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Abstract Some hadrons have the exotic quantum num-
bers that the traditional q̄q mesons and qqq baryons can
not reach, such as J PC = 0−−/0+−/1−+/2+−/3−+/4+−,
etc. We investigate for the first time the exotic quantum
number J PC = 4+−, and study the fully-strange tetraquark
states with such an exotic quantum number. We systemati-
cally construct all the diquark–antidiquark interpolating cur-
rents, and apply the method of QCD sum rules to calculate
both the diagonal and off-diagonal correlation functions. The
obtained results are used to construct three mixing currents
that are nearly non-correlated, and we use one of them to
extract the mass of the lowest-lying state to be 2.85+0.19

−0.22 GeV.
We apply the Fierz rearrangement to transform this mixing
current to be the combination of three meson–meson cur-
rents, and the obtained Fierz identity suggests that this state
dominantly decays into the P-wave φ(1020) f ′

2(1525) chan-
nel. This fully-strange tetraquark state of J PC = 4+− is
a purely exotic hadron to be potentially observed in future
particle experiments.

1 Introduction

In the past twenty years many candidates of exotic hadrons
were observed in particle experiments, which can not
be well explained in the traditional quark model [1].
Most of them still have the “traditional” quantum num-
bers that the traditional q̄q mesons and qqq baryons can
also reach, making them not so easy to be clearly identi-
fied as exotic hadrons. However, there are some “exotic”
quantum numbers that the traditional hadrons can not
reach, such as the spin-parity quantum numbers J PC =
0−−/0+−/1−+/2+−/3−+/4+−/ · · · . The hadrons with such
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exotic quantum numbers are of particular interests, since they
can not be explained as traditional hadrons any more. Their
possible interpretations are compact multiquark states [2–5],
hadronic molecules [6–8], glueballs [9–16], and hybrid states
[17–26], etc.

Among these exotic quantum numbers, the states of
J PC = 1−+ have been extensively studied in the literature
[2,3,5–7,17–26], since they are predicted to be the lightest
hybrid states [27]. Up to now there have been four structures
observed in experiments with J PC = 1−+, including three
isovector states π1(1400) [28], π1(1600) [29], and π1(2015)

[30] as well as one isoscalar state η1(1855) [31]. Besides, the
states of J PC = 0−−/0+−/2+−/3−+ have also been studied
to some extent [4,8–16]. These theoretical and experimen-
tal studies have significantly improved our understanding on
the non-perturbative behaviors of the strong interaction in the
low energy region. However, there has not been any investi-
gation on the exotic quantum number J PC = 4+− yet.

In this paper we shall investigate for the first time the
exotic quantum number J PC = 4+−, and study the fully-
strange tetraquark states with such an exotic quantum num-
ber. We shall work within the diquark–antidiquark picture,
and systematically construct all the diquark–antidiquark cur-
rents of J PC = 4+−, as depicted in Fig. 1a. We shall apply
the method of QCD sum rules to study these currents as a
whole, and extract the mass of the lowest-lying state to be
2.85+0.19

−0.22 GeV.
Besides, we shall also systematically construct all the

meson–meson currents of J PC = 4+−, as depicted in
Fig. 1b. We shall relate these currents and the diquark–
antidiquark currents through the Fierz rearrangement. The
obtained Fierz identity suggests that the lowest-lying state
dominantly decays into the P-wave φ(1020) f ′

2(1525) chan-
nel. Accordingly, we propose to search for it in the X →
φ(1020) f ′

2(1525) → φK K̄ decay process. With a large
amount of J/ψ sample, the BESIII collaboration are inten-
sively studying the physics happening around here. Such
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Fig. 1 Two configurations for the fully-strange tetraquark states: a the
diquark–antidiquark system with the internal orbital angular momenta
lλ/ lρ/ lρ′ and b the meson–meson system with l ′λ/ l ′ρ/ l ′

ρ′

experiments can also be performed by Belle-II, COMPASS,
GlueX, and PANDA, etc. Accordingly, this fully-strange
tetraquark state of J PC = 4+− is a purely exotic hadron
to be potentially observed in future particle experiments.

This paper is organized as follows. In Sect. 2 we system-
atically construct the local fully-strange tetraquark currents
with the exotic quantum number J PC = 4+−. We use them
to perform QCD sum rule analyses in Sect. 3, where we
calculate both their diagonal and off-diagonal two-point cor-
relation functions. Based on the obtained results, we use the
three single currents to perform numerical analyses in Sect. 4,
while their mixing currents are investigated in Sect. 5. Sec-
tion 6 is a summary.

2 Fully-strange tetraquark currents

As the first step, we construct the local fully-strange
tetraquark currents with the exotic quantum number J PC =
4+−. This quantum number can not be reached by simply
using one quark and one antiquark, and moreover, we need
two quarks and two antiquarks together with at least two
derivatives to reach such a quantum number.

As depicted in Fig. 1, there are two possible configura-
tions, the diquark–antidiquark configuration and the meson–
meson configuration. When investigating the former config-
uration, the two covalent derivative operators Dα(≡ ∂α +
igs Aα) and Dβ can be either inside the diquark/antidiquark
field or between them:

η = [
sTa CΓ1

↔
Dα

↔
Dβsb

]
(s̄cΓ2Cs̄Td ) ± h.c. ,

η′ = [
sTa CΓ3

↔
Dαsb

][
s̄cΓ4C

↔
Dβ s̄

T
d

] ± h.c. ,

η′′ = [[
sTa CΓ5

↔
Dαsb

]↔
Dβ(s̄cΓ6Cs̄Td )

] ± h.c. ,

η′′′ = [
(sTa CΓ7sb)

↔
Dα

↔
Dβ(s̄cΓ8Cs̄Td )

] ± h.c. , (1)

where
[
A

↔
DαB

] ≡ A[DαB] − [DαA]B, a · · · d are color

indices, and Γ1···8 are Dirac matrices. The internal orbital
angular momenta contained in these currents are

η : lλ = 0, lρ = 2/0, lρ′ = 0/2,

η′ : lλ = 0, lρ = 1, lρ′ = 1,

η′′ : lλ = 1, lρ = 1/0, lρ′ = 0/1,

η′′′ : lλ = 2, lρ = 0, lρ′ = 0. (2)

After carefully examining all the possible combinations,
we find that only the η currents can reach J PC = 4+−,
as depicted in Fig. 2, while the η′/η′′/η′′′ currents can not.
Altogether, we can construct three independent diquark–
antidiquark currents of J PC = 4+−:

η1
α1α2α3α4

= εabeεcde

×S
{[
sTa Cγα1

↔
Dα3

↔
Dα4sb

]
(s̄cγα2Cs̄Td )

− (sTa Cγα1sb)
[
s̄cγα2C

↔
Dα3

↔
Dα4 s̄

T
d

]}
,

η2
α1α2α3α4

= (δacδbd + δadδbc)

×S
{[
sTa Cγα1γ5

↔
Dα3

↔
Dα4sb

]
(s̄cγα2γ5Cs̄Td )

− (sTa Cγα1γ5sb)
[
s̄cγα2γ5C

↔
Dα3

↔
Dα4 s̄

T
d

]}
,

η3
α1α2α3α4

= εabeεcdegμν

×S
{[
sTa Cσα1μ

↔
Dα3

↔
Dα4sb

]
(s̄cσα2νCs̄Td )

− (sTa Cσα1μsb)
[
s̄cσα2νC

↔
Dα3

↔
Dα4 s̄

T
d

]}
. (3)

The symbol S denotes symmetrization and subtracting the
trace terms in the set {α1 · · · αJ }. Among these currents, η1···
and η3··· have the antisymmetric color structure [ss]3̄C [s̄ s̄]3C ,
and η2··· has the symmetric color structure [ss]6C [s̄ s̄]6̄C .

After similarly investigating the meson–meson configura-
tion, we can also construct three independent meson–meson
currents of J PC = 4+−:

ξ1
α1α2α3α4

= S
{[
s̄aγα1

↔
Dα3sa

]↔
Dα4(s̄bγα2sb)

}
,

ξ2
α1α2α3α4

= S
{[
s̄aγα1γ5

↔
Dα3sa

]↔
Dα4(s̄bγα2γ5sb)

}
,

ξ3
α1α2α3α4

= gμνS
{[
s̄aσα1μ

↔
Dα3sa

]↔
Dα4(s̄bσα2νsb)

}
. (4)

As depicted in Fig. 2, the internal orbital angular momenta
contained in these currents are

ξ : l ′λ = 1, l ′ρ = 1, l ′ρ′ = 0. (5)

After applying the Fierz rearrangement, we obtain
⎛

⎝
η1···
η2···
η3···

⎞

⎠ =
⎛

⎝
2 −2 −2

−2 2 −2
−4 −4 0

⎞

⎠

⎛

⎝
ξ1···
ξ2···
ξ3···

⎞

⎠ . (6)

This Fierz identity will be used to study the decay behaviors
later.
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Fig. 2 Possible internal orbital angular momenta contained in the
fully-strange tetraquark currents of J PC = 4+−. The Fierz identity
given in Eq. (6) indicates that the internal orbital angular momenta con-
tained in the diquark–antidiquark system {lλ = 0, lρ = 2/0, lρ′ = 0/2}
correspond to those contained in the meson–meson system {l ′λ = 1,
l ′ρ = 1, l ′

ρ′ = 0}

3 QCD sum rule analysis

We apply the QCD sum rule method [32,33] to study the
fully-strange tetraquark currents η1,2,3

α1α2α3α4
with the exotic

quantum number J PC = 4+−. This non-perturbative method
has been successfully applied to study various conventional
and exotic hadrons in the past 50 years [34].

We generally assume that the current ηiα1α2α3α4
(i =

1 · · · 3) couples to the fully-strange tetraquark states Xn

(n = 1 · · · N ) through

〈0|ηiα1α2α3α4
|Xn〉 = finεα1α2α3α4 , (7)

where fin is the 3 × N matrix for the decay constants, and
εα1α2α3α4 is the traceless and symmetric polarization tensor
satisfying

εα1α2α3α4ε
∗
β1β2β3β4

= S ′[g̃α1β1 g̃α2β2 g̃α3β3 g̃α4β4 ] , (8)

with g̃μν = gμν − qμqν/q2. The symbol S ′ denotes
symmetrization and subtracting the trace terms in the sets
{α1α2α3α4} and {β1β2β3β4}.

Based on Eq. (7), we can investigate both the diagonal and
off-diagonal correlation functions:

Π
i j
α1α2α3α4;β1β2β3β4

(q2)

≡ i
∫

d4xeiqx 〈0|T[ηiα1α2α3α4
(x)η j,†

β1β2β3β4
(0)]|0〉

= Πi j (q
2) × S ′[g̃α1β1 g̃α2β2 g̃α3β3 g̃α4β4 ] . (9)

At the hadron level we express Πi j (q2) using the disper-
sion relation as

Πi j (q
2) =

∫ ∞

s<

ρ
phen
i j (s)

s − q2 − iε
ds , (10)

with s< = 16m2
s the physical threshold. We parameterize

the spectral density ρ
phen
i j (s) for the states Xn together with

a continuum contribution as

ρ
phen
i j (s) × S ′[· · · ]

≡
∑

n

δ(s − M2
n )〈0|ηi···|n〉〈n|η j†··· |0〉 + · · ·

=
∑

n

fin f jnδ(s − M2
n ) × S ′[· · · ] + · · · , (11)

with Mn the mass of Xn .
At the quark–gluon level we calculate Πi j (q2) using the

method of operator product expansion (OPE), and extract the
OPE spectral density ρi j (s) ≡ ρOPE

i j (s) [35]. In the calcula-
tions we take into account the Feynman diagrams depicted in
Fig. 3. We consider the perturbative term, the strange quark
mass ms , the quark condensate 〈s̄s〉, the quark–gluon mixed
condensate 〈gs s̄σGs〉, the gluon condensate 〈g2

s GG〉, and
their combinations. We calculate all the diagrams propor-
tional to gN=0

s and gN=1
s , where we find the D = 6 term

〈s̄s〉2 and the D = 8 term 〈s̄s〉〈gs s̄σGs〉 to be important. We
partly calculate the diagrams proportional to gN≥2

s , whose
contributions are found to be small. Especially, we have not
taken into account the radiative corrections in our QCD sum
rule calculations.

Then we perform the Borel transformation at both the
hadron and quark–gluon levels. After approximating the con-
tinuum using ρi j (s) above the threshold value s0, we obtain
the sum rule equation

Πi j (s0, M
2
B) ≡

∑

n

fin f jne
−M2

n /M2
B

=
∫ s0

s<
e−s/M2

Bρi j (s)ds . (12)

We shall investigate it through two steps, the single-channel
analysis and the multi-channel analysis, as follows.

4 Single-channel analysis

To perform the single-channel analysis, we neglect the off-
diagonal correlation functions by setting ρi j (s)|i �= j = 0 so
that only ρi i (s) �= 0. This assumption means that the three
currents η1,2,3

α1α2α3α4
are “non-correlated”, and any two of them

can not mainly couple to the same state X , otherwise,

ρi j (s) × S ′[· · · ]
≡

∑

n

δ(s − M2
n )〈0|ηi···|n〉〈n|η j†··· |0〉 + · · ·

≈ δ(s − M2
X )〈0|ηi···|X〉〈X |η j†··· |0〉 + · · ·

�= 0 . (13)

Accordingly, we assume that there are three states X1,2,3

corresponding to the three currents η1,2,3
α1α2α3α4

through

〈0|ηiα1α2α3α4
|Xi 〉 = fiiεα1α2α3α4 . (14)
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Fig. 3 Feynman diagrams for the fully-strange tetraquark currents of
J PC = 4+−. The covariant derivative operator Dα = ∂α + igs Aα

contains two terms, and we depict the latter term using a green vertex

After parameterizing the spectral density ρi i (s) as one pole
dominance for the state Xi together with a continuum con-
tribution, Eq. (12) is simplified to be

Πi i (s0, M
2
B) ≡ f 2

i i e
−M2

i /M2
B =

∫ s0

s<
e−s/M2

Bρi i (s)ds , (15)

which can be used to calculate Mi through

M2
i (s0, MB) =

∫ s0
s<

e−s/M2
B sρi i (s)ds

∫ s0
s<

e−s/M2
Bρi i (s)ds

. (16)

We use the spectral density ρ11(s) extracted from the cur-
rent η1

α1α2α3α4
as an example to perform the numerical analy-

sis. We take the following values for various QCD parameters
[1,36–42]:

ms(2 GeV) = 93+11
− 5 MeV ,

〈
g2
s GG

〉
= (0.48 ± 0.14) GeV4 ,

〈s̄s〉 = −(0.8 ± 0.1) × (0.240 GeV)3 ,

〈gs s̄σGs〉 = −M2
0 × 〈s̄s〉 ,

M2
0 = (0.8 ± 0.2) GeV2 . (17)

As shown in Eq. (16), the mass M1 of the state X1 depends
on two free parameters, the Borel mass MB and the thresh-
old value s0. We investigate three aspects to find their proper
working regions: (a) the convergence of OPE, (b) the suffi-
cient amount of the pole contribution, and (c) the mass depen-
dence on these two parameters.

Firstly, we investigate the convergence of OPE, which is
the cornerstone for a reliable QCD sum rule analysis. We
require the D = 12 terms (CVG12) to be less than 5%, the
D = 10 terms (CVG10) to be less than 10%, and the D = 8
terms (CVG8) to be less than 20%:

CVG12 ≡
∣∣∣∣∣
ΠD=12

11 (∞, M2
B)

Π11(∞, M2
B)

∣∣∣∣∣
< 5% , (18)

CVG10 ≡
∣
∣∣∣∣
ΠD=10

11 (∞, M2
B)

Π11(∞, M2
B)

∣
∣∣∣∣
< 10% , (19)

CVG8 ≡
∣∣∣
∣∣
ΠD=8

11 (∞, M2
B)

Π11(∞, M2
B)

∣∣∣
∣∣
< 20% . (20)

As depicted in Fig. 4 using the dashed curves, the lower bound
of the Borel mass is determined to be M2

B > 2.40 GeV2.
Secondly, we investigate the one-pole-dominance assump-

tion by requiring the pole contribution (PC) to be larger than
40%:

PC ≡
∣∣
∣∣∣
Π11(s0, M2

B)

Π11(∞, M2
B)

∣∣
∣∣∣
> 40% . (21)

As depicted in Fig. 4 using the solid curve, the upper bound
of the Borel mass is determined to be M2

B < 2.65 GeV2

when setting s0 = 16.0 GeV2. Altogether the Borel window
is determined to be 2.40 GeV2 < M2

B < 2.65 GeV2 for
s0 = 16.0 GeV2. Redoing the same procedures, we find that
there are non-vanishing Borel windows for s0 > smin

0 =
14.6 GeV2. Accordingly, we choose s0 to be slightly larger,

Fig. 4 CVG12 (short-dashed curve, defined in Eq. (18)), CVG10
(middle-dashed curve, defined in Eq. (19)), CVG8 (long-dashed curve,
defined in Eq. (20)), and PC (solid curve, defined in Eq. (21)) as func-
tions of the Borel mass MB . These curves are obtained using the current
η1

α1α2α3α4
when setting s0 = 16.0 GeV2
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(a) (b)

Fig. 5 The mass M1 of the state X1 extracted from the current
η1

α1α2α3α4
, with respect to a the threshold value s0 and b the

Borel mass MB : a the short-dashed/solid/long-dashed curves are

obtained by setting M2
B = 2.40/2.53/2.65 GeV2, respectively; b the

short-dashed/solid/long-dashed curves are obtained by setting s0 =
15.0/16.0/17.0 GeV2, respectively

Table 1 QCD sum rule results for the fully-strange tetraquark states with the exotic quantum number J PC = 4+−, extracted from the diquark–
antidiquark currents η1,2,3

α1α2α3α4
as well as their mixing currents J 1,2,3

α1α2α3α4

Currents smin
0 Working regions Pole [%] Mass [GeV]

[GeV2] M2
B [GeV2] s0 [GeV2]

η1
α1α2α3α4

14.6 2.40–2.65 16 ± 3.0 40–50 3.50+0.21
−0.25

η2
α1α2α3α4

19.2 2.80–3.13 21 ± 4.0 40–51 4.08+0.26
−0.31

η3
α1α2α3α4

11.0 1.25–1.65 12 ± 2.0 40–58 3.34+0.39
−0.18

J 1
α1α2α3α4

10.1 1.78–1.92 11 ± 2.0 40–48 2.85+0.19
−0.22

J 2
α1α2α3α4

19.1 2.79–3.14 21 ± 4.0 40–51 4.08+0.26
−0.31

J 3
α1α2α3α4

– – – – –

and determine its working region to be 13.0 GeV2 < s0 <

19.0 GeV2.
Thirdly, we show the mass M1 in Fig. 5, and investigate

its dependence on MB and s0. It is stable against MB inside
the Borel window 2.40 GeV2 < M2

B < 2.65 GeV2, and
its dependence on s0 is moderate insider the working region
13.0 GeV2 < s0 < 19.0 GeV2, where the mass is calculated
to be

M1 = 3.50+0.21
−0.25 GeV . (22)

Its uncertainty is due to s0 and MB as well as various QCD
parameters listed in Eq. (17).

We repeat the same procedures to study the other two
currents η2

α1α2α3α4
and η3

α1α2α3α4
. The obtained results are

summarized in Table 1.

5 Multi-channel analysis

To perform the multi-channel analysis, we take into account
the off-diagonal correlation functions, which are actually
non-zero, i.e., ρi j (s)|i �= j �= 0. It is interesting to see how

large they are, so we choose s0 = 11.0 GeV2 and M2
B =

1.85 GeV2 to obtain

Πi j (s0, M
2
B) =

⎛

⎝
2.77 −0.04 −3.83

−0.04 0.98 0.46
−3.83 0.46 2.38

⎞

⎠ × 10−6 GeV14.

(23)

Hence, η1··· and η3··· are strongly correlated with each other,
making the off-diagonal terms of ρi j (s) non-negligible, as
depicted in Fig. 6 using the solid curve.

To diagonalize the 3 × 3 matrix ρi j (s), we construct three
mixing currents J 1,2,3

α1α2α3α4
:

⎛

⎝
J 1···
J 2···
J 3···

⎞

⎠ = T3×3

⎛

⎝
η1···
η2···
η3···

⎞

⎠ , (24)

with T3×3 the transition matrix.
We apply the method of operator product expansion to

extract the spectral densities ρ′
i j (s) from the mixing currents

J 1,2,3
α1α2α3α4

. After choosing
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Fig. 6 Off-diagonal terms,
∣
∣Π13/

√
Π11Π33

∣
∣ (solid) and∣

∣∣Π ′
13/

√
Π ′

11Π
′
33

∣
∣∣ (dashed), as functions of the Borel mass MB .

These curves are obtained by setting s0 = 11.0 GeV2

T3×3 =
⎛

⎝
0.72 −0.06 −0.69
0.14 0.99 0.05
0.68 −0.13 0.72

⎞

⎠ , (25)

we obtain

Π ′
i j (s0, M

2
B) =

⎛

⎝
6.43 0 0

0 1.00 0
0 0 −1.30

⎞

⎠ × 10−6 GeV14, (26)

at s0 = 11.0 GeV2 and M2
B = 1.85 GeV2. Hence, the off-

diagonal terms of ρ′
i j (s) are negligible around here, suggest-

ing that the three mixing currents J 1,2,3
α1α2α3α4

are nearly non-
correlated around here, as depicted in Fig. 6 using the dashed
curve. Moreover, Eq. (26) indicates that the QCD sum rule
result from J 3

α1α2α3α4
is non-physical around here due to its

negative correlation function. Besides, Eq. (25) indicates that
J 2··· is almost the same as η2···, while J 1··· and J 3··· are mainly
from the recombination of η1··· and η3···.

We use the procedures previously applied on the diquark–
antidiquark currents η1,2,3

α1α2α3α4
to study their mixing cur-

rents J 1,2,3
α1α2α3α4

. The obtained results are also summarized
in Table 1. Especially, the mass extracted from the current
J 1
α1α2α3α4

is significantly reduced to be

M ′
1 = 2.85+0.19

−0.22 GeV . (27)

For completeness, we show it in Fig. 7 as a function of the
threshold value s0 and the Borel mass MB .

6 Conclusion

In this paper we apply the method of QCD sum rules to
study the fully-strange tetraquark states with the exotic quan-
tum number J PC = 4+−. We work within the diquark–
antidiquark picture and systematically construct their inter-
polating currents. We calculate both the diagonal and off-
diagonal correlation functions. The obtained results are used
to construct three mixing currents that are nearly non-
correlated. We use the mixing current J 1

α1α2α3α4
to evaluate

the mass of the lowest-lying state to be 2.85+0.19
−0.22 GeV.

In this paper we also systematically construct the fully-
strange meson–meson currents of J PC = 4+−, and relate
them to the diquark–antidiquark currents through the Fierz
rearrangement. Especially, we can apply Eqs. (24) and (6) to
transform the mixing current J 1

α1α2α3α4
to be

J 1··· = 4.3 ξ1··· + 1.2 ξ2··· − 1.3 ξ3··· . (28)

This Fierz identity suggests that the lowest-lying state dom-
inantly decays into the P-wave φ(1020) f ′

2(1525) channel
through the meson–meson current ξ1

α1α2α3α4
, given that the

operator s̄bγα2sb of I G J PC = 0−1−− well couples to the

vector meson φ(1020) and the operator S[s̄aγα1

↔
Dα3sa] of

I G J PC = 0+2++ well couples to the f ′
2(1525) meson.

Accordingly, we propose to search for it in the X →
φ(1020) f ′

2(1525) → φK K̄ decay process in the future

(a) (b)

Fig. 7 The mass M ′
1 extracted from the mixing current J 1

α1α2α3α4
, with

respect to a the threshold value s0 and b the Borel mass MB : a the
short-dashed/solid/long-dashed curves are obtained by setting M2

B =

1.78/1.85/1.92 GeV2, respectively; b the short-dashed/solid/long-
dashed curves are obtained by setting s0 = 10.0/11.0/12.0 GeV2,
respectively
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Belle-II, BESIII, COMPASS, GlueX, and PANDA experi-
ments.

This is the first study on the exotic quantum number
J PC = 4+−, and the above lowest-lying fully-strange
tetraquark state of J PC = 4+− is a purely exotic hadron
to be potentially observed in future experiments. Its theo-
retical and experimental studies will continuously improve
our understanding on the non-perturbative behaviors of the
strong interaction in the low energy region.
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