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Abstract In this article, we considered the strong field
approximation of nonlinear electrodynamics black hole and
constructed its rotating counterpart by applying the modified
Newman–Janis algorithm. The corresponding metric func-
tion in the strong field limit of the static black hole is iden-
tified in order to study the radius of photon sphere. How-
ever, the metric function for the rotating counterpart in the
strong field limit is considered in order to study the horizon
radius w.r.t spin parameter. We considered the Hamilton–
Jacobi method to derive the geodesic equations for photon
and constructed an orthonormal tetrad for deriving the equa-
tions for celestial coordinates in the observer’s sky. Shadows,
distortions and energy emission rates are investigated and the
results are compared for different values of nonlinear elec-
trodynamics parameter, charge and spin. It is found that the
presence of the nonlinear electrodynamics parameter affects
the shape and size of the shadows and thus the distortion in
the case of rotation. It is also found that the nonlinearity of
electrodynamics diminishes the flatness in the shadow due
to the effect of spin and other parameters.

1 Introduction

General Relativity (GR) predicts regions of ultra strong grav-
ity known as black holes (BHs) having immense curvature.
The photons will deviate from its straight path while mov-
ing in the gravitational field of the BHs and other massive
objects. Such concept was verified by Arthur Eddington and
his teammates in 1919 [1] that ultimately verified GR. It is
called gravitational lensing which is a general term assigned
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to the study of effects that are caused by the deflection of
photons and an outstanding progress has been made in the
field over the years [2–9].

The photons moving close enough to the BH will get
trapped, otherwise they will scatter away. This trapping
region is called photon sphere in which photons orbit the
BH in circular paths. The scattered photons present in the
unstable circular orbits will reach our eyes giving a glowing
image but falling in photons will be lost, giving us a dark 2D
image called shadow. The falling in trajectory of the photons
in the outermost photon region and the scattering trajectory in
the innermost region will define the boundary of the shadow
[10]. Usually the shape of the static BH shadows is differ-
ent from the rotating ones due to the fact that the photons
may move in any direction around a BH in the photon region
of certain width. Without loosing generality, photons in the
both extreme orbits can be considered moving in opposite
directions. Thus, one side of the shadow appears flattened
as compared to the other. Shadow of Kerr BH is one such
example [10,11].

The shadow study remains one of the foremost topics
related to the BHs because whenever a BH solution is discov-
ered the first arising question is that what would likely be its
physical appearance? Some earlier studies related to visual
appearance of BHs are [12–17]. In these studies, the visual
appearance of the BH was termed with various names such as
optical appearance, escape cone, cross section, cone of grav-
itational capture of radiation etc. Over the years, some math-
ematical techniques [18–20] were developed to study the
shadows analytically. The authors of [18,19] investigated the
shadows by considering the observer at a position (r0, ϑ0).
Using the orthonormal tetrad at this position, the authors have
constructed the mathematical framework for celestial coordi-
nates in the observer’s sky. This method is widely applicable
for both distant and nearer observers. Bardeen [20] studied
the geodesics for Kerr BH by considering two impact param-
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eters. He developed his own method for studying the optical
properties in the vicinity of a BH. However, this method is
applicable only for a distant observer. Despite its limitation,
Bardeen’s method is the most commonly used procedure for
the shadow study, see [21–30]. Atamurotov et al. [25] investi-
gated the shadows of Kerr–Newman BH immersed in perfect
fluid dark matter by considering the Bardeen’s method. They
found that the shadow is flattened by increasing the value of
spin and the size of the shadow decreases with increase in
the values of charge and perfect fluid dark matter.

By the discovery of more general BH solutions, it became
difficult to deal with the mathematical structure manually. As
a result, various software tools were used in order to suggest
the possible appearance of such complicated BH solutions.
Some notable studies are [31–43]. Hioki and Maeda [32] cal-
culated the shadows and the related observables by the use of
software, especially the contour plots therein. The BH solu-
tions formulated in various theories of gravity depend upon
different BH parameters. These parameters have different
sensitivity level. The shadows are highly influenced by more
sensitive BH parameters. As said above, spin parameter flat-
tens the shadow on one side for an equatorial observer and the
presence of cosmological constant, perfect fluid dark matter,
quintessence etc. have a significant impact on the size and
shape of the shadows, for more details see [44–49]. Haroon et
al. [50] studied the effects of perfect fluid dark matter (α) and
cosmological constant (�) on the shadows of rotating BH.
They found that for negatively increasing α, the shadow size
increases while the shadow shrinks for positively increasing
α. Moreover, the distortion due to high spin value diminishes
for α � 0.8. The shadow size increases for anti-de Sitter case
and decreases for de Sitter case.

In Maxwell’s electrodynamics, there exist a singularity
at the position of the point charge and has an infinite self-
energy. To overcome this problem, Born and Infeld [51]
developed a nonlinear electromagnetic field. Motivated by
this, the coupling of GR and Born–Infeld field has been stud-
ied in order to deal with the singularity problem of the BHs
along with some other properties, see [52–55]. Demianski
[52] derived an asymptotically flat solution which becomes
regular spacetime when the internal mass is considered zero.
Cai et al. [54] studied the BH solution and its thermody-
namic properties in Born–Infeld theory. The coupling of GR
and some other nonlinear electrodynamics models have also
been studied providing us with some useful results in BH
physics [56–60]. Javed et al. [60] considered a magnetized
nonlinear electrodynamics BH and studied the effect of non-
linear electrodynamics parameter β on the deflection angle
in the vicinity of BH. Kruglov [61] constructed a BH solu-
tion with nonlinear electromagnetic field. This BH solution
is asymptotically Reissner–Nordström and the electric field
has finite value at the origin which does not possess singu-
larity at r = 0. Recently, Uniyal et al. [62] considered the

same solution developed by Kruglov and studied the photon
sphere and shadow in the weak and strong field limits.

In this paper, we consider the nonlinear electrodynam-
ics BH solution as in Refs. [61,62] and apply the modified
Newman–Janis algorithm [63,64] to the effective metric in
the strong field approximation of the BH. We work for the
horizons, shadows and related physical observables to exam-
ine the effect of nonlinearity of electromagnetic field. The
paper is presented as: in Sect. 2, the nonlinear electrodynam-
ics BH solution is presented. The approximated metric in the
strong field limit is considered for further analysis and the
radius of photon sphere is studied for the non-rotating case.
In Sect. 3, rotating metric is constructed and the correspond-
ing horizon radii are studied. In Sect. 4, the governing equa-
tions for shadows are developed using the Hamilton–Jacobi
formalism and the method of orthonormal tetrads. The shad-
ows, distortions and energy emission rates are presented for
the observer at different locations. We summarize the results
in the last section. Note that the units G = c = 1 have been
used.

2 4D nonlinear electrodynamics black hole

We start by the review of the non-rotating nonlinear elec-
trodynamics BH. The gravitational action containing the
Lagrangian of nonlinear electromagnetic field [61,62] is
given as

SG =
∫

d4x
√−g

[
R

2κ2 + Lem

]
, (1)

where g = det (gμν), R is Ricci scalar, κ−1 is the reduced
Planck mass and Lem is the nonlinear electromagnetic
Lagrangian [65] given as

Lem = − F
2βF + 1

, (2)

such that β is the corresponding parameter of nonlinear elec-
tromagnetic field with the dimension of (length)4 and is

related to the upper bound of the electric field, F = FμνFμν

4
and Fμν is the Maxwell tensor. The Lagrangian (2) corre-
sponds to classical linear electrodynamics when β = 0.
The nonlinearity of electrodynamics in various forms, cou-
pled with gravity can be useful in achieving some of the
unanswered questions. Furthermore, for the possible quan-
tum gravity corrections to Maxwell’s electrodynamics, the
parameter β is introduced as in [65]. The function (2) is for-
mulated in such a way that the correspondence principal is
not broken and the model works efficiently with usual dielec-
tric permittivity ε = 1 and magnetic permeability μ = 1.
Hence, the action (1) in [61,62] is the possible coupling of
the function (2) with GR. In this model, the energy momen-
tum tensor has non-zero trace and at the origin, the electric
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field has a finite value without singularities, for more details,
see [61,65]. For a 4D spacetime in spherical symmetry, we
have

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dϑ2 + sin2 ϑdϕ2), (3)

the solution turns out to be [61,62]

f (r) = 1 − 2M

r
+ Q2

r2 − C2κ2

2r2

+C2κ2

30r2 (5ζ 3 − 22ζ 2 + 32ζ ), (4)

where M , Q andC are mass, charge and integration constant,
respectively. Here,

ζ = 12
√

3
√

βr2 − βCλ3/4

12βCλ1/4 , (5)

whereas

λ = 6 3
√

6r2(
3
√

2β2/3 3
√
Cγ 2/3 − 8 3

√
3βC)

β4/3C5/3 3
√

γ
, (6)

γ = √
3
√

256βC2 + 27r4 + 9r2. (7)

Keeping in view the complexity of ζ , the simple forms
of metric function f (r) in strong and weak field limits are
obtained by applying series expansion for r → 0 and r → ∞
respectively, such that

f (r)s = 1 − 2M

r
+ Q2

r2 − C2κ2

2r2 + 16C3/2κ2

15β1/4r
, (8)

f (r)w = 1 − 2M

r
+ Q2

r2 − βC4κ2

10r6 . (9)

Since, we aim to study the horizon, photon sphere and
shadow, so it is impossible to proceed with the metric func-
tion (4) due to its complication and the required mathematical
structure. Also, the horizons, photon spheres and shadows are
strong field phenomena that exist only in the vicinity of the
BHs. Thus, to avoid the complexity of the metric function (4),
we will consider the metric function (8) explicitly in further
analysis, treating the metric as an effective metric. This effec-
tive metric, when stretched out again in the entire universe,
becomes asymptotically flat as r → ∞. It will raise some
extra sources and will not satisfy the field equations exactly
the same way as the metric (4) because both of these metrics
are not exactly equal. Due to this reason, their properties will
also be slightly different. However, without caring for the
difference in properties, we will proceed with the effective
metric in order to explore the effect of nonlinear electrody-
namics in the strong field limit which is the intent of this
study.

As we move closer to the horizon, the effect of nonlinear
electrodynamics is highly impactful and can not be removed.

Apparently, it seems that the effect of nonlinear electrody-
namics can be removed in the strong field region by consid-
ering the limit β → ∞ in f (r)s . However, this is physically
not a realistic limit, since under this limit, the Lagrangian (2)
will be vanished. Hence, under a finite value of the parameter
β, if we considerC = 0, we will get the Reissner–Nordström
metric which is again not a useful limit. Hence, we deduce
that nonlinear electrodynamics effect can not be removed in
the vicinity of the BH.

Note that the index s occurring as the superscript or sub-
script throughout the discussion corresponds to the functions
and variables in the strong field limit. As mentioned above,
the symbol C is just a dimensionless constant and has no
physical meaning discussed in the Ref. [61,62]. So, we will
fix its value in our work because we mainly aim at the param-
eter β. However, the constant C plays an important role in
distinguishing the metric in strong field limit from Reissner–
Nordström metric because inserting C = 0 in Eq. (8), we
will get the standard Reissner–Nordström metric. So, for a
rigorous analysis, the non-zero value of C must be consid-
ered. To avoid the imaginary numbers, the negative values
of C can not be considered. Hence, we will consider C = 1
in our calculations in the same way as we consider M = 1
quite often for simplicity.

In the function f (r)s , we can see that there exist two
extra terms of O( 1

r ) and O( 1
r2 ) and apparently the metric (8)

seems identical to the Reissner–Nordström metric by shifting
the constants and parameters in f (r)s . However, the terms
containing β, C and κ make this metric distinct from the
Reissner–Nordström metric because of their physical nature
lying therein. Since, the Lagrangian (2) consists a function
of Maxwell’s tensor but with the presence of β, defining the
nonlinear electromagnetic theory. Then the resulting function
f (r)s depends upon M , Q, β,C and κ . These parameters and
constants are responsible for defining the strong field metric
in nonlinear electromagnetic theory. However, the Maxwell’s
Lagrangian results in Reissner–Nordström BH whose metric
function depends upon M and Q only and is linearly electri-
cally charged. Whereas, the metric under consideration con-
sists of charge with strong nonlinear effects. As we know
that the trace of energy–momentum tensor is zero for the
Maxwell’s Lagrangian that gives Reissner–Nordström BH.
However, for the nonlinear electrodynamics case, the trace
of energy–momentum tensor is non-zero for the Lagrangian
(2). This non-zero value of the trace contains β and further
contains C in the function h′(r) as given in Refs. [61,62].
By considering β = 0, the trace becomes zero. Also, by
taking the value C = 0 in the trace and in the metrics (4)
and (8), the trace becomes zero and the metrics reduce to
Reissner–Nordström metric. Hence, the non-zero finite val-
ues of β and C define our metric that is distinguishable from
the Reissner–Nordström metric i.e. by the comparison of
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Fig. 1 Variation of radius of photon sphere in strong field w.r.t β and Q for the static case. RN and SFL stand for Reissner–Nordström metric and
the metric in strong field limit, respectively

the trace, the strong field metric is distinguishable from the
Reissner–Nordström metric.

Suppose that after the shifting, we get the parameters

m = M − 8C3/2κ2

15β1/4 as effective mass and q =
√
Q2 − C2κ2

2
as effective charge in f (r)s . Then the resulting metric would
appear as Reissner–Nordström metric with parametersm and
q as said above. This would be significant only if we use the
parametric values of m and q with a physical description.
However, there is no physical description of m and q apart
from calling them as effective mass and effective charge,
respectively. Moreover, we can not use the values of m and q
independently in the calculations because if we put m = 0.5
and q = 0.6, these are actually the combination of paramet-
ric values of M , Q, β, C and κ . So, if we have to use the
values of M , Q, β, C and κ at the end, then considering m
and q is of no use. Else, if we use the values of m and q, then
the required explanation of the results would be related to M ,
Q, β, C and κ which is inconsistent with what is used in the
calculations. Furthermore, using m and q would suppress the
actual objective of this study because we aim to focus on the
effect of nonlinear electrodynamics parameter on the photon
sphere, horizon and shadow. As said earlier, the nonlinear
electrodynamics effects can not be removed or neglected in
the strong field region and the nonlinear electrodynamics is
not the characteristics of Reissner–Nordström metric. Hence,
the metric (8) is different from the Reissner–Nordström met-
ric for all of the above mentioned reasons. Later, this fact will
also be demonstrated through the results of photon sphere,
horizon and shadow.

To discuss the radius of photon sphere in the strong field
limit, we assume an observer near the BH. Then the general
condition for the radius of photon sphere is [10]

d

dr

(
r2

f (r)s

)∣∣∣∣
r=rsp

= 0, (10)

which gives

rsp = 3

2

(
M − 8C3/2κ2

15β1/4

)

+1

2

√
9

(
M − 8C3/2κ2

15β1/4

)2

− 8Q2 + 4C2κ2. (11)

Figure 1 presents the plots for the radius of photon sphere
vs β and Q and shows a comparison of results with Reissner–
Nordström BH. Note that, for all plots, we have used M = 1,
C = 1 and κ = 1 for simplicity. We have kept the same
values and variations for β for a rigorous comparison. The
negative values of β have not been considered because there
exist no photon sphere for β < 0 in the strong field limit.
So, β is kept positive for all calculations. Also, β being less
sensitive as compared to other parameters, is not varied with
small step size in the intervals such as (0, 1). Instead, we
vary it in the interval (0, 100] keeping in view the sensitivity
level. Moreover, it is still possible to do calculations for β ∈
(0, 1). For example, there will be finite values of radius of
photon sphere for β ∈ (0, 1). However, the results will not be
convergent to rsp = 3 (Schwarzschild BH) for small variation
in the values of β and for Q = 0. For a comprehensive
analysis, it is important that the values of radius of photon
sphere should approach the value of Schwarzschild BH. So,
as β � 100 and Q = 0, the value of radius of photon sphere
approaches 3. Whereas, for a small step size of β, the radius
of photon sphere will be approximately around 1.5, which is
not a significant value to compare the results.

In the left plot, it can be seen that when β → 0, the radius
rsp drops asymptotically for different values of charge Q for
nonlinear electrodynamics case. However, for Q = 1, min-
imum value of rsp ∼ 1. Also, the radius increases rapidly
till β ∼ 10 and for other values of β, radius increases
slowly and approaches the corresponding values of Reissner–
Nordström BH shown with dashed curves. Moreover, the
outermost curve corresponds to Q = 0 and by increasing
Q, the curves are shifted inwards. The dashed curves show
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a constant value of radii for each fixed value of Q because
the Reissner–Nordström BH has no dependence upon β. In
the right plot, it is found that the radius decreases as charge
increases for each curve. Also the curves are shifted outwards
for increasing β. As we know that certain parameters weaken
the gravity and hence the photon regions become smaller by
increasing the values of those parameters. Here, such behav-
ior is also shown by the charge parameter Q as if it is respon-
sible for weakening the gravity. The outermost orange curve
corresponds to the Reissner–Nordström BH and all of the
other curves approach it under the limit β → ∞. However,
under this limit, these curves will not exactly match the curve
for Reissner–Nordström BH unless C = 0.

It is obvious that our metric being different from the
standard Reissner–Nordström metric generated the distinct
results for the radii of photon sphere. On observing the plots,
we see that the plots are dependent upon β which is not
a characteristics of a standard Reissner–Nordström metric.
The curves in the left plot for our metric are no way near to
the curves for Reissner–Nordström metric because the solid
curves have positive slopes while the dashed curves are con-
stant due to no dependence upon β. In the right plot, for the
Reissner–Nordström metric, the radius is observed equal to
3 for Q = 0 and then gradually drops as Q increases. The
other curves are distinct but approach the curve for Reissner–
Nordström metric when β is large enough. This makes our
metric distinguishable from the Reissner–Nordström metric
because otherwise there would not be such a large differ-
ence in radii of photon sphere. In other words, the Reissner–
Nordström metric is a special limiting case of the metric (8).

3 Rotating metrics for 4D nonlinear electrodynamics
black hole

For the derivation of rotating counterparts, Newman–Janis
algorithm [66,67] is usually applied to the static BHs in GR.
However, it has also been applied to some static BH solutions
in non-GR modified gravity theories [68–70]. We know that
by applying the Newman–Janis algorithm to any non-GR BH
solution raises pathologies in the resulting rotating solution
[71]. It means that the source in GR must be the same for
both a static BH and its rotating counterpart, i.e., vacuum
(charge) for both Schwarzschild (Reissner–Nordström) and
Kerr (Kerr–Newman) BHs. However, in the modified grav-
ity theories, there exist some extra sources for the rotating
BHs derived by Newman–Janis algorithm. To encounter this
problem, Azreg-Aïnou [63,64] derived the modified form of
Newman–Janis algorithm which is a non-complexification
method and also assumes arbitrary metric functions, whose
values are to be determined. This makes the method easy to
deal with and also it is applicable to more variety of BHs in
modified theories as well as GR resulting in the exact rotat-

ing BH solutions. It is also successfully applied to derive the
imperfect fluid rotating counterparts and generic rotating reg-
ular BH solutions in Boyer-Lindquist coordinates (t, r, θ, φ)

[29,72,73]. Hence, the modified Newman–Janis algorithm
being a general method can also be applied to the BH solu-
tions within GR. With this motivation and as we are working
in GR, we applied this method to the metric (8). Since, we
consider this metric explicitly as an effective metric, so we
will derive its rotating counterpart by the direct application
of the modified NJA. We start by considering Eddington–
Finkelstein coordinates (u, r, ϑ, ϕ) such that

dt = du + dr

f (r)s
. (12)

By using the transformation (12), we get

ds2 = − f (r)sdu
2 − 2dudr + r2(dϑ2 + sin2 ϑdϕ2). (13)

The null tetrad for the metric can be written as

la = δar , (14)

na = δau − f (r)s
2

δar , (15)

ma = 1√
2r

(
δaϑ + i

sin ϑ
δaϕ

)
. (16)

Since, the above null tetrad gives the metric tensor as

gab = −lanb − nalb + mam̄b + m̄amb, (17)

where m̄a is the complex conjugate of ma . Furthermore, the
null tetrad (la, na,ma, m̄a) obeys the following conditions:

lal
a = nan

a = mam
a = m̄am̄

a = 0, (18)

lam
a = lam̄

a = nam
a = nam̄

a = 0, (19)

−lan
a = −lana = mam̄

a = mam̄a = 1. (20)

The complex coordinate transformations for the rotation in
(u, r)-plane with the spin parameter a are given by

u′ → u − ia cos ϑ, (21)

r ′ → r + ia cos ϑ. (22)

The new undetermined metric functions are given as

f (r)s → A, (23)

r2 → B, (24)

where A and B are the functions of r , a and ϑ . Using the
complex transformations and the new metric functions, we
get the transformed tetrad with spin as

l ′a = δar , (25)

n′a = δau − A(r, a, ϑ)

2
δar , (26)

m′a = 1√
2B

(
(δau − δar )ia sin ϑ + δaϑ + i

sin ϑ
δaϕ

)
, (27)
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where prime denotes the transformed tetrad. Now, using this
tetrad and the definition of metric tensor in terms of tetrad,
the metric in Eddington–Finkelstein coordinates becomes

ds2 = −Adu2 − 2dudr + 2a(A − 1) sin2 ϑdudϕ

+2a sin2 ϑdrdϕ + Bdϑ2

+ sin2 ϑ(B − (A − 2)a2 sin2 ϑ)dϕ2. (28)

We have dropped the primes in above equation for simplicity.
In the last step, we transform the above metric into the Boyer-
Lindquist coordinates by choosing the transformations as

du = dt + �(r)dr, (29)

dϕ = dϕ′ + �(r)dr, (30)

with

�(r) = − a2 + r2

a2 + r2 f (r)s
, (31)

�(r) = − a

a2 + r2 f (r)s
. (32)

Then by choosing

A = a2 cos2 ϑ + r2 f (r)s
B , B = r2 + a2 cos2 ϑ, (33)

we get

ds2 = −
(

�s − a2 sin2 ϑ

ρ2

)
dt2 + ρ2

�s
dr2 + ρ2dϑ2

+ sin2 ϑ

ρ2

((
r2 + a2

)2

− �sa
2 sin2 ϑ

)
dϕ2

+2a sin2 ϑ

ρ2

(
�s − a2 − r2

)
dtdϕ, (34)

where

�s = a2 + r2 f (r)s = r2 − 2Mr + a2

+Q2 − C2κ2

2
+ 16C3/2κ2

15β1/4 r, (35)

ρ2 = r2 + a2 cos2 ϑ. (36)

The metric (34) is the rotating counterpart for the metric
(8). In general, the rotating solution can be verified as an
exact solution by satisfying the field equations in the same
way as satisfied by the non-rotating solution. However, in
our case, the metric (8) is an approximation of the metric (4)
so it will not satisfy the field equations as satisfied by the
metric (4). Instead, the metric (8) will satisfy a particular set
of field equations that are unknown. Thus, the rotating metric
(34) will also not satisfy the field equations corresponding to
the metric (4). But, according to the properties of the modi-
fied Newman–Janis algorithm, the metric (34) will satisfy the
unknown set of field equations that are satisfied by the static
metric (8). Thus, the metric (34) is the exact rotating counter-
part of the metric (8) and can be treated as the approximate

rotating counterpart of the metric (4). Moreover, if we con-
sider a = 0 in the metric (34), we obtain the static metric (8).
It has been followed by Kumar and Ghosh [29] that the rotat-
ing solution derived by modified Newman–Janis algorithm
can be regarded as the most appropriate rotating solution
despite the fact that it may not satisfy the field equations as
satisfied by its non-rotating counterpart. Hence, in the same
way, the metric (34) can be regarded as the most appropriate
rotating counterpart for the approximated metric (8). This
rotating metric can also be treated as an effective metric.

In order to study the horizon structure in strong field limit,
we solve the equation �s = 0, which gives

rsh = 1 − 8

15β1/4 ±
√(

1 − 8

15β1/4

)2

− a2 − Q2 + 1

2
.

(37)

The real values of horizon for different parametric values
of a, Q and β depend upon the non-negativity of the discrim-
inant in above equation. We aim for the horizon radius w.r.t
a, so the discriminant is non-negative for particular values of
Q and β for each value of a. Suppose that for some values of
Q and β,

√
α − a2 must be real such that α − a2 ≥ 0. This

implies that a2 ≤ α and hence a ε [−√
α,

√
α]. As we are

dealing with only non-negative values of a, so a ε [0,
√

α].
Hence, we get

a ε

⎡
⎣0,

√(
1 − 8

15β1/4

)2

− Q2 + 1

2

⎤
⎦ . (38)

The horizon radius is plotted w.r.t a in Fig. 2 for different
values of Q and β. For the comparison, the results for the
Reissner–Nordström metric are also shown. The left panel
shows that for Q = 0 and Q = 0.5, there does not exist
Cauchy horizon for a � 0.7 and a � 0.5 respectively, only
event horizon exists in this region. For a � 0.7 and a � 0.5,
Cauchy horizon also exists and for a ≈ 0.7 and a ≈ 0.5 cen-
tral singularity exits. However, for Q = 1/

√
2, both Cauchy

and event horizons are formed for all allowable values of
a �= 0 and for a = 0 there exists central singularity for each
observed curve. Moreover, the curves are shifted inwards
with decreasing β, which is precisely due to the effect of
nonlinear electrodynamics and other parameters. The event
horizon decreases whereas Cauchy horizon increases with
increasing a for each curve and each value of Q. The orange
curves show the horizon radii for the Reissner–Nordström
metric. In the right panel, we can see that for Q = 0.8, the
Cauchy horizon is formed for all values of a and has no cen-
tral singularity. Whereas, for other curves corresponding to
different values of Q, there does not exist Cauchy horizon
for some values of a, only event horizon exists in this region.
Then we can identify the values of a where central singular-
ity exists and for all greater values of a, the Cauchy horizon
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Fig. 2 Plots for the behavior of horizon radius vs a in strong field. The
left panel corresponds to Q = 0, 0.5 and 1/

√
2 for the curves corre-

sponding to β = 1, 10, 25, 50 and 100. The right panel shows the plots

for β = 10, 50 and 100 for the curves corresponding to Q = 0, 0.2,
0.4, 0.6 and 0.8. KN stands for Kerr–Newman metric
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exists. Moreover, for each β, the curves are shifted inwards
for increasing Q. It is shown that the event horizon decreases
whereas Cauchy horizon increases with increasing a for each
curve corresponding to Q and each value of β. The results for
the Reissner–Nordström metric are plotted with the dashed
curves.

The metric (34) and the Kerr–Newman metric depict very
different results for the horizon radii. This is due to the fact
that the Kerr–Newman metric depicts two horizons for all
parametric values. However, in our case, we observe single
horizon for some cases where the effect of β has not been
vanished. For Q ≥ 1/

√
2, the two horizons are observed

for given values of β and a. This is because the effect of
β and the extra terms of nonlinear electrodynamics vanish
in the equations. The values of horizon radii are also very
different for each particular set of Q and β w.r.t a. In this way,
due to the different results, the metric (34) is distinguishable
from the Kerr–Newman metric and hence the metric (8) is
distinguishable from the Reissner–Nordström metric.

4 Null geodesics and shadows

To study the shadow and related observables for rotating
metrics in strong field approximation, we need to derive
geodesic equations by considering Hamilton–Jacobi formu-
lation [11,74]. The dynamics of bodies is widely studied
by the Lagrangian and the Hamiltonian formalism in the
context of classical mechanics, electromagnetism, quantum
mechanics etc. However, often it is difficult to deal with
these formalisms in gravity theories. The usual procedures
give two constants of motion, namely, the energy and the
angular momentum along the axis of symmetry and the
mass as a third constant. However, we require a fourth con-
stant in order to solve the system of equations. The sepa-
rability of Hamilton–Jacobi equation enables us to obtain a
fourth constant called the Carter constant [11,74]. Despite
presenting the motivation for Hamilton–Jacobi formulation,
we require the Lagrangian for deriving the relation between
the constants of motion and the generalized momenta. The
Lagrangian in the tensor notation is given as

L = 1

2
gμν ẋ

μ ẋν . (39)

The generalized momenta in the tensor form can be written
as

pμ = gμν ẋ
ν . (40)

Then the constants of motion corresponding to energy E
and the angular momentum l along the axis of symmetry are
related to the Lagrangian and the generalized momenta as

E = −∂L
∂ ṫ

= −gtt ṫ − gϕt ϕ̇ = pt , (41)

l = ∂L
∂ϕ̇

= gϕt ṫ + gϕϕϕ̇ = pϕ, (42)

where the dot represents the derivative w.r.t affine parameter
τ . The Eqs. (41) and (42) will be used in further calcula-
tions while dealing with the particular forms of generalized
momenta and their relation with the constants of motion. In
particular, these equations will be helpful in converting the
system in terms of the constants E and l. The Hamilton–
Jacobi equation is given by

∂SJ

∂τ
= −1

2
gμν ∂SJ

∂xμ

∂SJ

∂xν
. (43)

Then the Jacobi action SJ can be chosen as

SJ = 1

2
mτ − Et + lϕ + Dr (r) + Dϑ(ϑ), (44)

such that m is the mass of the particle, Dr (r) and Dϑ(ϑ)

are unknown functions yet to be determined. Next, we use
Eq. (44) in Eq. (43) and then apply the method of separation
of variables as in [11,74], then by introducing the Carter
constant K, we obtain the geodesic equations for the photon
(m = 0) given as

ρ2 ṫ = a(l − aE sin2 ϑ) + r2 + a2

�s

(
E(r2 + a2) − al

)
,

(45)

ρ2ṙ = ±√
R, (46)

ρ2ϑ̇ = ±√
�, (47)

ρ2ϕ̇ = (l csc2 ϑ − aE) + a

�s

(
E(r2 + a2) − al

)
, (48)

where

R(r) =
(
E(r2 + a2) − al

)2

− �sK, (49)

�(ϑ) = K − (aE sin2 ϑ − l)2

sin2 ϑ
. (50)

The geodesic equations govern the motion of the particles
and other objects in the gravitational fields of massive bodies.
Here, the particle under consideration is photon, so the above
equations describe the motion and the trajectories followed
by the massless photon. Since we are studying the motion
of photons that in general, orbit the BH in circular geodesics
so these photons stay on the surface of a sphere of radius
r = constant . These orbits are characterized by the relations
ṙ = 0 and r̈ = 0 that implies R(r) = 0 and dR(r)

dr = 0. Then

by introducing the abbreviations LE = l
E and KE = K

E2 , we
get

KE = 16r2 �s

(�′
s)

2 , (51)

aLE = r2 + a2 − 4r
�s

�′
s
, (52)
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where prime denotes the derivative w.r.t r . Since we know that
all spherical null geodesics are unstable in the domain of outer
communication, as in the case of Schwarzschild spacetime, at
the observer position, the past-oriented null rays may asymp-
totically spiral towards the circular null geodesics, which
behave as the limit curves. So the boundary of the shadow
can be determined by the photon region. We consider two
angles; a colatitude angle θ and an azimuthal angle ψ in the
observer’s sky. These angles determine the initial direction of
all null rays into the past emerging from the observer position.
We can define these angles with respect to the orthonormal
tetrad

e0 = (r2 + a2)∂t + a∂ϕ

ρ
√

�s

∣∣∣∣
(r0,ϑ0)

, (53)

e1 = ∂ϑ

ρ

∣∣∣∣
(r0,ϑ0)

, (54)

e2 = −∂ϕ − a sin2 ϑ∂t

ρ sin ϑ

∣∣∣∣
(r0,ϑ0)

, (55)

e3 = −
√

�s∂r

ρ

∣∣∣∣
(r0,ϑ0)

, (56)

for an observer at (r0, ϑ0). For the geometrical configuration
see Fig. 7 and 8 in [18]. It can be easily verified that ei are
orthonormal for the metric corresponding to �s . The timelike
vector e0 is considered to be the four velocity of the observer.
Meanwhile e3 is pointing towards the center of the BH. Let
ϒ(�) be a null ray with coordinates (r(�), ϑ(�), ϕ(�), t (�)),
then the tangent to this curve can be written in two ways:

ϒ̇ = ṙ∂r + ϑ̇∂ϑ + ϕ̇∂ϕ + ṫ∂t , (57)

ϒ̇ = ξ(−e0 + sin θ cos ψe1 + sin θ sin ψe2 + cos θe3).

(58)

We have defined the celestial coordinates θ and ψ for the
light ray in the observer’s sky. The scale factor ξ is obtained
using Eqs. (41) and (42) as

ξ = g(ϒ̇, e0) = al − (r2 + a2)E

ρ
√

�s

∣∣∣∣
(r0,ϑ0)

. (59)

By comparing the coefficients of ∂r and ∂ϕ in Eqs. (57) and
(58), we get

sin ψ = sin ϑ√
�s sin θ

(
ρ2�s ϕ̇

(r2 + a2)E − al
− a

)∣∣∣∣
(r0,ϑ0)

, (60)

cos θ = ρ2ṙ

(r2 + a2)E − al

∣∣∣∣
(r0,ϑ0)

. (61)

By inserting the values of ṙ and ϕ̇ from Eqs. (46) and (48),
we get

sin ψ(rsp) = LE (rsp) − a sin2 ϑ0√
KE (rsp) sin ϑ0

, (62)

sin θ(rsp) =
√
KE (rsp)

√
�s(r0)

r2
0 + a2 − aLE (rsp)

. (63)

The quantities KE (rsp) and LE (rsp) are defined by Eqs.
(51) and (52). Since the light rays spiral asymptotically
towards the spherical photon region with radius rsp, then
the governing equations depend upon rsp because the pho-
ton region has a maximum and minimum radius such that
rsp has all possible values in the interval [rsp,min, r

s
p,max ].

The extremal values of rsp are determined by the relations
sin ψ(rsp) = 1 for rsp,min and sin ψ(rsp) = −1 for rsp,max .
For the static case, there is a photon sphere which has a fixed
radius and as a result we can not consider rsp as a parameter.
This value of rsp gives a unique value of KE (rsp) but LE (rsp)
can not be calculated. Hence, we can consider LE (rsp) as the
parameter, whose values exist in the interval determined by
�(ϑ0) = 0.

4.1 Shadows observed by a nearer observer

Now we will examine the shadows observed by an observer
in the vicinity of the BH. The Eqs. (51) and (52) are further
written by using the definition of metric functions as

Ks
E (rsp) =

4(rsp)
2
[
(rsp)

2 − 2Mrsp + a2 + Q2 − C2κ2

2 + 16C3/2κ2rsp
15β1/4

]

(
rsp − M + 8C3/2κ2

15β1/4

)2 , (64)

aLs
E (rsp) =

(rsp)
3 − 3

(
M − 8C3/2κ2

15β1/4

)
(rsp)

2 + (a2 + 2Q2 − C2κ2)rsp +
(
M − 8C3/2κ2

15β1/4

)
a2

M − rsp − 8C3/2κ2

15β1/4

. (65)
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Thus, the equations for celestial coordinates in the
observer’s sky become

sin ψs(r
s
p) = −1

2arsp sin ϑ0

[
(rsp)

2 − 2Mrsp + a2 + Q2 − C2κ2

2 + 16C3/2κ2rsp
15β1/4

]1/2

[
(rsp)

3 − 3

(
M − 8C3/2κ2

15β1/4

)
(rsp)

2

+(a2 + 2Q2 − C2κ2)rsp +
(
M − 8C3/2κ2

15β1/4

)
a2 − a2 sin2 ϑ0

(
M − rsp − 8C3/2κ2

15β1/4

)]
, (66)

sin θs(r
s
p) = 2rsp

(rsp)
3 − 3M(rsp)

2 − Mr2
0 + (r2

0 + 2a2 + 2Q2 − C2κ2)rsp + 8C3/2κ2

15β1/4

(
r2

0 + 3(rsp)
2

)
[
(rsp)

2 − 2Mrsp

+a2 + Q2 − C2κ2

2
+ 16C3/2κ2rsp

15β1/4

]1/2[
r2

0 − 2Mr0 + a2 + Q2 − C2κ2

2
+ 16C3/2κ2r0

15β1/4

]1/2

. (67)

For a stereographic projection, we have the Cartesian coor-
dinates

x(rsp) = −2 tan

(
θs(rsp)

2

)
sin ψs(r

s
p), (68)

y(rsp) = −2 tan

(
θs(rsp)

2

)
cos ψs(r

s
p). (69)

The shadows for an equatorial observer in the strong field
region are plotted in the Fig. 3. The top panel shows the
boundary curves for different values of spin. It is found that
with increasing value of a, the shadows are shifted in the pos-
itive x-direction. Moreover, with increasing charge, the size
of the shadows is reduced. In the middle panel we see that the
shadow size is decreased with increasing charge as expected.
However, by increasing β, the shadow size increases and the
flatness on one side due to spin decreases under the effect
of β and other parameters. The first plot in the bottom panel
corresponds to the case without spin. It can be seen that each
curve has equal magnitude of y, −y,x and −x-intercepts
which means that the shadows are exactly circular. Also, the
overall size of shadow is increased by increase in β. Almost
the same behavior can be seen for other two plots apart from
the effect of spin. The inclusion of spin shifted the shadows
rightwards and some flatness is observed with increasing a.
In Fig. 3, the shadows for a fixed observer at r0 = 5 are
recorded. However, in Fig. 4, the shadows for an equatorial
observer at different positions are plotted. The image of the
shadow became smaller as the observer moved away from
the BH. Also the spin shifted the image rightwards and cre-
ated flatness but the nonlinear electrodynamics diminished
the flatness simultaneously. Note that the shadows for Kerr
and Kerr–Newman exhibit a visible flatness on one side of the
shadow. However, in our case, although the shadows are elon-
gated due to spin but the flatness is diminished by the effect
of β,C and κ . Also, when a = 0, the size of shadow is differ-
ent for the standard Schwarzschild and Reissner–Nordström

metric as compared to the strong field metric under consid-
eration.

4.2 Shadows observed by a remote observer

The Bardeen’s procedure for calculating the shadows is
based on two impact parameters and the assumption that
the observer is at a large distance from the BH. Within the
framework of the method given in this study, we can assume
a remote observer that is independent of the choice of the
spacetime [10]. It means that, the photon sphere formed by
the trapping of photons in the vicinity of the BH and giv-
ing rise to the shadow, is observed by a remote observer. In
other words, the observer looks directly into the BH and its
surroundings where the photon sphere exists. For a remote
observer, the linearization implies that M

r0
→ 0, which gives

θs (r
s
p) =

2rsp

[
(rsp)

2 − 2Mrsp + a2 + Q2 − C2κ2

2 + 16C3/2κ2rsp
15β1/4

]1/2

r0

(
rsp − M + 8C3/2κ2

15β1/4

) .

(70)

Then the following stereographic projection coordinates are
obtained:

x(rsp) = a sin2 ϑ0 − Ls
E (rsp)

r0 sin ϑ0
, (71)

y(rsp) = ± 1

r0

√
Ks

E (rsp) − (Ls
E (rsp) − a sin2 ϑ0)2

sin2 ϑ0
, (72)

where the Eqs. (64)–(66) remain the same in this case because
these are independent of the position of the observer. The
behavior of shadow images perceived by a remote observer
can be seen in Fig. 5. In the top panel, the spin caused the shift
of images towards right and not an exact flatness is observed
which is diminished by the effect of β, C and κ . As one goes
from left to right in the panel, due to the increase in charge,
the shadow size is decreased. In the middle panel, very small
differences are measured in the shadows. The image size
reduced with the increasing charge and with increasing β in
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Fig. 3 Stereographic projection of shadows in strong field w.r.t an equatorial observer at r0 = 5. The top panel corresponds to the curves for
a = 0.1, 0.5 and 0.9. The middle panel corresponds to the curves for Q = 0, 0.25 and 0.5. The bottom panel corresponds to the curves for β = 10,
50 and 100

the panel, the image size is increased. The first plot in the bot-
tom panel corresponds to a = 0 and the shadow images can
be identified as perfect circles. However, with the increase
in β in each plot, the image size is also increased. The spin
increases from left to right in the panel, with this increase
in spin, the shadow images move rightwards with an elon-
gation in the shadow and a possible flatness is again dimin-
ished by the presence of β, C and κ . The difference in the
curves on −x-axis in the last plot in the panel shows a very

prominent effect of nonlinearity of electrodynamics. It can
be verified that the shadow size for the Schwarzschild and
Reissner–Nordström BHs is different from the shadow size
in this study for the case a = 0. Moreover, the Kerr and
Kerr–Newman BHs exhibit a clear flatness on one side of
the shadow, however, in our study, the flatness is diminished.
These effects and differences of images will be studied in the
following subsection in terms of distortion.
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Fig. 4 Behavior of shadows in strong field w.r.t an equatorial observer
at r0 = 5, 10 and 20 for rotating case with fixed a, Q and β

4.3 Distortion in strong field

So far, we have studied the shapes of shadow images. In
order to quantify the actual size of the shadow, we need to
determine the value of an observable that is equivalent to
the linear radius of the shadow. It is denoted by Rsh and is
defined by [32,75]

Rsh = (xt − xr )2 + y2
t

2|xt − xr | . (73)

It is the radius of an imaginary circle that touches the shadow
image at three different points at the top with coordinates
(xt , yt ), at the bottom with coordinates (xb, yb) and the right
most point with coordinates (xr , 0). Here, x and y are the
coordinates of the points on the stereographic shadow image
and the subscripts t , r and b correspond to the top, the right
most and the bottom point, respectively. We can locate these
points on the shadow image as given in Fig. 9 in [75]. The
above formula is useful for rotating BHs since for the non-
rotating BHs, the imaginary circle will also touch the fourth
point (−xr , 0). Thus, the distance of curves from origin will
be equal at all points. Hence, the radius of the shadow is
same as the radius of the circle itself. The above value of Rsh

is useful in calculating the distortion and energy emission
rates. The distortion actually characterizes the difference of
the shadow images as a result of the flatness due to spin on
one side. It can be calculated by the following relation:

δ = |x̄l − xl |
Rsh

, (74)

where (xl , 0) is the point where shadow curve intersects the
−x-axis and (x̄l , 0) is the point where imaginary circle inter-
sects the −x-axis. Here, the subscript l corresponds to the left
most point on the shadow image, whereas, x̄ corresponds to
the point on the imaginary circle which is not coinciding
the shadow curve. The distortion corresponding to shadow
curves in strong field is denoted by δs . The distortion is plot-
ted in Fig. 6. The upper panel depicts the distortion plots in
strong field limit for an observer near the BH and the lower
panel shows the distortion in strong field when the observer is
far away from the BH. The first image in upper panel shows
that the distortion increases with increasing spin value. The
distortion decreases with increase in β and this decreasing
rate increases with increase in spin. There is no distortion
for a = 0. The second plot shows that distortion decreases
with increase in β while it increases with increasing charge
Q. The third plot says that the distortion is almost negligi-
ble for least value of spin and increases with increasing spin
a. Also, the distortion increases by increasing the value of
charge. The lower panel depicts almost the same behaviour
as the upper panel. However, the plots are only different in
terms of the plot ranges and numbers. This is because of
the fact that the shadow is observed at the equator at two
different locations. The overall behavior of the plots show
that the distortion decreases with increase in β. It means that
the nonlinear electrodynamics is responsible for diminish-
ing the flatness of the shadows. The increasing charge also
increases the distortion. The spin has very prominent effect
on the shadows and hence can be seen from the distortion
pictures. The spin flatness is diminished by β but still the
distortion increases with increase in spin.

4.4 Energy emission rate

As we know that particles are created and annihilated near the
horizon due to the quantum fluctuations inside the BH. The
particles possessing positive energy will fly off from the BH
by the effect called quantum tunneling, which causes the BH
to evaporate and the associated energy will also be emitted
[49]. The probability of any absorption process is measured
by absorption cross section. From the astrophysical point of
view there is no interest in the measurements by an observer
located near the horizon. Hence, at large distances, the high
energy absorption cross section has a correspondence with
the BH shadow. At such high scale of energy, the value of
BH’s absorption cross section remains around a limit denoted
as σlim which is a constant value. This value of σlim was
found equal to the geometrical area of the photon sphere
[75–78]. Since the interface of photon sphere and the shadow
is common, hence it can be related to the absorption cross
section as

σlim ≈ πR2
sh . (75)
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Fig. 5 Stereographic projection of shadows in strong field w.r.t a remote equatorial observer. The top panel corresponds to the curves for a = 0.1,
0.5 and 0.9. The middle panel corresponds to the curves for Q = 0, 0.25 and 0.5. The bottom panel corresponds to the curves for β = 10, 50 and
100

The relation for energy emission rate is given as

Eωt = d2E(ω)

dωdt
= 2π2σlimω3

eω/TH − 1
≈ 2π3R2

shω
3

eω/TH − 1
, (76)

where ω is the frequency, TH = κ̄/2π is the Hawking tem-
perature and

κ̄ = �′
s

2(r2 + a2)

∣∣∣∣
r=r+

(77)

is the surface gravity at the outer horizon r+. For a = 0,

κ̄ = 1

2
f ′(r)s

∣∣∣∣
r=r+

(78)

is the surface gravity. The behavior of emission rate for differ-
ent cases is plotted in Fig. 7 which shows that the emission
rate increases with increase in a, β and Q in all plots. It
means that by increasing the charge, spin or β, the evapo-
ration process also gets faster. Also it can be seen that the
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Fig. 6 Plots for distortion in strong field for a nearer observer (upper panel) and remote observer (lower panel) w.r.t β, Q and a

Fig. 7 Plots showing the energy emission rate in strong field w.r.t frequency ω detected by a remote observer

peak of emission rate is shifted towards left with increase in
all parameters. However, for a = 0, the emission profile is
different from the rotating cases.

5 Conclusion

In this paper, we have considered a nonlinear electrodynam-
ics BH and identified the effective metric in strong field
limit that is converted into its rotating counterpart by apply-
ing the modified Newman–Janis algorithm. In the strong
field approximation, we have studied the radius of photon
sphere and horizon structure for non-rotating and rotating
cases, respectively. Furthermore, the analytical scheme is
developed for shadow study starting with Hamilton–Jacobi
formalism and then by implying the method of orthonor-
mal tetrads. The equations for celestial coordinates in the
observer’s sky are derived in strong field which, further, are
inserted into stereographic projection coordinates in order to
convert a spherical image into a 2D image. Lastly, distortion
and energy emission rate are discussed. The results presented
with the description of figures are summarized below:

• The metric function in the strong field suggests that the
nonlinear electrodynamics effects can not be removed in
the vicinity of the BH. From Fig. 1, it can be seen that
the size of photon sphere increases with increasing β

and decreases with increase in Q. It also shows that the
results for Reissner–Nordström metric and the metric (8)
are different from each other. For particular values of C
and β, the metric (8) reduces into Reissner–Nordström
metric.

• Figure 2 corresponds to the horizon radius. We can see
that the horizon radius increases with increasing β and
central singularity is formed only for the last case in the
left panel. The other two pictures show that there is only
one horizon for certain values of spin. From the right
panel, we can say that the horizon becomes short by
increasing the charge and the Cauchy horizon is formed
for every value of spin only for one particular value of
charge. The dashed curves show the horizon radii for
Reissner–Nordström BH and its rotating counterpart. It
is obvious that these results are different from the results
achieved in our study.
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• Shadows for a nearer observer are plotted in Fig. 3.
It is found that the spin shifts the shadow to the right
and a possible flatness is observed which is removed
by the effect of nonlinear electrodynamics. The increas-
ing charge decreases the size of shadow and the increas-
ing β increases the size of shadow. Fig. 4 shows that as
the observer moves away, the shadow size is reduced as
expected. From Fig. 5, we observe the same behaviour of
the shadows as compared to the shadows in Fig. 3 when
the observer moves far away from the BH. The only mea-
sured difference is the size of the shadow as expected.

• The difference in shadows due to effect of spin and β is
observed in Fig. 6. For higher values of β, the distortion
decreases and it increases with increase in charge and
spin. Lastly, the Fig. 7 shows that the evaporation of the
BH becomes slower by increasing charge, spin and β.
The evaporation rate for non-rotating case is different
from the rotating cases.

We conclude that the presence of nonlinear electrodynam-
ics may strengthen the gravity due to the fact that the size of
photon sphere, horizons and shadows increase with involve-
ment of β. Also, the central singularity is not formed for
some cases in the presence of β and other parameters. More-
over, the capture of photon, horizon and the shadow variation
with the charge suggests the possibility of reduction of the
strength of gravity due to involvement of charge. The effect
of spin on the shadows can be removed by introducing non-
linearity of electromagnetic field. It can also be concluded
that the Reissner–Nordström BH and its rotating counterpart
are the special limiting cases of the strong field metric.
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