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Abstract The principles of quantum information provide
new avenues to investigate the cosmos. The uncertainty prin-
ciple is an important trait of the nonclassical world, and
it characterizes a significant lower bound (LB) that can be
used to estimate measurement results for two noncommuting
observables. Subsequently, the uncertainty principle is gen-
eralized to a new version by using the entropy and the quan-
tum memory, that is, the quantum-memory-assisted entropic
uncertainty relations (Q-M-A-E-U-Rs). Here, considering
two qubit detectors coupled to scalar fields, we explore the
effects of different cosmic parameters on Q-M-A-E-U-Rs
and reveal the influence of the Holevo quantity on the LB
of a Q-M-A-E-U-R. It is revealed that an increase in the
expansion rapidity of spacetime can enhance the entropic
uncertainty and decrease the ability to accurately predict the
measurement outcome. The volume expansion leads to the
invariance of the entropic uncertainty. An increase in the par-
ticle mass of the scalar field causes degradation in entropic
uncertainty. In addition, the influence of the Holevo quantity
on the Q-M-A-E-U-R’s LB can be ignored if one considers
(σx , σy) as two complementary observables. Therefore, one
can use the Adabi bound and Berta bound to equivalently
predict the left-hand side (LHS) of the Q-M-A-E-U-R in this
situation. However, when (σx , σz) are chosen as two non-
commuting observables, the effect of the Holevo quantity on
the LB of the uncertainty relation cannot be ignored, and
the Adabi bound can always precisely achieve the LHS and
predict entropic uncertainty.

a e-mail: hyang80@163.com (corresponding author)
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1 Introduction

The uncertainty principle (U-P) reveals an essential discrep-
ancy between classical and quantum theories, and it is a sig-
nificant backbone of the nonclassical theory [1]. Significantly
for what follows, if one considers a pair of noncommuting
observables, the U-P can be used to construct a lower bound
(LB) for accurately estimating the measurement result [1–6].
Kennard [7] and Robertson [8] ascertained the U-P in terms
of the standard deviation. However, the LB proposed by Ken-
nard and Robertson is state dependent and is not an optimal
prediction of the result. There have been numerous efforts
to improve this principle [9–16]. Deutsch [17] obtained the
U-P via the Shannon entropy, namely, the entropic uncer-
tainty relations (E-U-Rs). Kraus reformed the uncertainty
relation of Deutsch [18]. Subsequently, Maassen and Uffink
verified the results of Kraus [19]. Of particular note is that a
novel E-U-R of von Neumann entropy has been extensively
implemented in quantum information science. Considering a
bipartite system that contains particle A and particle B, Berta
et al. [20] obtained a quantum-memory-assisted E-U-R (Q-
M-A-E-U-R), and particle B was treated as quantum memory
in their scenario. Subsequent works have attempted to ame-
liorate the Q-M-A-E-U-R [21–33]. To date, there has been
valuable progress concerning experimental observations of
Q-M-A-E-U-Rs [34–39]. Recently, explorations of entropic
uncertainty in various systems have been widely carried out,
including neutrino oscillations [40,41], the Unruh–Dewitt
detector [42], the Ising model [43], and two two-level atoms
[44].

In particular, concepts of quantum information have been
used to cognize the nonclassical traits of spacetime, such
as the nonclassical traits of metric expansion [45]. In an
expanding spacetime, Parker et al. [46,47] revealed particle
generation by virtue of quantum entanglement. The creation
of entanglement between quantum field modes was investi-
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gated by Ball et al. [48]. Considering a Robertson–Walker
universe, Fuentes et al. [49] and Moradi et al. [50] explored
the entanglement of Dirac modes. Steeg et al. [51] demon-
strated that entanglement in the field can be used to capture
spacetime curvature. In a spacetime with time dependence,
Lin et al. [52] explored the foundational issues regarding the
entanglement of generated particles. In an expanding space-
time, Li et al. [53] examined the purity, mutual information,
and concurrence of a qubit detector. Nevertheless, there are
still few investigations regarding Q-M-A-E-U-Rs in various
qubit detector models. Examples include two-qubit detec-
tors coupled to scalar fields in an expanding spacetime [53],
harmonic-oscillator particle detectors in relativistic quantum
fields [54], an arbitrary number of detectors interacting with
a quantum field moving in spacetime [55], a realistic detector
model in which the detector has a finite size conveniently tai-
lored by a spatial profile [56], and particle detectors subjected
to the zero mode of a quantum field [57]. Relevant explo-
rations can shed new light on expanding spacetime from the
view of quantum information.

Enlighted by this, we ascertain the Q-M-A-E-U-R of two-
qubit detectors coupled to scalar fields in an expanding space-
time and investigate the influences of different cosmic param-
eters on the measured uncertainty. In addition, we reveal the
effect of the Holevo quantity on the Q-M-A-E-U-R’s LB.
Our results indicate that the enhancement of the expansion
rapidity of spacetime gives rise to increases in the entropic
uncertainty and LB. The entropic uncertainty and LB are very
sensitive to the volume expansion if the cosmic volume is
close to maximum, and the expansion of this volume reduces
the ability to accurately estimate the measurement result. The
enhancement of the mass of a scalar field particle is responsi-
ble for degradation of the entropic uncertainty, which leads to
more precise predictions of the measurement outcomes. The
influence of the Holevo quantity on the LB of the uncertainty
can be almost ignored if one considers (σx , σy) as two com-
plementary observables. Notably, when (σx , σz) are chosen
as the two possible measurements, the effect of the Holevo
quantity on the LB of the uncertainty should be considered
because the Holevo quantity can tighten the LB and allow
the entropic uncertainty to be precisely estimated in this sit-
uation.

The problem setting of two-qubit detectors coupled to
scalar fields is introduced in Sect. 2. For two-qubit detectors
coupled to scalar fields in an expanding spacetime, the Q-M-
A-E-U-R of the system is ascertained in Sect. 3. The influ-
ences of different cosmic parameters and the Holevo quantity
on the Q-M-A-E-U-R and LB are explored in Sects. 4 and 5,
respectively. Finally, conclusions are drawn.

2 Two-qubit detectors coupled to scalar fields

Considering a spacetime that is expanding in accordance with
the Robertson–Walker metric, the line element is

ds2 = R2(η)(dη2 − dx2), (1)

where η is the conformal time, ranging from −∞ to +∞,
and R2(η) is the conformal scale factor [48,58], namely,

R2(η) = 1 + ε(1 + tanh(ση)). (2)

Here, ε and σ are positive real parameters, and these param-
eters control the total volume and rapidity , respectively, of
the spacetime expansion. R2(η) = 1 (η → −∞) is the flat
spacetime of the distant past, and R2(η) = 1+2ε (η → +∞)
is the flat spacetime of the far future [48,58].

We consider the Klein–Gordon equation (� +m2)� = 0
and a massively real scalar field �(x, η) that satisfies the
equation �� = ∂μ(

√−ggμv∂v�)/
√−g in this metric.

Based on the translational invariance of (� + m2)� = 0,
one can obtain [58,59]

�(x, η) = (2πωk)
−1/2eikxξk(η), (3)

which satisfies

∂2
ηξk(η) + (k2 + R2(η)m2)ξk(η) = 0. (4)

μin
k and μout

k are the solutions of the equation for η → −∞
and η → +∞, respectively. With the introduction of the
Bogoliubov coefficients αk and βk , the relation between μin

k
and μout

k is [58,59]

μin
k (x, η) = αkμ

out
k (x, η) + βkμ

out∗
−k (x, η). (5)

Here, |αk |2 − |βk |2 = 1.

αk =
(

ωout

ωin

) 1
2 �

(
1 − iωin

σ

)
�

(
− iωout

σ

)

�
(
− iω+

σ

)
�

(
1 − iω+

σ

) , (6)

βk =
(

ωout

ωin

) 1
2 �

(
1 − iωin

σ

)
�

(
iωout

σ

)

�
(
iω−
σ

)
�

(
1 + iω−

σ

) . (7)

ωin = (k2 + m2)1/2, ωout = [k2 + m2(1 + 2ε)]1/2, and
ω± = (ωout ± ωin)/2. To characterize the mixed level
between k and −k (the “in” modes), one can define �k , i.e.,

�k =
∣∣∣∣βk

αk

∣∣∣∣
2

= sinh2(πω−/σ)

sinh2(πω+/σ)
. (8)

One can use |βk |2 to indicate the average number of particles
created in “out” modes k, viz. [47]
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|βk |2 = 1

�−1
k − 1

. (9)

Consequently, the average number approaches infinity (zero)
for �k → 1 (�k → 0). For asymptotic regions, the parti-
cle content can be characterized by the corresponding cre-
ation âink = α∗

k â
out
k −β∗

k â
out†
−k and annihilation operators [60]

âin†
k = αk â

out†
k − βk âout−k .

For k and −k, the “in” vacuum is [53]

|0〉ink |0〉in−k =
∑
n

An,k |n〉outk |n〉out−k (10)

with

An,k =
(

β∗
k

α∗
k

)n√
1 − �k, (11)

where n is the particle content. Subsequently, each pair
of modes separates in opposite directions [47]. In light of
Eq. (10), the state for mode k can be described as [53]

ρout
k = Tr−k[|0〉ink |0〉in−k

in
−k 〈0| ink 〈0|]

= (1 − �k)
∑
n

�n
k |n〉k 〈n|, (12)

where |n〉k 〈n| is shorthand for |n〉outk
out
k 〈n|.

In the far future of the expanding spacetime expressed by
Eq. (2), for the Unruh–Wald qubit detector model [61] locally
coupled to the scalar field, the Hamiltonian is given by [53]

Ĥ = Ĥ� + Ĥq + ĤI . (13)

The Klein–Gordon Hamiltonian of the scalar field is rep-
resented by Ĥ�, and the Hamiltonian of the qubit detector
is denoted by Ĥq = �	̂†	̂. � is the energy level difference
between |0〉 and |1〉, and 	̂† and 	̂ are creation and annihi-
lation operators, respectively. ĤI (t) stands for the following
interaction:

ĤI (t) = ς(t)
∫
∑

A
√−gdx, (14)

A = �(x, t)[ψ(x)	̂ + ψ∗(x)	̂†], where ψ(x) represents a
smooth function that is nonzero within a small volume around
the qubit. ς(t) is the coupling constant corresponding to the
qubit-field interrelation.

∑
is the spacelike Cauchy surface.

The unitary transformation is [61]

U ≈ 1 − i	̂†â(�∗) + i	̂â†(�∗). (15)

�(x) = −2i
∫
B × C

√−g′d2x ′, B = GR(x; x ′) −
GA(x; x ′), C = ς(t ′)ei�t ′ψ∗(x ′), â(�∗)|n〉k = √

nμk

|n − 1〉k , â†(�∗)|n〉k = √
n + 1μ∗

k |n + 1〉k , and μk =〈
�∗
q , χk

〉
[61].

In the single-mode approximation, one can consider only
the coupling between the detector qubit and the field mode k0

with energy �. The interaction between k0 and the detector
qubit is [53]

|n〉 ⊗ |0〉 → |n〉 ⊗ |0〉 − i
√
nμ |n − 1〉 ⊗ |1〉 ,

|n〉 ⊗ |1〉 → |n〉 ⊗ |1〉 + i
√
n + 1μ∗ |n + 1〉 ⊗ |0〉 .

(16)

For a particle created in this expanding spacetime, its mini-
mum energy is bounded by m

√
1 + 2ε. ωout ≥ m

√
1 + 2ε,

and ωout = √
k2 + m2(1 + 2ε). To ensure that the field

modes can influence the qubit, � ≥ m
√

1 + 2ε should hold.
Hence, the volume of spacetime expansion is ε ≤ εmax =
(�2/m2 − 1)/2 [53].

Here, we consider a two-entangled-qubit detector, where
the surrounding environment is the particles created in the
expanding spacetime. Let us investigate the influence of
spacetime expansion on the two-qubit detector. The initially
entangled state is |ψ〉 = cos θ |01〉 + sin θ |10〉 . Each qubit
can interact with a scalar field and cannot interact with the
scalar field around the other qubit [53]. For the two-qubit
detector, the state is [53]

ρAB =

⎛
⎜⎜⎝

ρ11 0 0 0
0 ρ22 ρ23 0
0 ρ32 ρ33 0
0 0 0 ρ44

⎞
⎟⎟⎠ (17)

with ρ11 = cos2θ℘4 + sin2θ℘3, ρ22 = cos2θ℘0 + sin2θ℘5,
ρ33 = cos2θ℘6 + sin2θ℘0, ρ44 = cos2θ℘1 + sin2θ℘2, and
ρ23 = ρ32 = cos θ sin θ℘0.

℘0 = D
∑
n,m

�n
A�m

B

	nm
, (18)

℘1 = D|μA|2
∑
n,m

n�n
A�m

B

	nm
, (19)

℘2 = D|μB |2
∑
n,m

m�n
A�m

B

	nm
, (20)

℘3 = D|μA|2
∑
n,m

(n + 1)�n
A�m

B

	nm
, (21)

℘4 = D|μB |2
∑
n,m

(m + 1)�n
A�m

B

	nm
, (22)

℘5 = D|μA|2|μB |2
∑
n,m

m(n + 1)�n
A�m

B

	nm
, (23)

℘6 = D|μA|2|μB |2
∑
n,m

n(m + 1)�n
A�m

B

	nm
, (24)

D = (1 − �A)(1 − �B), (25)

	nm = Enmsin2θ + Fnmcos2θ, (26)

Enm = 1 + m|μB |2
+(n + 1)|μA|2 + m(n + 1)|μA|2|μB |2, (27)

Fnm = 1 + n|μA|2 + (m + 1)|μB |2
+n(m + 1)|μA|2|μB |2, (28)
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and ℘0 + cos2θ(℘1 +℘4 +℘6)+ sin2θ(℘2 +℘3 +℘5) = 1.

3 Q-M-A-E-U-R of the system

One can characterize the Q-M-A-E-U-R by means of a guess-
ing game. Bob sends particle A of an entangled state to Alice
and keeps particle B to realize quantum storage. After Alice
receives particle A, she implements one of two possible mea-
surements on particle A and informs Bob of the measurement
selection (X or Z). Based on the selected measurement, Bob
can predict the measurement results within a minimal uncer-
tainty limited by the LB of the Q-M-A-E-U-R. The Q-M-A-
E-U-R is [20]

S(X |B) + S(Z |B) ≥ log2
1

c
+ S(A|B), (29)

where S(Q|B)=S(ρQB) − S(ρB) (ρB = TrA(ρQB)) rep-
resents the conditional von Neumann entropy of ρQB =∑

i
∏A

i ρAB
∏A

i (
∏A

i = |ϕi 〉 〈ϕi |). The eigenstates of
the observable Q are denoted by |ϕi 〉. The |φx 〉 (|ψz〉)
are the eigenstates of the observable X (Z), and c =
maxx,z |〈φx |ψz〉|2. S(ρ) = −∑

i λi log2λi , where the λi are
the eigenvalues of ρ. S(A|B) = S(ρAB) − S(ρB).

One can regard log2(1/c) + S(A|B) (i.e., the LB of the
entropic uncertainty) as the Berta bound and regard the
entropic uncertainty (namely, the left-hand side of Eq. (29)
as the LHS. Accordingly, by using the mutual information,
Adabi et al. proposed an optimized LB for the Q-M-A-E-U-
R, viz. [31]

S (X |B) + S (Z |B) ≥ log2
1

c
+ S (A|B) + max {0, δ} , (30)

with δ = I (ρAB) − [I (ρXB) + I (ρZ B)]. Here, I (ρAB)

=S(ρA) + S(ρB) − S(ρAB) is the mutual information and
indicates the total correlation. I (ρQB)=S(ρB)−∑

i pi S(ρB
i )

is the Holevo quantity, and it denotes the upper limit on the
information that can be acquired by Bob. pi= Tr(

∏A
i ρAB∏A

i ) is the measurement probability corresponding to the
measurement outcome, and ρB

i = TrA(
∏A

i ρAB
∏A

i )/Tr

(
∏A

i ρAB
∏A

i ) is Bob’s state. One can regard log2(1/c) +
S (A|B) + max {0, δ} of Eq. (30) as the Adabi bound.

Here, we use the normalized eigenstates
∣∣ϕi j 〉 of the

σi (i = x, y, z) to construct the measurement operators∏A
i j = ∣∣ϕi j 〉 〈ϕi j ∣∣, and implement the operators on par-

ticle A of ρAB . The postmeasurement states are ρσi B =∑
j
∏A

i j ρAB
∏A

i j , namely,

ρσx B = 1
2 {[(℘4 + ℘6)cos2θ

+(℘0 + ℘3)sin2θ ] |00〉 〈00| + |10〉 〈10|
+[(℘0 + ℘1) cos θ2

+(℘2 + ℘5)sin2θ ](|01〉 〈01| + |11〉 〈11|)
+℘0 cos θ sin θ(|00〉 〈11| + |01〉 〈10|
+ |10〉 〈01| + |11〉 〈00|)},

(31)

ρσy B = 1
2 {[(℘4 + ℘6)cos2θ

+(℘0 + ℘3)sin2θ ] |00〉 〈00| + |10〉 〈10|
+[(℘0 + ℘1) cos θ2

+(℘2 + ℘5)sin2θ ](|01〉 〈01| + |11〉 〈11|)
+℘0 cos θ sin θ(− |00〉 〈11| + |01〉 〈10|
+ |10〉 〈01| − |11〉 〈00|)},

(32)

ρσz B = (℘4cos2θ + ℘3sin2θ) |00〉 〈00|
+(℘0cos2θ + ℘5sin2θ) |01〉 〈01|
+(℘6cos2θ + ℘0sin2θ) |10〉 〈10|
+(℘1cos2θ + ℘2sin2θ) |11〉 〈11| .

(33)

The eigenvalues of these postmeasurement states can be cal-
culated as shown below:

λx1 = λx2 = λy1 = λy2 = 1

4

{
1 − √

�
}

, (34)

λx3 = λx4 = λy3 = λy4 = 1

4

{
1 + √

�
}

, (35)

λz1 = ℘4cos2θ + ℘3sin2θ, λz2 = ℘0cos2θ + ℘5sin2θ,

λz3 = ℘6cos2θ + ℘0sin2θ, λz4 = ℘1cos2θ + ℘2sin2θ,

(36)

and

� = ℘0
2 + 2℘0 cos 2θ [(℘1 − ℘4 − ℘6)cos2θ

+(℘2 − ℘3 + ℘5)sin2θ ]
+[(℘1 − ℘4 − ℘6)cos2θ

+(℘2 − ℘3 + ℘5)sin2θ ]2. (37)

Thus, by considering two-entangled-qubit detectors coupled
to scalar fields in an expanding spacetime, the Berta bound,
Adabi bound and entropic uncertainty can each be investi-
gated.

4 Ascertaining the influences of the Holevo quantity
and various cosmic parameters on the Q-M-A-E-U-R
considering (σx, σ y)

Here, we consider (σx , σy) as two complementary observ-
ables and reveal the influences of various cosmic parameters
on the Q-M-A-E-U-R. In addition, we explore the effect of
the Holevo quantity on the LB of the Q-M-A-E-U-R. Figure 1
depicts the dependence of the LHS, Adabi bound, and Berta
bound on the expansion rapidity σ . As revealed in Fig. 1a, the
LHS of the Q-M-A-E-U-R obviously increases with increas-
ing rapidity and eventually reaches a fixed value as the rapid-
ity continues to increase. This finding indicates that the LHS
of the Q-M-A-E-U-R is very sensitive to the rapidity σ when
the rapidity is low. An increase in rapidity gives rise to dissi-
pation of information and thus strengthens the entropic uncer-
tainty. In other words, an increase in σ decreases the ability
to accurately predict the measurement outcome. The traits of
the Adabi bound and Berta bound are consistent with those
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(a)

(b)

Fig. 1 The LHS, Adabi bound, and Berta bound with respect to the
expansion rapidity σ when considering two complementary observables
(σx , σy). ε = 19999.5, � = 2, μA = μB = 0.1, and m = 0.01

of the LHS. It should be emphasized that as seen in Fig. 1a,
the Adabi bound overlaps with the Berta bound in the case of
θ = 15o (initially nonmaximal entanglement state), and the
two bounds cannot reach the LHS. These results reveal that
the effect of the Holevo quantity on the LB of the Q-M-A-E-
U-R can be ignored, and one can use the Adabi bound and the
Berta bound to equivalently predict the LHS of the Q-M-A-
E-U-R and the measurement outcomes. If one considers the
initial state parameter θ = 45o (initially maximal entangle-
ment state), as shown in Fig. 1b, the results are different from
those in Fig. 1a. To be clearer, the LHS is close to zero if σ is
very low. It can be conjectured that a low rapidity of expan-
sion is conducive to obtaining a smaller measurement uncer-
tainty and achieving a precise prediction of the measurement
outcome. In addition, the Berta bound almost overlaps with
the Adabi bound in the situation depicted in Fig. 1b. Both
bounds, especially the Adabi bound, can always reach the
LHS. The Holevo quantity does not need to be considered in
this scenario. Therefore, the Berta bound and Adabi bound
can both predict the entropic uncertainty very well.

Next, we direct our attention to ascertaining the effects
of the Holevo quantity and volume expansion on the Q-M-
A-E-U-R. Figure 2 illustrates the LHS, Adabi bound, and
Berta bound with respect to the volume expansion ε. One
can discover from Fig. 2a that the LHS is invariant with
different values of ε, meaning that the volume expansion
does not influence the precision of predicting the measure-
ment outcome. However, the invariant characteristic of the
LHS is broken as ε → εmax = 19999.5, where the LHS
greatly increases with increasing volume. That is, a volume
expansion of ε → εmax = 19999.5 inevitably gives rise to

(a)

(b)

Fig. 2 The LHS, Adabi bound, and Berta bound with respect to the
volume expansion ε when considering two complementary observables
(σx , σy). σ = 2, � = 2, μA = μB = 0.1, and m = 0.01

the disappearance of the ability to accurately predict Alice’s
measurement result. The characteristics of the Adabi bound
and Berta bound are the same as those of the LHS, but the
Adabi bound is a tighter bound. Of particular note is that the
Berta bound overlaps with the Adabi bound when ε is close
to εmax = 19999.5, and both bounds can almost reach the
LHS when ε → εmax = 19999.5. For an initial state with
θ = 45o, as shown in Fig. 2b, the LHS is almost equal to zero
before ε expands to the maximum, and thus, Alice’s results
can be precisely predicted by Bob. Additionally, the Adabi
bound is almost consistent with the Berta bound in Fig. 2b,
and the influence of the Holevo quantity can be neglected in
this situation. In general, both bounds, especially the Adabi
bound, can always reach the LHS and predict the entropic
uncertainty in the case of an initially maximal entanglement
state.

For two complementary observables (σx , σy), to ascertain
the influences of the cosmic parameters and the Holevo quan-
tity on the entropic uncertainty, we present the LHS, Adabi
bound, and Berta bound with respect to the particle mass
m of the scalar field in Fig. 3. Our results in Fig. 3a reveal
that the LHS, Adabi bound, and Berta bound degenerate with
increasing m, indicating that a larger mass of the scalar field
particle can enable more precise predictions of measurement
outcomes. The Adabi bound and Berta bound approach the
LHS at m =0; subsequently, the discrepancy between the
Adabi bound (or Berta bound) and the LHS increases as the
mass increases. In addition, the Adabi bound is tighter than
the Berta bound when m is large, that is, the influence of the
Holevo quantity is notable at large m. In Fig. 3b, both the
Adabi bound and the Berta bound overlap with the LHS and
can accurately predict the measurement outcome. The results
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(a)

(b)

Fig. 3 The LHS, Adabi bound, and Berta bound with respect to the
particle massm of the scalar field when considering two complementary
observables (σx , σy). ε = εmax = (4/m2 − 1)/2, σ = 2, � = 2, and
μA = μB = 0.1

are similar to those in Figs. 1b and 2b. Both bounds are tight
bounds for the entropic uncertainty, and the Holevo quantity
need not be considered in the case of θ = 45o.

5 Exploring the influences of the Holevo quantity and
various cosmic parameters on the Q-M-A-E-U-R
considering (σx, σz)

It deserves to be emphasized that if we choose (σx , σz) as
the two possible measurements, the results are obviously dif-
ferent from those obtained when considering (σx , σy) as two
complementary observables. For clarity, we present the LHS,
Adabi bound, and Berta bound with respect to the rapidity
σ for the case of two complementary observables (σx , σz)

in Fig. 4. One can discover from Fig. 4a (θ = 15o) that
the Adabi bound can reach the LHS of the Q-M-A-E-U-R
and precisely predict the entropic uncertainty for various σ .
This result is different from that obtained when consider-
ing (σx , σy) as the two possible measurements in Fig. 1a.
In contrast, the Berta bound can only reach the LHS at low
σ . The effect of the Holevo quantity is responsible for the
fact that the Adabi bound is a tighter bound. Additionally, it
is found that the Adabi bound can always overlap with the
LHS in the case of an initially maximal entanglement state, as
shown in Fig. 4b. In comparison, the difference between the
Berta bound and the LHS (or Adabi bound) is considerable at
high σ . Hence, whether |ψ〉 is maximally entangled or non-
maximally entangled, the Adabi bound can always overlap
with the LHS of the Q-M-A-E-U-R and precisely predict the
entropic uncertainty at different expansion rapidities. That is,

(a)

(b)

Fig. 4 The LHS, Adabi bound, and Berta bound with respect to the
expansion rapidity σ when considering two complementary observables
(σx , σz). ε = 19999.5, � = 2, μA = μB = 0.1, and m = 0.01

(a)

(b)

Fig. 5 The LHS, Adabi bound, and Berta bound with respect to the
volume expansion ε when considering two complementary observables
(σx , σz). σ = 2, � = 2, μA = μB = 0.1, and m = 0.01

the Adabi bound does not rely on the selection of |ψ〉 when
(σx , σz) are considered as two complementary observables.
The Berta bound is only effective in predicting the entropic
uncertainty if the expansion rapidity is low, and the Holevo
quantity cannot be ignored in the case of (σx , σz).

To further explore the influence of the Holevo quantity on
the bound of the Q-M-A-E-U-R under different levels of the
volume expansion, Figure 5 displays the LHS, Adabi bound,
and Berta bound with respect to ε when considering two
complementary observables (σx , σz). Our results in Fig. 5
reveal that the Adabi bound can perfectly overlap with the
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(a)

(b)

Fig. 6 The LHS, Adabi bound, and Berta bound with respect to the
particle massm of the scalar field when considering two complementary
observables (σx , σz). ε = εmax = (4/m2 − 1)/2, σ = 2, � = 2, and
μA = μB = 0.1

LHS for various initial states (the degree of overlap between
the Adabi bound and the LHS is not dependent on the initial
state), including an initially nonmaximal entanglement state
(in Fig. 5a) and an initially maximal entanglement state (in
Fig. 5b). This enables the Adabi bound to accurately predict
the entropic uncertainty. The Berta bound can only reach the
LHS when the expansion ε is at its maximum. Consequently,
the Holevo quantity needs to be considered in the process of
the volume expansion, except for ε = εmax = 19999.5.

Finally, we probe the effect of the Holevo quantity on
the Q-M-A-E-U-R’s LB under different masses of the scalar
field particle when considering two complementary observ-
ables (σx , σz), as exhibited in Fig. 6. One can see that the
Berta bound overlaps with the LHS at m=0. At higher m,
however, the Berta bound is ineffective in precisely predict-
ing the LHS of the Q-M-A-E-U-R if we choose the state
parameter θ = 15o or θ = 45o. The discrepancy between
the Berta bound and the LHS initially strengthens and then
decreases as m increases. In contrast, under the influence of
the Holevo quantity, the Adabi bound can always reach the
LHS in the cases of θ = 15o and θ = 45o. Thus, the Adabi
bound can precisely predict the entropic uncertainty when
(σx , σz) are selected as the two possible measurements, and
it is a tighter bound on the Q-M-A-E-U-R for a two-qubit
detector coupled to a scalar field in an expanding spacetime.

6 Conclusions

We examine the Q-M-A-E-U-R of a model in which a two-
qubit detector is coupled to a scalar field in an expanding

spacetime. We ascertain the influences of the cosmic expan-
sion rapidity, the cosmic volume expansion, and the mass of
the scalar field particle on the measured uncertainty. Addi-
tionally, the influence of the Holevo quantity on the LB of
the Q-M-A-E-U-R is explored. The results indicate that an
enhancement in expansion rapidity results in an increase in
entropic uncertainty. Low expansion rapidity is favourable
for obtaining little uncertainty and precise prediction of
the measurement outcome. The entropic uncertainty is not
greatly susceptible to volume expansion unless the volume
expansion is close to maximum. However, ε → εmax leads
to disappearance of the ability to accurately predict the mea-
surement result. The entropic uncertainty degrades with an
increase in the particle mass of the scalar field. A larger mass
can enable more precise prediction of the measurement out-
come. If one considers (σx , σy) as the two possible measure-
ments, the influence of the Holevo quantity on the LB of the
Q-M-A-E-U-R is relevant to the choice of the initial state.
The Adabi bound is tighter than the Berta bound in the case
of a state parameter of θ = 15o. However, the two bounds are
almost equivalent and can perfectly predict the LHS of the Q-
M-A-E-U-R in the case of θ = 45o. On the other hand, if one
chooses (σx , σz) as the two complementary observables, then
the effect of the Holevo quantity on the LB of the Q-M-A-E-
U-R does not depend on the choice of the initial state. In the
cases of both θ = 15o and θ = 45o, the Adabi bound always
overlaps with the LHS and can elegantly predict the entropic
uncertainty of a two-qubit detector coupled to a scalar field
in an expanding spacetime. However, the Berta bound can-
not precisely predict the LHS. For this reason, the Holevo
quantity cannot be ignored for different initial states when
(σx , σz) are chosen as two noncommuting observables.
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