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Abstract It is shown that the components of Pryce’s spin
operator of Dirac’s theory are SU (2) generators of a repre-
sentation carried by the space of Pauli’s spinors determin-
ing the polarization of the plane wave solutions of Dirac’s
equation. These operators are conserved via Noether’s the-
orem such that new conserved polarization operators can be
defined for various polarizations. The corresponding one-
particle operators of quantum theory are derived show-
ing how these are related to the isometry generators of
the massive Dirac fermions of any polarization, including
momentum-dependent ones. In this manner, the problem of
separating conserved spin and orbital angular momentum
operators is solved naturally. Moreover, the operator pro-
posed by Pryce as a mass-center coordinate is studied, show-
ing that after quantization, this becomes in fact the dipole
one-particle operator. As an example, the quantities deter-
mining the principal one-particle operators are derived for
the first time in a momentum-helicity basis.

1 Introduction

The historical problem of finding a good spin operator of
Dirac’s theory comes from the fact that the Pauli spin part
of the total angular momentum is not conserved separately
via Noether’s theorem. This problem was studied by many
authors, giving rise to a rich literature, but without arriv-
ing at a commonly accepted solution (see for instance, Refs.
[1,2] and the literature indicated therein). Nevertheless, there
exists a privileged conserved self-adjoint spin operator sat-
isfying all our exigences. This was found for the first time
by Pryce [2] in association with a mass-center operator and
redefined later with the help of a Foldy–Wouthuysen transfor-
mation in momentum representation (p-rep.) [3] (presented
in Appendix A).
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Remaining outside this debate we tried to study how the
polarization of Dirac’s field can be changed by applying suit-
able operators in configuration rep. (x-rep.). The polarization
is determined by Pauli spinors that enter in the structure of
the plane wave solutions of Dirac’s equation, offering supple-
mental SU (2) degrees of freedom but which are less studied
so far. This is because of the difficulties in finding suitable
operators able to transform the Pauli spinors only without
affecting other quantities. Fortunately, we have found a spec-
tral rep. of a class of integral operators, allowing us to define
such transformations (transfs.) acting in x-rep. but chang-
ing the Pauli spinors of the plane wave solutions in p-rep.
The generators of these transfs. close an SU (2) algebra and,
in addition, are conserved via Noether’s theorem just as the
components (comps.) of the spin operator one looks for. As
the action of these operators can be calculated in p-rep., we
arrived at a surprising result: the SU (2) generators acting on
Pauli’s spinors are just the comps. of the spin operator pro-
posed by Pryce and redefined then by Foldy and Wouthuy-
sen in this rep. In fact, we found an alternative definition of
the same spin operator but in a new framework, allowing us
to study how the principal operators of relativistic quantum
mechanics (RQM) depend on polarization before and after
quantization when these become the one-particle operators
of the quantum field theory (QFT).

Our principal objective here is to present the theory of
Dirac’s free field in this framework, focusing on the role
of polarization in determining the form, action and physi-
cal meaning of principal operators of RQM and QFT. When
the Pauli spinors depend on momentum, as in the case of
the widely used momentum-helicity basis, we say that the
polarization is peculiar. Otherwise, we have a common polar-
ization, independent of momentum as, for example, in the
momentum-spin basis. We present here general results con-
cerning the principal operators for any polarization, first in
RQM and then, after quantization, in QFT.
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The first novelty here is the spectral rep. allowing us to
define the spin operator in x-rep. as an integral operator hav-
ing a kernel whose Fourier transform is just the Pryce spin
operator in p-rep. Moreover, we give a new general defini-
tion of the polarization operator that holds even in the case
of peculiar polarization getting a natural physical meaning
after quantization. Similarly, we derive the action in x-rep.
of the associated coordinate operator defined by Pryce in
p-rep. pointing out that this depends linearly on time and
defining the corresponding velocity operator. Furthermore,
performing the quantization, we obtain for the first time the
one-particle spin and polarization operators as well as the
isometry generators for any peculiar polarization. We show
that these operators depend on new Pauli-type momentum-
dependent matrices and “covariant” momentum derivatives.
Moreover, we point out that the total angular momentum
operator of QFT is split into a new orbital angular momen-
tum and spin operators, each one being conserved separately.
However, the surprise is the operator defined by Pryce as
a mass-center position vector, which becomes after quanti-
zation a time-dependent dipole operator whose velocity is
known as the classical current. The final original results we
present here are the aforementioned matrices and deriva-
tives determining the form of the one-particle operators in
a momentum-helicity basis.

We start in the next section briefly revisiting the covari-
ant Dirac free field, its symmetries, and the relativistic scalar
product in x-rep. In Sect. 3, devoted to p-rep., we first present
the general properties of the mode spinors of this rep., focus-
ing then on the equivalence of the covariant rep. with an
orthogonal sum of a pair of Wigner’s unitary and irreducible
ones, induced by the rep. of spin half of the SU (2) group.
Here, we obtain the structure of the mode spinors of any
peculiar polarization and the transfs. of the wave functions in
p-rep. showing how the generators of covariant and induced
reps. are related among themselves. In the first part of Sect.
4 we introduce our new spectral rep., helping us to define the
spin and polarization operators in the next part and to analyze
the associated coordinate operator in the last one.

These results are obtained in x and p reps. of RQM where
there are problems in interpreting the anti-particle terms. By a
lucky chance, the framework adopted here allows us to apply
easily the Bogolyubov method of quantization, transforming
the expectation values of the operators of RQM into the one-
particle operators of QFT. In Sect. 5, devoted to this proce-
dure, we give the principal one-particle operators, showing
how the total angular momentum is split into spin and orbital
angular momentum conserved one-particle operators. The
last part of this section is devoted to the associated coor-
dinate operator that after quantization becomes the dipole
one-particle operator evolving linearly in time thanks to the
conserved classical current.

In Sect. 6 we give as an example the operators of QFT in
a momentum-helicity basis for which we derive for the first
time the aforementioned Pauli-type matrices and momentum
derivatives. Moreover, we discuss the difference between our
polarization operator and the helicity one, showing that these
operators give eigenvalues with opposite signs in the antipar-
ticle sector. Finally, we show how the isometry generators
look when we turn back to RQM but constructed as the one-
particle restriction of QFT. We observe that in the space of
Pauli spinors defining one-particle states in p-rep., the spin
and polarization operators of the relativistic approach are just
the original Pauli ones of the non-relativistic theory.

The last section in which we present our concluding
remarks is followed by two appendices. In the first appendix,
we give some technical details concerning the boost matri-
ces, projection operators, and the Foldy–Wouthuysen transf.
laying out the Pryce spin operator. In the second appendix,
we discuss briefly the role of the induced reps. in RQM.

2 Massive Dirac field

Let us start with the Minkowski space-time, (M, η), having
the metric η = diag(1,−1,−1,−1) and Cartesian coordi-
nates xμ (α, β, ...μ, ν... = 0, 1, 2, 3). The isometries of
M are transfs. of the Poincaré group P↑

+ = T (4)� L↑
+

[4], (Λ, a) : x → x ′ = Λx + a, formed by transfs.
Λ ∈ L↑

+ of the orthochronous proper Lorentz group, preserv-
ing the metric η, and four-dimensional translations a ∈ T (4).
The universal covering group of the Poincaré one, P̃↑

+ =
T (4)� SL(2,C), includes transfs. λ ∈ SL(2,C) related to
those of the Lorentz group through the canonical homomor-
phism, λ → Λ(λ) [4].

The covariant Dirac field, ψ : M → VD , is locally
defined over M with values in the vector spaces VD car-
rying the finite-dimensional rep. ρD = ( 1

2 , 0)⊕ (0, 1
2 ) of the

SL(2,C) group where one defines the Dirac γ matrices that
satisfy {γ μ, γ ν} = 2ημν , giving rise to SL(2,C) generators.
Here, we consider exclusively the chiral representation (with
diagonal γ 5) in which the transfs.

λ(ω) = exp

(
− i

2
ωαβsαβ

)
∈ ρD , sμν = i

4

[
γ μ, γ ν

]
,

(1)

with real-valued parameters, ωαβ = −ωβα , are reducible
to the subspaces of the irreducible reps. ( 1

2 , 0) and (0, 1
2 )

of ρD [4,5]. We denote by r = diag(r̂ , r̂) ∈ ρD [SU (2)]
the transfs. we call here simply rotations, for which we
use the Cayley–Klein parameters θ i = 1

2εi jkω
jk and the

generators si = 1
2εi jks jk = diag(ŝi , ŝi ), where ŝi = 1

2σi
are the comps. of the Pauli spin operator depending on
Pauli’s matrices σi (i, j, k... = 1, 2, 3). Similarly, the
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transfs. l = diag(l̂, l̂−1) ∈ ρD [SL(2,C)/SU (2)], called
here the Lorentz boosts, are generated by the matrices s0i =
diag(i ŝi ,−i ŝi ) whose parameters are denoted by τ i = ω0i .
Summarizing, we may write

r(θ) = diag(r̂(θ), r̂(θ)) , r̂(θ) = e−iθ i ŝi = e− i
2 θ iσi , (2)

l(τ ) = diag(l̂(τ ), l̂−1(τ )) , l̂(τ ) = eτ i ŝi = e
1
2 τ iσi . (3)

In the covariant parameterization, the associated Lorentz
transfs. may be expanded as

Λμ ·· ν [λ(ω)] = δμ
ν + ωμ ·· ν + ωμ ··α ωα,·· ν + · · · , (4)

as it results from the canonical homomorphism [4] .
The massive Dirac field ψ of massm and its Dirac adjoint,

ψ = ψ+γ 0, are canonical variables of the action

S [ψ] =
∫

d4xLD(ψ,ψ) , (5)

defined by the Lagrangian density,

LD(ψ) = i

2
[ψγ α∂αψ − (∂αψ)γ αψ] − mψψ . (6)

This action gives rise to the Dirac equation,

EDψ = (iγ μ∂μ − m)ψ = 0 , (7)

and the form of the relativistic scalar product

〈ψ,ψ ′〉D =
∫

d3xψ(x)γ 0ψ ′(x) =
∫

d3xψ+(x)ψ ′(x),

(8)

related to the conserved electric charge.
The Dirac field transforms under isometries according to

the covariant rep. T : (λ, a) → Tλ,a of the group P̃↑
+, as

[4]

(Tλ,aψ)(x) = λψ
(
Λ(λ)−1(x − a)

)
. (9)

The well-known basis generators of this rep.,

Pμ = − i
∂T1,a

∂aμ

∣∣∣∣
a=0

, Jμν = i
∂Tλ(ω),0

∂ωμν

∣∣∣∣
ω=0

, (10)

may be rewritten in vector notation, separating the momen-
tum comps. and energy operator, Pi = −i∂i and H = P0 =
i∂t , and denoting the SL(2,C) generators as

Ji = 1

2
εi jk J jk = −iεi jk x

j∂k + si , (11)

Ki = J0i = i(xi∂t + t∂i ) + s0i , (12)

where the comps. xi of the coordinate vector operator x act
as (xiψ)(x) = xiψ(x). The set {H, Pi , Ji , Ki } represents
the usual basis of the Lie algebra Lie(T ) of the rep. T [4].

The action (5) is invariant under isometries, such that the
scalar product (8) is also invariant,

〈TA,aψ, TA,aψ
′〉D = 〈ψ,ψ ′〉D , (13)

because the generators X ∈ Lie(T ) are self-adjoint, obey-
ing 〈Xψ,ψ ′〉D = 〈ψ, Xψ ′〉D , as the SL(2,C) generators
of the rep. ρD are Dirac self-adjoint, sμν = sμν . All these
generators are conserved via Noether’s theorem in the sense
that their expectation values 〈ψ, Xψ〉D are independent of
time. Therefore, we may conclude that in this framework, the
covariant rep. T behaves as a unitary one with respect to the
relativistic scalar product (8).

Of special interest is the total angular momentum opera-
tor J = x ∧ P + s, defined by Eq. (11), which is formed by
the orbital term x ∧ P associated to the reducible Pauli spin
operator s. Unfortunately, these operators are not conserved
separately in the sense of the above definition, such that they
do not have a correct physical meaning in special relativity.
For this reason, one seeks a conserved spin operator S asso-
ciated to a suitable coordinate operator, X, allowing the new
splitting

J = x ∧ P + s = X ∧ P + S , (14)

whose orbital term, X ∧ P, also has to be conserved. This is
the principal problem we discuss in this paper focusing on
Pryce’s spin and coordinate operators.

The invariants of the Dirac field are the eigenvalues of
Casimir operators of the rep. T that read [5]

C1 = PμP
μ ∼ m2 , (15)

C2 = −ημνW
μW ν ∼ m2s(s + 1) , s = 1

2 , (16)

where the Pauli–Lubanski operator [4],

Wμ = −1

2
εμναβ Pν Jαβ , (17)

has the components

W0 = Ji P
i = si P

i , Wi = H Ji + εi jk Pj Kk , (18)

as we use ε0123 = −ε0123 = −1. These operators are con-
sidered by many authors as the comps. of a covariant four-
dimensional spin operator of RQM as long as W0 is just the
helicity operator [6]. This is the only differential operator
able to define a polarization, but leads to minor difficulties
at the level of QFT, as we shall later see. For this reason, we
believe that a more convenient polarization operator must
come from the algebra Lie(T ).

3 Momentum representation

The Dirac equation allows plane wave solutions that form
a basis of p-rep., in which the commuting operators H and
Pi are diagonal. This system of operators is incomplete, as
a polarization operator is missing. This will be added after
discussing the problem of finding conserved spin and polar-
ization operators. For the time being we assume that the arbi-
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trary Pauli spinors entering in the structure of the rest frame
plane waves define implicitly the polarization.

3.1 Frequencies separation

The general solutions of the free Dirac equation may be
expanded in terms of usual mode spinors (or fundamental
spinors), Up,σ and Vp,σ = CU∗

p,σ , of positive and negative
frequencies, respectively, related through the charge conju-
gation defined by the matrix C = C−1 = iγ 2 and acting as
[7]

γ μ∗ = −Cγ μC → s∗
μν = −CsμνC → λ∗ = CλC .

(19)

The plane wave mode spinors satisfy the Dirac equation and
the eigenvalues problems,

HUp,σ = E(p)Up,σ HVp,σ = −E(p)Vp,sσ , (20)

PiUp,σ = pi Up,σ , PiVp,σ = −pi Vp,σ , (21)

where E(p) = √
m2 + p2 (p = |p|) is the relativistic energy.

Then the general solution of the Dirac equation, we call here
simply the Dirac free field, can be expanded as [7,8]

ψ(x) = ψ+(x) + ψ−(x)

=
∫

d3 p
∑
σ

[
Up,σ (x)ασ (p) + Vp,σ (x)β∗

σ (p)
]

, (22)

in terms of mode functions in p-rep., ασ and βσ , of particles
and antiparticles, respectively, of arbitrary polarization σ =
± 1

2 that may be defined in various manners, as we shall show
after studying the spin operators. In this manner, the space
of Dirac’s mode spinors, FD = F+

D ⊕ F−
D , is split into

two orthogonal subspaces of mode spinors of positive and
negative frequencies, respectively.

The mode spinors prepared at the initial time t0 = 0 have
the general form

Up,σ (x) = uσ (p)
1

(2π)
3
2

e−i E(p)t+ip·x , (23)

Vp,σ (x) = vσ (p)
1

(2π)
3
2

ei E(p)t−ip·x , (24)

where the spinors uσ (p) and vσ (p) = Cusσ (p)∗ must be nor-
malized in order to obtain the orthonormalization relations

〈Up,σ ,Up ′,σ ′ 〉D = 〈Vp,σ , Vp ′,σ ′ 〉D = δσσ ′δ3(p − p ′) , (25)

〈Up,σ , Vp ′,σ ′ 〉D = 〈Vp,σ ,Up ′,σ ′ 〉D = 0 , (26)

and the completeness condition,∫
d3 p

∑
σ

[
Up,σ (t, x)U+

p,σ (t, x′)

+Vp,σ (t, x)V+
p,σ (t, x′)

]
= δ3(x − x′) . (27)

Moreover, Eqs. (25) and (26) help us to write the inversion
formulas

ασ (p) = 〈Up,σ , ψ〉D , βσ (p) = 〈ψ, Vp,σ 〉D , (28)

we need in applications.
In RQM, the physical meaning of the field ψ is encapsu-

lated in the wave functions in p-rep., ασ and βσ , that form
the Pauli spinors,

α =
(

α 1
2

α− 1
2

)
∈ Fα , β =

(
β 1

2

β− 1
2

)
∈ Fβ , (29)

of the Hilbert spaces Fα ∼ Fβ equipped with scalar prod-
ucts,

〈α, α′〉 =
∫

d3 p α+(p)α′(p)

=
∫

d3 p
∑
σ

α∗
σ (p)α′

σ (p) , (30)

and similarly for the spinors β, such that we can write

〈ψ,ψ ′〉D = 〈α, α′〉 + 〈β, β ′〉 , (31)

after using Eqs. (25) and (26).
We remind the reader that the differential operators in

x-rep., F(i∂μ) : F±
D → F±

D , give rise to multiplicative
operators in p-rep., F̃(pμ), acting differently on the mode
spinors U and V ,

[
F(i∂μ)ψ

]
(x) =

∫
d3 p

∑
σ

[
F̃(pμ)Up,σ (x)ασ (p)

+F̃(−pμ)Vp,σ (x)β∗
σ (p)

]
. (32)

We say that these operators are diagonal on FD , as they
do not mix the mode spinors of different frequencies. For
example, the Dirac Hamiltonian operator HD = −iγ 0γ i∂i +
mγ 0 acts as

(HDUp,σ )(x) = H̃D(p)Up,σ (x) = E(p)Up,σ (x) , (33)

(HDVp,σ )(x) = H̃D(−p)Vp,σ (x) = −E(p)Vp,σ (x) , (34)

where

H̃D(p) = mγ 0 + γ 0γ i pi = E(p)
[
Π̃+(p) − Π̃−(p)

]
,

(35)

is the Hamiltonian operator in p-rep. expressed in terms of
the projection operators (A.6) and (A.7).

3.2 Relating covariant and induced representations

For developing our approach, we need to work simultane-
ously in x and p reps. relating the covariant rep. of x-rep. to the
Wigner-induced reps. transforming the spinors (29). More-
over, the Wigner method allows us to construct the mode
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spinors separating the Pauli spinors whose degrees of free-
dom have to be studied here.

The wave functions of p-rep. (29) are defined on orbits
in momentum space, Ω p̊ = {p|p = Λ p̊,Λ ∈ L↑

+}, that
may be built by applying Lorentz transfs. on a representa-
tive momentum p̊ [9,10]. In the case of massive particles
we discuss here, the representative momentum is just the
rest frame one, p̊ = (m, 0, 0, 0). The rotations that leave p̊
invariant, R p̊ = p̊, form the stable group SO(3) ⊂ L↑

+ of
p̊ whose universal covering group SU (2) is called the little
group associated to the representative momentum p̊.

For each momentum p there exist a set of transfs. Lp gen-
erating it as p = Lp p̊. These transfs. are defined up to arbi-
trary rotations R(p) which may depend on p, as these do not
change the representative momentum, LpR(p) p̊ = Lp p̊.
This means that the orbit Ω p̊ is in fact a homogeneous

space L↑
+/SO(3). Consequently, the corresponding transfs.

λp ∈ ρD which satisfy Λ(λp) = Lp and λp=0 = 1 ∈ ρD

have the general form λp = lpr(p), being constituted by gen-
uine Lorentz boosts lp ∈ ρD[SL(2,C)/SU (2)] defined by
Eq. (A.1) and arbitrary rotations r(p) ∈ ρD[SU (2)] satisfy-
ing r(p = 0) = 1 ∈ ρD .

Hereby, we see that the functions (29) are defined on the
orbit Ω p̊ where the invariant measure is [4]

μ(p) = μ(Λp) = d3 p

E(p)
, ∀Λ ∈ L↑

+ . (36)

Therefore,
√
Eα and

√
Eβ are square integrable func-

tions of the Hilbert space L 2(Ω p̊, μ,VP ) equipped with
an invariant scalar product that can be put in the form
(30). In practice, it is convenient to work with the spaces
Fα ∼ Fβ ∼ L 2(Ω p̊, d

3 p,VP ) which are isometric with
L 2(Ω p̊, μ,VP ).

For investigating how these functions transform under
isometries, one assumes that there exists a rep. T̃ : (λ, a) →
T̃λ,a , carried by the spaces Fα and Fβ , associated to the rep.
T as [4,5,11]

(Tλ,aψ)(x) =
∫

d3 p
∑
σ

[
Up,σ (x)(T̃λ,a α)σ (p)

+Vp,σ (x)(T̃λ,a β)∗σ (p)
]

. (37)

Taking into account that the covariant rep. T is defined by Eq.
(9), we use the identity (Λx) · p = x · (Λ−1 p) and the invari-
ant measure, d3 pE(p)−1 = d3 p′E(p′)−1, for changing the
integration variable,

p → p ′ = Λ(λ)−1p , (38)

finding the action of the operators T̃ [4,5],

∑
σ ′

uσ ′(p)(T̃λ,a α)σ ′(p)

= E(p′)
E(p)

∑
σ

λuσ

(
p′)ασ

(
p′) eia·p , (39)

∑
σ ′

vσ ′(p)(T̃λ,a β∗)σ ′(p)

= E(p′)
E(p)

∑
σ

λvσ

(
p′) β∗

σ

(
p′) e−ia·p , (40)

where a · p = aμ pμ = E(p)a0 − p · a.
Furthermore, according to Wigner’s general method, we

introduce the spinors [5],

uσ (p) = N (p)λp ůσ = N (p)lpr(p) ůσ , (41)

vσ (p) = Cu∗
σ (p) = N (p)λpv̊σ = N (p)lpr(p)v̊σ , (42)

where N (p) ∈ R satisfying N (0) = 1 is a normalization
factor. The rest frame spinors ůσ = uσ (0) and v̊σ = vσ (0) =
Ců∗

σ are solutions of the Dirac equation in the rest frame
where this equation reduces to the eigenvalues problems of
the matrix γ 0,

γ 0ůσ = ůσ , γ 0v̊σ = −v̊σ . (43)

Then the Wigner spinors (41) and (42) are solutions of the
Dirac equation in any frame of p-rep. Indeed, observing that
the matrix γ p = E(p)γ 0 − γ i pi satisfies γ p λp = mλpγ 0,
we obtain the Dirac equations in p-rep.,

(γ p − m)uσ (p) = 0 , (γ p + m)vσ (p) = 0 , (44)

after exploiting Eq. (43).

The matrices 1±γ 0

2 form an orthogonal system of projec-

tion matrices such that the spinor subspaces 1+γ 0

2 VD and
1−γ 0

2 VD are orthogonal. Moreover, we assume that all these
spinors are normalized, ů+

σ ůσ ′ = v̊+
σ v̊σ ′ = δσσ ′ , forming

complete systems on their subspaces,

∑
σ

ůσ ů
+
σ = 1 + γ 0

2
,

∑
σ

v̊σ v̊+
σ = 1 − γ 0

2
. (45)

We have now the opportunity of introducing the Pauli spinors
we need for studying the polarization, assuming that in the
chiral rep. of the Dirac matrices (with diagonal γ 5) we may
express the momentum-dependent spinors as
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ůσ (p) = r(p)ůσ = 1√
2

(
ξσ (p)

ξσ (p)

)
, (46)

v̊σ (p) = r(p)v̊σ = 1√
2

(
ησ (p)

−ησ (p)

)
, (47)

in terms of Pauli spinors ξσ (p) and ησ (p) = iσ2ξσ (p)∗ that
form related bases that are orthogonal,

ξ+
σ (p)ξσ ′(p) = η+

σ (p)ησ ′(p) = δσσ ′ , (48)

and complete systems,∑
σ

ξσ (p)ξ+
σ (p) =

∑
σ

ησ (p)η+
σ (p) = 12×2 . (49)

The functions ξσ : R3
p → VP remain arbitrary, represent-

ing the polarization degrees of freedom which will be deter-
mined after defining the polarization operators. As mentioned
before, when these spinors depend explicitly on p, we say that
we have a peculiar polarization, while a polarization inde-
pendent of p will be referred to as common polarization.

Finally, by setting the normalization factor as

N (p) =
√

m

E(p)
, (50)

we obtain the expressions of the spinors (23) and (24),

Up,σ (t, x) = N (p)lp ůσ (p)
1

(2π)
3
2

e−i E(p)t+ip·x , (51)

Vp,σ (t, x) = N (p)lpv̊σ (p)
1

(2π)
3
2

ei E(p)t−ip·x , (52)

that satisfy Eqs. (25), (26) and (27) .
With these preparations we arrive at the principal result of

Wigner’s approach, showing that the Pauli spinors α and β

transform alike under Wigner’s rep. T̃ acting as [4,5,9]

(T̃λ,a α)σ (p) =
√

E(p′)
E(p)

eia·p ∑
σ ′

Dσσ ′(λ, p)ασ ′(p′) , (53)

where the matrix elements

Dσσ ′(λ, p) = ů+(p)σ w(λ, p)ůσ ′(p′) , (54)

depend on the spinors (46) and Wigner transfs. w(λ, p) =
l−1
p λ lp′ . We observe that the corresponding Lorentz transf.
Λ[w(λ, p)] = L−1

p Λ(λ)Lp′ leaves invariant the representa-
tive momentum, as we have Λ[w(λ, p)] p̊ = L−1

p Λ(λ)p ′ =
L−1

p p = p̊, such that Λ[w(λ, p)] ∈ SO(3) → w(λ, p) ∈
SU (2). Therefore, we may write the definitive form of the
matrix elements (54) as

Dσσ ′(λ, p) = ξ+
σ (p)l̂−1

p λ̂ l̂p′ξσ ′(p′) . (55)

Obviously, the matrices D(λ, p) form the irreducible rep.
of spin s = 1

2 of the SU (2) group, which means that the
Wigner irreducible reps. T̃ are induced by the subgroup

T (4)� SU (2) [4,5,9], as we show in Appendix B. For the
antiparticle spinors β∗, we obtain the matrix elements

v̊+
sσ (p)w(λ, p)v̊sσ ′(p′) = (

ů+
σ (p)w(λ, p)ůσ ′(p′)

)∗

= [Dσσ ′(λ, p)]∗ , (56)

showing that the spinorsα andβ transform alike under isome-
tries. Note that the form of the matrix elements (55) explicitly
involves the Pauli spinors, helping us to study their depen-
dence on polarization.

The Wigner rep. T̃ is irreducible, as the matrices D are
irreducible. Moreover, these are unitary with respect to the
scalar product (30) [9,10],

〈T̃λ,aα, T̃λ,aα
′〉 = 〈α, α′〉 , (57)

and similarly for β. As the covariant reps. are unitary with
respect to the scalar product (8) which can be decomposed as
in Eq. (31), we conclude that the expansion (22) establishes
the unitary equivalence, T = T̃ ⊕ T̃ , of the covariant rep.
with the orthogonal sum of Wigner’s unitary irreducible reps.
[10]. This means that the generators X̃ ∈ Lie(T̃ ) defined as

P̃μ = − i
∂ T̃1,a

∂aμ

∣∣∣∣∣
a=0

, J̃μν = i
∂ T̃λ(ω),0

∂ωμν

∣∣∣∣∣
ω=0

, (58)

are related to the corresponding generators X ∈ Lie(T ), such
that

(Xψ)(x) =
∫

d3 p
∑
σ

[
Up,σ (x)(X̃ α)σ (p)

− Vp,σ (x)(X̃ β)∗σ (p)
]

, (59)

as we deduce deriving Eq. (37) with respect to a group param-
eter ζ ∈ (ω, a) in ζ = 0.

4 Looking for spin and coordinate operators

The next step is to define the polarization, looking for oper-
ators acting on the space of Pauli spinors VP . As the rep-
resentative momentum corresponds to a set of rest frames
related among themselves through SO(3) rotations of a sta-
ble group, we observe that the space of Pauli’s spinors has
similar degrees of freedom governed by the SU (2) little
group. These degrees of freedom deserve to be investigated,
as a symmetry neglected so far. For this purpose, it is con-
venient to re-denote the Dirac field (22) by ψξ (x) and the
mode spinors (51) and (52) by Up,ξσ and Vp,ησ , respectively,
explicitly pointing out their dependence on Pauli’s spinors.

On the other hand, we take into account that there are no
differential or multiplicative operators acting directly on the
Pauli spinors without affecting other quantities. Therefore,
these must be more general operators as the integral ones
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defined by kernels whose Fourier transforms are usual oper-
ators of the p-rep. used in various applications. In what fol-
lows, we consider such operators for constructing the spectral
reps. we need in our investigation.

4.1 Spectral representation of integral operators

We focus on the integral operators, Z : FD → FD , whose
action,

(Zψ)(x) =
∫

d4x ′KZ (x − x ′)ψ(x ′) , (60)

is determined by the kernels KZ which are 4 × 4 matrices
depending on x − x ′. These operators are linear, forming an
algebra in which the multiplication is defined by the convo-
lution,

KZ1Z2(x − x ′) =
∫

d4x ′′KZ1(x − x ′′)KZ2(x
′′ − x ′) ,

(61)

denoted asKZ1Z2 = KZ1∗KZ2 . The identity operator has the
kernel K1(x − x ′) = δ4(x − x ′). An operator Z is invertible
if there exists an operator Z−1 such that KZ ∗ KZ−1 =
KZ−1 ∗ KZ = K1. For any integral operator Z , we may
write the bracket

〈ψ, Zψ ′〉D =
∫

d4x d4x ′ψ+(x)KZ (x − x ′)ψ(x ′) (62)

observing that Z is self-adjoint with respect to this scalar
product only ifKZ (x) = K +

Z (−x). Note that the multiplica-
tive or differential operators are particular cases of integral
ones. For example, the derivatives ∂μ can be seen as integral
operators having the kernels K∂μ(x) = ∂μδ4(x).

Of special interest are the equal-time operators Y whose
kernels have the form

KY (x − x ′) = δ(t − t ′)KY (x − x′) , (63)

acting as

(Yψ)(t, x) =
∫

d3x ′KY (x − x′)ψ(t, x′) , (64)

without involving the time. In this case, the kernels allow the
three-dimensional Fourier rep.,

KY (x) =
∫

d3 p
eip·x

(2π)3 Ỹ (p) , (65)

where Ỹ (p) is the operator in p-rep. of RQM corresponding
to Y . Then the action (64) on a field (22) can be written as

(Yψξ )(x) =
∫

d3 p
∑
σ

[
Ỹ (p)Up,ξσ (x)ασ (p)

+Ỹ (−p)Vp,ησ (x)β∗
σ (p)

]
. (66)

We thus see that all these integral operators are diagonal on
FD , acting separately on F±

D without mixing mode spinors
of different frequencies.

In what follows we consider a special type of such equal-
time operator, denoted by Yξ , acting alike on the spinors α

and β, defined by kernels that allow the spectral rep.

KYξ (x − x′) =
∫

d3 p
∑
σ,σ ′

[
Up,ξσ (t, x)ỹσσ ′U+

p,ξσ ′ (t, x′)

+Vp,ησ (t, x)ỹ∗
σσ ′V+

p,ησ ′ (t, x′)
]

, (67)

in terms of mode spinors (51) and (52) depending on arbitrary
Pauli spinors ξ ⊂ VP that may depend on p. The action of
these operators can be calculated easily in p-rep. using the
orthogonality properties (25) and (26). Then it turns out the
action in x-rep.,

(Yξψξ )(x) =
∫

d3x ′KYξ (x − x′)ψξ (t, x′)

=
∫

d3 p
∑
σ,σ ′

[
Up,ξσ (t, x)ỹσσ ′ασ ′(p)

+Vp,ησ (t, x)ỹ∗
σσ ′β∗

σ ′(p)
]

, (68)

related to the action of associated matrix operator ỹ(p), trans-
forming alike the spinors α and β,

(ỹα)σ (p) = 〈Up,ξσ ,Yξψξ 〉D = ỹσσ ′ασ ′(p) , (69)

(ỹβ)σ (p) = 〈Yξψξ , Vp,ησ 〉D = ỹσσ ′βσ ′(p) . (70)

The special form of these operators allows us to derive their
expectation values,

〈ψξ ,Yξψξ 〉D = 〈α, ỹ α〉 + 〈β, ỹ+β〉 , (71)

exploiting Eqs. (25) and (26). Here we see that an operator
Yξ is self-adjoint if the matrix ỹ is Hermitian, ỹσσ ′ = ỹ∗

σ ′σ .
We must stress that the dependence of the operator Yξ on

ξ is not an impediment, as we know what happens when we
change the spinor basis. Thus, by using Eqs. (75) and (76), we
find that Yξ → Yr̂ξ ⇒ ỹ → D(r̂)ỹ if we keep unchanged
the spinors α and β encapsulating the physical meaning.

4.2 Spin and polarization

For exploiting the spin degrees of freedom, we start with an
arbitrary orthonormal basis ξ ⊂ VP , satisfying Eqs. (48) and
(49), whose spinors may depend on p but without denoting
this explicitly. The rotations r̂ ∈ SU (2) of the little group
transform this basis as

r̂ ξσ =
∑
σ ′

ξσ ′ Dσ ′σ (r̂) ⇒ r ůσ =
∑
σ ′

ůσ ′ Dσ ′σ (r̂) , (72)

r̂ ησ =
∑
σ ′

ησ ′ D∗
σ ′σ (r̂) ⇒ r v̊σ =

∑
σ ′

v̊σ ′ D∗
σ ′σ (r̂) , (73)
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where r = diag(r̂ , r̂) ∈ ρD is an arbitrary rotation corre-
sponding to r̂ for which we use the traditional notation

Dσ ′σ (r̂) = ξ+
σ ′ r̂ξσ . (74)

We thus obtain the transfs. of mode spinors,

Up,r̂ξσ
(x) =

∑
σ ′

Up,ξσ ′ (x)Dσ ′σ (r̂) , (75)

Vp,r̂ησ
(x) =

∑
σ ′

Vp,ησ ′ (x)D
∗
σ ′σ (r̂) , (76)

which give the transformed free field ψr̂ξ according to the
expansion (22).

Under such circumstances, we may look for a rep., R :
r̂ → R(r̂), of the little group SU (2) with values in a set
of operators S = {R(r̂)|r̂ ∈ SU (2)} able to rotate the Pauli
spinors but without depending on the spinor basis ξ or affect-
ing other quantities. These operators can be constructed as
integral operators with kernels of the form (67), where

ỹ = D(r̂) ⇒ ỹσσ ′ = Dσσ ′(r̂) = ξ+
σ r̂ξσ ′ . (77)

Then, by substituting these matrices in Eq. (68) and applying
the identities (75) and (76), we find the desired action

[R(r̂)ψξ ](t, x)

=
∫

d3x ′KR(r̂)(x − x′)ψξ (t, x′) = ψr̂ξ (t, x) , (78)

upon the basis of Pauli spinors. In addition, the general rule
(71) allows us to derive the expectation values of these oper-
ators

〈ψξ ,R(r̂)ψξ 〉D = 〈α, D(r̂)α〉 + 〈β, D+(r̂)β〉 , (79)

which depend explicitly on ξ through the matrix D(r̂).
Furthermore, we consider the mode spinors (51) and (52),

the action of SU (2) rotations (72) and (73), and the identities
(A.4) and (A.5), deducing that the integral operators R(r̂) ∈
S have kernels of the form (65) whose Fourier transforms
read

R̃(r̂ , p) = m

E(p)

[
lp r

1 + γ 0

2
lp + l−1

p r
1 − γ 0

2
l−1
p

]

= lpr l
−1
p Π̃+(p) + l−1

p r lpΠ̃−(p) , (80)

where r = diag(r̂ , r̂) ∈ ρD , while ˜Π±(p) are the projection
operators (A.6) and (A.7). The operator R(r̂) is independent
of the spinor bases under consideration, as the spinors ů(p)

and v̊(p) satisfy similar relations as (45), because r(p) com-
mutes with γ 0.

We thus defined the set S of operators whose properties
can be studied in p-rep., as their Fourier transforms obey the
same algebra,

R = R1R2 ⇒ KR = KR1 ∗ KR2 ⇒ R̃(p) = R̃1(p)R̃2(p) .

(81)

By then using the identities (A.4) and (A.5), after a little
calculation, we verify that

R̃(r̂ , p)R̃(r̂ ′, p) = R̃(r̂ r̂ ′, p) , (82)

observing that for r̂ = 12×2 we have

R̃(12×2, p) = Π̃+(p) + Π̃−(p) = 1 ∈ ρD . (83)

We conclude that the set S forms just the SU (2) rep. we are
looking for. We thus arrive at our principal objective, namely,
the definition of spin operator.

Definition 1 The spin operator is the vector operator S
whose components form a canonical basis of the algebra
Lie(R) ∼ su(2).

Starting with the transf. R(r̂(θ)), depending on the rota-
tion (2), we derive the spin comps.,

Si = i
∂R(r̂(θ))

∂θ i

∣∣∣∣
θ i=0

, (84)

finding that they are integral operators acting as

[Siψξ ](t, x) =
∫

d3x ′KSi (x − x′)ψξ (t, x′)

= ψŝi ξ (t, x) , (85)

through kernels having as Fourier transforms the spin comps.
in p-rep.,

S̃i (p) = m

E(p)

[
lp si

1 + γ 0

2
lp + l−1

p si
1 − γ 0

2
l−1
p

]

= si (p)Π̃+(p) + si (−p)Π̃−(p) , (86)

where si (p) = lpsi l−1
p are the comps. of the transformed

reducible Pauli spin operator. In the rest frame we have p =
0 ⇒ S̃(0) = s(0) = s.

Surprisingly, after a little calculation, we find that the oper-
ators (86) are just the comps. of Pryce’s spin operator,

S̃i (p) = m

E(p)
si + pi (s · p)

E(p)(E(p) + m)
+ i

2E(p)
εi jk p

jγ k ,

(87)

found long ago (see the third of Eqs. (6.7) of Ref. [12]) in
association with a would-be relativistic mass-center coordi-
nate operator. The same spin operator was defined alterna-
tively as in Eq. (A.10) such that it becomes the Pauli one
in the frame where the Hamiltonian is γ 0E(p), instead of
the rest frame, as in the case of our definition. However, the
principal novelty of our definition is in pointing out that the
spin comps. are the generators of a Noetherian symmetry.
Thus, we conclude that Definition 1 is different from those
of Pryce or Foldy and Wouthuysen.

By definition, the operators (86) generate the su(2) alge-
bra,[
S̃i (p), S̃ j (p)

]
= iεi jk S̃k(p) ⇒ [

Si , S j
] = iεi jk Sk , (88)
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are self-adjoint and conserved, commuting with the Dirac
Hamiltonian in p-rep. (35). The action of these operators on
the mode spinors (51) and (52) can be derived as in Eq. (66),
obtaining

(SiUp,ξσ )(x) = S̃i (p)Up,ξσ (x) = Up,ŝi ξσ
(x) , (89)

(Si Vp,ησ )(x) = S̃i (−p)Vp,ησ (x) = Vp,ŝiησ
(x) , (90)

after using the form (86) and the identities (A.4) and (A.5).
In other respects, the polarization is given by the pair of

related spinors ξσ (p) and ησ (p) assumed to satisfy the eigen-
value problems

ŝi n
i (p)ξσ (p) = σ ξσ (p) → ŝi n

i (p)ησ (p) = −σ ησ (p),

(91)

where the unit vector n(p) gives the peculiar direction with
respect to which the peculiar polarization is measured. Under
such circumstances, we may define a convenient polarization
operator appropriate to the present framework.

Definition 2 The polarization operator is the integral oper-
ator W whose kernel has the Fourier transform

W̃ (p) = w(p)Π+(p) + w(−p)Π̃−(p) , (92)

where w(p) = lpsi ni (p)l−1
p .

This operator is conserved, commuting with the Hamilto-
nian operator (35). Moreover, it commutes with Pi and H
acting on the mode spinors constructed with the spinors of
Eq. (91) as

(WUp,ξσ (p))(x) = W̃ (p)Up,ξσ (p)(x) = Up,ŝi ni (p)ξσ (p)(x)

= σUp,ξσ (p)(x) , (93)

(WVp,ησ (p))(x) = W̃ (−p)Vp,ησ (p)(x) = Vp,ŝi ni (p)ησ (p)(x)

= −σVp,ησ (p)(x) . (94)

These eigenvalue problems convince us that W is just the
operator we need for completing the system of commuting
operators as {H, P1, P2, P3,W } for defining properly the
p-reps. of RQM.

As the comps. of a spin operator are integral operators, we
understand thatW remains an operator of this type even in the
case of common polarization when n and ξ are independent of
p, and consequently we may writeW = S·n. The well-known
example is the momentum-spin basis [7], where n = e3,
while W = S3 defines the basis spinors

ξ 1
2

=
(

1
0

)
, ξ− 1

2
=

(
0
1

)
(95)

used in various applications [7,8,11]. Therefore, we may say
that there are no situations in which the polarization might
be properly defined by a differential polarization operator
as, for example, the helicity one, W0. We shall later discuss
the differences between these two operators when we study
the polarization and spin operators in the momentum-helicity
basis.

4.3 Associated coordinate operator

Looking for a mass-center position vector, Pryce assumed
that this has the form X = x + δX focusing on the correction
δX which, according to the identity (14), must satisfy δX ∧
P + S = s. Analyzing various hypotheses, Pryce concluded
that δX is an integral operator whose comps. have kernels
given by the Fourier transforms [12]

δ X̃ i (p) = iγ i

2E(p)
+ εi jk p j sk

E(p)(E(p) + m)
− i piγ j p j

2E(p)2(E(p) + m)
,

(96)

which satisfies the desired identity δX̃(p) ∧ p + S̃(p) = s.
These are self-adjoint operators commuting with P such that

[Xi , P j ] = [xi , P j ] = iδi j1 ∈ ρD . (97)

Other properties including commutation relations have to be
studied after quantization in order to avoid tedious calcula-
tions in p-rep.

Then, by using suitable codes on a computer, it is not
difficult to verify that these operators can be put in the form

δ X̃ i (p) = δxi (p)Π̃+(p) + δxi (−p)Π̃−(p) , (98)

where

δxi (p) = −i
1

N (p)
∂pi

(
N (p)lp

)
l−1
p . (99)

Furthermore, observing that these operators derive only the
factor N (p)lp of the mode spinors (51) and (52), we may
write their action as(

δXiUp,ξσ

)
(t, x) = δ X̃ i (p)Up,ξσ (t, x) = −i∂piUp,ξσ (t, x)

−xiUp,ξσ (t, x) + tpi

E(p)
Up,ξσ (t, x)

+
∑
σ ′

Up,ξσ ′ (t, x)Ωi σ ′σ (p) , (100)

(
δXiVp,ησ

)
(t, x) = δ X̃ i (−p)Vp,ησ (t, x) = i∂pi Vp,ησ (t, x)

−xi Vp,ησ (t, x) + tpi

E(p)
Vp,ησ (t, x)

−
∑
σ ′

Vp,ησ ′ (t, x)Ω∗
i σ ′σ (p) . (101)

Here, we use the artifice

∂pi ξσ (p) =
∑
σ ′

ξσ ′(p)Ωi σ ′,σ (p) , (102)

and similarly for the spinors ησ (p), denoting

Ωi σσ ′(p) = ξ+
σ (p)

[
∂pi ξσ ′(p)

] = {
η+

σ (p)
[
∂pi ησ ′(p)

]}∗
,

(103)

and observing that Ωi σσ ′(p) = −Ω∗
i σ ′σ (p), which means

that the matrices iΩi are Hermitian.
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Hereby we understand that the Pryce coordinate operator
depends linearly on time as X(t) = x + δX(t) = X + Vt .
From Eqs. (100) and (101), and applying the Green theorem
in the integral over momenta, we find the actions of these
operators,

(Xiψξ )(x) =
∫

d3 p
∑
σ

[
Up,ξσ (x)i ∂̃iασ (p)

−Vp,ξσ (x)i ∂̃iβ
∗
σ ′(p)

]
, (104)

(V iψξ )(x) =
∫

d3 p
pi

E(p)

∑
σ

[
Up,ξσ (x)ασ (p)

+Vp,ησ (x)β∗
σ (p)

]
, (105)

written in terms of the “covariant” derivatives

∂̃iασ (p) = ∂pi ασ (p) +
∑
σ ′

Ωi σσ ′(p)ασ ′(p) , (106)

where the matrices Ωi (p) play the role of connection. These
derivatives commute among themselves, [∂̃i , ∂̃ j ] = 0, ensur-
ing that [Xi , X j ] = 0.

The operator X is the Pryce coordinate operator at t = 0,
while V is a conserved velocity. Bearing in mind that in RQM
the antiparticle terms cannot be properly interpreted, we may
ask whether the Pryce assumption that these kinetic quantities
describe the inertial motion of the mass center is correct. We
shall find the answer after performing the quantization.

5 One-particle operators of quantum theory

The principal benefit of our approach based on spectral reps.
is the relation between the operator actions in x and p-reps.,
allowing us at any time to derive the expectation values of
operators defined in p-rep. We thus have the opportunity to
apply the Bogolyubov method for quantizing the Pryce oper-
ators and deriving the isometry generators of the massive
Dirac fermions of arbitrary polarization.

5.1 Quantization and diagonal operators

Adopting here the Bogolyubov method of quantization [13],
we first replace the functions in p-rep. with field opera-
tors, (α, α∗) → (a, a†) and (β, β∗) → (b, b†), satisfying
canonical anti-commutation relations among which the non-
vanishing ones are{
aσ (p), a†

σ ′(p′)
}

=
{
bσ (p), b†

σ ′(p′)
}

= δσσ ′δ3(p − p′) . (107)

The Dirac free field ψ (written hereafter without the index ξ )
thus becomes a field operator, while the expectation value of
any time-dependent operator A(t) becomes the one-particle

operator,

A(t) → A = : 〈ψ, A(t)ψ〉D :|t=0 , (108)

calculated respecting the normal ordering of the operator
products [7] at the initial time t = 0 when we assume that
the quantization is performed.

We thus obtain a basis of operator algebra formed by field
and one-particle operators which have the obvious properties[
A, ψ(x)

] = −(Aψ)(x) ,
[
A,B

] =: 〈ψ, [A, B]ψ〉D : ,
(109)

preserving the structures of Lie algebras. Note that the quan-
tization does not take over other algebraic properties from
RQM, as the product of two one-particle operators is gener-
ally no longer an operator of this type.

The quantization reveals the physical meaning of the quan-
tum observables of RQM, transforming them into the one-
particle operators of QFT. The simplest example is the iden-
tity operator 1 ∈ ρD of RQM, i.e., the generator of the gauge
groupU (1)em , becoming through quantization the conserved
charge operator,

Q = : 〈ψ,ψ〉D := Q+ + Q−

=
∫

d3 p
∑
σ

[
a†
σ (p)aσ (p) − b†

σ (p)bσ (p)
]

, (110)

where the particle and antiparticle charge operators are given
just by the projection operators (A.6) and (A.7) as

Q± =: 〈ψ,Π±ψ〉D : . (111)

Then the operator of number of particles,

N = Q+ − Q− =: 〈ψ, (Π+ − Π−)ψ〉D :, (112)

is related to the operator whose kernel has the Fourier trans-
form E(p)−1 H̃D(p).

In the basis of mode spinors in which the commuting oper-
ators {H, P1, P2, P3,W } are diagonal, we derive the corre-
sponding one-particle operators,

H = : 〈ψ, Hψ〉D :
=

∫
d3 p E(p)

∑
σ

[
a†
σ (p)aσ (p) + b†

σ (p)bσ (p)
]

,

(113)

Pi = : 〈ψ, Piψ〉D :
=

∫
d3 p pi

∑
σ

[
a†
σ (p)aσ (p) + b†

σ (p)bσ (p)
]

, (114)

W = : 〈ψ,Wψ〉D :=
= 1

2

∫
d3 p

∑
σ

σ
[
a†
σ (p)aσ (p) + b†

σ (p)bσ (p)
]

, (115)

which commute among themselves and with Q. We thus
obtain the complete system {H,P1,P2,P3,W,Q} determin-
ing the bases of the Fock state space.
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The energy operator H generates the unitary operators of
time translations, giving the operators at any time,

U(t) = eiHt : A → A(t) = U(t)AU†(t) , (116)

apart from the conserved ones which commute with H.

5.2 Spin operator and SL(2,C) generators

For applying the same method to Pryce’s spin operator, we
look for expectation values of its comps. Si at the level
of RQM. These can be found by deriving with respect to
Cayley–Klein parameters θ i the expectation values (79),
where we substitute D(r̂) → D[r̂(θ)] with r̂(θ) given by
Eq. (2). As the quantization changes the wrong sign of the
anti-particle term, we obtain the comps. of the spin operator,

Si = : 〈ψ, Siψ〉D := 1

2

∫
d3 p

∑
σ,σ ′

Σi σσ ′(p)
[
a†
σ (p)aσ ′(p)

+b†
σ (p)bσ ′(p)

]
, (117)

where we denote by

Σi σσ ′(p) = ξ+
σ (p)σi ξσ ′(p) (118)

the matrix elements of Pauli’s operators in the ξ basis in
which the quantum field ψ was defined. The operators Si

are self-adjoint and form the canonical basis of an operator
valued rep. of the su(2) ∼ so(3) algebra.

Let us now see how the spin operator defined above is
involved in the structure of the SL(2,C) generators. We start
with the expectation values,

〈ψ, Xψ〉D = 〈α, X̃α〉 − 〈β, X̃β〉 , (119)

derived from Eq. (59) for any pair of related generators X ∈
Lie(T ) and X̃ ∈ Lie(T̃ ) corresponding to the same group
parameter. Then, applying the quantization, we change the
wrong relative sign (−) in Eq. (119) after restoring the normal
ordering of operator products, obtaining correct forms of one-
particle operators. The SL(2,C) generators may be derived
by using our parameterizations (2) and (3).

For deriving the rotation generators, we take λ̂ = r̂(θ),
observing that the transformed momentum (38) can now be
expanded as p′ i = pi + εi jk p jθk + · · · , according to the
general rule (4). Introducing these quantities in Eq. (55) and
deriving the transf. (53) with respect to the Cayley–Klein
parameters θ i in θ i = 0, it turns out

Ji =: 〈ψ, Jiψ〉D := Li + Si , (120)

where the comps. Si of the spin operator are defined by Eq.
(117). The associated orbital angular momentum operator

has the comps.

Li = −i
∫

d3 p εi jk p
j
∑
σ

[
a†
σ (p)∂̃kaσ (p)

+b†
σ (p)∂̃kbσ (p)

]
, (121)

where the derivatives ∂̃i are defined by Eq. (106).
The commutation relations of these operators can be easily

derived using Eqs. (48) and (49), identities of the form

∂̃iaσ (p) =
∑
σ ′

ξ+
σ (p)∂pi

[
ξσ ′(p)aσ ′(p)

]
, (122)

and taking into account that [∂̃i ,Σi ] = 0. We thus find that
the operators Li and Si form the bases of two independent
su(2) ∼ so(3) algebras commuting each other,

[
Li ,S j

] = 0.
Moreover, these operators are conserved separately, each one
commuting with the Hamiltonian operator,[
H,Li

] = 0 ,
[
H,Si

] = 0 . (123)

Therefore, we may conclude that the Pryce spin operator of
RQM gives just the conserved one-particles spin operator we
need in QFT.

The generators of the Lorentz boosts can be found by
choosing λ̂ = l̂(τ ) as in Eq. (3), observing that now p′ i =
pi + τ i E(p) + · · · and deriving Eq. (53) with respect to τ i

in τ = 0. After a few manipulations, we derive the operators
at the initial time t = 0,

Ki =: 〈ψ, Kiψ〉D :
=

∫
d3 p

∑
σ,σ ′

ki σσ ′(p)
[
a†
σ (p)aσ ′(p) + b†

σ (p)bσ ′(p)
]

+i
∫

d3 p E(p)
∑
σ

[
a†
σ (p)∂̃iaσ (p) + b†

σ (p)∂̃ibσ (p)
]

,

(124)

which depend on the matrices

ki (p) = 1

2(E(p) + m)
εi jk p

jΣk(p) . (125)

The operators (124) are self-adjoint but they are not con-
served, satisfying the commutation relations of the sl(2,C)

algebra,
[
H,Ki

] = −iPi ,
[
Pi ,K j

]
= −iδijH , (126)

and evolving as

Ki (t) = U(t)KiU†(t) = Ki + Pi t . (127)

On the other hand, we must specify that the operators Ki (t)
cannot be split as the total angular momentum. They satisfy
the canonical relations[

Ji ,K j (t)
] = iεi jkKk(t) , (128)[

Ki (t),K j (t)
] = −iεi jkJk , (129)
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but without giving relevant commutators with Li or Si . This
means that the splitting (120) cannot be extended to the entire
sl(2,C) algebra.

We thus derived the self-adjoint basis generators of a fam-
ily of unitary reps. of the group P̃↑

+, with values in a set of
one-particle operators which are determined by the bases of
Pauli spinors ξ we chose for describing polarization.

5.3 Coordinate operators

For performing the quantization of Pryce’s coordinate oper-
ator, we start with the expectation values derived, according
to Eqs. (104) and (105), as

〈ψ, Xiψ〉D = 〈α, ∂̃iα〉 + 〈β, ∂̃iβ〉 (130)

〈ψ, V iψ〉D =
∫

d3 p
pi

E(p)

[
α+(p)α(p)

+β+(p)β(p)
]

. (131)

As usual, the quantization changes the sign of antiparticle
terms such that we obtain the one-particle operators

Xi = : 〈ψ, Xiψ〉D := Xi+ + Xi−

= i
∫

d3 p
∑
σ

[
a†
σ (p)∂̃iaσ (p) − b†

σ (p)∂̃ibσ (p)
]

, (132)

Vi = : 〈ψ, V iψ〉D := Vi+ + Vi−

=
∫

d3 p
pi

E(p)

∑
σ

[
a†
σ (p)aσ (p) − b†

σ (p)bσ (p)
]

. (133)

We thus have the surprise of seeing that the would-be mass-
center operator proposed by Pryce becomes under quanti-
zation the charge center one or, in other words, the dipole
operator at the time t = 0. Accordingly, we understand that
Vi are the comps. of the classical current vector operator.

This interpretation is confirmed by the commutation rela-
tions we briefly inspect in what follows. We start with

[H,Xi] = −iVi , [H,Vi ] = 0 , (134)

showing that the comps. Vi are conserved, while the dipole
ones evolve as

Xi (t) = U(t)XiU†(t) = Xi + Vi t . (135)

Moreover, we can verify that Xi (t) are comps. of a SO(3)

vector operator,[
Li ,X j (t)

]
= iεi jkXk(t) ,

[
Si ,X j (t)

]
= 0 , (136)

which satisfy the canonical coordinate-momentum commu-
tation relations,[
Xi (t),X j (t)

]
= 0 ,

[
Xi (t),P j

]
= iδi jQ , (137)

in accordance with Eq. (97) and our interpretation, as through
quantization, 1 ∈ ρD becomes the charge operator Q.

However, we did not say which may be the real mass-
center operator. Even though there are many definitions of
mass center, we can easily construct only the version of posi-
tion vectors weighted by rest masses (as in definition (a) of
Ref. [12]), defining ad hoc its comps. and those of the mass-
center velocity as

Xi
MC = Xi+ − Xi− , Vi

MC = Vi+ − Vi− , (138)

such that [H,Xi
MC ] = −iVi

MC gives the inertial motion

Xi
MC (t) = U(t)Xi

MCU
†(t) = Xi

MC + Vi
MC t . (139)

These operators satisfy similar commutation relations as the
dipole one, apart from the last of Eq. (137), which now reads[
Xi
MC (t),P j

]
= iδi jN , (140)

indicating that they describe the kinematics of the center of
rest masses which are the same for particles and antiparti-
cles of any momenta. In view of the above results, we are
skeptical that other coordinate operators simultaneously sat-
isfying similar commutation relations could be derived. Nev-
ertheless, we do not exclude the possibility of finding new
mass-center operators relaxing the canonical conditions as,
for example, in the case of spin-induced non-commutativity
[14].

The problem which remains open is how the correspond-
ing mass-center operator of RQM may be defined in x and p
reps. Our preliminary calculations indicate that there exists
a spectral rep. solving this problem, but the calculations are
quite complicated, exceeding the scope of this paper. We hope
to discuss this problem and other versions of mass center in
a further investigation.

6 Example: momentum-helicity basis

The only peculiar polarization used so far is the helicity giv-
ing rise to the momentum-helicity basis in which the spinors
ξσ (p) and ησ (p) = iσ2ξ

∗
σ (p) satisfy the related eigenvalue

problems

ŝi n
i
pξσ (p) = σ ξσ (p) → ŝi n

i
pησ (p) = −σ ησ (p), (141)

where np = p
p is the unit vector of p. One obtains these

spinors, transforming the spin basis (95) as

ξσ (p) = r̂h(p)ξσ → ησ (p) = r̂h(p)ησ , (142)

with the help of the SU (2) rotation

r̂h(p) =
√

p + p3

2p

[
12×2 − i

p1σ2 − p2σ1

p + p3

]
. (143)

The associated SO(3) rotation, R(r̂h(p)), transforms the
polarization direction e3 of the spin basis into the helicity
one, np. In our framework, we find that the corresponding
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transf. of the mode spinors is performed by the integral oper-
ator Rh whose kernel has the Fourier transform

R̃h(p) = lprh(p)l−1
p Π̃+(p) + l−1

p rh(−p)lpΠ̃−(p) , (144)

where rh(p) = diag(r̂h(p), r̂h(p)) ∈ ρD . This transf. is com-
plicated but can be controlled by using algebraic codes on a
computer.

6.1 Principal operators

In this basis, the momentum and energy operators which do
not depend on polarization lead to the one-particle operators
(113) and (114), respectively. In contrast, the polarization
operator (92) with n(p) = np can be put in the specific form

W̃ (p) = si n
i
p

[
Π̃+(p) − Π̃−(p)

]
= si n

i
p
H̃D(p)

E(p)
, (145)

as n(−p) = −np, and si nip commutes with lp. Then the
mode spinors constructed using helicity spinors satisfy the
eigenvalue problems (93) and (94) which guarantee the con-
venient quantization (115).

On the other hand, here we may use the comps. of the
Pauli–Lubanski operator interpreted as a covariant four-
vector spin operator. Its 0th comp. is the helicity operator

W0 = Ji P
i = si Pi ⇒ W̃0(p) = S̃i (p)pi = si p

i , (146)

whose action on the mode spinors,

(W0Up,ξσ (p))(x) = W̃0(p)Up,ξσ (p)(x)

= σ pUp,ξσ (p)(x) (147)

(W0Vp,ησ (p))(x) = W̃0(−p)Vp,ησ (p)(x)

= σ pVp,ησ (p)(x) , (148)

calculated as in the previous case, is different from that of
W , as the eigenvalue of Eq. (148) is σ p instead of −σ p.
This difference comes from the term E(p)−1 H̃D(p) of Eq.
(145), which ensures suitable eigenvalues of the operator W .
However, the inverse antiparticle eigenvalues of the helicity
operator are not a major impediment, such that in QFT, we
may use either the operator W defined by Eq. (115) or the
helicity one,

W0 = 1

2

∫
d3 p p

∑
σ

σ
[
a†
σ (p)aσ (p) − b†

σ (p)bσ (p)
]
,

(149)

bearing in mind its specific action.

For writing down the spin comps. (117), we derive the
matrices (118) in this basis,

Σ1(p) = p1

p
σ3 − p1 p

1σ1 + p2σ2

p(p + p3)
+ σ1 ,

Σ2(p) = p2

p
σ3 − p2 p

1σ1 + p2σ2

p(p + p3)
+ σ2 ,

Σ3(p) = p3

p
σ3 − p1σ1 + p2σ2

p
, (150)

which satisfy piΣi (p) = pσ3. The form of the “covariant”
derivatives ∂̃i = ∂pi 12×2 +Ωi (p) is determined by the matri-
ces (103) that read

Ω1(p) = −i

2p2(p + p3)

[
p1 p2σ1 + pp2σ3

+(pp3 + p22 + p32
)σ2

]
,

Ω2(p) = i

2p2(p + p3)

[
p1 p2σ2 + pp1σ3

+(pp3 + p12 + p32
)σ1

]
,

Ω3(p) = i

2p2

(
p1σ2 − p2σ1

)
(151)

and satisfy piΩi (p) = 0. We thus obtain apparently com-
plicated matrices Σi and Ωi but whose algebra is the same
as in the momentum-spin basis where Ωi = 0 and Σi = σi .
The identities (122) help us to show that Σ j and ∂̃i satisfy
the same commutation relations as σi and ∂pi . Using these
matrices, we may derive for the first time all the isometry gen-
erators and kinetic operators acting on the Fock state space
of QFT in the momentum-helicity basis.

6.2 One-particle relativistic quantum mechanics

In applications, we may turn back to RQM but considered
now as the one-particle restriction of QFT. For example, in
the normalized one-particle state

|α〉 =
∫

d3 p
∑
σ

ασ (p)a†
σ (p)|0〉 , 〈α|α〉 = 1 , (152)

defined by the wave functions ασ (p) that form the normalized
Pauli spinor α ∈ Fα as in Eq. (29), we may calculate the
expectation value of any generator X as

〈α|X|α〉 = 〈α, X̃α〉 , (153)

where X̃ ∈ Lie(T̃ ) is the generator of RQM corresponding to
X. The list of these generators can be written down, according
to Eqs. (113–125), but omitting the explicit dependence on
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p,

P̃i = pi , H̃ = E , W̃ = 1

2
σ3 , W̃0 = p

2
σ3 ,

J̃i = L̃i + S̃i , S̃i = 1

2
Σi , L̃i = −iεi jk p

j ∂̃k ,

K̃i = i E ∂̃i + 1

2(E + m)
εi jk p

jΣk . (154)

Similarly we find Q̃ = 1 and the kinetic operators

X̃ i = X̃ i
MC = i ∂̃i , Ṽ i = Ṽ i

MC = pi

E
. (155)

of the particle inertial motion.
More algebra may be performed resorting to algebraic

codes on a computer. We thus obtain the space comps. of the
Pauli–Lubanski operator,

W̃i = E J̃i + εi jk p
j K̃k = mS̃i + pi

E + m
W̃0 , (156)

and verify that the second Casimir operator (16) in this rep.
gives the expected invariant C̃2 = −ημνW̃μW̃ν = 3

4m
2.

Note that in this rep., the first invariant (15) is implicit, as E
is just the relativistic energy.

This example shows that the structure and properties of
the spin, angular momenta and polarization operators defined
here are close to the original non-relativistic Pauli’s spin the-
ory in p-rep. However, this happens only in the particle sec-
tor, as for antiparticles there is a discrepancy because of the
operators Q̃, W̃0, X̃ i , and Ṽ i which change their signs.

7 Concluding remarks

We have shown that the comps. of the spin operator pro-
posed by Pryce in p-rep. are Fourier transforms of the ker-
nels of integral operators generating a rep. of the little group
SU (2) carried by the space of Pauli’s spinors determining
the polarization. Therefore, these operators are conserved
via Noether’s theorem, allowing us to define the conserved
polarization operator (92).

After quantization, the spin operator becomes the desired
conserved one-particle operator of comps. (117), splitting
naturally the total angular momentum into two conserved
parts, i.e., this spin operator and the associated conserved
angular momentum of comps. (121). Therefore, we must
accept that this is the correct spin operator we need for defin-
ing and controlling the polarization in special relativistic
QFT. The action of the corresponding polarization operator
(115) defined here for the first time confirms this interpreta-
tion.

In contrast, the associated Pryce coordinate operator
defined initially in p-rep. as a mass-center one becomes after
quantization the dipole operator (132) evolving linearly in

time thanks to the conserved classical current (133). Never-
theless, a mass-center position and velocity operators (138)
can be written by hand but corresponding to another defini-
tion of mass center, different from that considered by Pryce
[12]. Thus, we again verify that the correct physical meaning
of the relativistic observables can be found only in QFT.

As an application, we derived the matrices (150) and
(151) we need for writing down the isometry generators and
kinetic operators in the momentum-helicity basis. Turning
back to the RQM seen as a one-particle restriction of QFT,
we obtained the operators (154) that are close to those of the
original non-relativistic Pauli theory. We believe that this is
a significant physical argument in favor of our approach.

Unfortunately, we do not have other examples of peculiar
polarization, as the helicity is the only one used so far. We
hope that our spin and polarization operators defined here
will provide the opportunity to define new types of peculiar
polarization that could be observed in further experiments.
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Appendix A: Boosts and Foldy–Wouthuysen transforma-
tions

The standard Lorentz boosts of ρD are transfs. of the form

(3) with parameters τ i = − pi

p tanh−1 p
E(p) that read [5]

lp = E(p) + m + γ 0γ i pi√
2m(E(p) + m)

∈ ρD , (A.1)

giving rise to the boosts Lp = Λ(lp) ∈ L↑
+ with the matrix

elements [4]

(Lp)0 ·· 0 = E(p)

m
, (Lp)0 ·· i = (Lp)i ·· 0 = pi

m
,

(Lp)i ·· j = δi j + pi p j

m(E(p) + m)
. (A.2)
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The matrices (A.1) satisfy lp = l+p and l−1
p = l−p = γ 0lpγ 0,

and

l2p = E(p) + γ 0γ i pi

m
, l2−p = E(p) − γ 0γ i pi

m
, (A.3)

giving rise to the following identities

1 + γ 0

2
l2p

1 + γ 0

2
= E(p)

m

1 + γ 0

2
, (A.4)

1 − γ 0

2
l2−p

1 − γ 0

2
= E(p)

m

1 − γ 0

2
. (A.5)

which help us to recover the integral operators Π+ and Π−
defined by Pryce [12] whose kernels have the Fourier trans-
forms

Π̃+(p) = m

E(p)
lp

1 + γ 0

2
lp = 1

2

(
1 + H̃D(p)

E(p)

)
, (A.6)

Π̃−(p) = m

E(p)
l−1
p

1 − γ 0

2
l−1
p = 1

2

(
1 − H̃D(p)

E(p)

)
, (A.7)

where H̃D(p) is given by Eq. (35). It is not difficult to ver-
ify that Π+ and Π− form a complete system of orthog-
onal projection operators satisfying Π2+ = Π+ , Π2− =
Π− , Π+Π− = Π−Π+ = 0 and Π+ + Π− = 1 ∈ ρD .
According to Eqs. (33) and (34), we find that these operators
separate the mode spinors of positive and negative frequen-
cies as Π+FD = F+

D and Π−FD = F−
D [12].

Looking for a unitary transf. able to bring the Hamiltonian
H̃D(p) in diagonal form, Foldy and Wouthuysen found the
unitary transf. [3]

UFW (p) = U+
FW (−p) = E(p) + m + γ i pi√

2E(p)(E(p) + m)
(A.8)

acting as

UFW (p)H̃D(p)UFW (−p) = γ 0E(p) . (A.9)

Assuming that in the frame where the Hamiltonian is diag-
onal the spin operator is the Pauli one, s, and applying the
inverse transf.,

S̃(p) = UFW (−p)sUFW (p) , (A.10)

it turns out just the Pryce spin operator whose comps. are
given by Eq. (86). For this reason, S̃(p) is often called the
Foldy–Wouthuysen spin operator. In fact, the spin operator is
the same but defined in two different ways: either indirectly
in association with Pryce’s coordinate operator or through the
transf. (A.10). Note that both these definitions are different
from that we propose here for the same operator.

Appendix B: Induced representations

The induced reps. are a tool for constructing unitary reps. of
a local-compact group in terms of unitary ones of a compact
subgroup [9,10]. Given a local-compact group G, a subgroup
H , and the functionφ : G → V , with values in a vector space
V , one says that the natural rep. π(g)φ(x) = φ(g−1x) is
induced by the rep. τ of the group H if [5]

φ(xh−1) = τ(h)φ(x) , ∀ x ∈ G , h ∈ H . (B.1)

Bearing in mind that a Haar measure can be defined at any
time on the cosset space G/H , it is convenient to consider the
new function φ̂ = φ ◦ χ : G/H → V defined with the help
of an arbitrary function χ : G/H → G. If τ is an unitary rep.,
then the induced rep. is unitary, transforming the functions
φ̂ ∈ L 2(G/H, μ,V ) but preserving the scalar product of
this Hilbert space [10]. An induced rep. is irreducible if the
rep. τ is irreducible. When fermions must be studied, then
instead of G and H , we consider their universal covering
groups, G̃ and the little group H̃ [5].

In RQM, the wave functions of p-rep. transform under
translations by simple multiplications with phase factors such
that we may restrict ourselves to the reps. of the groups G =
L↑

+ or G̃ = SL(2,C). The wave functions are defined on
orbits associated to representative momenta as in Sect. 3.2.
Each orbit Ω p̊ is isomorphic with the cosset space L↑

+/H
where H is the stable group of the representative momentum
p̊. Therefore, we can define the mapping χ : Ω p̊ → G such

that p = χ(p) p̊. Then the natural action of any Λ ∈ L↑
+ can

be written as

Λ : φ̂(p) → φ
(
Λ−1χ(p)

)
= φ

(
χ(Λ−1 p)W (Λ, p)−1

)
,

(B.2)

where W (Λ, p) = χ−1(p)Λχ(Λ−1 p) ∈ H is a Wigner
transf. of stable group, as W (Λ, p) p̊ = p̊. Finally, we find
the transformation rule

Λ : φ̂(p) → τ(W (Λ, p))φ̂(Λ−1 p) (B.3)

resulted from condition (B.1).
For massive fermions discussed in Sect. 3.2, we chose

χ(p) = Lp defined by Eq. (A.2). In this case, the little group
H̃ = SU (2) is compact, allowing finite-dimensional unitary
and irreducible reps. We use here only the rep. of spin 1

2
such that

√
Eα and

√
Eβ are functions of the Hilbert space

L 2(Ω p̊, μ,VP ) with the invariant measure (36). These func-
tions transform as in Eq. (B.3), such that the functions α and β

transform according to the rule (53) deduced indirectly from
Wigner’s approach. Thus, for massive particles, the covari-
ance is solved in terms of unitary reps. with a natural physical
meaning.

However, the group SO(3) is the only compact subgroup
of the group L↑

+, such that for other orbits, there are diffi-
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culties. In the case of massless particles, the representative
momentum p̊ = (1, 0, 0, 1) has the stable group H = E(2)

formed by SO(2) rotations and two nilpotent translations
[15] whose effect must be eliminated in order to keep only the
unitary reps. of the subgroup SO(2). This can be done resort-
ing to some supplemental restrictions, for example, keeping
only the left-handed components of the neutrino or setting the
Coulomb gauge of the Maxwell field. For tachyons having
the stable group H = SO(2, 1), there are no solutions.
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