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Abstract We study supersymmetry conditions for the het-
erotic pure superstring preserving N = 1 supersymmetry in
four dimensions directly from the curved superspace defined
by the Berkovits–Howe constraints.
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1 Introduction

Understanding string dynamics in curved backgrounds is still
one of the most important topics of research in string theory.
It is particularly crucial to study dualities and compactifi-
cations. Most of the knowledge in string compactifications
comes from the Ramond–Neveu–Schwarz (RNS) formalism
or the supergravity limit. In the case of heterotic string or Type
II strings the RNS formalism allowed significant advances
such as non-renormalization theorems [1] and exact results
from topological strings (see, e.g., [2] for a review). For com-
pactification backgrounds involving Ramond–Ramond (RR)
fields most of the work done was restricted to the supergrav-

a e-mail: ochandiaq@gmail.com (corresponding author)
b e-mail: vallilo@gmail.com

ity limit. The difficulty comes from the RR vertex operators
associated with the linearized RR flux.

The pure spinor formalism [3] introduced by Berkovits has
manifest supersymmetry in flat space-time and made possi-
ble to study RR backgrounds without the subtleties of the
RR vertex operators of the RNS formalism.1 In two previ-
ous papers [6,7] we started the study of compactifications
using the pure spinor formalism.2 However, in those works
we started with an ansatz for the covariant super deriva-
tive algebra without relating it the supergravity background
defined by the Berkovits–Howe supergravity constraints [9].
The assumption was guided by requiring a nilpotent BRST
charge in the supergravity limit. In this work we want to
study supergravity backgrounds for the heterotic pure spinor
string preserving Poincaré symmetry or supersymmetry in
four dimensions directly from the curved superspace defined
by the Berkovits–Howe constraints. The idea is to construct
the Killing supervectors and derive the conditions imposed
on the supergeometry such that their lowest components sat-
isfy some general requirements expected for Poincaré or
supersymmetry parameters. Knowledge of the θ expansion
of Killing supervectors is also useful since they define con-
served currents on the worldsheet which can be used to have
an explicit form for the supergravity vertex operators. Killing
spinors and their algebra were already studied in, e.g. [10]
but not directly from superspace point of view.

The superspace approach taken here is considerably more
involved that the component approach historically used in
the literature on superstring compactifications. However if
we want to apply covariant formalisms for the superstring to
this problem we must understand all steps in the description
of curved superspaces for string compactifications. Although
the case studied here is one of the oldest compactification

1 Another promising way to study RR backgrounds is to use Closed
Superstring Field Theory [4] as in the work [5].
2 It was also studied in [8] using orbifolds.
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models it will serve the base to apply the same ideas to more
general compactifications, e.g. [11–14] and also for Type II
strings. Curved superspace methods were also used in [15]
to describe flux compactifications.

This paper is organized as follows. In the next section we
give a brief review for the heterotic string in the pure spinor
formalism in a general curved background and some of the
main consequences of the Berkovits–Howe constraints. In the
Sect. 3 we study general Killing supervectors in ten dimen-
sional supergravity with the Berkovits–Howe constraints. In
Sect. 4 we study the consequences of imposing four dimen-
sional Poincaré symmetry and supersymmetry. The final sec-
tion has a summary of the main steps of our work and future
applications.

2 Heterotic supergravity and the Berkovits–Howe
constraints

In this section we review the heterotic string in a curved
background in the description of the pure spinor formalism.
The world-sheet action is given by

S =
∫

d2z

(
1

2
�a�

a + 1

2
�A�

B
BBA + dα�

α

+ωα∇λα + ρA∇ρA

+ dα J
I
WI

α + λαωβ J
I
UIα

β

)
+ SFT , (2.1)

where the superspace coordinates ZM = (Xm, θμ) (with
m = 0, . . . , 9, μ = 1, . . . , 16) defines �A = ∂ZM EM

A(Z)

= (�a,�α), where EM
A(Z) is the vielbein superfield. The

world-sheet field dα is the generator for superspace transla-
tions, λα is the pure spinor variable and ωα is its momentum
conjugate variable. The world-sheet fields ρA are the het-
erotic fermions. They are in the fundamental representation
of the gauge group SO(32) or E8 × E8. These fermions

define the current J
I = 1

2 K
I
ABρAρB, where KI are the gen-

erators of the gauge group Lie algebra in the fundamental
representation. The covariant derivatives in (2.1) are defined
by

∇λα = ∂λα + λβ
(
∂ZM
Mβ

α
)

,

∇ρA = ∂ρA + K I
AB

(
∂ZM AIM

)
ρB, (2.2)

where 
Mβ
α is the background Lorentz connection and AIM

is the gauge group connection. The background fields are
B,WI ,UI and the connections in (2.2). Finally, SFT is the

Fradkin–Tseytlin term and it is given by

SFT =
∫

d2z α′r (2)�, (2.3)

where r (2) is the world-sheet curvature and � is the dila-
ton superfield. Note that this term breaks classical conformal
invariance but it helps to restore it at the quantum level [16].

The action (2.1) is the most general expression that is
invariant under background Lorentz and gauge transforma-
tions such that it is also classically conformal invariant. There
is another symmetry that constrains the background fields to
satisfy the equations of supergravity in ten dimensions and
the equations of super Yang–Mills in a curved background
[9]. This symmetry is generated by the pure spinor BRST
charge

Q =
∮

dz λαdα. (2.4)

The nilpotency of Q and the holomorphicity of λαdα , imply
a set of constraints for the background superfields. These
constraints are functions of the torsion, curvature, field-
strength and H = dB components. Let us remind how
they are defined. They are given after constructing the super
one-forms E A = dZM EM

A,
α
β = dZM
Mα

β, AI =
dZM AIM and the super two-form B = 1

2dZ
MdZN BNM .

Note that the Lorentz connection has the form


α
β = δβ

α
(s) + 1

4
(γ ab)α

β
ab, (2.5)

where 
(s) is the connection for scalings and 
ab is the
usual Lorentz connection in ten-dimensional superspace. In
this way, one can define the connection 
A

B with non-zero
components 
a

b and 
α
β . The matrix γ ab = 1

2 (γ aγ b −
γ bγ a), where (γ a)αβ and (γ a)αβ are the symmetric 16 × 16
γ -matrices in ten dimensions that satisfy the Dirac algebra

(γ a)αγ (γ b)γβ + (γ b)αγ (γ a)γβ = 2ηabδβ
α . (2.6)

The map of a tensor with superspace curved indices to
local target space indices is performed with the use of the
vielbein and its inverse. For example,

BNM = (−1)N (M+A)EM
AEN

B BBA, (2.7)

where (A, M) assigns a sign (+1) for bosonic directions and
(−1) for fermionic directions (for more details see [17]).
The torsion, curvature and field-strength super two-forms are
given by

T A = ∇E A = dE A + EB
B
A, RB

A = d
B
A

+ 
B
C
C

A, FI = d AI + f J K I AJ AK ,
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T A = 1

2
EBECTCB

A, RB
A = 1

2
EC EDRDCB

A,

FI = 1

2
EBE AFI AB, (2.8)

where the product between forms is the wedge product and
f J K I are the structure constants of the gauge group Lie alge-
bra. The covariant derivative ∇ is

∇ = E A∇A = dZM
(

∂M + 1

2

M

abMab + 

(s)
M S

)
, (2.9)

where Mab are the Lorentz generators and S is the scaling
generator.

Together with

H = 1

6
EC EBE AHABC , (2.10)

the torsion, the curvature and the field-strength satisfy
Bianchi identities. They are given by

∇[ATBC]D + T[AB ETEC]D − R[ABC]D = 0,

∇[ARBC]DE + T[AB F RFC]DE = 0,

∇[AFI BC] + T[AB DFI DC] = 0,

∇[AHBCD] + 3

2
T[AB E HECD] = 0, (2.11)

where the (anti)-symmetrization is on (ABC) in the first three
equations and it is on (ABCD) in the last equation.

The nilpotency of the pure spinor BRST charge and the
holomorphicity of the BRST current, together with gauge
fixing gauge symmetries of the action, imply that some of
the torsion components are

Tαβ
a = −(γ a)αβ, TAα

β = 0, (2.12)

some of the H components are

Hαβγ = Habα = 0, Hαβa = −(γa)αβ, (2.13)

and for the field-strength components

FIαβ = 0. (2.14)

Using the Bianchi identities of (2.11) and the torsion com-
ponents in (2.12), one can prove that the constraints for the
curvature are implied. Also, the Bianchi identity involving
∇(αTβγ )

a implies that

Tαab = 2(γab

(s))α. (2.15)

It is important to note that since 

(s)
α �= 0 one has to be careful

when acting with ∇α on gamma matrices. For example,

∇α(γ a)βδ = −2
(s)
α (γ a)βδ. (2.16)

Combining the Bianchi identities involving ∇[αTab]c and
∇[αHβab] one can show that

Tabc = −Habc, 
(s)
a = 0. (2.17)

The Bianchi identity involving ∇[αHabc] together with the
equation (γ b)αβTabβ = 8∇a
α (which is derived from the
Bianchi identity involving ∇[aTαβ]β [16]) implies that

Tab
α = −1

6
(γ c∇)αHabc − 4

3
∇[a(γb]
(s))α. (2.18)

Finally, the Bianchi involving R(αβγ )
ρ implies

Tabc = −(γabc)
αβ∇α


(s)
β . (2.19)

So we have that

Habc = (γabc)
αβ∇α


(s)
β . (2.20)

Note that 

(s)
α = 1

4∇α� as it is required by ghost number
anomaly cancellation [9] (also necessary for vanishing of the
beta function at one-loop [16]). One can also use the Bianchi
identities to find the following expressions for the curvatures

Rαβ
ab = ∇(αTβ)c

bηca + T(αd
cT b

β)cη
da + γ

d
αβHd

ab,

Rαb
cd = −∇bTα

cd − Tb
[cβγ

d]
βα,

Rab
cd = −1

8
(γ cd)α

β
(∇βTab

α − Tβ[aeTb]eα
)
,

R(s)
αβ = ∇(α
β) = 1

4
γ
a
αβ∇a�,

R(s)
aα = ∇a
α = 1

4
∇a∇α�,

R(s)
ab = Tab

α
α = 1

4
Tab

α∇α�. (2.21)

All the gauge covariant background fields depend on the
� superfield. This is not something new and it is also true
with a different set of constraints [18]. It is interesting to note
that for the Type IIB pure spinor string this is not true [19].
It can be shown that using the Berkovits–Howe constraints
the Ramond–Ramond 5-form, as well as curvature generated
from it, does not appear as a higher component of � [20]. An
explicit example of this is the AdS5 × S5 background [3,21]
where all covariant derivatives of � vanish.
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3 Killing supervectors

As discussed in the previous section all Lorentz covariant
tensors can be computed from �. Under a general super
reparametrization ξM (Z) it transforms as

δ� = ξM∇M� = ξ A∇A� = 0, (3.1)

where we are defining ξ A = ξMEM
A. However it is not

enough to impose that the transformation above vanishes.
Generically the covariant tensors are given by

TA1···An ∼ ∇A1 · · · ∇An�, (3.2)

therefore in order to have δTA1···An = 0 we must also impose
that δ∇A = 0. Another way to see it is that particular compo-
nents of the vielbein cannot be obtained from � so to impose
that the full background is invariant under some particular
super diffeomorphism the covariant derivatives (2.9), which
depend on EA

M , should also be invariant.
The textbook way, see e.g. [22], to study super diffeomor-

phisms is to introduce a vector superfield containing ξ A, a
compensating Lorentz rotation �ab and scale transformation
σ

K = ξ A∇A + 1
2�abMab + σ S. (3.3)

Although the pure spinor sigma model has two independent
local Lorentz symmetries, acting on vectors and spinors sepa-
rately, a combination of the two is fixed in the process of solv-
ing the Berkovits–Howe constraints. The local scale symme-
try is also used to fix the dimension zero torsions, however
since we are not eliminating the scale connection from ∇α

we still have to include the scale transformation in K . As
we will see this will effectively reduce the structure group of
symmetry transformations from Lorentz times scale to only
Lorentz, as expected.

A generic tensor superfield OA1···An transforms under
local reparametrizations and local Lorentz transformations
as generated by K as

δOA1···An = KOA1···An . (3.4)

Since the covariant derivatives map tensors to tensors we
have that the covariant derivatives themselves transform as

δ∇A = [K ,∇A]. (3.5)

If we apply this idea to ∇α and use the Berkovits–Howe
constraints we get

δ∇α =
(

−∇αξβ−1

4
�ab(γab)α

β − δβ
ασ

)
∇β

+
(
−∇αξb + ξβγ

b
αβ − ξaTaα

b
)

∇b

+ 1

2

(
−∇α�ab + ξC RCα

ab
)
Mab

+
(
ξC R(s)

Cα − ∇ασ
)
S = 0, (3.6)

where R(s)
AB is the scaling curvature and RAB

ab is the Lorentz
curvature. The first term in (3.6) defines �ab in terms of ξα

it also implies that

∇αξα = −16σ, (∇γ abcdξ) = 0. (3.7)

Before studying the consequences of these conditions let us
first analyze the second term of (3.6), which has the lowest
mass dimension. From it we can write an expression for ξα

in terms of ξa as

ξα = 1

10
γ αβ
a ∇βξa + 9

5
ξa(γa
)α

= 1

10
∇β

(
γ αβ
a ξa

)
+ 8

5
ξa(γa
)α. (3.8)

We can also write the fundamental equation for ξa using the
usual ten dimensional gamma matrix identity

γb(βδ

(
−∇α)ξ

b + ξaTα)a
b
)

= 0, (3.9)

it depends only on ξa and the background. Using the explicit
form of Tαa

b and the fact that the ∇α derivative of γbβδ is not
zero, simplifies this equation to just

∇(α

(
(γb)βδ)ξ

b
)

= 0. (3.10)

A nice way to summarize this is that the isometries of a
general supergravity background with the Berkovits–Howe
constraints [9] are generated by a symmetric bi-spinor satis-
fying

λαλβξαβ = 0, ∇(αξβδ) = 0. (3.11)

Let us see what consequences are obtained by using the con-
ditions (3.7) and the expression for (3.8) for ξα . Acting with
∇α on (3.8) one obtains

∇αξα = 1

20
γ αβ
a {∇α,∇β}ξa + 1

5
γ αβ
a 
α∇βξa

+ 9

5
(∇αξa)(γa
)α + 9

5
ξa∇α(γ αβ

a 
β). (3.12)

Using the equation for ∇αξa from (3.6), the anticommutator
for the for the first term and 
α = 1

4∇α� one obtains
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∇αξα = 1

20
γ αβ
a (γ

b
αβ∇bξ

a + ξbRαβb
a)

+ 1

5
γ αβ
a 
α(ξγ γ

a
γβ + ξbTβb

a)

+ 9

5
(ξβγ

a
βα + ξbTαb

a)(γa
)α + 9

40
ξaγ αβ

a {∇α,∇β}�.

(3.13)

Now we use the equation for ∇aξ
b from (3.21) below, the

Bianchi identity involving Rαβb
a and note that all the terms

with two factors of 
α vanish (because they form a factor of
the form (
γa
)), we obtain

∇αξα = 16 ξα
(s)
α ⇒ σ = −ξα
(s)

α . (3.14)

As we mentioned below Eq. (3.3) this condition on σ is effec-
tively eliminating the scale connection from ∇α , reducing the
structure group of the symmetry generators. Note that 
a

already vanishes as a consequence of the Berkovits–Howe
constraints.

The second condition in (3.7) does not provide informa-
tion: in fact, using (3.8) one obtains

(γ abcd )α
β∇βξα = 1

10
(γ abcdγ e)αβ∇α∇βξe

+ 1

5
(γ abcdγ e)αβ
α∇βξe

+ 9

5
(γ abcd )α

β(∇βξe)(γ
e
)α + 9

5
(γ abcd )α

βξe∇β(γ e
)α.

(3.15)

The first term becomes

− 1

5
(γ abcd)α

β∇βξα − 8

5
(ξγ abcd
)

+ 9

5
ξ [a(γ bcd])αβ∇α
β + 54

5
ξ [a(
γ bcd]
) (3.16)

after anticommuting the fermionic derivatives, using the
equation for ∇αξe derived from (3.6) and the Bianchi identity
involving Rαβe f . For the second term, after using the equa-
tion for ∇βξe from (3.6) one obtains that this term is equal
to

−2(ξγ abcd
) − 18

5
ξ [a(
γ bcd]
). (3.17)

For the third term, we use again the equation for ∇βξe to get

18

5
(ξγ abcd
) − 54

5
ξ [a(
γ bcd]
). (3.18)

For the fourth term we just contract the gamma matrices to
obtain

−9

5
ξ [a(γ bcd])αβ∇α
β − 18

5
ξ [a(
γ bcd]
). (3.19)

Adding (3.16), (3.17), (3.18) and (3.19) we obtain that

(γ abcd)α
β∇βξα

= −1

5
(γ abcd)α

β∇βξα ⇒ (γ abcd)α
β∇βξα = 0. (3.20)

Therefore the second equation in (3.7) is identically satisfied.
The vanishing of δ∇a should be implied by δ∇α = 0.

Nevertheless, it is still useful to have its explicit form

δ∇a = (−∇aξ
α−ξ cTca

α
) ∇α

+
(
−∇aξ

b−ξαTαa
b−ξ cTca

b−�a
b
)

∇b

+ 1

2

(
−∇a�

bc + ξ DRDa
bc

)
Mbc

+
(
ξC R(s)

Ca − ∇aσ
)
S = 0. (3.21)

One can use the equations in (3.6) to derive each term
above. For example, consider first {∇α,∇β}ξ A, which is
equal to

{∇α,∇β}ξ A = γ
a
αβ∇aξ

A + ξ B RαβB
A, (3.22)

and use the equations for ξ and � derived from δ∇A = 0 in
(3.6) and (3.21). For ξa , (3.22) implies

− 1

4
�bc[γ bc, γ a]αβ + ξb

(∇(αTβ)b
a + T(αb

cTβ)c
a)

+ ξγ
(

2γ
a
γ (α
β) + γ

b
γ (αTβ)b

a
)

− 2σγ
a
αβ

= −γ
b
αβ�b

a + ξb
(
Rαβb

a − γ
c
αβTbc

a
)

− ξγ γ
b
αβTγ b

a .

(3.23)

The terms with � cancel after computing the commutator.
The term with ξb is also zero because of the Bianchi identity
involving Rαβb

a . The terms with ξγ are equal to

ξγ
(

2γ
a
γ (α
β) + γ

b
(αβTγ )b

a
)

= −2γ
a
αβ(ξγ 
γ ), (3.24)

where we have used the fact that Tβb
a = 2(γb

a
)β and the

Fierz identity γ
b
(γ α(γb)β)ρ = 0. The result of (3.24) has to

cancel the term with σ in (3.23). Therefore,

σ = −ξγ 
γ , (3.25)

which is a condition already found before (see (3.14)).
As we already mentioned before, the scalar superfield �

should also be invariant under the transformations generated
by K . Since ξγ 
γ = −σ and 
α = 1

4∇α�, invariance
under K implies that

ξa∇a� = 4σ. (3.26)
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Finally, one can calculate the commutator of two different
Killing transformations parametrized by (ξ A

1 ,�
ab
1 , σ1) and

(ξ A
2 ,�

ab
2 , σ2)

K1 = ξ A
1 ∇A + 1

2
�

ab
1 Mab + σ1S,

K2 = ξ A
2 ∇A + 1

2
�

ab
2 Mab + σ2S. (3.27)

Both K ’s leave ∇A invariant, so the parameters ξ and �

satisfy the equations the come from [K ,∇A] = 0. The com-
mutator K3 = [K1, K2] is then given by

K3 =
(
ξ B

1 ∇Bξ A
2 − ξ B

2 ∇Bξ A
1 − ξ B

2 ξC1 TCB
A + ξ

b
[1�2]baδAa

+1

4
(γab)α

βξα[1�
ab
2] δ

A
β

)
∇A

+ 1

2

(
ξ B

2 ξ A
1 RAB

ab + ξ A[1∇A�
ab
2] + �

[ac
1 �2c

b]) Mab

+
(
ξ A[1∇Aσ2]

)
S. (3.28)

Using the equations from (3.6) and (3.21) for the derivatives
of ξ1, ξ2,�1,�2 the expression above can be simplified to

K3 =
(
−ξ

b
[1ξα

2]Tαb
a + ξα

1 ξ
β
2 γ

a
αβ − ξ

b
1 ξ

c
2Tcb

a
)

∇a

− ξ
a
1 ξ

b
2 Tab

α∇α

+ 1

2

(
ξ A

1 ξ B2 RBA
ab + �

ac
1 �2c

b
)
Mab

= −ξ B1 ξC2 TCB
A∇A + 1

2

(
ξ A

1 ξ B2 RBA
ab + �

ac
1 �2c

b
)
Mab

+
(
ξ A[1∇Aσ2]

)
S. (3.29)

So we finally obtain that

ξ A
3 = −ξ B1 ξC2 TCB

A, �
ab
3 = 1

2

(
ξ A

1 ξ B2 RBA
ab − �

c[a
1 �2c

b]) ,

σ3 =
(
ξ A[1∇Aσ2]

)
. (3.30)

For the heterotic string it is also possible to include a gauge
field background. The superfields present in the sigma model
are (AB,Wα,U,Uab). They are valued in the Lie algebra of
E8 × E8 or SO(32) and AB is the usual gauge superfield.
The Berkovits–Howe constraints imply that they can be writ-
ten in terms of Aα . One could include the gauge superfield in
the covariant derivatives together with a compensating gauge
transformation in K and include their contributions to (3.6)
and (3.21). However, a gauge background is better described
by its dimension 3

2 covariant field strength Wα and its trans-
formation under K is

δWα = ξ A∇AWα + 1

4
�ab (

γabW
)α

, (3.31)

where the ∇A above includes the gauge connection. In what
follows we will focus purely on the geometry and will not
include a gauge background.

3.1 Flat superspace

In flat space ∇A� = 0, the solution to (3.10) looks like

ξa = εa + �abxb + (θγ aη) − 1

4
(θγ abcθ)�bc. (3.32)

where εa is the translation parameter, �ab is the Lorentz
rotation and ηα is the supersymmetry parameter. There are
no higher order θ terms in the expansion. One way to see
this is to note that the first term in the second line of (3.6)
in flat space implies that �ab is constant. It also implies that
∇δ∇αξβ = 0, which means ξβ is constant in x and that
∇[α1 · · · ∇αn ]ξβ

∣∣
θ=0 = 0 forn ≥ 2 so ξβ is at most linear in θ .

This is the complete set of isometries of flat ten dimensional
superspace.

We would like to know how the existence of (3.32) implies
a flat ten dimensional superspace. First we have to define the
basic properties of ξa in an appropriate way if the superspace
is curved. In this case there is no notion of a reparametriza-
tion invariant θ expansion. The higher components of ξa

should be defined as an expansion using the Grassmann odd
covariant derivatives. Using the �-variable notation of Wess–
Bagger [17] we can represent the θ expansion of ξa as

ξa = ξa
∣∣
θ=0 + �α(∇αξa)

∣∣
θ=0

+ 1

2
�β�α(∇[α∇β]ξa)

∣∣
θ=0 + · · · (3.33)

where · · · are higher order � terms. For flat superspace we
could say εa , �ab and ηα were constants, but that is a frame
dependent notion. For a general curved superspace we will
impose that the components of ξa satisfy

(ξb)
∣∣
θ=0 = εb, (∇aε

b)
∣∣
θ=0 = −�a

b, (3.34)

(∇αξb)
∣∣
θ=0 = γ

b
αβηα, (∇aη

α)
∣∣
θ=0 = 0, (3.35)

(∇a(∇[α∇β]ξa)
∣∣
θ=0)

∣∣
θ=0 = 0, (3.36)

where �ab = −�ba and also that

(∇[α∇β]ξa)
∣∣
θ=0 = −1

4
γ
abc
αβ �bc, (3.37)

is the same � defined by (3.34). Because of the nested θ = 0
projections it is difficult to work with the conditions above.
However, it is possible to simplify them in the case where
the gravitino (and dilatino) vanishes. The bosonic covariant
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derivative is defined as

∇a = Ea
m(x, θ)∇m + Ea

μ(x, θ)∇μ

= (ea
m(x) + · · · )∇m + (ψa

μ(x) + · · · )∇μ, (3.38)

where · · · are higher order θ terms. Since ∇μ is the only
operator that has a θ derivative, when ψa

μ = 0 we can write

(∇a(O
∣∣
θ=0))

∣∣
θ=0 = (∇aO)

∣∣
θ=0, (3.39)

this allows us to simplify the projections in the conditions
for the components of ξa and use them in (3.6) and (3.21).
In summary, if we want to impose Poincaré invariance in
the full ten dimensional superspace we require that the back-
ground is invariant under transformations generated by ten
linearly independent vectors defined by ξa |θ=0 satisfying
∇aξ

b|θ=0 = −�a
b|θ=0, with the further conditions that

�(ab) = 0 and ∇c�ab|θ=0 = 0. It is clear that these con-
ditions in (3.21) automatically imply the space is flat and
without bosonic torsion.

4 Invariance conditions

Before we start let us summarize the results of the previous
section. There are only two independent invariance condi-
tions from which all others can be derived, they are

ξα∇α� + ξa∇a� = 0, (4.1)

∇αξb = ξβγ
b
αβ + 1

2
ξa(γ

ab)α
β∇β�. (4.2)

We already saw that the second equation can be written purely
in terms of ξa and �, the same can be done with the first and
it is simply

γ αβ
a ∇αξa∇β� + 10ξa∇a� = 0. (4.3)

All other equations can be obtained from the ones above and
the Bianchi identities. The last equations in both (3.6) and
(3.21) can be obtained from

∇α

(
ξa∇a� − 4σ

) = 0, ∇a
(
ξα∇α� + 4σ

) = 0, (4.4)

using that 
α = 1
4∇α�, the scaling curvatures R(s)

AB in (2.21)
and the first lines of (3.6) and (3.21).

If we can find a set of superfields (ξ A,�ab, σ ) such that
δ∇α = 0 the supergravity background will remain invari-
ant. The idea is to find the superspace conditions for these
equations to be satisfied for some specific set of parameters
(ξ A,�ab, σ ) corresponding to translations in four dimen-
sions and one global supersymmetry. From now on we will

separate vector indices into four dimensional and six dimen-
sional parts a = (a, i). We will decompose the parameters
as

ξ A = (ξα, ξa, ξ i ), �ab = (�ab,�ai ,�i j ). (4.5)

Later, when imposing four dimensional supersymmetry we
will also use complex indices (I, Ī ) for the internal space.

4.1 Four dimensional Poincaré symmetry

Let us first impose only four dimensional Poincaré invari-
ance. Of course the conditions on the background are obvi-
ous, however it is still instructive to see how they appear
from (4.1) and (5.2). It is not possible in this case to fix
ξ A = (0, ξa, 0) as superfield conditions. This would con-
strain the full ten-dimensional superspace to be flat. A less
restrictive way to do it is to impose

ξ A
∣∣
θ=0 = (0, εa, 0), �ab|θ=0 = (lab, 0, 0), (4.6)

where εa is a four dimensional vector and lab a four dimen-
sional Lorentz rotation. All higher components of the super-
fields (ξ A,�ab) should depend only on (εa, lab) and the ten-
sors of the geometry. Since we are dealing with a purely
bosonic background we will use that

(∇α1 · · · ∇α2n+1�
) ∣∣∣

θ=0
= 0. (4.7)

Staring from (4.1) we see that the first component of �

should independent of the four dimensional coordinates but
it is unconstrained on the internal coordinates. From using
(3.6), (4.6) and (4.7) we fix the next order in θ expansion

∇αξβ |θ=0 = −1

4
lab(γab)α

β,

∇αξa |θ=0 = 0,

∇αξ i |θ=0 = 0,

∇α�ab|θ=0 = 0,

∇α�ai |θ=0 = 0,

∇α�i j |θ=0 = 0. (4.8)

To get the second term in the expansion we first use that

∇β∇αξ A = 1

2
[∇β,∇α]ξ A + 1

2
{∇β,∇α}ξ A

= 1

2
[∇α,∇β ]ξ A + 1

2
γ
a
αβ∇aξ

A + 1

2
ξ B RαβB

A.

(4.9)
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From the second term of (3.6) with A = a we get

1

2
[∇β,∇α]ξa = −1

2
γ
b
αβ∇bξ

a − 1

2
ξ B RαβB

a + ∇βξδγ
a
αδ

+ 2ξδ
βγ
a
αδ − ∇βξbTbα

a − ξb∇βTbα
a . (4.10)

Before projecting to θ = 0 we must find the conse-
quences of Poincaré symmetry conditions ∇aξ

b|θ=0 = −lab,
∇a�

bc|θ=0 = 0 from (3.21). The first term in (3.21) gives
no information at leading order in θ . Choosing the indices in
the second term to be (a, b) we find that Tabc|θ=0 = 0. From
the choice (a, i) and using that (∇aξ

i )|θ=0 = 0 we have
that Tcai |θ=0 = 0. On the other hand, this will imply that
(∇iξ

b)|θ=0 = 0, as expected. Finally, from the choice (i, j)
we have that Tci j |θ=0 = 0. From the third term in (3.21) we
get a vanishing four dimensional curvature Rab

cd |θ=0 = 0
and also that Rab

cj |θ=0 = Rab
i j |θ=0 = 0. Using Bianchi

identities we have that ∇i�
cd |θ=0 and Rdi

bc|θ=0 = 0. Using
all this information we get the third term in the covariant
theta expansion of ξa and ξ i

1

2
[∇β,∇α]ξa |θ=0

=
(

1

2
γ b
αβ lb

a − 1

2
εb Rαβb

a − 1

4
(γ cd )β

δγ a
αδlcd − εb∇βTbα

a
) ∣∣∣

θ=0

= 1

4
γ acd
αβ lcd − 1

2
εc

(∇[αTβ]ca
) |θ=0, (4.11)

1

2
[∇β,∇α]ξ i |θ=0 = 1

4
γ icd
αβ lcd − 1

2
εc

(
∇[αTβ]ci

)
|θ=0. (4.12)

The next steps would be to calculate [∇α,∇β ]�ab and
∇[α∇β∇δ]ξσ . For the latter we first calculate [∇β,∇α]ξσ

using the same method as above and then applying another
covariant derivative and anti symmetrizing in all indices. This
will give terms depending on the curvature. Additional con-
straints on the background from imposing Poincaré symme-
try in four dimensions will come from (4.1). At lowest order
in θ we only have that

(ξα∇α� + ξa∇a�)|θ=0 = εa(∇a�)|θ=0 = 0, (4.13)

so the first component of �, the dilaton, is constant in the
four dimensional variables. For the next order we have to
compute

∇[α∇β]
(
ξγ ∇γ � + ξa∇a�

) ∣∣∣
θ=0

= 0. (4.14)

Using the conditions on the symmetry parameters and eval-
uating at θ = 0 this expression becomes

(
2(∇βξγ )∇α∇γ � − 2(∇αξγ )∇β∇γ �

+([∇α,∇β ]ξa)∇a� + ξa[∇α,∇β ]∇a�
) ∣∣∣

θ=0
= 0.

(4.15)

Using (4.8), (4.9) and (4.10) we simplify to

(
1

2
lab(γ

ab)[αγ (∇β]∇γ �) − 1

2
labγ

abc
αβ ∇c�

+εb
(∇[αTβ]ba

)∇a� + εa[∇α,∇β ]∇a�
) ∣∣∣

θ=0
= 0.

(4.16)

Commuting the derivatives in the last term we obtain

[∇α,∇β ]∇a�|θ=0 = −
(
∇[αTβ]ab

)
∇b�|θ=0

+ ∇a[∇α,∇β ]�|θ=0, (4.17)

plugging this into (4.16), it becomes

1

2
lab(γ

ab)[αγ (∇β]∇γ �)|θ=0

− 1

2
labγ

abc
αβ ∇c�|θ=0 + ∇a[∇α,∇β ]�|θ=0 = 0. (4.18)

Now we use the relation

∇α∇β� = 1

2
γ
a
αβ∇a� − 1

24
γ
abc
αβ Habc

= 1

2
γ
a
αβ∇a� − 1

24
γ
i jk
αβ Hi jk, (4.19)

to finally obtain

(
1

4
lab{γ ab, γ c}αβ∇c� + 1

48
labHi jk[γ ab, γ i jk]αβ

−1

2
(γ abc)αβ∇c� − 1

12
γ i jk∇aHi jk

) ∣∣∣
θ=0

= 0. (4.20)

The first term cancels the third term. The second term is
vanishes because γ ab commutes with γ i jk . Finally we obtain
the equation

(∇aHi jk)|θ=0 = 0, (4.21)

which is the expected condition at mass dimension one from
(4.1). The calculation at fourth order in θ ’s is significantly
more involved and will not be presented here

4.2 Global four dimensional N = 1 supersymmetry

We now turn to the conditions imposed by four dimen-
sional global supersymmetry and the calculation of the cor-
responding Killing supervector. First we want to explain
the notation we will use. In the breaking of SO(1, 9) to
SO(1, 3) × SO(6) the sixteen component spinors will fac-
torize into SL(2,C) × SU (4) spinors

16 → (2, 4) + (2̄, 4̄). (4.22)
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The global supersymmetry parameters are the spinors of
SL(2,C). All the spinors considered in this section will
be assumed to be a Grassman odd SL(2,C) spinor times
a Grassmann even SU (4) spinor

η̃ = ε ⊗ χ + ε̄ ⊗ χ̄ . (4.23)

Will also assume that χ is normalizable such that χχ̄ = 1.
Furthermore, when considering a different spinor η′ we will
assume that only the SL(2,C) to be different

η̃′ = ε′ ⊗ χ + ε̄′ ⊗ χ̄ . (4.24)

This will, for example, imply that

ηαγ a
αβη′β = (εγ aε′), ηαγ i

αβη′β = 0. (4.25)

When we assumed that χ is normalizable it was already
implicit that χ is a nowhere vanishing spinor of the inter-
nal manifold which means the internal manifold has SU (3)

structure. Locally we can choose a tangent space basis such
that an su(3) subalgebra of so(1, 9) annihilates η. To make
that explicitly we will choose complex tangent space indices
for the internal manifold (I, Ī ). The antisymmetric product
of two gamma matrices can be decomposed as

γ ab = (γ ab, γ aI , γ a Ī , γ I J , γ Ī J̄ , γ I J̄ , γ1). (4.26)

The spinor su(3) generators are γ I J̄ and any spinor of the
type (4.23) will satisfy

(γ I J̄ )α
β η̃α = 0. (4.27)

It is clear that we can decompose the real spinor η̃ as

η̃α = ηα + η̄α. (4.28)

We will choose the normalization of γ1 such that

γ1η = η, γ1η̄ = −η̄. (4.29)

Finally, the complex pair of spinors (η, η̄) also satisfy

γ Īη = 0, γ I η̄ = 0. (4.30)

With all these set up the Killing supervector and local
Lorentz transformation corresponding to N = 1 supersym-
metry transformations will satisfy

ξ A|θ=0 = (η̃α, 0, 0), �ab|θ=0 = (0, 0, 0), σ |θ=0 = 0.

(4.31)

Again we can go through the equations imposed by (3.6) and
(3.21) finding the higher components of (ξ A,�ab) and the
conditions imposed in the geometry. In this case the only
consequences from the θ = 0 projection coming from (3.21)
are

(∇a η̃
α)|θ=0 = 0. (4.32)

It is well known (see, e.g., [23,24]) that this means it is always
possible to choose a connection with SU (3) holonomy. How-
ever it does not yet imply Ricci flatness since the torsion is
not constrained. Furthermore, it is possible to have curva-
ture terms like Rab

I J̄ |θ=0 with δI J̄ Rab
I J̄ |θ=0 = 0. The next

order in the θ expansion is given by (3.6)

∇αξβ |θ=0 = 0, (4.33)

∇αξa |θ=0 = γ
a
αβη̃β, (4.34)

∇α�ab|θ=0 = η̃β
(
∇(αTβ)c

b
∣∣∣
θ=0

ηca + γ
c
αβHc

ab
∣∣∣
θ=0

)
,

(4.35)

∇ασ |θ=0 = 1

4
η̃βγ

a
αβ∇a�|θ=0. (4.36)

With this information we can compute the first non-trivial
supersymmetry condition from (4.1), which is the supersym-
metry transformation for the dilatino

(−ξα∇β∇α� + (∇βξa)∇a�
) ∣∣∣

θ=0
= 0. (4.37)

Using (4.19) we get

η̃α

(
γ
a
βα∇a� + 1

12
γ
abc
βα Habc

) ∣∣∣
θ=0

= 0. (4.38)

The different sign from what is usually obtained from the
supersymmetry transformation for the dilatino comes from
(2.17). At the next order we have to compute∇[β∇γ ∇δ] (ξα∇α

� + ξa∇a

�) |θ=0. This a long and tedious computation. To simplify it
we will restrict to the cases where ∇a�|θ=0 vanishes. First,
acting with ∇’s we get

∇β∇γ ∇δ

(
ξα∇α� + ξa∇a�

) |θ=0 = [−ξα∇β∇γ ∇δ∇α�

− (∇γ ∇δξ
α
)∇β∇α� + (∇β∇δξ

α
) ∇γ ∇α�

− (∇β∇γ ξα
)∇δ∇α�

+ (∇δξ
a)∇β∇γ ∇a� − (∇γ ξa

) ∇β∇δ∇a�

+ (∇βξa
)∇γ ∇δ∇a�

]
θ=0 , (4.39)

here we used (4.7). Note that the terms with an expression like
∇β∇a� go away because ∇β∇a� = [∇β,∇a]� + ∇a∇β�

vanishes at θ = 0. Use something similar with the terms with
∇β∇γ ∇a�,
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∇β∇γ ∇a�|θ=0 = ∇β

([∇γ ,∇a]� + ∇a∇γ �
) |θ=0

= ∇β

(
−Tγ a

b∇b� + ∇a∇γ �
)

|θ=0

= ([∇β,∇a]∇γ � + ∇a∇β∇γ �
) |θ=0 = ∇a∇β∇γ �|θ=0,

(4.40)

and (4.39) becomes,

∇β∇γ ∇δ

(
ξα∇α� + ξa∇a�

) |θ=0 = [−ξα∇β∇γ ∇δ∇α�

− (∇γ ∇δξ
α
) ∇β∇α� + (∇β∇δξ

α
) ∇γ ∇α�

− (∇β∇γ ξα
) ∇δ∇α�

+ (∇δξ
a) ∇a∇β∇γ � − (∇γ ξa

)∇a∇β∇δ�

+ (∇βξa
) ∇a∇γ ∇δ�

]
θ=0 . (4.41)

The first term in the right hand side of (4.41) is

− 1

32
(η̃γ abc)δ(γ

deγa)βγ Rbcde

− 1

24 × 48
(η̃γ abc)δγ

de f
βγ HabcHdef

+ 1

24 × 16
(η̃γ abc)δ(γ

e f gγad)βγ Hbc
d Hef g. (4.42)

The last line in (4.41) is

− 1

24
(η̃γ a)δγ

bcd
βγ ∇aHbcd + 1

24
(η̃γ a)γ γ

bcd
βδ ∇aHbcd

− 1

24
(η̃γ a)βγ

bcd
γ δ ∇aHbcd . (4.43)

Using (4.19) we obtain

∇α∇βξγ |θ=0 = − 3

16
(η̃γ c)α(γ ab)β

γ Habc

+ 1

96
(η̃γ abc)αδ

γ
β Habc − 1

96
(η̃γabcde)α(γ ab)β

γ Hcde.

(4.44)

Using this, the second line in (4.41) is equal to

1

8 × 16
(η̃γ a)γ (γ bcdγ e f )βδHaef Hbcd

+ 3

32
(η̃γ a)β(γ bcd)γ δHbc

eHeda

+ 1

96 × 24
(η̃γ abc)γ (γ de f )βδHabcHdef

− 1

96 × 12
(η̃γ abc)β(γ de f )γ δHabcHdef

+ 1

96 × 24
(η̃γabcde)γ (γ f ghγ ab)βδH

cdeH f gh

− 1

24 × 8
(η̃γabcde)β(γ agh)γ δH

cdeHgh
b. (4.45)

Here we have used the identity [γab, γcde] = 2
(
ηa[cγde]b

−ηb[cγde]a
)
. Using all this we obtain

6∇[β∇γ ∇δ]
(
ξα∇α� + ξa∇a�

) |θ=0

= − 1

16
(η̃γ abc){β(γade)γ δ}Rbc

de

− 1

24 × 24
(η̃γ abc){β(γ de f )γ δ}HabcHdef

− 1

64
(η̃γ abc){β(γ f gd)γ δ}Hbc

d Ha
f g

+ 1

64
(η̃γ abc){β(γ f ga)γ δ}HbceH

ef g

− 1

4
(η̃γ a){β(γ bcd)γ δ}∇aHbcd

− 3

32
(η̃γ a){β(γ bcd)γ δ}Had

eHebc

+ 3

16
(η̃γ a){β(γ bcd)γ δ}Hbc

eHeda

− 1

96 × 4
(η̃γ abc){β(γ de f )γ δ}Haef Hbcd

− 1

96 × 2
(η̃γabcde){β(γ agh)γ δ}HcdeHgh

b

− 1

24 × 4
(η̃γabcde){β(γ agh)γ δ}HcdeHgh

b = 0. (4.46)

where {αβγ } means cyclic permutation. The Eq. (4.46) can
be simplified to

(η̃γ a){β(γ bcd )γ δ}
(

4∇a Hbcd + 9

2
Had

eHebc

)

+ (η̃γ abc){β(γ de f )γ δ}

×
(

ηad Rbce f + 1

36
HabcHdef + 7

24
HadeHbcf − 1

4
ηad Hbc

gHgef

)

+ 1

4
(η̃γabcde){β(γ agh)γ δ}HcdeHgh

b = 0. (4.47)

So far the conditions found only imply there exists a global
Grassmann odd symmetry generated by (4.31). In order to
have N = 1 supersymmetry we must impose that at zero
order in θ the commutator of two Killing vectors with dif-
ferent parameters in (4.31) generate only a four dimensional
translation. From (3.29) we find

η̃α
1 η̃

β
2

(
∇(αTβ)a

b + γ
c
αβHca

b
)

|θ=0 = 0, (4.48)

η̃α
1 η̃

β
2 γ

a
αβ∇a�|θ=0 = 0. (4.49)

The second equation implies that the dilaton is constant in
the four dimensional variables. The first can be written as

η̃α
1 η̃

β
2

(
2γ

[a
αβηb]i∇i� + 1

6
γ
abcde
αβ Hcde

) ∣∣∣
θ=0

= 0. (4.50)

This equation can be combined with one obtained from (4.38)
with a spinor η̃1 multiplying it by η̃δ

2(γ
de)δ

β and then sub-
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tracting it from the same equation but with the order of
spinors reversed we get

η̃
γ
1 η̃α

2

(
2[γ de, γ a]αγ ∇a� + 1

6
{γ de, γ abc}αγ Habc

) ∣∣∣
θ=0

= 0.

(4.51)

Computing the (anti-)commutators, the above expression
together with (4.50) implies that

Habc|θ=0 = 0. (4.52)

It would also be possible to require an AdS super algebra
from (4.50) by requiring it to be proportional to a four dimen-
sional Lorentz rotation, however it is not possible to have
four dimensional AdS solutions without including a gaug-
ino condensate [14,25]. Furthermore, without considering a
warp factor in the four dimensional metric, all H flux has to
vanish. In this particular case, for spinors satisfying (4.30)
the equation (4.47) will imply that

Rabcd = RI Jcd = RĪ J̄cd = δ I J̄ RI J̄ cd = 0. (4.53)

Finally, these conditions together with (4.31) and Bianchi
identities imply the four dimensional space is flat and the
internal space is Ricci flat and Kähler.

5 Summary and prospects

In this work we analysed in detail the conditions on the
curved superspace geometry imposed by Poincaré and super-
Poincaré invariance. Although this is a very old subject in
string theory a full superspace examination of this prob-
lem has not been performed before. We used the superspace
defined by the pure spinor heterotic string which, in addition
to the usual local Lorentz symmetry, has a local scale sym-
metry that acts only on spinors. The fundamental equations
for our analysis are

ξα∇α� + ξa∇a� = 0, (5.1)

∇αξb = ξβγ
b
αβ + 1

2
ξa(γ

ab)α
β∇β�, (5.2)

where (ξ A,�ab, σ ) are local parameters in a diffeomorphism
generated by K = ξ A∇A + 1

2�abMab + σ S and � is a
superfield whose first component is the dilaton. The possible
geometries are fixed by superspace boundary conditions on
the Killing supervectors and Lorentz and scale parameters.
For example, if we want to find what type of super geometries
admit rigid supersymmetry we start with

ξ A|θ=0 = (η̃α, 0, 0), �ab|θ=0 = (0, 0, 0), σ |θ=0 = 0,

(5.3)

with the further requirement that the commutators of two
transformations of the above type close to a translation, using

ξ A
3 = −ξ B1 ξC2 TCB

A, �
ab
3 = 1

2

(
ξ A

1 ξ B2 RBA
ab − �

c[a
1 �2c

b]) ,

σ3 =
(
ξ A[1∇Aσ2]

)
. (5.4)

This procedure will constraint the components of the covari-
ant θ -expansion of the superfield � and therefore restrict pos-
sible H -flux and curvatures. The usual Kähler and Ricci flat-
ness conditions for compactifications without flux is obtained
in this way.

Knowing the covariant θ -expansion is useful to perform
a background field expansion in the sigma model and study
quantum corrections arising from consistency of the pure
spinor sigma model, corrections for the physical spectrum or
calculating amplitudes in the desired background. However,
the main motivations for this work is the extend the ideas to
study Ramond–Ramond flux backgrounds in Type II strings.
Since the RNS formalism has very limited use in these types
of backgrounds, the pure spinor formalism is more adequate
to compute α′ corrections of, for example, target space equa-
tions of motion or superpotential for moduli fields.
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