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Abstract The odd entanglement entropy (OEE) for bipar-
tite states in a class of (1+1)-dimensional Galilean conformal
field theories (GCFT1+1) is obtained through an appropri-
ate replica technique. In this context our results are com-
pared with the entanglement wedge cross section (EWCS)
for (2 + 1)-dimensional asymptotically flat geometries dual
to the GCFT1+1 in the framework of flat holography. We
find that our results are consistent with the duality of the dif-
ference between the odd entanglement entropy and the entan-
glement entropy of bipartite states, with the bulk EWCS for
flat holographic scenarios.
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1 Introduction

Characterization of quantum entanglement has emerged as
a central issue for the investigation of diverse phenomena
from condensed matter physics to issues of quantum grav-
ity. In quantum information theory the entanglement entropy
(EE) defined as the von Neumann entropy of the reduced
density matrix appropriately characterizes the entanglement
for bipartite pure states. Although this measure is relatively
simple to compute for quantum systems with finite number
of degrees of freedom it is usually intractable for extended
quantum many body systems. Remarkably the entanglement
entropy for bipartite states in (1 + 1)-dimensional confor-
mal field theories (CFT1+1s) could be obtained through a
replica technique described in [1–3]. For bipartite mixed
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states however the entanglement entropy receives contribu-
tions from irrelevant classical and quantum correlations and
is hence an unsuitable entanglement measure for such states.
Several mixed state entanglement and correlation measures
have been proposed in quantum information theory although
some of these involve optimization over local operations and
classical communication (LOCC) protocols and are hence
not easily computable. Some of these computable measures
described in the literature include the entanglement nega-
tivity [4,5] and the reflected entropy [6,7]. Another novel
computable measure for characterizing mixed state entan-
glement termed as the odd entanglement entropy (OEE) has
been recently proposed in [8]. The OEE may be loosely inter-
preted as the von Neumann entropy of the partially trans-
posed reduced density matrix for the subsystem under con-
sideration.1 The authors in [8] also obtained the OEE for the
bipartite mixed state of two disjoint intervals in a CFT1+1

through an appropriate replica technique. Furthermore it has
been shown in [8] that the holographic dual of the differ-
ence between the OEE and the EE is described by the bulk
entanglement wedge cross section (EWCS) for the bipartite
state in question.2 It should also be noted here that the bulk
EWCS has also been proposed as a holographic dual for
several other correlation measures, for example the entan-
glement of purification [15], the reflected entropy [6,16] and
the balanced partial entanglement [17].

On a separate note in the past a class of (1 + 1)-
dimensional Galilean conformal field theories (GCFT1+1s)
was described in [18–20] utilizing an İnönü-Wigner contrac-
tion of the symmetry algebra for relativistic CFT1+1s. Inter-
estingly the EE for bipartite states in these GCFT1+1s could
be also computed through an appropriate replica technique
described in [21]. In subsequent works, the authors in [22–
25] established a holographic construction to obtain the EE
in the context of flat space holography [26,27].

As described earlier, the EE fails to be a viable entangle-
ment measure for bipartite mixed states. In this context, the
issue of characterizing mixed state entanglement for bipar-
tite states of theseGCFT1+1s assumes a critical significance.
Addressing this issue, in [28] the authors had obtained the
entanglement negativity for bipartite states through a replica
technique. A holographic characterization of the entangle-
ment negativity in the flat holographic framework was also
recently described in [29]. The authors utilized the alge-
braic sums of the lengths of extremal curves for the dual
bulk asymptotically flat geometries, homologous to certain
combinations of the intervals relevant to the mixed state con-
figuration in the GCFT1+1. These constructions were moti-

1 The OEE is not exactly the von Neumann entropy as the (partially
transposed) density matrix utilized does not correspond to any physical
state and may have negative eigenvalues.
2 See [9–14] for further developments on the OEE.

vated by earlier constructions in the literature for the usual
AdS3/CFT2 scenario [30–32]. Furthermore the authors in
[33] obtained the bulk EWCS for bipartite states in dual
GCFT1+1s through a novel geometric construction in the
context of flat holography. Recently, the holographic dual-
ity between the bulk EWCS and the balanced partial entan-
glement [17] was investigated and verified in [34,35]. Also
the authors in [36] obtained the reflected entropy for bipar-
tite states in GCFT1+1s and compared their results with
the EWCS to verify the duality between the EWCS and the
reflected entropy described in [6] (see also [37]).

The above developments naturally lead to the interesting
issue of the computation for the OEE of bipartite states in
GCFT1+1 dual to bulk asymptotically flat geometries and
explicitly verify the holographic duality of the bulk EWCS
with the difference between the OEE and the EE in the context
of flat holography. In this article we address this significant
issue and construct an appropriate replica technique to com-
pute the OEE for bipartite states in GCFT1+1s. To this end
we first obtain the OEE for bipartite pure and mixed states in
CFT1+1s which are missing in the literature. Subsequently,
using a replica technique, we obtain the OEE for bipartite
states involving a single, two adjacent and two disjoint inter-
vals in GCFT1+1s at zero and finite temperatures and for
finite sized systems. For the case of the two disjoint inter-
vals we implement a geometric monodromy analysis [38]
for the corresponding four point twist field correlator in the
GCFT1+1 to obtain the relevant dominant Galilean confor-
mal block in the large central charge limit. Furthermore we
compare our results to the bulk EWCS computed in [33] and
explicitly verify the holographic duality with the difference
between the OEE and the EE in flat holographic scenarios.

The rest of the article is organized as follows. In Sect. 2
we describe the OEE and briefly review the corresponding
replica technique for bipartite states in the context of the usual
relativistic CFT1+1. We also utilize this replica technique
to compute the OEE for certain bipartite states at zero and
finite temperatures and in finite sized systems described by
CFT1+1s which were missing in the literature. Subsequently,
in Sect. 3, after a brief review of the (1+1)-dimensional non-
relativistic Galilean conformal field theories, we establish a
replica technique to compute the OEE for various bipartite
states in GCFT1+1s and compare our results with the bulk
EWCS. In Sect. 4 we present a summary of our work and the
conclusions. Finally in Appendix A we provide a limiting
analysis where we show that our result of the OEE for the
bipartite mixed state of two disjoint interval is consistent with
the appropriate non-relativistic limit of the corresponding
CFT1+1 result.
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2 OEE in conformal field theories

2.1 Odd entanglement entropy

We begin with a brief review of the odd entanglement entropy
(OEE), introduced in [8] as a correlation measures between
the two subsystems of a bipartite mixed state. It can roughly
be described as the von Neumann entropy of the partially
transposed reduced density matrix of the given subsystem
(cf. footnote 1). In this context, one starts with a tripartite
pure state composed of the subsystems A1, A2 and B. Sub-
sequently the subsystem B is traced out to obtain the bipar-
tite mixed state for the subsystem A = A1 ∪ A2 with the
reduced density matrix ρA1A2 defined on the Hilbert space
H = HA1 ⊗ HA2 . The partial transposition of the reduced
density matrix ρA1A2 with respect to the subsystem A2 is
defined as

〈e(1)
i e(2)

j |ρTA2
A1A2

|e(1)
k e(2)

l 〉 = 〈e(1)
i e(2)

l |ρA1A2 |e(1)
k e(2)

j 〉, (2.1)

where |e(1)
i 〉 and |e(2)

j 〉 are the bases for the Hilbert spaces
HA1 and HA2 respectively. Further we define the Rényi gen-
eralization of the OEE for the partially transposed density
matrix as follows

S(no)
o (A1 : A2) = 1

1 − no
log

[
TrH(ρ

TA2
A1A2

)n0
]

(2.2)

where no is an odd integer.3 The odd entanglement entropy
So for the given mixed state ρA1A2 may finally be obtained
through the analytic continuation of the odd integer no → 1
in the above expression as follows4 [8]

So(A1 : A2) = lim
no→1

[S(no)
o (A1 : A2)]. (2.3)

In [9], the authors numerically confirmed the following
quantum information properties which ensures that the OEE
is a well-defined bipartite mixed state measure:

• So(A : B) ≥ 0 (positive semi-definite)
• So(A : B1B2) ≥ So(A : B1) (monotonic)
• So(A : B1B2) ≤ So(A : B1) + So(A : B2) (polygamy

relation)
• So(A1A2 : B1B2) ≥ So(A1 : B1) + So(A2 : B2) (break-

ing of strong super additivity).

However, a general analytic proof of these properties remain
an open issue.

3 The partially transposed density matrix raised to an even power leads
to another mixed state entanglement measure termed the entanglement
negativity [4].
4 The author in [8], instead used the Tsallis entropy to obtain the OEE.
However note that, in the replica limit no → 1 both the Rényi gener-
alization of the OEE in Eq. (2.2) and the Tsallis entropy considered in
[8] matches and gives the same expression for the OEE.

Fig. 1 Two disjoint intervals A1 and A2

2.1.1 OEE in holographic CFT1+1

In this subsection, we review the replica technique utilized
for the computation of the OEE in (1 + 1)-dimensional con-
formal field theories (CFT1+1s) as described in [8]. For

the CFT1+1s, the trace TrH(ρ
TA2
A1A2

)no in Eq. (2.2) may be
expressed as a twist field correlator corresponding to the
mixed state in question. We consider a generic tripartite
pure state in a CFT1+1 which is described by the intervals
A1 = [u1, v1], A2 = [u2, v2] and B = (A1 ∪ A2)

c as shown
in Fig. 1. For the bipartite mixed state of A1 ∪ A2 obtained
by tracing out the degrees of freedom corresponding to the

subsystem B, the trace TrH(ρ
TA2
A1A2

)no may be expressed as
a four-point twist field correlator on the complex plane as
follows [8,39]

TrH(ρ
TA2
A1A2

)no = 〈
Tno(u1)T̄no(v1)T̄no(u2)Tno(v2)

〉
. (2.4)

Here Tno and T̄no are the twist and anti-twist field operators
in CFT1+1 respectively with the following weights,

hTno = h̄T̄no = c

24

(
no − 1

no

)
, (2.5)

where c is the central charge. The four point twist correlator
in Eq. (2.4) was utilized in [8] to obtain the OEE for the
bipartite mixed state of two disjoint intervals in a CFT1+1 at
zero temperature. In this article, we further utilize the above
replica technique to obtain the OEE for the bipartite states of
two disjoint intervals at a finite temperature and for a finite
sized system. We also obtain the OEE for two adjacent and a
single interval at zero and finite temperatures and for a finite
sized system in CFT1+1s.

In context of the AdS3/CFT2 correspondence, the authors
in [8] have also proposed a holographic duality for the dif-
ference of the OEE and the EE in terms of the bulk minimal
entanglement wedge cross section (EWCS) corresponding to
the bipartite state under consideration as follows

So(A1 : A2) − S(A1 ∪ A2) = EW (A1 : A2) , (2.6)

where S(A1 ∪ A2) denotes the EE and EW (A1 : A2) denotes
the minimal EWCS for the subsystem A1 ∪ A2.

2.2 OEE for two disjoint intervals

In the following subsections we first review the OEE for
two disjoint intervals at zero temperature as computed in [8].
Subsequently we compute the OEE for the bipartite mixed
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state configuration of two disjoint intervals in a finite sized
system and at a finite temperature using the replica technique
described earlier.

2.2.1 Two disjoint intervals at zero temperature

For this case, consider the mixed state configuration of two
disjoint intervals A1 ≡ [u1, v1] and A2 ≡ [u2, v2] in the
vacuum state of the CFT1+1. This configuration is described
by the four point twist correlator given in Eq. (2.4) which may
be expanded in terms of the conformal blocks in the t-channel
as [8]

〈
Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)

〉

(|u1 − v2||v1 − u2|)(− c
6 [ n2−1

n ])

=
∑
p

bp F(c, hTn , h p, 1 − x) F̄(c, h̄T̄n , h̄ p, 1 − x̄),

(2.7)

where x = |u1−v1||u2−v2||u1−u2||v1−v2| is the cross ratio, bp is the OPE

coefficient5 and F and F̄ are the Virasoro conformal blocks
corresponding to the exchange of the primary operator with
the dimension h p . In the t-channel, the dominant contribution

arises from the twist field operatorT 2
no with the weight h(2)

Tno =
hTno . The conformal block for this case may be expressed as
[8,40]

logF(c, hTno , h
(2)

Tno , 1 − x) = −hT (2)
no

log

[
1 + √

x

1 − √
x

]
.

(2.8)

Using the above expression and Eqs. (2.7) and (2.3), one may
obtain the OEE for the mixed state of two disjoint intervals
in the CFT1+1 as follows [8]

So(A1 : A2) = S(A1 ∪ A2) + c

6
log

[
1 + √

x

1 − √
x

]
+ · · · ,

(2.9)

where ellipsis denote subsequent terms which are sub-
leading in the large central charge limit. The first term in the
above expression denotes the EE for the subsystem A1 ∪ A2

given as

S(A1 ∪ A2) = c

3
log

( |u1 − v2|
a

)

+ c

3
log

( |v1 − u2|
a

)
+ · · · , (2.10)

where a is a UV cut off of theCFT1+1. It is straightforward to
check that in the large central charge limit, Eq. (2.9) satisfies

5 The contribution due to the OPE coefficient is negligible in the large
central charge limit as it is independent of the position of the primary
operators [8].

the duality in Eq. (2.6) as the second term matches exactly
with the corresponding EWCS obtained in [15].

2.2.2 Two disjoint intervals in a finite size system

For this case, we consider the mixed state configuration of
two disjoint intervals A1 and A2 of lengths l1 and l2 respec-
tively, in a CFT1+1 described on a cylinder with circumfer-
ence L . To obtain the OEE for the given mixed state under
consideration, it is necessary to compute the corresponding
four point twist correlator in Eq. (2.4) on the cylinder. This
may be done by utilizing the following conformal map which
maps the complex plane to a cylinder [3,39]

z → ω = i L

2π
log z, (2.11)

where z describe the coordinates on the complex plane and
w describe the coordinates on the cylinder. Under this con-
formal map, the cross-ratio modifies as

x̃ =
sin

(
πl1
L

)
sin

(
πl2
L

)

sin
(

π(l1+ls )
L

)
sin

(
π(l2+ls )

L

) , (2.12)

where ls represents the length of the region sandwiched
between the two intervals A1 and A2. Now, utilizing Eqs.
(2.9), (2.11) and (2.12), we may obtain the OEE for the mixed
state of two disjoint intervals in question as

So(A1 : A2) = c

3
log

(
L

πa
sin

π(l1 + l2 + ls)

L

)

+ c

3
log

(
L

πa
sin

πls
L

)

+ c

6
log

[
1 + √

x̃

1 − √
x̃

]
+ · · · , (2.13)

where a is a UV cut-off. Note that the first two terms in the
above expression denote the EE S(A1 ∪ A2) for the subsys-
tem A1∪A2. The corresponding bulk EWCS for this bipartite
state may be obtained easily by utilizing Eq. (2.11). On com-
puting the bulk EWCS we observe that it matches exactly
with the last term in the above expression for the OEE. This
provides substantiation to our computations as Eq. (2.13) is
consistent with the holographic duality described in Eq. (2.6).

2.2.3 Two disjoint intervals at a finite temperature

We now turn our attention to the mixed state configuration of
two disjoint intervals at a finite temperature. To this end, we
consider two disjoint intervals A1 and A2 of lengths l1 and l2
respectively, in a CFT1+1 at a finite temperature defined on
a thermal cylinder with circumference given by the inverse
temperature β. To obtain the OEE for this case, it is required
to obtain the four point twist correlator in Eq. (2.4) on the
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thermal cylinder. We may employ the following conformal
map to transform the complex plane to the thermal cylinder
[3,39]

z → ω = β

2π
log z, (2.14)

where z denote the coordinates on the complex plane and w

denotes the coordinates on the thermal cylinder. The CFT
cross-ratio modifies under this transformation as

x̂ =
sinh

(
πl1
β

)
sinh

(
πl2
β

)

sinh
(

π(l1+ls )
β

)
sinh

(
π(l2+ls )

β

) , (2.15)

where, similar to the previous case, ls is the length of the
region sandwiched between the disjoint intervals A1 and A2.
Now using Eqs. (2.14), (2.15) and (2.9) we may obtain the
OEE for the mixed state of two disjoint intervals at a finite
temperature as

So(A1 : A2) = c

3
log

(
β

πa
sinh

π(l1 + l2 + ls)

β

)

+ c

3
log

(
β

πa
sinh

πls
β

)

+ c

6
log

[
1 + √

x̂

1 − √
x̂

]
+ · · · . (2.16)

Again note that the first two terms correspond to the EE for
the mixed state A1 ∪ A2 and the last term matches exactly
with the corresponding bulk EWCS obtained in [15] which
is consistent with the holographic duality (2.6).

2.3 OEE for adjacent intervals

Having computed the OEE for the various bipartite state con-
figurations of two disjoint intervals, we now turn our attention
to the OEE for the mixed states described by two adjacent
intervals.

2.3.1 Adjacent intervals at zero temperature

For the zero temperature case we consider two adjacent inter-
vals A1 ≡ [−l1, 0] and A2 ≡ [0, l2] in the CFT1+1. This
configuration may be obtained by taking the limit v1 → u2 in

Eq. (2.4). The trace Tr(ρ
TA2
A1A2

)no may then be obtained by the
following three point twist correlator on the complex plane

Tr(ρ
TA2
A1A2

)no =
〈
Tno(−l1)T̄ 2

no(0)Tno(l2)
〉
. (2.17)

Using the usual form of a three point correlator in aCFT1+1,
we may obtain the OEE for the mixed state in question by
using Eq. (2.3) as follows

So(A1 : A2) = c

6
log

(
l1l2
a2

)
+ c

6
log

(
l1 + l2

a

)
+ · · · ,

(2.18)

where a is again a UV cut off for the CFT1+1. Note that
the above expression matches exactly with the correspond-
ing OEE computed in [9] in the context of 1-dimensional
harmonic spin chain and in [14] for the gravitational path
integral computation based on fixed area states.6 We may
also rewrite the above expression as follows

So(A1 : A2) − S(A1 ∪ A2) = c

6
log

(
l1l2

a(l1 + l2)

)
+ · · · ,

(2.19)

where S(A1 ∪ A2) denotes the EE for the corresponding
mixed state A1 ∪ A2 given as

S(A1 ∪ A2) = c

3
log

(
l1 + l2

a

)
+ · · · . (2.20)

We observe here that the right-hand-side of Eq. (2.19)
matches with the corresponding EWCS [41] apart from an
additive constant which is contained in the OPE coefficient of
the corresponding three point twist correlator in Eq. (2.17).
We would also like to note here that the adjacent inter-
vals configuration under consideration can also be obtained
through an appropriate adjacent limit v1 → u2 of the dis-
joint intervals configuration discussed in Sect. 2.2.1, and our
results in Eqs. (2.9) and (2.18) are consistent with this limit-
ing behaviour.

2.3.2 Adjacent intervals in a finite size system

We now proceed to the mixed state of two adjacent intervals
in a finite size system. For this case we consider the bipartite
configuration involving two adjacent intervals A1 and A2 of
lengths l1 and l2 respectively, in aCFT1+1 defined on a cylin-
der with circumference L . We again employ the conformal
transformation in Eq. (2.11), which maps the complex plane
to the required cylinder of circumference L . We may now
obtain the OEE for the mixed state configuration in question
by using Eqs. (2.11) and (2.18) as follows

So(A1 : A2)

= c

6
log

[(
L

πa

)3

sin

(
πl1
L

)
sin

(
πl2
L

)

sin

(
π(l1 + l2)

L

)]
+ · · · , (2.21)

where a is a UV cut-off. Again, the above result can also be
obtained through the appropriate adjacent limit v1 → u2 in

6 Note that in [14], the OEE has been termed as the “partially transposed
entropy” due to the loose interpretation of the OEE being the analogue
of the EE for the partially transposed density matrix.
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the disjoint intervals result given in Eq. 2.13. This serves as
a yet another consistency check for our computations.

We may rewrite the above expression in the following way

So(A1 : A2) − S(A1 ∪ A2)

= c

6
log

⎡
⎣ L

πa

sin
(

πl1
L

)
sin

(
πl2
L

)

sin
(

π(l1+l2)
L

)
⎤
⎦ + · · · , (2.22)

where S(A1 ∪ A2) is the EE for the corresponding mixed
state A1 ∪ A2 given as

S(A1 ∪ A2) = c

3
log

[
L

πa
sin

(
π(l1 + l2)

L

)]
+ · · · .

(2.23)

Similar to the Sect. 2.2.2, we obtain the corresponding bulk
EWCS for this case by utilizing Eq. (2.11) and find that it
matches with the right-hand-side of Eq. (2.22), modulo a
constant contained in the undetermined OPE coefficient of
the corresponding three point twist correlator.

2.3.3 Adjacent intervals at a finite temperature

For this case, we consider the mixed state configuration of
two adjacent intervals A1 and A2 of lengths l1 and l2 respec-
tively, in a CFT1+1 at a finite temperature T = 1/β defined
on a thermal cylinder with circumference β. Similar to the
finite size case in the previous subsection, we may compute
the corresponding three point twist correlator given in Eq.
(2.17) on the thermal cylinder using the conformal map in
Eq. (2.14). Finally we may obtain the OEE for the two adja-
cent intervals at a finite temperature using Eq. (2.3) to be

So(A1 : A2) = c

6
log

[(
β

πa

)3

sinh

(
πl1
β

)
sinh

(
πl2
β

)

× sinh

(
π(l1 + l2)

β

)]
+ · · · , (2.24)

where a is a UV cut off. We again note that the present bipar-
tite configuration under consideration may also be obtained
through an appropriate adjacent limit of the disjoint inter-
vals configuration in Sect. 2.2.3, and our result in the above
expression conforms to this limiting behaviour.

We may rewrite Eq. (2.24) in the following way

So(A1 : A2) − S(A1 ∪ A2)

= c

6
log

⎡
⎣ β

πa

sinh
(

πl1
β

)
sinh

(
πl2
β

)

sinh
(

π(l1+l2)
β

)
⎤
⎦ + · · · , (2.25)

where S(A1 ∪ A2) is the EE for the bipartite state A1 ∪ A2

given as

S(A1 ∪ A2)= c

3
log

[
β

πa
sinh

(
π(l1+l2)

β

)]
+· · · . (2.26)

Similar to the previous cases, the expression for the corre-
sponding EWCS is not present in the literature. However we
expect that the above equation is consistent with the duality
(2.6) and the right-hand-side denotes the EWCS apart from
the an additive constant arising from the OPE coefficient of
the corresponding three point twist correlator. We again leave
the explicit computation of the EWCS and the verification of
our claim to future prospects.

2.4 OEE for a single interval

Having discussed the bipartite configurations involving two
disjoint and adjacent intervals, we finally turn our attention
to the OEE for bipartite pure and mixed states involving a
single interval in CFT1+1s.

2.4.1 Single interval at zero temperature

In this subsection, we consider the pure state of a single
interval A1 ≡ [u1, v1] of length l = |u1−v1| in theCFT1+1,
which may be obtained through the limit u2 → v1 and v2 →
u1 in Eq. (2.4). For this case A1 ∪ A2 describes the full
system with B as a null set. In this limit the four point twist
correlator in Eq. (2.4) reduces to the following two point twist
correlator:

TrH(ρ
TA2
A1A2

)no =
〈
T 2
no(u1)T̄ 2

no(v1)
〉
. (2.27)

Here the twist field operator T 2
no connects the no-th sheet

with the (no +2)-th sheet and have dimensions h(2)

Tno = hTno .
As described in [39], the above two point twist correlator
is different for the even and the odd exponents of the trace

TrH(ρ
TA2
A1A2

)n . For the present case where we have n = no
odd, the twist field operator T 2

no in the above two point
twist correlator simply results in the reorganization of the
no replica sheets but does not change the structure of the no-
sheeted Riemann manifold7 and hence we have the following
[39]

TrH(ρ
TA2
A1A2

)no = 〈
Tno(u1)T̄no(v1)

〉 = TrH(ρA1)
no . (2.28)

The OEE for the single interval in question may now be
obtained using Eqs. (2.2) and (2.3) as

So(A1 : A2) = c

3
log

( |u1 − v1|
a

)
+ const., (2.29)

where a is a UV cut-off and the constant is due to the nor-
malization of the two point twist correlator. As can be clearly
seen, for the pure state configuration of the single interval
in question, the OEE matches exactly with the EWCS [15]

7 Interestingly for even integers n = ne, the ne-sheeted Riemannian
manifold decouples into two independent (ne/2)-sheeted Riemann sur-
faces.
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which is identically equal to the the EE [1,3]. This is in accor-
dance with the expectation [8] that for a pure state the OEE
should reduce to the EE of the interval A and the duality in
Eq. (2.6) as the entropy S(A1 ∪ A2) vanishes for the state
A1 ∪ A2 describing the complete system.

2.4.2 Single interval in a finite size system

In this subsection we now focus on the configuration of a sin-
gle interval in a finite sized system. To this end, we consider
an interval A1 of length l with A2 describing the rest of the
system in a finite sized CFT1+1 of length L with periodic
boundary condition. In this instance, the two point twist cor-
relator in Eq. (2.28) is required to be computed on a cylinder
of circumference L . This is done by utilizing the conformal
map given in Eq. (2.11). The OEE may then be obtained
for the single interval in the finite sized system through Eqs.
(2.28), (2.2) and (2.3) as

So(A1 : A2) = c

3
log

(
L

πa
sin

πl

L

)
+ · · · . (2.30)

Similar to the previous case, we observe that the OEE for
the single interval in question matches exactly with the cor-
responding EE for the interval A1 [1,3]. This is again in
accordance with the duality (2.6) as for this pure state con-
figuration, S(A1 ∪ A2) = 0 and the EWCS reduces to the EE
for A1 [15].

2.4.3 Single interval at a finite temperature

For this case, we consider a single interval A ≡ [−l, 0] in
a CFT1+1 at a finite temperature T defined on a thermal
cylinder with circumference β = 1/T . As described in [42]
in the context of the entanglement negativity and in [43] in
the context of the reflected entropy, it is necessary to consider
two large but finite auxiliary intervals B1 ≡ [−L ,−l], B2 ≡
[0, L] placed on either side of the interval A in question. The
OEE for the given single interval may then be obtained by
utilizing the following four point twist correlator,

So(A : B)

= lim
L→∞ lim

no→1

1

1 − no
log

×
[〈
Tno(−L)T 2

no(−l)T 2
no(0)T no(L)

〉
β

]
, (2.31)

where the subscript β denotes that the twist correlator is being
evaluated on the thermal cylinder with circumference β. Note
that the bipartite limit B ≡ B1 ∪ B2 → Ac (L → ∞) has
to be applied after the replica limit no → 1 in the above
equation as described in [42]. On the complex plane, the four
point twist correlator described in Eq. (2.31) can be expressed

as [42]
〈
Tno(z1)T

2
no(z2)T 2

no(z3)T no(z4)
〉
C

= kno

z
2hTno
14 z

2h(2)
Tno

23

Fno(x)

x
h(2)
Tno

, (2.32)

where kno is a constant, x = z12z34
z13z24

is the cross ratio and
Fno(x) is an arbitrary non universal function of the cross
ratio. This non universal function in the limits x → 1 and
x → 0 may be given as [42]

Fno(1) = 1, Fno(0) = Cno , (2.33)

where Cno is a non universal constant which depends on
the full operator content of the field theory. The four point
twist correlator in Eq. (2.31) on the thermal cylinder may be
obtained by utilizing the transformation in Eq. (2.14). The
OEE for the mixed state configuration of the single interval
in question may then be obtained using Eqs. (2.2) and (2.3)
as

So(A : B) = lim
L→∞

[
c

3
log

(
β

πa
sinh

2πL

β

)]

+ c

3
log

(
β

πa
sinh

πl

β

)
− πcl

3β
+ f

(
e− 2πl

β

)

+ · · · , (2.34)

wherea is a UV cut-off for theCFT1+1 and the non-universal
function f (x) = limno→1 ln

[
Fno(x)

]
. Note that in the above

expression first divergent term denotes the entanglement
entropy S(A ∪ B) of total thermal system A ∪ B where the
bipartite limit B1 ∪ B2 → Ac has been taken. The finite part
of the OEE may be extracted by subtracting this divergent
EE as follows

So(A : B) − S(A ∪ B)

= c

3
log

(
β

πa
sinh

πl

β

)
− πcl

3β
+ f

(
e− 2πl

β

)
+ · · · .

(2.35)

It is instructive to express the above equation as

So(A : B) − S(A ∪ Ac)

= S(A) − Sth(A) + f
(
e− 2πl

β

)
+ · · · , (2.36)

where S(A) in the EE of the interval A and Sth(A) denotes
the thermal entropy. We note here that the OEE evaluated in
Eq. (2.35) matches exactly with the corresponding EWCS in
[44] in the large central charge limit. It is also worth pointing
out that our result in Eq. (2.35) matches with the correspond-
ing expressions for the OEE obtained in certain limits of
the inverse temperature β in [8]. These serve as consistency
checks for our computations.
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3 OEE in Galilean conformal field theories

Having discussed the computation of the OEE for various
bipartite states in relativisticCFT1+1s, in this section we now
proceed to the analysis of the OEE in (1 + 1)-dimensional
Galilean conformal field theories (GCFT1+1s). We start with
a short review of the GCFT1+1s and subsequently compute
the OEE for bipartite states involving two disjoint, two adja-
cent and a single interval in GCFT1+1s.

3.1 Review of GCFT1+1

In this subsection, we briefly review certain essential features
of GCFT1+1 as described in [18–20]. The Galilean con-
formal algebra (GCA1+1) for GCFT1+1s may be obtained
through a parametric İnönü-Wigner contraction of the usual
Virasoro algebra which involves the rescaling of the space
and the time coordinates as follows

t → t, xi → εxi , (3.1)

with ε → 0 which implies a vanishing velocity limit vi ∼ ε.
The action of a generic Galilean conformal transformation
on the coordinates is equivalent to diffeomorphisms and t-
dependent shifts respectively as follows

t → f (t) , x → f ′(t) x + g(t) . (3.2)

The generators of the GCA1+1 in the plane representation
are given as [19]

Ln = tn+1 ∂ t + (n + 1) tn x ∂ x , Mn = tn+1 ∂x . (3.3)

The corresponding Lie algebra for the generators are then
expressed as follows

[Ln, Lm] = (m − n)Ln+m + CL

12
(n3 − n)δn+m,0,

[Ln, Mn] = (m − n)Mn+m + CM

12
(n3 − n)δn+m,0,

[Mn, Mm] = 0,

(3.4)

where we have different central extensions for each sector
involving the central charges CL and CM for the GCFT1+1.
The reduction of the Lorentz invariance to a Galilean invari-
ance for the GCFT1+1 results in two separate components
for the energy-momentum tensor [38] and are given as

M ≡ Ttx =
∑
n

Mn t
−n−2,

L ≡ Ttt =
∑
n

[
Ln + (n + 2)

x

t
Mn

]
t−n−2 , (3.5)

where the GCA generators Mn and Ln are defined in Eq.
(3.3). The non-relativistic Ward identities for these two com-

ponents M and L are given as [38]

〈M(x, t)V1(x1, t1) . . . Vn(xn, tn)〉

=
n∑

i=1

[
hM,i

(t − ti )2 + 1

t − ti
∂xi

]
〈V1(x1, t1) . . . Vn(xn, tn)〉 ,

〈L(x, t)V1(x1, t1) . . . Vn(xn, tn)〉

=
n∑

i=1

[
hL ,i

(t − ti )2 − 1

t − ti
∂ti + 2hM,i (x − xi )

(t − ti )3

+ x − xi
(t − ti )2 ∂xi

]
〈V1(x1, t1) . . . Vn(xn, tn)〉 ,

(3.6)

where Vi s are GCFT1+1 primaries and (hL ,i , hM,i ) are their
corresponding weights.

The usual form of a two point correlator of primary fields
Vi (xi , ti ) may be obtained by utilizing the Galilean confor-
mal symmetry as follows [18]
〈
V1(x1, t1)V2(x2, t2)

〉

= C (2)δhL ,1hL ,2δhM,1hM,2 t
−2hL ,1
12 exp

(
−2hM,1

x12

t12

)
,

(3.7)

where xi j = xi−x j , ti j = ti−t j andC (2) is the normalization
constant. In a similar manner the three point correlator of the
primary fields could be expressed as [18]

〈V1(x1, t1)V2(x2, t2)V3(x3, t3)〉
= C (3)t

−(hL ,1+hL ,2−hL ,3)

12 t
−(hL ,2+hL ,3−hL ,1)

23

× t
−(hL ,1+hL ,3−hL ,2)

13

× exp
[

− (hM,1 + hM,2 − hM,3)
x12

t12

− (hM,2 + hM,3 − hM,1)
x23

t23

− (hM,1 + hM,3 − hM,2)
x13

t13

]
,

(3.8)

whereC (3) is the OPE coefficient. Utilizing the Galilean sym-
metry, one may also express the four point correlator for pri-
mary fields Vi (xi , ti ) as [18,28]
〈

4∏
i=1

Vi (xi , ti )

〉

=
∏

1≤i< j≤4

t
1
3

∑4
k=1 hL ,k−hL ,i−hL , j

i j

e
− xi j

ti j

(
1
3

∑4
k=1 hM,k−hM,i−hM, j

)
G

(
T,

X

T

)
, (3.9)

where G(T, X
T ) is a non universal function which depend

on the specific operator content of the GCFT1+1. The non-
relativistic cross-ratios X and X

T of the GCFT1+1 are given
as
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Fig. 2 Boosted intervals A1 and A2 in a GCFT1+1 plane

T = t12t34

t13t24
,

X

T
= x12

t12
+ x34

t34
− x13

t13
− x24

t24
. (3.10)

In the following subsections, we will now obtain the OEE
for various bipartite states in GCFT1+1s involving two dis-
joint, two adjacent and a single interval.

3.2 OEE for two disjoint intervals

As the GCFT1+1 lacks the Lorentz invariance the OEE will
be necessarily frame dependent and hence we need to con-
sider Galilean boosted intervals henceforth. Similar to the
relativistic case, the trace TrH(ρ

TA2
A1A2

)no required to obtain
the OEE, can be computed through a replica technique and
may be expressed as a twist correlator in the GCFT1+1. Now
let us consider the mixed state configuration of two disjoint
boosted intervals A1 ≡ [u1, v1] and A2 ≡ [u2, v2] with B
describing the rest of the system as shown in Fig. 2. Here
u1 = (x1, t1), v1 = (x2, t2), u2 = (x3, t3), v2 = (x4, t4)
are the end points of the intervals A1 and A2 respectively.

Similar to the case described in [28,29] where the trace
of the partially transposed density matrix is raised to an even

exponent, the trace TrH(ρ
TA2
A1A2

)no with an odd exponent no
may be expressed as

TrH(ρ
TA2
A1A2

)no

= 〈
	no(u1)	−no(v1)	−no(u2)	no(v2)

〉
, (3.11)

where 	no and 	−no are the twist and anti-twist operators in
the GCFT1+1, respectively with the corresponding weights
given as

h(1)
L = CL

24

(
no − 1

no

)
, h(1)

M = CM

24

(
no − 1

no

)
.

(3.12)

The four point twist correlator of Eq. (3.11) is expected to
exponentiate in the large central charge limit [29], similar
to the relativistic case discussed in Sect. 2.2. The dominant
contribution to the four point twist correlator may thus be
extracted through the geometric monodromy analysis as dis-
cussed in [24,29]. To this end, in the large CL ,CM limit we
may express the four point twist correlator in Eq. (3.11) in
terms of the Galilean conformal block Fα corresponding to
the t-channel (T → 1, X → 0) as follows
〈
	no(x1, t1)	−no(x2, t2)	−no(x3, t3)	no(x4, t4)

〉

= t
−2h(1)

L
14 t

−2h(1)
L

23 exp

[
−2h(1)

M
x14

t14
− 2h(1)

M
x23

t23

]

Fα

(
T,

X

T

)
.

(3.13)

The dominant conformal block Fα is an arbitrary function
of the cross-ratios X and T and depends on the full operator
content of the GCFT1+1.

In the following subsections we obtain the expression of
the block Fα in the large central charge limit by utilizing
a geometric monodromy analysis [29,38] for each of the
two components of the energy-momentum tensor M and L
described in Eq. (3.5).

3.2.1 Monodromy of M

In this subsection, through the geometric monodromy analy-
sis [29,38] of the energy-momentum tensor component M,
we will obtain a partial expression for the Galilean confor-
mal blockFα in Eq. (3.13). In this context, utilizing the Ward
identities described in Eq. (3.6), we obtain the expectation
value of the M as

M(ui ; (x, t)) =
4∑

i=1

[
hM,i

(t − ti )2 + CM

6

ci
t − ti

]
, (3.14)

where ui are the points in the GCFT plane where the twist
operators 	no are located and the auxiliary parameters ci are
given by

ci = 6

CM
∂xi log

〈
	no(u1)	−no(u2)	−no(u3)	no(u4)

〉
.

(3.15)

Note that for a four point correlator, the Galilean conformal
symmetry is not sufficient to fix the structure of the correlator
and hence some on the auxiliary parameters ci remain unde-
termined. By utilizing a Galilean transformation, we locate
the twist operators at t1 = 0, t3 = 1, t4 = ∞ and leave
t2 = T free. We may express three of the auxiliary param-
eters in terms of the fourth by utilizing the facts that the
expectation value of M scale as M(T ; t) ∼ t−4 as t → ∞
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and the conformal dimension hM,i ≡ h(1)
M of the light opera-

tor 	no vanishes in the replica limit no → 1. The expectation
value ofMmay now be written in terms of the only unknown
auxiliary parameter c2 as follows [29]

6

CM
M(T ; t) = c2

[
T − 1

t
+ 1

t − T
− T

t − 1

]
. (3.16)

Under a generic Galilean transformation given in Eq. (3.2)
the energy-momentum tensor M transforms as [38]

M′(t ′, x ′) = ( f ′)2M(t, x) + CM

12
S( f, t) , (3.17)

where S( f, t) is the Schwarzian derivative for the coordi-
nate transformation t → f (t). For the ground state of the
GCFT1+1, the expectation value M(ui ; (x, t)) vanishes on
the GCFT complex plane which constrains the Schwarzian
derivative to have the following form

1

2
S( f, t) = c2

[
T − 1

t
+ 1

t − T
− T

t − 1

]
. (3.18)

It is possible to express the above in the form of a differential
equation as [29]

0 = h′′(t) + 1

2
S( f, t) h(t)

= h′′(t) + 6

cM
M(T, t) h(t) , (3.19)

where f = h1/h2 with h1 and h2 as the two solutions of
the differential equation. By utilizing the monodromy of the
solutions h1 and h2 by circling around the light operators at
t = 1 , T and using the monodromy condition for the three
point twist correlator described in [29], we may obtain the
auxiliary parameter c2 as

c2 = εα

1√
T (T − 1)

, (3.20)

where εα = 6
CM

hM,α is the rescaled weight of the corre-
sponding conformal block Fα . We may now obtain the con-
formal block Fα for the four-point function in Eq. (3.13)
as

Fα = exp

[
CM

6

∫
c2 dX

]

= exp

[
hM,α

(
X√

T (T − 1)

)]
F̃(T ) .

(3.21)

Note that the complete form of the conformal block is still
not known and we have an unknown function F̃(T ) of the
coordinate T in the above expression. The form of this func-
tion will be determined through the geometric monodromy
analysis for the other component of the energy-momentum
tensor L in the proceeding subsection.

3.2.2 Monodromy of L

Similar to the Monodromy of M in the previous subsection,
we may express the expectation value of L by utilizing the
Galilean Ward identities in Eq. (3.6) as follows

6

CM
L(ui ; (x, t)) =

4∑
i=1

[
δi

(t − ti )2 − 1

t − ti
di

+ 2εi (x − xi )

(t − ti )3 + x − xi
(t − ti )2 ci

]
, (3.22)

where δi = 6
CM

hL ,i , εi = 6
CM

hM,i , the auxiliary parameters
ci are defined in Eq. (3.15) and the auxiliary parameters di
are given as [38]

di = 6

CM
∂ti log

〈
	no(u1)	−no(u2)	−no(u3)	no(u4)

〉
.

(3.23)

By utilizing a Galilean conformal map, we locate the twist
operators at t1 = 0, t2 = T, t3 = 1, t4 = ∞ and
x1 = 0, x2 = X, x3 = 0 and x4 = 0. Again three of
the four auxiliary parameters di may be obtained in terms of
the remaining one by utilizing the scaling L(T, t) → t−4

with t → ∞. We may now rewrite Eq. (3.22) in terms of the
undetermined auxiliary parameter d2 as follows

6

CM
L(ui ; (x, t))

= −c2X + d2(T − 1) − 2δL

t
+ c2X + d2T − 2δL

t − 1

+ c1x

t2 + c2(x − X)

(t − T )2 + c3x

(t − 1)2

− d2

t − T
+ 2xεL

t3 + δL

t2

+ δL

(t − 1)2 + δL

(t − T )2

+ 2εL(x − X)

(t − T )3 + 2xεL
(t − 1)3 .

(3.24)

where δL = 6
CM

h(1)
L and εL = 6

CM
h(1)
M are the rescaled

weights of the twist operator 	no . We note here that the aux-
iliary parameters ci appearing in the above expression are as
obtained in the preceding Sect. 3.2.1.

As in [24,29], now we consider the following combina-
tion of the expectation values of the two components of the
energy-momentum tensor,

L̃(ui ; (x, t)) = [
L(ui ; (x, t)) + X M′(ui ; (x, t))

]
. (3.25)

By choosing an ansatz g(t) = f ′(t)Y (t) in the generic
Galilean transformation Eq. (3.2), we get a differential equa-
tion of the following form,

6

CM
L̃ = −1

2
Y ′′′ − 2Y ′ 6

CM
M − Y

6

CM
M′ . (3.26)
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Similar to previous subsection, through the monodromy of
the solutions of the above differential equation by circling
around the light operators at t = 1 , T , we may determine
the auxiliary parameter d2 as

d2 = (1 − 3T )Xεα + 2(T − 1)T δα

2(T − 1)2T 3/2 , (3.27)

where εα , δα = 6
CM

hL ,α are the rescaled weight of Fα . The
complete form of the Galilean conformal block Fα may now
be obtained by using Eqs. (3.21) and (3.23) to be

Fα =
(

1 − √
T

1 + √
T

)hL ,α

exp

[
hM,α

(
X√

T (T − 1)

)]
. (3.28)

Now utilizing the above expression of the Galilean con-
formal block, we will obtain the OEE for the bipartite mixed
states involving two disjoint intervals in GCFT1+1s at zero
and finite temperature and for a finite sized system.

3.2.3 Two disjoint intervals at zero temperature

In this subsection we compute the OEE for the bipartite mixed
state of two disjoint intervals described by A1 and A2 in a
GCFT1+1 at zero temperature. To this end, we utilize the
t-channel T → 1 , X → 0 result in the large CM ,CL limit
for the Galilean conformal blocks Fα in Eq. (3.28). In par-
ticular, the dominant conformal block for the four point twist
correlator in Eq. (3.13) in the t-channel is described by the
primary twist field operator 	2

no with the weights h(2)
L = h(1)

L

and h(2)
M = h(1)

M where h(1)
L , h(1)

M are as given in Eq. (3.12).
Utilizing the expression for the Galilean conformal block
in Eq. (3.28), we may obtain the OEE for the two disjoint
intervals under consideration as follows

So(A1 : A2) = CL

6
log

(
t14t23

a2

)
+ CL

12
log

(
1 + √

T

1 − √
T

)

+ CM

6

(
x14

t14
+ x23

t23

)
+ CM

12

X√
T

(
1

1 − T

)

+ · · · , (3.29)

where X and T are the non relativistic cross ratios given in
Eq. (3.10). The first and third term in the above expression
denote the EE S(A1 ∪ A2) for the subsystem A1 ∪ A2. The
above expression may then be rearranged to obtain

So(A1 : A2) − S(A1 ∪ A2) = CL

12
log

(
1 + √

T

1 − √
T

)

+ CM

12

X√
T

(
1

1 − T

)
+ · · · , (3.30)

where the right-hand-side of the above expression matches
exactly with the corresponding EWCS [33] in the context
of flat holography. This verifies the duality described in Eq.
(2.6) for flat holographic scenarios as well.

3.2.4 Two disjoint intervals in a finite size system

Here we compute the OEE for the bipartite configuration of
two disjoint intervals in a finite sized GCFT1+1 defined on a
cylinder of circumference L . In this context we consider the
two disjoint intervals to be given as A1 ≡ [(ξ1, ρ1), (ξ2, ρ2)]
and A2 ≡ [(ξ3, ρ3), (ξ4, ρ4)]. Similar to the relativistic case
in Sect. 2.2.2, it is required to calculate the four point twist
correlator in Eq. (3.13) on the given cylinder. We utilize the
following conformal map to transform from theGCFT com-
plex plane to the cylinder [28,29]

ti = e
2π iξi
L , xi = 2π iρi

L
e

2π iξi
L , (3.31)

where the coordinates on the complex plane are denoted by
(xi , ti ) and the coordinates on the cylinder are denoted by
(ξi , ρi ). The transformation of a GCFT1+1 primary field
	(x, t) under this map is given as [27,28]

	̃(ξ, ρ) =
(

L

2π i

)−hL
e

2π i
L (ξhL+ρhM )	(x, t). (3.32)

We may also obtain the non-relativistic cross-ratios on the
cylinder by using Eq. (3.31) as

T̃ =
sin

(
πξ12
L

)
sin

(
πξ34
L

)

sin
(

πξ13
L

)
sin

(
πξ24
L

) , (3.33a)

X̃

T̃
= πρ12

L
cot

(
πξ12

L

)
+ πρ34

L
cot

(
πξ34

L

)

−πρ13

L
cot

(
πξ13

L

)
− πρ24

L
cot

(
πξ24

L

)
. (3.33b)

Now utilizing Eqs. (3.31) and (3.33) in Eq. 3.29 we may
obtain the OEE for the bipartite mixed state configuration of
two disjoint intervals under consideration as

So(A1 : A2) = CL

6
log

[(
L

πa

)2

sin

(
πξ14

L

)
sin

(
πξ23

L

)]

+ CL

12
log

(
1 +

√
T̃

1 −
√
T̃

)
+ CM

6

×
[

πρ14

L
cot

(
πξ14

L

)
+ πρ23

L
cot

(
πξ23

L

)]

+ CM

12

X̃√
T̃

(
1

1 − T̃

)
+ · · · , (3.34)

where again the first and the third term denote the EE S(A1 ∪
A2) for the mixed state A1 ∪ A2. This allows to rewrite the
above expression as follows

So(A1 : A2) − S(A1 ∪ A2) = CL

12
log

(
1 +

√
T̃

1 −
√
T̃

)

123



1050 Page 12 of 18 Eur. Phys. J. C (2022) 82 :1050

+ CM

12

X̃√
T̃

(
1

1 − T̃

)
+ · · · . (3.35)

We note here that as earlier, the right-hand-side of the above
expression matches exactly with the corresponding EWCS
[33] in the context of flat holography. This is once again con-
sistent with the duality (2.6) and provides strong substantia-
tion for our computations.

3.2.5 Two disjoint intervals at a finite temperature

Next we proceed to the computation of the OEE for two
disjoint intervals in a GCFT1+1 described on a thermal
cylinder with circumference equal to the inverse tempera-
ture β = 1/T . We again employ the following conformal
map to transform to the thermal cylinder [27]

ti = e
2πξi

β , xi = 2πρi

β
e

2πξi
β , (3.36)

where (xi , ti ) denotes the coordinates on the complex plane
and (ξi , ρi ) denotes the coordinates on the thermal cylinder.
Again the GCFT primaries transform under the above con-
formal map as follows [27]

	̃(ξ, ρ) =
(

β

2π

)−h(1)
L

e
2π
β

(ξh(1)
L +ρh(1)

M )
	(x, t), (3.37)

and the GCFT cross-ratios get modified as follows

T̂ =
sinh

(
πξ12

β

)
sinh

(
πξ34

β

)

sinh
(

πξ13
β

)
sinh

(
πξ24

β

) , (3.38a)

X̂

T̂
= πρ12

β
coth

(
πξ12

β

)
+ πρ34

β
coth

(
πξ34

β

)

−πρ13

β
coth

(
πξ13

β

)
− πρ24

β
coth

(
πξ24

β

)
.

(3.38b)

Utilizing Eqs. (3.36) and (3.38) in Eq. 3.29 we may now
obtain the OEE for the bipartite configuration in question to
be

So(A1 : A2) = CL

6
log

[(
β

πa

)2

sinh

(
πξ14

β

)
sinh

(
πξ23

β

)]

+ CL

12
log

(
1 +

√
T̂

1 −
√
T̂

)

+ CM

6

[
πρ14

β
coth

(
πξ14

β

)
+ πρ23

β
coth

(
πξ23

β

)]

+ CM

12

X̂√
T̂

(
1

1 − T̂

)
+ · · · . (3.39)

Similar to the previous subsections the first and the last term
in the above equation denotes the EE of the mixed state A1 ∪

Fig. 3 Two adjacent intervals in a GCFT1+1 plane

A2 and we may express the above equation as

So(A1 : A2) − S(A1 ∪ A2) = CL

12
log

(
1 +

√
T̂

1 −
√
T̂

)

+ CM

12

X̂√
T̂

(
1

1 − T̂

)
+ · · · .

(3.40)

We again note that the quantity on the right-hand-side of the
above expression matches exactly with the corresponding
EWCS [33] which is in accordance with the duality Eq. (2.6)
in the context of flat holography. This once again provides a
consistency check for our construction.

3.3 OEE for adjacent intervals

Having computed the OEE for bipartite configurations
involving two disjoint intervals, we now turn our attention
to the mixed state configurations of two adjacent intervals in
GCFT1+1s.

3.3.1 Adjacent intervals at zero temperature

For this case, we consider two adjacent intervals in a
GCFT1+1 in its ground state. In particular we consider the
two adjacent intervals to be described as A1 ≡ [u1, u2],
A2 ≡ [u2, v2] in GCFT1+1 which may be obtained by tak-
ing the limit v1 → u2 in disjoint intervals configuration
considered in Sect. 3.2. In this limit, Eq. (3.11) reduces to
the following three point twist correlator (Fig. 3),

Tr(ρ
TA2
A1A2

)no =
〈
	no(u1)	

2−no(u2)	no(v2)
〉
. (3.41)

Using the usual form of a GCFT1+1 three point correlator
in Eq. (3.8) for Eq. (3.41), we may obtain the OEE for the
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mixed state of two adjacent intervals under consideration as

So(A1 : A2) = CL

12
log

(
t12t23t13

a3

)

+ CM

12

(
x12

t12
+ x23

t23
+ x13

t13

)
+ · · · , (3.42)

where a is the UV cut-off. The above expression may also
be rewritten as

So(A1 : A2) − S(A1 ∪ A2)

= CL

12
log

(
t12t23

at13

)

+ CM

12

(
x12

t12
+ x23

t23
− x13

t13

)
+ · · · , (3.43)

where we have subtracted the EE for the state A1 ∪ A2 which
is given as

S(A1 ∪ A2) = CL

6
log

(
t13

a

)
+ CM

6

(
x13

t13

)
. (3.44)

Note that we may obtain the result in Eq. (3.42) by taking
an appropriate adjacent limit (x2, t2) → (x3, t3) of the cor-
responding disjoint intervals result in Eq. (3.29). We also
observe that the expression for the difference of the OEE
and the entropy in Eq. (3.43) matches with the correspond-
ing EWCS in [33] apart from an additive constant which is
contained in the undetermined OPE coefficient of the corre-
sponding three point twist correlator in Eq. (3.41). This is in
accordance with the duality in Eq. (2.6). These observations
serve as consistency checks for our results.

3.3.2 Adjacent intervals in a finite size system

For this case, we consider the bipartite mixed state con-
figuration of two adjacent intervals described by A1 ≡
[(ξ1, ρ1), (ξ2, ρ2)] and A2 ≡ [(ξ2, ρ2), (ξ3, ρ3)] in a finite
sized GCFT1+1 described on a cylinder of circumference
L . It is again necessary here to compute the corresponding
three point twist correlator on the cylinder. To this end, we
employ the conformal map in Eq. (3.31) and the transforma-
tion of the GCFT1+1 primaries given in Eq. (3.32) to obtain
〈
	no(ξ1, ρ1)	

2−no(ξ2, ρ2)	no(ξ3, ρ3)
〉

=
(

L

2π i

)−2h(1)
L −h(2)

L

exp

[
2π i

L

(
ξ1h

(1)
L + ξ2h

(2)
L + ξ3h

(1)
L

+ ρ1h
(1)
M + ρ2h

(2)
M + ρ3h

(1)
M

)]

×
〈
	no(u1)	

2−no(u2)	no(v2)
〉
, (3.45)

where the three point twist correlator on the right-hand-side
is defined on theGCFT complex plane. Utilizing Eqs. (3.45)
and (3.8) in Eqs. (2.2) and (2.3) we may now obtain the OEE

for the mixed state under consideration as follows

So(A1 : A2) = CL

12
log

[(
L

πa

)3

sin

(
πξ12

L

)

× sin

(
πξ23

L

)
sin

(
πξ13

L

)]

+ CM

12

[
πρ12

L
cot

(
πξ12

L

)

+ πρ23

L
cot

(
πξ23

L

)
+ πρ13

L
cot

(
πξ13

L

)]
+ · · · .

(3.46)

It is instructive to rewrite the above result as

So(A1 : A2) − S(A1 ∪ A2)

= CL

12
log

⎡
⎣ L

πa

sin
(

πξ12
L

)
sin

(
πξ23
L

)

sin
(

πξ13
L

)
⎤
⎦

+ CM

12

[
πρ12

L
cot

(
πξ12

L

)

+ πρ23

L
cot

(
πξ23

L

)

− πρ13

L
cot

(
πξ13

L

)]
+ · · · ,

(3.47)

where the EE S(A1 ∪ A2) for the mixed state A1 ∪ A2 is
given as

S(A1 ∪ A2) = CL

6
log

[
L

πa
sin(

πξ13

L
)

]

+ CM

6

πρ13

L
cot

(
πξ13

L

)
+ · · · . (3.48)

Similar to the previous case, by the application of an appro-
priate adjacent limit in the disjoint intervals result given in Eq.
(3.34) we may reproduce the above adjacent intervals result
in Eq. (3.46). Also note that the right-hand-side of Eq. (3.47)
matches with the corresponding EWCS obtained in [33] up to
an additive constant which is contained in the undetermined
OPE coefficient of the corresponding three point twist cor-
relator.

3.3.3 Adjacent intervals at a finite temperature

We now proceed to the case of two adjacent intervals at a finite
temperature T in a GCFT1+1. To this end, we consider the
bipartite mixed state described by A1 ≡ [(ξ1, ρ1), (ξ2, ρ2)]
and A2 ≡ [(ξ2, ρ2), (ξ3, ρ3)] in a GCFT1+1 defined on a
thermal cylinder with the circumference given by the inverse
temperature β = 1/T . Similar to the previous subsection,
we need to compute the three point twist correlator in Eq.
(3.41) on the thermal cylinder. This is done by utilizing the
map (3.36) and the transformation of GCFT primaries in
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Eq. (3.37) to obtain
〈
	no(ξ1, ρ1)	

2−no(ξ2, ρ2)	no(ξ3, ρ3)
〉
β

=
(

β

2π

)−2h(1)
L −h(2)

L

exp

[
2π

β
(ξ1h

(1)
L + ξ2h

(2)
L + ξ3h

(1)
L

+ ρ1h
(1)
M + ρ2h

(2)
M + ρ3h

(1)
M )

]

×
〈
	no(u1)	

2−no(u2)	no(v2)
〉
.

(3.49)

Here the subscript β on the left denotes that the correlator is
described on the thermal cylinder and the three point twist
correlator on the right-hand-side is described on the GCFT
complex plane. Now utilizing Eqs. (3.49) and (3.8) we may
obtain the OEE for the mixed states of two adjacent intervals
at a finite temperature to be

So(A1 : A2) = CL

12
log

[(
β

πa

)3

sinh

(
πξ12

β

)

× sinh

(
πξ23

β

)
sinh

(
πξ13

β

)]

+ CM

12

[
πρ12

β
coth

(
πξ12

β

)
+ πρ23

β
coth

(
πξ23

β

)

+ πρ13

β
coth

(
πξ13

β

)]
+ · · · ,

(3.50)

where a is a UV cut off of the GCFT1+1. We may again
rearrange the above expression to obtain

So(A1 : A2) − S(A1 ∪ A2)

= CL

12
log

[
β

πa

sinh
(

πξ12
β

)
sinh

(
πξ23

β

)

sinh
(

πξ13
β

)
]

+ CM

12

[
πρ12

β
coth

(
πξ12

β

)

+ πρ23

β
coth

(
πξ23

β

)
− πρ13

β
coth

(
πξ13

β

)]
+ · · · ,

(3.51)

where the EE S(A1 ∪ A2) for the subsystem A1 ∪ A2 is given
as

S(A1 ∪ A2) = CL

6
log

[
β

πa
sinh(

πξ13

β
)

]

+ CM

6

πρ13

β
coth

(
πξ13

β

)
+ · · · . (3.52)

Again we note that through the appropriate adjacent limit
in the corresponding disjoint intervals result in Eq. (3.40)
we may obtain the result for the OEE for the mixed state
configuration of two adjacent intervals in Eq. (3.50). We also

observe that the right-hand-side of Eq. (3.51) matches with
the corresponding EWCS computed in the context of flat
space holography in [33] apart from an additive constant
which is contained in the undetermined OPE coefficient of
the corresponding three point twist correlator. These serve as
consistency checks for our computations.

3.4 OEE for a single interval

Having computed the OEE for the mixed states of two dis-
joint and two adjacent intervals, finally, in this subsection
we proceed to the computation of the OEE for bipartite pure
and mixed state configurations involving a single interval in
GCFT1+1s.

3.4.1 Single interval at zero temperature

For this case, we consider a single boosted interval A1 =
[(x1, t1), (x2, t2)] at zero temperature which describes a
bipartite pure state in a GCFT1+1. We may obtain this con-
figuration through the limit u2 → v1 and v2 → u1 in the
disjoint intervals construction described in Sect. 3.2. Here
the interval A ≡ A1 ∪ A2 describes the full system with B as
a null set and consequently the state described by the density
matrix ρA is a pure state. In this limit the four point twist
correlator in Eq. (3.11) reduces to the following two point
twist correlator,

Tr(ρ
TA2
A )no =

〈
	2

no(u1)	
2−no(v1)

〉
, (3.53)

where the twist operators 	2
no and 	2−no have the weights

h(2)
L = h(1)

L and h(2)
M = h(1)

M . Now utilizing the usual form
of a GCFT two point correlator given in Eq. (3.7) for the
above twist correlator, we may obtain the OEE for the given
pure state of a single interval as follows

So(A1 : A2) = CL

6
log

(
t12

a

)
+ CM

6

(
x12

t12

)
+ · · · ,

(3.54)

where a is a UV cut-off for the GCFT1+1. We observe here
that the OEE obtained above matches exactly with the cor-
responding EWCS [33] and with the EE [22] for the single
interval A1. This is in conformity with the quantum informa-
tion theory expectation that for a pure state the OEE should
reduce to the EE for the single interval describing the bipar-
tite state [8].

3.4.2 Single interval in a finite size system

In this subsection, we focus on the computation of the
OEE for the pure state of a single interval in a finite sized
GCFT1+1. To this end, we consider a single interval A in a
GCFT1+1 defined on cylinder with circumference L . Using
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Eq. (3.32) in Eq. (3.7), we may obtain the corresponding two
point twist correlator on this cylinder as follows

〈
	2

no(ξ1, ρ1)	
2−no(ξ2, ρ2)

〉
=

[
L

π
sin

(
πξ12

L

)]−2h(2)
L

× exp

[
−2h(2)

M
πρ12

L
cot

(
πξ12

L

)]
, (3.55)

where (ξi , ρi ) are the endpoints of the interval A on the cylin-
der. Now by using Eq. (3.55) and Eqs. (2.2) and (2.3), we may
obtain the OEE for the single interval in a finite sized system
as

So(A1 : A2) = CL

6
log

(
L

πa
sin

πξ12

L

)

+ CM

6

πρ12

L
cot

πξ12

L
+ · · · . (3.56)

We again observe the consistent behaviour of the OEE
obtained above to match exactly with the EE and the EWCS
for the corresponding single interval [29]. These matchings
serve as a consistency checks for our result.

3.4.3 Single interval at a finite temperature

For this final case, we consider a single interval A ≡
[(−ξ,−ρ), (0, 0)] in aGCFT1+1 defined on a thermal cylin-
der whose circumference is equal to the inverse temperature
β. Similar to the relativistic case discussed in Sect. 2.4.3, it
is necessary to consider the single interval in question to be
sandwiched between two large but finite auxiliary intervals
B1 ≡ [(−L ,−y), (−ξ,−ρ)] and B2 ≡ [(0, 0), (L , y)] adja-
cent on either side.8 The OEE is then computed with finite
auxiliary intervals and finally the bipartite limit described
B ≡ B1 ∪ B2 → Ac or L → ∞ is taken to restore the
original configuration.

With the presence of two auxiliary intervals, the OEE may
then be obtained by computing the following four twist cor-
relator on the thermal cylinder,

So(A : B) = lim
L→∞ lim

no→1

1

1 − no
ln

×
[〈

	no (−L ,−y)	2−no (−ξ,−ρ) 	2
no (0, 0) 	−no (L , y)

〉
β

]
.

(3.57)

8 In [28,36], the authors found that a similar construction was required
to appropriately compute the entanglement negativity and the reflected
entropy for the same configuration of a single interval at a finite tem-
perature in a GCFT1+1.

The above four point twist correlator on a GCFT complex
plane is given by [28]

〈
	no(x1, t1)	2−no(x2, t2)	2

no(x3, t3)	−no(x4, t4)
〉

= k̃no
t2hL
14 t2hL

23

Fno

(
T, X

T

)

T hL

× exp

[
− 2hM

x14

t14
− 2hM

x23

t23
− hM

X

T

]
,

(3.58)

where k̃no is a constant, X and T are the GCFT1+1 cross-

ratios given in Eq. (3.10), hL ≡ h(1)
L = h(2)

L , hM ≡ h(1)
M =

h(2)
M and Fno is a non-universal function of the cross-ratios

and depend on the full operator content of the theory. In the
limits T → 1 and T → 0, the non-universal function Fno
have the following behaviour [28]

Fno(1, 0) = 1, Fno

(
0,

X

T

)
= Cno , (3.59)

where Cno is a constant that depends on the full operator
content of the theory.

We may utilize the conformal map (3.36) and transforma-
tion of the GCFT primaries given in Eq. (3.37) to obtain
the required four point twist correlator in Eq. (3.57) on the
thermal cylinder as

〈
	no (−L ,−y) 	2−no (−ξ,−ρ)	2

no (0, 0)	−no (L , y)
〉
β

= knok
2
no/2

T hL

[
β

π
sinh

(
2πL

β

)]−2hL [
β

π
sinh

(
πξ

β

)]−2hL

× exp

[
−2πy

β
coth

(
2πL

β

)
2hM

−2πρ

β
coth

(
πξ

β

)
2hM − X

T
hM

]
Fno

(
T,

X

T

)
.

(3.60)

Now using the above expression in Eq. (3.57) and taking
the bipartite limit L → ∞ subsequent to the replica limit
no → 1, we may obtain the OEE for the mixed state under
consideration to be

So(A : B) = lim
L→∞

[
CL

6
log

(
β

πa
sinh

2πL

β

)

+ CM

6

π(2y)

β
coth

2πL

β

]

+ CL

6
log

(
β

πa
sinh

πξ

β

)

+ CM

6

πρ

β
coth

πξ

β
− CL

6

πξ

β
− CM

6

πρ

β

+ f

(
e− 2πξ

β ,−2πρ

β

)
+ · · · ,

(3.61)
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where a is a UV cut off and the non universal function
f (T, X/T ) is defined as [28]

f

(
T,

X

T

)
≡ lim

no→1
ln

[
Fno

(
T,

X

T

)]
. (3.62)

Note that the divergent first term inside the parenthesis in Eq.
(3.61) describes the EE of the total thermal system A∪B1∪B2

with the bipartite limit B = B1 ∪ B2 → Ac. We may extract
the finite part of the OEE for the mixed state of the single
interval under consideration as

So(A : B) − S(A ∪ B) = CL

6
log

(
β

πa
sinh

πξ

β

)

+ CM

6

πρ

β
coth

πξ

β

− πξCL

6β
− πρCM

6β
+ f

(
e− 2πξ

β ,−2πρ

β

)
+ · · · ,

(3.63)

where the divergent total entropy S(A ∪ B) has been sub-
tracted. We observe that the above result may be expressed
in a more instructive way as follows

So(A : B) − S(A ∪ B) = S(A) − Sth(A)

+ f

(
e− 2πξ

β ,−2πρ

β

)
+ · · · , (3.64)

where S(A) denotes the EE for the single interval A [21]
and Sth(A) denotes the thermal contribution to the EE. The
above expression highlights that the universal part of the OEE
does not include contributions from the thermal correlations.
We note here that the right-hand-side of Eq. (3.63) matches
with the upper bound of the corresponding EWCS obtained
in [33] apart from an additive constant. This extra additive
constant in the EWCS is contained in the non-universal func-
tion f (T, X/T ) and may be obtained through a proper large
central charge monodromy analysis of the four point twist
correlator in Eq. (3.57).

4 Summary and conclusions

To summarize, in this article we have obtained the odd entan-
glement entropy for bipartite states in of (1+1)-dimensional
holographic relativistic and non-relativistic (Galilean) con-
formal field theories through appropriate replica techniques.
From our results we have verified the proposed duality of the
bulk EWCS with the difference between the OEE and the EE
for bipartite states in holographicCFT1+1 and GCFT1+1. In
this context we have demonstrated the extension of the above
duality for GCFT1+1s dual to bulk (2 + 1)-dimensional
asymptotically flat geometries.

For the relativistic case we have obtained the OEE for
bipartite pure and mixed states at zero and finite temper-
ature and for finite sized system involving two disjoint,

two adjacent and a single interval in CFT1+1s through a
replica technique. In this context we have obtained the corre-
sponding results for the various bipartite states in relativistic
CFT1+1 which were missing in the literature. Furthermore
we have also verified the holographic duality of the differ-
ence between the OEE and the EE with the corresponding
bulk EWCS for the above mentioned bipartite states. We also
found that our result for the adjacent intervals at zero tem-
perature matches with earlier works in the literature in the
context of 1-dimensional harmonic spin chains and for gravi-
tational path integral computations based on fixed area states.
These serve as consistency checks for our computations.

Subsequent to the above we have investigated non-
relativistic holographicGCFT1+1s and established an appro-
priate replica technique to compute the OEE for bipartite
states. In this context have computed the OEE for such bipar-
tite states in GCFT1+1s involving two disjoint, two adjacent
and a single interval at zero and finite temperatures and for
finite sized systems. Furthermore we have also compared
our results with the corresponding bulk EWCS to verify and
extend its duality with the difference between the OEE and
EE to a flat holographic scenario.

In the above connection we have obtained the OEE for
the mixed state configuration of two disjoint intervals at zero
and a finite temperature and in a finite sized system utilizing
a geometric monodromy technique to obtain the large cen-
tral charge limit of the corresponding four point twist field
correlator in the GCFT1+1. Interestingly for the all the cases
we observed that the difference between the OEE and the EE
are exactly equal to the corresponding bulk EWCS computed
earlier in the literature, which substantiates our computations
and extends the duality to the framework of flat holography.

Following this we have obtained the OEE for the mixed
state configuration of two adjacent intervals at zero and a
finite temperature and in a finite sized system in GCFT1+1s.
As a consistency check we have also obtained the above
results from the OEE for disjoint intervals through a suit-
able adjacent limit. Once again we have compared our results
with bulk EWCS computed earlier in the literature in the con-
text of flat holography and observed the matching with the
functional form of the difference between the OEE and the
EE. However we should mention here that the bulk EWCS
for these cases involve an extra additive constant arising from
the undetermined OPE coefficient of the corresponding three
point twist correlator in the dual GCFT1+1.

Subsequently, we consider the pure state configuration of
a single interval at zero temperature and in a finite sized
system. We have found that the OEE for these pure state
configurations exactly match with the corresponding entan-
glement entropies (EE) as dictated by the quantum informa-
tion theory. Finally for the mixed state of a single interval
at a finite temperature in the GCFT1+1s it was required to
utilize a construction involving two large but finite auxil-
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iary intervals adjacent on either sides of the single interval
to correctly compute the corresponding OEE. We mention
here that similar constructions have been employed in the
literature for the computation of entanglement negativity and
reflected entropy for this specific mixed state configuration in
both relativistic and non-relativistic scenarios. Furthermore it
was observed the OEE for this bipartite state involves a diver-
gent part due the EE of the total (infinite) system. However,
on subtraction of this divergent contribution from the univer-
sal part of the OEE, we observe that the finite part matches
with the upper bound of the corresponding bulk EWCS com-
puted earlier for flat space holography. Additionally, in the
appendix A we have also reproduced the expression for the
OEE for two disjoint intervals in a GCFT1+1 through an
appropriate non-relativistic limit of the corresponding result
in the usual relativistic CFT1+1. All of these detailed com-
parisons and matches serve as strong consistency checks for
our computations.

In conclusion we state that the characterization of entan-
glement for bipartite states in conformal field theories and
its relation with space time holography is an extremely rich
field for further investigation and has provided significant
insights into diverse issues in condensed matter theories and
also in quantum gravity and black hole information. There are
exciting open avenues in this context for further investigation
of various other entanglement measures defined in quantum
information theory which is expected to provide further elu-
cidation of crucial issues in the above disciplines. We hope
to return to these fascinating issues in the near future.
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Appendix A: Limiting analysis

In this appendix we perform a limiting analysis and show that
the OEE for a bipartite mixed state in a GCFT1+1 computed
in Sect. 3 can be obtained from the corresponding relativistic

result in Sect. 2 through an appropriate non-relativistic limit.
In this regard, the parametric İnönü-Wigner contraction given
in Eq. (3.1) may be expressed in terms of the coordinates of
the CFT1+1 complex plane as

z → t + εx , z̄ → t − εx , (A.1)

where ε → 0. The central charges of the GCA1+1 may also
be related to those of the parent relativistic theory as [20,33]

CL = c + c̄ , CM = ε(c − c̄) . (A.2)

For unequal central charges c and c̄ for the holomorphic and
anti-holomorphic sectors, the OEE for the bipartite mixed
state of two disjoint intervals in a CFT1+1 given in Eq. (2.9)
may be expressed as

So(A1 : A2) = S(A1 ∪ A2) + c

12
log

[
1 + √

x

1 − √
x

]

+ c̄

12
log

[
1 + √

x̄

1 − √
x̄

]
+ · · · , (A.3)

where the entanglement entropy S(A1 ∪ A2) is similarly
expressed in terms of the unequal central charges c and c̄.
Utilizing Eq. (A.1), we may write the CFT1+1 cross ratios
x, x̄ in terms of the GCFT1+1 cross ratios X, T as

x → T

(
1 + ε

X

T

)
, x̄ → T

(
1 − ε

X

T

)
. (A.4)

We may now obtain the OEE for the corresponding bipartite
configuration in the GCFT1+1 up to linear order in ε by
utilizing Eqs. (A.4) and (A.1) in Eq. (A.3) to be

So(A1 : A2) = CL

6
log

(
t14t23

a2

)
+ CL

12
log

(
1 + √

T

1 − √
T

)

+ CM

6

(
x14

t14
+ x23

t23

)

+ CM

12

X√
T

(
1

1 − T

)
+ O(ε).

(A.5)

It is remarkable that the above expression matches exactly
with the corresponding replica technique result in Eq. (3.29)
up to the leading order which provides a consistency check
for our computations. Similarly, we have checked that this
limiting behaviour of the OEE inGCFT1+1 also holds for the
other bipartite configurations discussed in this article as well.
We note here that although it is possible to obtain the expres-
sion for the OEE for bipartite subsystems in GCFT1+1s fol-
lowing the above procedure, however the above limiting anal-
ysis lacks the information about the structure of the replica
manifold which is important in the study of the Rényi gen-
eralization of the OEE and its application in holography.
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