0.095 (0) (2) 0.099 (2) 0.106 0.094 (2)

4.3 Determination of λ
b,exp
3

Now that the experimental moments are determined, we pro-
ceed to calculate λ

b,exp
3 by solving the equation,

∫ (11.20 GeV)2

(2MB )2

ds

s
Rcont
b (s) = MData

0 = 0.446 ± 0.011, (18)

where Rcont
b (s) is defined in Eq. (5). The b quark mass

m̂b(m̂b) is fixed in Eq. (18) to the value obtained from a
selected pair of moments (M0,Mn) as described in the pre-
vious section. The solution of Eq. (18) is calledλ

b,exp
3 . Results

are shown in Table 3 already discussed above. In each case,
the value obtained for λ

b,exp
3 is compared with λb3 determined

from the corresponding pair of sum rules. For the default
case where we add the ϒ(4S) and ϒ(5S) resonances on top
of the continuum and use the 0th and 7th moments, we find
λ
b,exp
3 = 0.82 ± 0.20. The difference between this value and

the one determined from the pair of moments (λb3 = 1.53,
see Table 3) corresponds to a difference in terms of the b
quark mass of 3.5 ± 1.0 MeV.

We have used the BaBar data since it covers an energy
range large enough to extract a reliable description of the
continuum region. The Belle Collaboration [38] also pro-
vides a measurement of Rb(s), but only the narrow energy
range between

√
s = 10.620 and 11.047 GeV is covered

with the first three experimental points quite disconnected
from the fine-scan around the ϒ(5S) and ϒ(6S) resonances,
i.e. 10.754 GeV ≤ √

s ≤ 11.047 GeV. If we use Belle data
we find that this short energy range contributes 0.198(7) to
the 0th experimental moment, to be compared with 0.172(5)

from BaBar data for the same energy region. These results are
compatible at the 3σ level only. Such a difference could by

Table 6 Comparison of moments with Ref. [9] (left section) and Ref.
[14] (right section). In the first case, moments Mn are calculated from
data in the range 10.62 GeV ≤ √

s ≤ 11.20 GeV, while in the second
case the energy range is 10.62 GeV ≤ √

s ≤ 11.24 GeV. Our calcula-
tion uses experimental data up to

√
s = 11.20 GeV and an extrapolation

based on our ansatz to cover the energy range up to
√
s = 11.24 GeV. In

both cases, the ϒ(4S) resonance including its radiative tail is subtracted

n Ref. [9] This work Ref. [14] This work

0 – 0.321 (12) – 0.336 (12)

1 0.270 (2) (9) 0.269 (10) 0.287 (12) 0.281 (10)

2 0.226 (1) (8) 0.226 (9) 0.240 (10) 0.235 (9)

3 0.190 (1) (7) 0.189 (8) 0.200 (8) 0.197 (8)

4 0.159 (1) (6) 0.159 (7) 0.168 (7) 0.165 (7)

5 – 0.133 (6) – 0.138 (6)

6 – 0.112 (5) – 0.116 (5)

7 – 0.094 (4) – 0.097 (4)

attributed to the different treatment of QED radiative effects
of the narrow resonances in the case of Belle data. For our
calculation of the 0th moment we have used Belle data cor-
rected for vacuum polarisation effects, but without subtract-
ing radiative tails. The Belle Collaboration does not provide
the corresponding information. If we had used the radiative
tail provided by BaBar, we would find 0.167(7) for the 0th
moment. This would bring the values of the 0th moment cal-
culated from Belle or from BaBar data in very good agree-
ment.

In our previous analysis of data for charm quark produc-
tion [4] we found that using data in an energy range between
3.7 and 5 GeV, extended by using pQCD above, can lead to a
consistent picture and a reliable determination of the charm
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Table 7 Predictions for the moments in the region 2MB ≤ √
s ≤

15.0 GeV from data and an extrapolation using pQCD including the
known heavy quark mass corrections (2nd column) or our ansatz with
m̂b(m̂b) = 4.1802 GeV and λ

b,exp
3 = 0.82(20) (3rd column). All num-

bers are given in units of 10−(2n+1) GeV−2n . Errors in the 2nd column
are from experimental moments only as no uncertainty is assigned to
the contribution from pQCD. The errors in the 3rd column combine
those from the experimental moments and from �λb3 = ±0.20

n Data + pQCD Data + continuum ansatz

0 2.532 (11) 2.165 (69)

1 1.637 (9) 1.401 (42)

2 1.103 (8) 0.947 (26)

3 0.773 (7) 0.667 (17)

4 0.560 (6) 0.487 (11)

5 0.418 (5) 0.368 (8)

6 0.321 (4) 0.284 (5)

7 0.251 (4) 0.224 (4)

8 0.200 (3) 0.181 (3)

9 0.161 (3) 0.147 (2)

10 0.132 (2) 0.122 (1)

quark mass. A correspondingly large energy window for the
bottom quark would cover energies up to 15 GeV, i.e. roughly
one unit of the heavy quark mass above threshold. Unfor-
tunately, data are available only for

√
s ≤ 11.2 GeV. The

treatment of the energy range 11.2 GeV ≤ √
s � 15 GeV

requires special care and may lead to additional uncertainties.
In Ref. [14] it was argued that the gap above

√
s = 11.2 GeV

should be described by pQCD. However, this introduces a
discontinuity with the experimental data. In Ref. [9] a smooth
polynomial fit was used instead. We opt for using our own
ansatz, which approaches pQCD only for s → ∞. In Table 7
we compare two possible options: calculating moments from
data in the window 2MB ≤ √

s ≤ 11.2 GeV, combined
either with pQCD or our ansatz for Rb(s), both up to 15 GeV.
If one uses data and pQCD above

√
s = 11.2 GeV, i.e. a pre-

scription with a discontinuity, one obtains moments which
are larger than for the case where we use our ansatz with a
smooth

√
s-dependence. Correspondingly, this will result in

smaller values for the bottom mass, as found in Ref. [14].
Differences in the b quark mass determination between

Refs. [9,14] and our work can thus be traced to a different
prescription for including contributions to the moments from
an energy range where no data are available. One could argue
that this should be considered as an additional systematic
error for the b quark mass. Experimental data covering the
energy range between 11 and 15 GeV are definitely needed
to ultimately solve this issue. Until such data will become
available, we believe that a description of the unknown part
of Rb(s) with a smooth function is preferable over one with
a discontinuity.

5 Conclusions

We presented a determination of the bottom-quark mass from
QCD sum rules with a careful determination of the uncer-
tainty. We use an over-constrained system of two differ-
ent sum rules, pairing the zeroth with the nth moment, and
explore the stabilization of the result for the bottom-quark
mass across different pairs of sum rules, always including
the one for the zeroth moment. The main results are sum-
marized in Fig. 3. Our analysis is based on Ref. [1], but
goes beyond that previous work in several respects: first, we
included terms of one order higher in α̂s than previously.
Secondly, more precise experimental data are available now
both in the resonance region and also for the strong coupling
α̂s . Finally, we have performed detailed scrutiny of the role
of above-threshold resonances. The properties of these reso-
nances, together with the fact that Rb data are available only
in a relatively small window in energy, are responsible for the
main differences between the bottom- and the charm-quark
case.

The experimental information that determines the b-quark
mass in our approach is coming from the threshold and the
below-threshold resonance data. Details of the data above
the threshold are not important since we use that informa-
tion only for the moments, i.e. on average, to calibrate the
uncertainties. The particular form of our ansatz for the con-
tinuum is therefore also of minor importance when consis-
tency across pairs of moments is found. This observation is
corroborated by noting that the difference for the moments
when using either λ

b,exp
3 or λb3 (the parameters controlling our

model when using or not using above-threshold experimen-
tal data) is very small, of the order of 1%, when we include
high moments in the analysis, in accordance with Ref. [39].

Our final result, m̂b(m̂b) = (4180.2 − 108.5�α̂s ±
7.9) MeV with �α̂s = α̂s(MZ ) − 0.1182, is in good agree-
ment with other determinations of the bottom quark mass that
can be found in the literature. We show a comparison in Fig. 7
where we group the results in two sets and in chronological
order within each set.

The first set is based on phenomenological approaches,
extracting m̂b(m̂b) by comparing theory predictions with
data. This includes other results based on relativistic sum
rules, Chetyrkin [14], Bodenstein [42], and Dehnadi [9],
shown as red diamonds. The methodology of these publi-
cations is closest to our own approach. Our higher value for
m̂b(m̂b) can be traced to the treatment of the intermediate
energy behavior where our method approaches the pertur-
bative regime of QCD at higher energies, as discussed in
detail above. We also display results based on non-relativstic
sum rules (orange squares), Laschka [43], Penin [44], Kiyo
[45], Beneke [46,47], and Peset [48], as well as on other sum
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Fig. 7 Recent bottom quark mass determinations from phenomenological studies (upper part; red, orange, brown and green symbols) and lattice
calculations (lower part; blue points). See text for details and references

rule methods (green stars), Lucha [49] and Narison [39,40].3

The bottom quark mass (brown stars) was also determined
as a by-product in a global fit to inclusive semileptonic B-
meson decays to obtain the CKM matrix element Vcb, Alberti
[51], and from an analysis of deep inelastic scattering data
at HERA compared with perturbative QCD calculations,
Abramowicz [52].

The results in the lower part of Fig. 7 (blue points) are lat-
tice QCD calculations. They are based on an improved non-
relativistic QCD action, Lee [53], on Heavy Quark Effec-
tive Theory non-perturbatively matched to QCD, Bernar-
doni [54], on using time-moments of the vector current–
current correlator, Colquhoun [55], as well as the MILC
highly improved staggered quark ensembles with four fla-
vors of dynamical quarks, Bazavov [56]. We also show the
average of the 2021 FLAG Review [57] for N f = 2 + 1 + 1.
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