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Abstract In the paper, we study the two-loop contribu-
tion to the effective action of the four-dimensional quan-
tum Yang–Mills theory. We derive a new formula for the
contribution in terms of three functions, formed from the
Green’s function expansion near the diagonal. This result can
be applied to different types of regularization. Therefore, we
test it by using the dimensional regularization and cutoff ones
and show the consistence with the results, obtained in other
works.

1 Introduction

The Yang–Mills fields firstly appeared in the paper [1]. These
objects have quite natural geometrical [2–4] and physical [5]
interpretations that leads to their fundamental nature and rel-
evance in the modern theoretical and mathematical physics.
The quantum theory of these fields has a number of mathe-
matical problems nowadays. Let us consider one of them.

As it is known, the most popular tool to investigate the
Yang–Mills theory is the perturbative expansion (with the
use of the Feynman diagrams [6]) of the path integral, see
[7]. Such way is quite fruitful, but every term of the decompo-
sition can contain integrals that do not converge and, hence,
should be regularized. In this case we need to use the renor-
malization theory [8–10] that makes the Yang–Mills theory
physically meaningful and finite. At the same time the use of
the renormalization procedure depends on the type of regu-
larization [11,12].

One of the most common types of regularization are
dimensional [13,14] and cutoff [15–18]. Each approach has
its own pros and cons. For example, the dimensional regu-
larization allows simple version of multi-loop calculations
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[19–26] and preserves a gauge invariance. However, it does
not have a physical nature, because we need to work in
non-integer-dimensional space. Another example is the cut-
off regularization that has quite clear physical nature, but
it can violate the gauge invariance and allows the appear-
ance of non-logarithmic divergences, see [27–30]. Of course,
there are other types of regularization, such as Pauli–Villars
[31], regularization by higher covariant derivatives [7,32], or
implicit regularization [33,34], but they are not considered
in the paper.

In the present work we study an infrared part in the coor-
dinate representation (or ultraviolet part in the momentum
one) of the two-loop contribution to the Yang–Mills effec-
tive action. We derive a new formula for this part in terms
of three functions, which follow from the expansion of the
Green’s function near the diagonal. At the same time we do
not concretize the scheme of the regularization, so the for-
mula has general nature. As an example, we test our formula
using different popular types of regularization and demon-
strate consistency of the results.

We believe that our results are useful and interesting,
because they give the ability to investigate regularizations
on the example of the four-dimensional Yang–Mills theory.
As it is mentioned above, not any regularization satisfies all
required properties. Hence, this is very important and helpful
to have a simple way to check and control.

The structure of the work is the following. In Sect. 2 we
introduce basic information, such as properties of the Yang–
Mills theory and the heat kernel expansion, and formulate
the main results. Then, in Sect. 3 we introduce new types of
vertices for working with the perturbative expansion. After
that, in Sect. 4 we derive and prove the main result, and in
Sect. 5 we test the final formula by using the dimensional
and cutoff regularizations. In the conclusion we give a few
remarks.
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2 Basic concepts and results

2.1 Yang–Mills theory

Let G be a compact semisimple Lie group [4], and g is its Lie
algebra of a dimension dim g. Let ta be the generators of the
algebra g, where a = 1, . . . , dim g, such that the relations
hold

[ta, tb] = f abctc, tr(tatb) = −2δab, (1)

where f abc are antisymmetric structure constants for g, and
’tr’ is the Killing form. We work with an adjoint representa-
tion, so it is easy to verify that the structure constants have
the following crucial properties

f abc f ae f = f ab f f aec − f ac f f aeb,

f abc f abe = c2δ
ce, (2)

where c2 is a normalization constant (a value of a Casimir
operator in the adjoint representation) for the Lie group G.

Let x, y ∈ U , where U is a smooth convex open domain
from R

d , and Greek letters μ, ν denote the coordinate com-
ponents. Then, by symbol Bμ(x) = Ba

μ(x)ta , where Bμ(·) ∈
C∞(U, g) for all values of μ, we define the components of a
Yang–Mills connection. The operator Bμ(x) as an element of
the Lie algebra acts by commutator according to the adjoint
representation. Hence, we treat Bμ(x) as a matrix-valued
operator with the components f adb Bd

μ(x).
Then, after introducing the components of the field

strength tensor in the form

Fa
μν = ∂μ Ba

ν − ∂ν Ba
μ + f abc Bb

μBc
ν ,

we can formulate a classical action of the Yang–Mills theory
[7]

S[B] = 1

4g2

∫
R4

d4x Fa
μν Fa

μν = W−1

4g2 , (3)

where g is a coupling constant, and W−1 = W−1[B] is an
auxiliary functional [35–37].

Further, we are going to present a formula for a pure effec-
tive action. For the purpose, we need to introduce several
additional objects. First of all we define the left and the right
derivatives. Let h(·) ∈ C1(U, g) be an operator, and hab(x)

be its matrix components in the point x , then

−→
D ab

xμhbc(x) = ∂xμhac(x) + f adb Bd
μ(x)hbc(x),

hab(x)
←−
D bc

xμ = ∂xμhac(x) − hab(x) f bdc Bd
μ(x). (4)

Next we give formulae for auxiliary differential operators
at x ∈ U

Mab
0 = −−→

D ae
μ

−→
D eb

μ ,

M ab
1μν = Mab

0 δμν − 2 f acb Fc
μν, (5)

Fig. 1 Diagram technique elements

and vertex operators with functional derivatives

�1 = −
∫
R4

d4x
δ

δ J a
ν

−→
D ab

μ Fb
μν, (6)

�3 =
∫
R4

d4x

(−→
D ae

μ

δ

δ J e
ν

)
f abc δ

δ J b
μ

δ

δ J c
ν

, (7)

�4 = 1

4

∫
R4

d4x f abc δ

δ J b
μ

δ

δ J c
ν

f aed δ

δ J e
μ

δ

δ J d
ν

, (8)

�3 =
∫
R4

d4x

(−→
D ab

μ

δ

δb b

)
f aed δ

δ J e
μ

δ

δb̄ d
, (9)

where J a
μ and the ghost fields b a and b̄ a , see [38], have

smooth densities. Then let us define the Green’s functions
G0 and G1 for the Laplace-type operators M0 and M1 by the
equalities

M ab
1μνG bc

1νρ(x, y) = δacδμρδ(x − y),

Mab
0 Gbc

0 (x, y) = δacδ(x − y). (10)

The Green’s functions G bc
1νρ and Gbc

0 correspond to the Yang–
Mills field and the ghost field, respectively. Then, the vertices
�3 and �4 are related to the self-action of the Yang–Mills
fields, while the vertex �3 is responsible for the interaction
of ghost fields with the Yang–Mills field.

We note that according to the rules of Feynman diagram
technique, formulae (6)–(9), and (10) are connected to their
diagrammatic representation, see [39,40] and Fig. 1.

Now we are ready to introduce a pure effective action
for the Yang–Mills theory. Let us apply the background field
method [41–46] to the path integral formulation of the Yang–
Mills theory. Also, we define an additional functional of Ba

μ

W [B] = S[B] +
{

1

2
ln det(M1/M1|B=0)

− ln det(M0/M0|B=0)

}
+ Wh[B], (11)

where the first term is the classical action (3), then there is a
one-loop correction proportional to ln det, and the third term
Wh[B] corresponds to higher loops contributions and has the
following form
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Fig. 2 Two-loop contributions to Wh[B]

Wh[B] = − ln

(
exp

( − �1/g − g�3 − g2�4

+g �3
)

Z [J, b, b̄ ]
∣∣∣

Jμ=b=b̄=0

)∣∣∣∣
1PI part

, (12)

and the generating functional Z [J, b, b̄] = exp(g1 + g0)

consists of

g1 = 1

2

∫
R4

d4x
∫
R4

d4 y J a
μ(x)G ab

1μν(x, y) J b
ν (y),

g0 =
∫
R4

d4x
∫
R4

d4 y b̄ a(x)Gab
0 (x, y)b b(y). (13)

For example, the functional Wh[B] in the first order corre-
sponds to the two-loop contributions, shown in Fig. 2.

Then the pure effective action can be represented in the
following form

Weff [B] = W [B] − W [0]. (14)

We note that this definition does not include terms not
depending on the background field, because we have excepted
an unimportant constant W [0].

2.2 Heat kernel expansion

The main object in the heat kernel expansion is a path-ordered
exponential. Let us give an appropriate definition by the fol-
lowing formula

�ab(x, y) = δab +
+∞∑
k=1

(−1)k
∫ 1

0
ds1

. . .

∫ sk−1

0
dsk (x − y)μ1...μk

(
f ad1c1 Bd1

μ1
(z(s1))

)

. . .
(

f ck−1dk b Bdk
μ1

(z(sk))
)
, (15)

where zμ(s) = yμ + s(x − y)μ, see [47,48].
Such type of operators has some useful properties, that

can be formulated in the form

�ab(x, z)�bc(z, y) = �ac(x, y),

(�−1)ab(x, y) = �ab(y, x) = �ba(x, y),

�ab(y, y) = δab, (16)

where the point z ∈ U belongs to a straight line passing
through the points x and y. In other words, it means that there
is such s ∈ R, that the equality zμ = yμ + s(x − y) ∈ U

holds. The proofs of the properties described above can be
found in [47,49,50].

Therefore, we can formulate the differential equations for
the exponential as

(x − y)μ
−→
D ab

xμ�bc(x, y) = 0,

�ab(x, y)
←−
D bc

yμ(x − y)μ = 0. (17)

The proof can be achieved by straight differentiation of (15)
and integration by parts, see [47,49].

Now we want to remember some basic concepts of the
heat kernel expansion and the corresponding useful results.
Let us introduce a Laplace-type operator A, which has a more
general view that in (5). Locally, it has the following form

Aab(x) = −I Mcd
0 (x) − vab(x), (18)

where I is an arbitrary n×n with n ∈ N, and vab(x) is a n×n
matrix-valued smooth potential, such that the operator A is
symmetric. If we take n = 4, (I )μν = δμν , and (vab)μν(x) =
2 f acb Fd

μν(x), then we obtain the operator M ab
1μν(x). Also, for

the convenience we will not write the unit matrix I in the rest
of the text, because this does not create confusion.

Then from the general theory we know that an asymptotic
expansion of a solution of the problem
(
δac∂τ + Aac(x)

)
K cb(x, y; τ) = 0,

K ab(x, y; 0) = δabδ(x − y), (19)

for enough small values of the proper time τ → +0 can be
found in the form [49,51–55]

K ab(x, y; τ) = (4πτ)−2e−|x−y|2/4τ
+∞∑
k=0

τ kaab
k (x, y). (20)

The coefficient aab(x, y) of expansion (20), Seeley–
DeWitt coefficients, can be calculated recurrently, because
they satisfy the following system of equations

aab
0 (x, y) = �ab(x, y),(
k + (x − y)σ

−→
D ac

xσ

)
acb

k (x, y) = −Aac(x)acb
k−1(x, y),

(21)

where k � 1.
The operators Mab

0 and M ab
1μν for the Yang–Mills the-

ory are special cases of the operator Aab. Hence, using the
formulae introduced above, we can write out the following
asymptotic behaviour for the Green’s function in the four-
dimensional space [52,56]

(
A−1)ab

(x, y) = R0(x − y)aab
0 (x, y) + R1(x − y)aab

1 (x, y)

+ R2(x − y)aab
2 (x, y) + PSab(x, y)

+ ZMab(x, y), (22)
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where

R0(x) = 1

4π2|x |2 , R1(x) = − ln(|x |2μ2)

16π2 ,

R2(x) = |x |2( ln(|x |2μ2) − 1
)

64π2 , (23)

PSab is a non-local part, depending on the boundary condi-
tions of a spectral problem, and ZMab is a number of local
zero modes to satisfy the problem. Let us note, it was shown
in the paper [57], that an infrared part in the second loop does
not depend on ZMab. Moreover, in the calculation process,
we can choose ZMab in such a way, that the non-local part
PSab would have the following behaviour near the diagonal
x ∼ y

PSab(x, y) = −|x − y|2
27π2 aab

2 (y, y)
(
1 + o(1)

)
. (24)

As it was noted in the papers [18,20,21], the two-loop
contribution to the β-function can contain only terms propor-
tional to the classical action W−1. This is beneficial obser-
vation, because we have the ability to consider a simplified
version of the background field. The connection components
have the form

Ba
μ(x) → B̃a

μ(x) = 1

2
xν F̃a

νμ, (25)

where a new field strength
(
F̃νμ

)ac = f abc F̃b
νμ satisfies the

following two equalities

f acd f deb F̃c
νμ F̃e

σρ = f acd f deb F̃c
σρ F̃e

νμ

and ∂xσ F̃a
νμ = 0 for all μ, ν, σ, ρ, a, b.

(26)

The first relation means that the field strength is commu-
tative (in the matrix sense), while the second one removes
the dependence on all space variables. Additionally, we will
require the normalization condition to be fulfilled F̃a

μν F̃a
μν =

1. As an example, we can take the following matrix

(
F̃a

μν

) = 1√
8 dim g

⎛
⎜⎜⎝

0 1 0 1
−1 0 1 0
0 −1 0 1

−1 0 −1 0

⎞
⎟⎟⎠ (27)

for all a ∈ {1, . . . , dim g}.

2.3 Results

Now let us make some additional preparatory steps. First of
all we should draw attention that we investigate the two-loop
contribution to the effective action (14). It means that we are
interested in the terms from Wh[B] − Wh[0] proportional to
g2, see formula (12).

Let us define ten auxiliary constructions: I9 and I10 are
from (70), and eight integrals are defined by the following
formulae

I8 = c2
2

∫
B1/μ

dd x
(
∂xμ R0

)
R0

× ∂xμ

( |x |2
12d

R1 + 1

12
R2 − |x |2

293π2

)∣∣∣∣
IR

, (28)

I1 = c2
2

∫
B1/μ

dd x
(
∂xμ R0

)
R0 ∂xμ

( |x |2
12d

R1

+ (d − 24)

12d
R2 + (24 − d)

293dπ2 |x |2
)∣∣∣∣

IR

, (29)

I2 = c2
2

∫
B1/μ

dd x
(
∂xμ R0

)(
∂xμ R0

)( |x |2
12d

R1

+ (d − 24)

12d
R2 + (24 − d)

293dπ2 |x |2
)∣∣∣∣

IR

, (30)

I3 = −2c2
2

d

∫
B1/μ

dd x
(
∂xμ R0

)(
∂xμ R1

)
R1

∣∣∣IR
, (31)

I4 = −2c2
2

∫
B1/μ

dd x R0

(
∂xμ R1

)(
∂xμ R1

)∣∣∣IR
, (32)

I5 = − c2
2

2d

∫
B1/μ

dd x R1 xμ∂xμ R2
0

∣∣∣IR
, (33)

I6 = c2
2

2d

∫
B1/μ

dd x R2
0 xμ∂xμ R1

∣∣∣IR
, (34)

I7 = c2
2

8d

∫
B1/μ

dd x |x |2 R3
0

∣∣∣IR
, (35)

where the functions R0, R1, and R2 with omitted arguments
were introduced in (23), and the symbol “IR” shows that
some type of infrared regularization has been applied. Addi-

tionally, the equal sign
IR= means that the constructions on

both sides contain the same infrared logarithmic singulari-
ties. Non-logarithmic singularities, depending on the back-
ground field, do not appear in the calculations. At the same
time all constants are cancelled due to definition (14).

Let us formulate the main result of the paper. The divergent
part of the multi-loop pure effective action, defined in formula
(14), has the following representation

Wh[B] − Wh[0]
∣∣∣
IR-reg.

IR= ηW−1 + o(g2), (36)

where

η
IR= −

6∑
n=1

Jn
IR= g2

(
(3d − 3)I1 + (3d − 4)

2
I2

+ (d + 2)

2
I3 + (2d − 5)

2d
I4 + (8 − d)

2
I5 + (d + 2)

2
I6

+ (3d − 4)

2
I7 − I8 + 3

2
I9 + 5

2
I10

)
. (37)
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The simulations for four types of regularization, dimen-
sional one and three types of cutoff one, are presented in
Sect. 5.2. We note that formula (36) does not include coun-
terterms. They are calculated separately in Sect. 4.4, and they
are also presented in Sect. 5.3. All computations give proper
results, consistent with the answers obtained earlier. Thereby,
our new formula is confirmed and can be used in calcula-
tions with other different regularizations. We also compare
the regularizations between themselves in Sect. 5 and show
their pros and cons in the sense of computational difficulty.

Additionally, we note that we have written only new result
for the second loop. The first loop, see the second term on
the right hand side of formula (11), is very well known, see
[15,16,18], and can be found in Sect. 4.4 devoted to the
quantum equation of motion.

3 Modified vertices

In the section we improve the diagram technique rules by
introducing several types for each vertex. First of all, let us
note that the standard vertices �3 and �3 from (7) and (9)
are linear functionals of the background field. Hence, we can
divide them into two parts in the following way

�0
3 =

∫
Rd

dd x

(
∂xμ

δ

δ J a
ν

)
f abc δ

δ J b
μ

δ

δ J c
ν

,

�1
3 = 1

2

∫
Rd

dd x

(
f adexσ F̃d

σμ

δ

δ J e
ν

)
f abc δ

δ J b
μ

δ

δ J c
ν

, (38)

�0
3 =

∫
Rd

dd x

(
∂xμ

δ

δb a

)
f abc δ

δ J b
μ

δ

δb̄ c
,

�1
3 = 1

2

∫
Rd

dd x

(
f adexσ F̃d

σμ

δ

δb a

)
f abc δ

δ J b
μ

δ

δb̄ c
, (39)

where we introduced the dimension of the space in a general
way (by the symbol d), so that it would be possible to consider
the dimensional regularization. Before the regularization is
applied, it is equal to 4. In the same way, the vertices from
(38) correspond to the Yang–Mills fields, while the formulae
from (39) are related to the interaction of the ghost fields and
the Yang–Mills field.

According to the main idea we define the corresponding
Feynman diagram technique for the new vertices. They are
depicted in Figs. 3, 4, and 5, where we have marked the
derivative ∂xμ by a black dot and the simplified background
field B̃μ by a cross. Such type of technique rules is a modified
version of one suggested in the paper [21]. Also, we should
note that the arcs on the vertices symbolise the summation of
the corresponding space indices, and the order of the external
lines is related to the order of the group indices in the structure
constant.

Fig. 3 Diagram technique elements for the new three-vertices (without
the ghost field) defined in formula (38)

Fig. 4 Diagram technique elements for the new three-vertices (with
the ghost field) defined in formula (39)

Also, we note that the new vertices and the previous ones
satisfy the following relations

�0
3 = �3

∣∣
B=0, �1

3 = �3
∣∣

B→B̃,

�0
3 = �3

∣∣
B=0, �1

3 = �3
∣∣

B→B̃ .

(40)

To proceed we need to find the asymptotics for the initial
Green’s functions G0 and G1 νρ . They can be written as the
series in powers of the background field components. For
convenience, we define auxiliary functions Gi

0, Gi
1 νρ , where

i = 0, 1, 2. The functions have the following form

G1
0(x, y) = 1

2
xμ F̃μσ yσ R0(x − y),

G1
1 νρ(x, y) = δνρG1

0(x, y) + 2R1(x − y)F̃νρ, (41)

G2
0(x, y) = 1

4

(
xμ F̃μσ yσ

)2
R0(x − y)

+ 1

12
R1(x − y)(x − y)αβ F̃ασ F̃βσ

+ 1

12

(
R2(x − y) − |x − y|2

27π2

)
F̃αβ F̃αβ, (42)

G2
1 νρ(x, y) = δνρG2

0(x, y) + R2(x − y)xμ F̃μσ yσ F̃νρ

+ 2

(
R2(x − y) − |x − y|2

27π2

)
F̃νσ F̃σρ, (43)

where we have used definitions (23). Then, using the func-
tions defined above and the results from the papers [49,50,52,
58], we obtain the following decompositions for the Green’s
functions from (10), when s → +0,

G0(x, y)

∣∣∣
B→s B̃

= G0
0(x, y) + sG1

0(x, y)

+s2G2
0(x, y) + O(s3), (44)

G1νρ(x, y)

∣∣∣
B→s B̃

= G0
1νρ(x, y) + sG1

1νρ(x, y)

+s2G2
1νρ(x, y) + O(s3), (45)
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Fig. 5 Diagram technique element for the four-vertex

Fig. 6 Diagram technique elements for the new auxiliary functions,
see formulae (41)–(43)

where we have used the explicit formula for path-ordered
exponential (15) in the particular case

�(x, y)

∣∣∣
B→s B̃

= exp

(
s

2
xμ F̃μσ yσ

)
. (46)

The diagram technique representation of the new func-
tions is presented in Fig. 6, where the index symbolises the
top index of the corresponding function.

Let us note that all new elements of the diagram technique
have the top index, which symbolises the degree of the field
strength tensor F̃μν . This is quite convenient, because we can
find a contribution, corresponding to the classical action W−1

from (3) by explicit summation. Additionally, we define the
following auxiliary functionals for i = 1, 2, 3

gi
1 = 1

2

∫
Rd

dd x
∫
Rd

dd y J a
μ(x)Gi ab

1 μν(x, y)J b
ν (y),

gi
0 =

∫
Rd

dd x
∫
Rd

dd y b̄ a(x)Gi ab
0 (x, y)b b(y), (47)

which are actually extended versions of (13).

4 Two-loop contribution

In this section we derive a universal formula for the two-loop
contribution, which can be used for any type of regulariza-
tion. For this purpose, we get an auxiliary representation,
based on the modified vertices from Sect. 3. We want to pro-
ceed in several stages. Firstly, we write out terms for all pos-
sible combinations. Indeed, after substitution of (38), (39),
and (41)–(43) into the pure effective action we get g2W−1[B]
multiplied by three types of contributions: from the �2

3-term

−
(

�1
3�0

3

J a
μ(0)

6

δ

δ J a
μ(0)

(
g1

1 g0
1 g0

1

)
2

+ 1

2
�0

3�0
3

× J a
μ(0)

6

δ

δ J a
μ(0)

(
g2

1 g0
1 g0

1 + g1
1 g1

1 g0
1

)
2

)∣∣∣∣
UV-reg.
IR-reg.

1PI part
, (48)

from the �2
3-term

−
(

�1
3�

0
3

J a
μ(0)

2

δ

δ J a
μ(0)

(
g1

1 g0
0 g0

0 + 2g0
1 g1

0 g0
1

)
2

+1

2
�0

3�
0
3

J a
μ(0)

2

δ

δ J a
μ(0)

×
(
g2

1 g0
0 g0

0 + g0
1 g2

0 g0
0 + g0

1 g1
0 g1

0

)
2

)∣∣∣∣
UV-reg.
IR-reg.

1PI part
, (49)

and from the �4-term

(
�4

J a
μ(0)

4

δ

δ J a
μ(0)

(
2g2

1 g0
1 + g1

1g1
1

)
2

)∣∣∣∣
UV-reg.
IR-reg.

1PI part
, (50)

where we have introduced some type of ultraviolet and
infrared regularizations. All the combinations will be ana-
lyzed in the next sections. Also, let us note that in the deriva-
tion of the above formulae we have used two identities for
the vertices �1

3 and �1
3

[
�1

3, J a
μ(0)

] = 0,
[
�1

3, J a
μ(0)

] = 0,

for all μ and a. They follow from the fact that simplified field
(25) is equal to zero at x = 0.

4.1 Contribution from �2
3

Let us work with formula (48). The contributions from it
can be drawn by using the Feynman diagram technique, see
Figs. 3, 4, 5, 6, as it is shown in Fig. 7.

Thus, we have six significantly different diagrams. For-
tunately, we can transform them by using two diagram rela-
tions, presented in Fig. 8. Such equalities were derived in
the analytical form in the paper [18], but they can be verified
independently in the present restrictions.

Indeed, we need to understand, that we can transfer the
element • or × from one line to other two with the minus
sign. In other words, we should verify the rule “integration
by parts”. It is quite clear, because for the dot on the left hand
side we can apply the usual integration by parts. For the dot on
the right hand side, we also can use the integration by parts,
because the integrand is a function of the difference x − y,
and, hence, we can transfer the corresponding derivative from
y to x and vice versa. For the crosses the property follows
from equality (2) for the structure constants.

Thereby, after applying the relations from Fig. 8 to the
construction in Fig. 7, we can rewrite the contribution from
the �2

3-term in the following form

−
4∑

n=1

Jn, (51)
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Fig. 7 Contribution from the
�2

3-term, where the function q,
such that q(•) = 0 and
q(×) = 1, shows the degree of
the background field in the
corresponding vertex. The
symbol ◦ denotes that the vertex
does not contain the integration
and it is considered at the zero.
The numbers i, j, k mean the
type of the propagator, see
Fig. 6

Fig. 8 Diagram equalities, where the function q, such that q(•) = 0
and q(×) = 1, shows the degree of the background field in the corre-
sponding vertex. The symbol ◦ denotes that the corresponding vertex

does not contain the integration and it is considered at the zero. The
numbers i, j, k mean the type of the propagator, see Fig. 6

Fig. 9 The definitions of the basic graphs for the �2
3-contribution,

where the symbol � can be replaced by × or by •. The symbol ◦ denotes
that the corresponding vertex does not contain the integration and it is
considered at the zero. The numbers i, j, k mean the type of the propa-
gator, see Fig. 6

where

Jn = αng2

2

⎛
⎝ ∑

i+j+k=2

In,•
i,j,k +

∑
i+j+k=1

In,×
i,j,k

⎞
⎠ , (52)

and

α1 = −4, α2 = 2, α3 = 1, α4 = 1, (53)

where we have used the same notations forJn , as in the paper
[18], and the definitions for In,•

i,j,k and In,×
i,j,k are presented in

Fig. 9.

Further, to proceed, we need to introduce some auxiliary
integrals. Let B1/μ denotes a ball of the radius 1/μ, where
μ > 0, and with the center at the origin. Then we define the
following seven objects

I1 =
∫

B1/μ

dd x f adc f bdc
(
∂xν G2 ab

1 νμ(x, y)
)

×
(
∂yμ R0(x − y)

)
R0(x − y)

∣∣∣∣
IR-reg.

y=0
, (54)

I2 =
∫

B1/μ

dd x f dca f dcb
(
∂xν R0(x − y)

)

×
(
∂yμ R0(x − y)

)
G2 ab

1 μν(x, y)

∣∣∣∣
IR-reg.

y=0
, (55)

I3 =
∫

B1/μ

dd x f dca f ecb
(
∂xν G1 de

1 νμ(x, y)
)

×
(
∂yσ R0(x − y)

)
G1 ab

1 σμ(x, y)

∣∣∣∣
IR-reg.

y=0
, (56)

I4 =
∫

B1/μ

dd x f dca f ecb
(
∂xν G1 de

1 σμ(x, y)
)

×R0(x − y)
(

− ∂xν G1 ab
1 σμ(x, y)

)∣∣∣∣
IR-reg.

y=0
, (57)

I5 =
∫

B1/μ

dd x f adc f bdc
(

xσ

2
f age F̃ g

σνG1 eb
1 νμ(x, y)

)
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×
(
∂yμ R0(x − y)

)
R0(x − y)

∣∣∣∣
IR-reg.

y=0
, (58)

I6 =
∫

B1/μ

dd x f cea f cbd R0(x)
(

− ∂xμ G1 eb
1 νμ(x, y)

)

× xσ

2
f agd F̃ g

σν R0(x − y)

∣∣∣∣
IR-reg.

y=0
, (59)

I7 =
∫

B1/μ

dd x f aec f dbc xσ

2
f ag1d F̃ g1

σν R0(x − y)

× xρ

2
f eg2b F̃ g2

ρν R0(x − y)R0(x − y)

∣∣∣∣
IR-reg.

y=0
, (60)

where in the process of calculation we have used the explicit
formulae for the Green’s functions (41)–(43). Of course, it is
assumed that an infrared (x ∼ y) regularization is introduced
for all Ri -functions under the integration.

Then, our main idea is to express the diagrams from Fig. 9
in terms of the last integrals. It is a quite simple and boring
computations, so we present only the final compliance table
(see below).

I1,•
2,0,0

IR= −I2, I2,•
2,0,0

IR= −dI1, I3,•
2,0,0

IR= −dI1 − dI5, I4,•
2,0,0

IR= −I1,

I1,•
0,2,0

IR= −I1 − I5, I2,•
0,2,0

IR= −dI2, I0,2,0
3,• IR= −dI1, I0,2,0

4,• IR= −I1 − I5,

I1,•
0,0,2

IR= −I1, I2,•
0,0,2

IR= −dI1, I3,•
0,0,2

IR= −dI2, I4,•
0,0,2

IR= −I2,

I1,•
1,1,0

IR= I3 + 1
2 I5, I2,•

1,1,0
IR= d

2 I5, I3,•
1,1,0

IR= 0, I4,•
1,1,0

IR= 1
d I4 − I6,

I1,•
1,0,1

IR= −I3, I2,•
1,0,1

IR= −I4, I3,•
1,0,1

IR= 0, I4,•
1,0,1

IR= −I3,

I1,•
0,1,1

IR= − 1
d I4 + I6, I2,•

0,1,1
IR= 0, I3,•

0,1,1
IR= −dI3, I4,•

0,1,1
IR= −I3 − 1

2 I5,

I1,×
1,0,0

IR= 1
2 I5, I2,×

1,0,0
IR= −dI7, I3,×

1,0,0
IR= −dI6 − dI7, I4,×

1,0,0
IR= −I5,

I1,×
0,1,0

IR= −I6 − I7, I2,×
0,1,0

IR= d
2 I5, I3,×

0,1,0
IR= 0, I4,×

0,1,0
IR= −I6 − I7,

I1,×
0,0,1

IR= I5, I2,×
0,0,1

IR= 0, I3,×
0,0,1

IR= 0, I4,×
0,0,1

IR= − 1
2 I5.

Using the last table and formula (51), we obtain immedi-
ately the following results

J1
IR= g2

(
4I1 + 2I2 + 2

d
I4 − 2I5 + 2I7

)
, (61)

J2
IR= g2

(
− 2dI1 − dI2 − I4 + dI5 − dI7

)
, (62)

J3
IR= g2

(
− dI1 − d

2
I2 − d

2
I3 − d

2
I5 − d

2
I6 − d

2
I7

)
,

(63)

J4
IR= g2

(
− I1 − 1

2
I2 − I3 + 1

2d
I4 − 3

2
I5 − I6 − 1

2
I7

)
,

(64)

and, finally, we get

−
4∑

n=1

Jn
IR= g2

(
(3d − 3)I1 + (3d − 3)

2
I2

Fig. 10 Contributions from �2
3 and �4, where the function q, such that

q(•) = 0 and q(×) = 1, shows the degree of the background field in
the corresponding vertex. The symbol ◦ denotes that the corresponding
vertex does not contain the integration and it is considered at the zero.
The numbers i, j, k mean the type of the propagator, see Fig. 6

+ (d + 2)

2
I3 + (2d − 5)

2d
I4 + (7 − d)

2
I5

+ (d + 2)

2
I6 + (3d − 3)

2
I7

)
. (65)

Let us note one more time that in all calculations, we kept
the parameter of the dimension to have the ability to study
the case of dimensional regularization. In all other situations
(without deformation of the dimension of the space) we can
substitute d = 4.

Also, we need to comment it additionally that the last

relations are written with
IR=. It means that we did not control

a finite non-singular part.

4.2 Contribution from �2
3

Now we are going to find the divergence in the �2
3-term using

formula (49). Actually, we need to repeat all steps, that have
been undertaken in the case of the �2

3-term, but in simplified
form, because we have only one type of the diagram.

Indeed, in this case the corresponding contribution can be
rewritten in the form

123
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− J5
IR= g2

2

⎛
⎝ ∑

i+j+k=2

I5,•
i,j,k +

∑
i+j+k=1

I5,×
i,j,k

⎞
⎠ , (66)

where the objects I5,•
i,j,k and I5,×

i,j,k are depicted in Fig. 10, and
the form factor J5 is selected in the same form, as it was in
the work [18].

To proceed we need to introduce one more type of integral
in addition to the ones from (54)–(60) in the form

I8 =
∫

B1/μ

dd x f dca f dcb
(
∂yμ R0(x − y)

)

R0(x − y)
(
∂xμ G2 ab

0 (x, y)
)∣∣∣∣

IR-reg.

y=0
. (67)

Then we give the corresponding table with relations,
which has the form

I5,•
2,0,0

IR= −I8, I5,•
1,1,0

IR= 1
2 I5, I5,×

1,0,0
IR= −I7,

I5,•
0,2,0

IR= −I2, I5,•
1,0,1

IR= 0, I5,×
0,1,0

IR= 1
2 I5,

I5,•
0,0,2

IR= −I8, I5,•
0,1,1

IR= 0, I5,×
0,0,1

IR= 0.

Hence, after summing all terms we get the answer depend-
ing only on four types of the integrals

− J5
IR= g2

(
−1

2
I2 + 1

2
I5 − 1

2
I7 − I8

)
. (68)

This contribution gives the required part from the two-loop
diagram, involving the ghost fields.

4.3 Contribution from �4

The last divergence follows from the �4-term, see formula
(50). In the Feynman diagram language, it can be formulated
by using the element in Fig. 5. Hence, the contribution can
be decomposed on the basis of three diagrams, depicted in
Fig. 10, and has the following view

− J6
IR= g2

4

∑
i+k=2

(
I6,1
i,k − I6,2

i,k + I6,3
i,k

)
, (69)

where we again used the notation convenient for comparison
with the work [18].

Further, introducing two auxiliary constructions

I9 = c2
2 R2

1(x)

∣∣∣IR-reg.

x=0
, I10 = c2

2 R0(x)R2(x)

∣∣∣IR-reg.

x=0
, (70)

we can write out the table

I6,1
2,0

IR= − 5
3 I10, I6,2

2,0
IR= − 20

3 I10, I6,3
2,0

IR= 0,

I6,1
1,1

IR= 2I9, I6,2
1,1

IR= 0, I6,3
1,1

IR= 4I9,

I6,1
0,2

IR= − 5
3 I10, I6,2

0,2
IR= − 20

3 I10, I6,3
0,2

IR= 0,

and the answer in the form

− J6
IR= g2

(
3

2
I9 + 5

2
I10

)
. (71)

4.4 Quantum equation of motion

In this section we want to discuss briefly a quantum equation
of motion. This leads to a counterterm, that appears in an
effective action after the renormalization of the pure effective
action. Such way gives the ability to compare answers in
the case of the dimensional regularization with the results
obtained earlier.

First of all, let us derive it in the first powers of the coupling
constant. As it was noted in the works [20,39,59], we need
to consider the diagram “glasses”(

− (1 − gθ)2

2g2 �2
1 − (1 − gθ)�1�3 + (1 − gθ)�1�3

+O(
g2))Z [J, b, b̄ ]

∣∣∣
Jμ=b=b̄=0

= 0, (72)

where we have used the notations from Sect. 2.1, see for-
mulae (6), (7), (9), and (13). Also, θ = θ(g) is the second
renormalization constant for the Yang–Mills theory, that will
be discussed below.

Further, we can proceed in two different ways: find a
quadratic form, as it was made in [20], from which the equa-
tion follows, or find a variation by the vertex �1. Both ways
are possible and give the same equality

− (1 − gθ)

g
�1 − g�3g1 + g�3g0 + O(

g2) = 0. (73)

Left hand side of the last relation is the functional of the
auxiliary arbitrary smooth field Jμ(x). It means that we can
consider only the integrand. Hence, using the integration by
parts to remove the derivative from the field Jμ(x), we obtain

− (1 − gθ)

g

( − Dcb
xμ

Fb
μν(x)

) + g f abc Dae
xμ

G eb
1νν(x, y)

∣∣
y=x

+g f abc Dae
xν

G eb
1νμ(x, y)

∣∣
y=x − 2g f abc Dae

xν
G eb

1μν(x, y)
∣∣
y=x

−g f abc Dae
xμ

Geb
0 (x, y)

∣∣
y=x + O(

g2) = 0, (74)

where the second, the third, and the fourth terms follow from
−g�3g1.

We are interested only in the part proportional to the clas-
sical equation of motion Dcb

xμ
Fb

μν(x). It is quite easy to see
that for calculations we can use only the second term from
(22), where the first Seeley–DeWitt coefficients have the fol-
lowing form, see [18,50],

a1μν(x, y) = 2Fμν(y) + (x − y)σ
(

∇yσ Fμν(y)

+ δμν

6
∇yρ Fσρ(y) − 2Bσ Fμν(y)

)
+ O(|x − y|2),

(75)

a0(x, y) = 1

6
(x − y)σ ∇yρ Fσρ(y) + O(|x − y|2), (76)

where ∇yσ · = [Dyσ , · ]. We have written only the first two
orders, because other terms do not contribute. Then, we can
write out one more auxiliary formula
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f abc∇ae
yμ

f edb Fd
νρ(y) = −c2 Dca

yμ
Fa

νρ(y), (77)

where we have used formula (2). Therefore, after applying
the covariant derivative to (75)–(76) and substituting relation
(77), we get

f abc Dae
xμ

a eb
1νρ(x, y)

∣∣
y=x

= −c2

(
Dca

xμ
Fa

νρ(x) + δνρ

6
Dca

xσ
Fa

μσ (x)

)
, (78)

f abc Dae
xμ

aeb
1 (x, y)

∣∣
y=x = −c2

6
Dca

xσ
Fa

μσ (x). (79)

Hence, equation (74) can be rewritten in the form

Dcb
xμ

Fb
μν(x)

(
1

g
− θ − 8

3
c2gR1(z)

∣∣∣IR-reg.

z=0

)
+ . . . = 0, (80)

where the dots denote the terms, we are not interested in.
They are either without the logarithmic singularity or with
higher degrees of the coupling constant.

Now we need to use the general renormalization theory
for the Yang–Mills theory, see the works [7,20]. To find a
form factor for a counterterm in the two-loop calculations,
we need to make one-loop renormalizations of the effective
action and the quantum equation of motion. Let us do it in
stages.

As it was noted in the papers [15,16], the first loop contains
a divergent part, that can be represented in the following form
after some type of infrared regularization

− 11

3

c2

4
W−1 R1(z)

∣∣∣IR-reg.

z=0
. (81)

Hence, to avoid the presence of the divergence, according
to the general theory we need to change the coupling constant
as

1

g2 → 1

g2 + 11

3
c2 R1(z)

∣∣∣IR-reg.

z=0
. (82)

After that we can move on to the quantum equation in the
form (80). Firstly, we replace the coupling constant g by the
renormalized one. It means that the expression in parentheses
from (80) has the view

1

g
− θ − 5

6
c2gR1(z)

∣∣∣IR-reg.

z=0
. (83)

Then, according to the main idea of the renormalization
procedure, we make one more shift

θ → θ − 5

6
c2gR1(z)

∣∣∣IR-reg.

z=0
(84)

to cancel the divergence. This transformation leads to the
appearance of an additional vertex with two external lines

�2 = −R1(z)
∣∣∣IR-reg.

z=0

5g2c2

6

×
∫
Rd

dd x
δ

δ J a
ν (x)

−→
D ab

xν

−→
D bc

xμ

δ

δ J c
μ (x)

, (85)

which does not appear in the pure effective action and which
should be included in the exponential from (12). Then, the
pure effective action after the one-loop renormalization get
the following counterterm to the two-loop contribution

− J7
IR= R1(z)

∣∣∣IR-reg.

z=0

5g2c2

6∫
Rd

dd x
−→
D ab

xν

−→
D bc

xμ
G ca

1μν(x, y)

∣∣∣IR-reg.

y=x
. (86)

5 Some types of regularization

5.1 Dimensional regularization

Now we are going to apply formula (37) in the case of dimen-
sional regularization. As it was noted above, we preserved the
parameter of dimension, see formulae in Sect. 2.3, hence, it
is possible. Of course, we are not going to explain all the sub-
tleties of the regularization, but we give only required infor-
mation for our computations. Detailed information about the
introduction of the regularization can be found in the papers
[13,14,20].

First of all we should draw the attention that the dimension
of the space is not an integer. It is equal to d = 4−ε, where ε

is a dimensionless parameter of the regularization. It means
that we can obtain the standard theory in the following limit
ε → +0.

Then, according to formulae from Sect. 2.3, we need to
introduce the regularized versions of the Ri (x)-functions,
where i = 0, 1, 2. They have the following definitions, see
the first part in Fig. 11,

Rε
0(x) = �(d/2 − 1)

4πd/2 |x |2−d , (87)

Rε
1(x) = 1

16π2

(
2μ−ε

ε
+ �(d/2 − 2)

πd/2−2 |x |4−d
)

,

Rε
2(x) = 1

32π2

(
− |x |2μ−ε

ε
+ �(d/2 − 3)

2πd/2−2 |x |6−d
)

, (88)

where μ is an auxiliary parameter to keep the dimension of
the constructions. It has a finite non-zero fixed value. Also,
let ε > 0 be small.

It is quite easy to verify that after removing the regular-
ization ε → +0, we obtain the standard functions from (23)
with additional terms

Rε
0(x) → R0(x),

Rε
1(x) → R1(x) − γ + ln(π)

(4π)2 ,

Rε
2(x) → R2(x) + γ + ln(π)

4(4π)2 |x |2. (89)
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Fig. 11 In all figures a deformed function h(s) of the s2 is depicted. The first one corresponds to s2−ε . The others are related to (96) and (97),
respectively. The dash-point line corresponds to s2

The last additional terms can not be considered, because
they are from the ZM-term, and therefore, according to the
results of the paper [57], they are not affecting the divergent
part of the two-loop contribution.

Then, for the simplicity of calculations, we present some
useful properties of the last regularized functions

− ∂xμ∂xμ Rε
0(x) = δd(x),

− ∂xμ∂xμ Rε
1(x) = Rε

0(x),

− ∂xμ∂xμ Rε
2(x) = 2Rε

1(x) − μ−ε

16π2 , (90)

− 2∂xμ Rε
1(x) = xμ Rε

0(x), −2∂xμ Rε
2(x) = xμ Rε

1(x),

xμ∂xμ Rε
0(x) = (2 − d)Rε

0(x),

|x |2∂xμ Rε
0(x)∂xμ Rε

0(x) = (2 − d)2 Rε
0(x)Rε

0(x). (91)

It is quite interesting that in the case of the dimensional
regularization the deformed functions inherit the properties
of the non-regularized ones. In the case on a cutoff regu-
larization some properties are violated. Also the mixed type
regularization, created on the basis of the dimensional one
and suggested in [60], deforms some relations.

By using the last properties and definitions (87) and (88),
we can simplify the integrals (29)–(35) and find some rela-
tions among them. They have the form

I1
IR=

(
1

6
− (d − 24)

24

)
I3 + (2 − d)

12d
I4 + (24 − d)

d
Iaux,

I2
IR= −I1, I5

IR= −I3, I6
IR= 1

2d
I4, I7

IR= − 1

4d
I4,

I8
IR=

(
1

6
− d

24

)
I3 + (2 − d)

12d
I4 − Iaux,

where actually we need to calculate only two integrals

I3 = (2 − d)c2
2

d

∫
dd x Rε

0(x)Rε
0(x)Rε

1(x),

I4 = −2c2
2

∫
dd x Rε

0(x)
(
∂xμ Rε

1(x)
)(

∂xμ Rε
1(x)

)
,

and one auxiliary integral

Iaux = (2 − d)c2
2

283π2

∫
dd x Rε

0(x)Rε
0(x). (92)

From the last manipulations we see that indeed we need to
use only three basic relations. They have the form, see [20],

Rε
0(x)Rε

0(x)Rε
1(x) ∼ μ−2ε

(4π)4

(
2

ε2 + 1

ε

)
δd(x), (93)

Rε
0(x)

(
∂xμ Rε

1(x)
)(

∂xμ Rε
1(x)

)
∼ 1

(4π)4

d

4ε
δd(x), (94)

Rε
0(x)Rε

0(x) ∼ 1

8π2

1

ε
δd(x). (95)

Hence, after the preparations we can easily write out
the integrals I1–I10 and find the two-loop contribution. All
answers can be found in the result tables in Sect. 5.3.

5.2 Cutoff regularization

Naive approach: cutoff-1 and cutoff-2. Now we move on to
the second type of regularization. It preserves the dimension
of the space (d = 4) and can be introduced by a deformation
of the interval |x − y|2 in the exponential from formula (20).
There are a lot of ways to make this change, but we are
interested in two approaches, that have appeared earlier in
the papers [18,27]. They can be defined according to the
following formulae, see Fig. 11,

Cutoff-1: |x |2 → t�1 (x) =
{

|x |2, |x | > 1/�;
1/�2, |x | � 1/�,

(96)

Cutoff-2: |x |2 → t�2 (x) = |x |2 + 1/�2, (97)

where in the both cases � is a dimension parameter of the
regularization, such that the construction |x |� is dimension-
less. It is easy to verify that the limit � → +∞ removes the
regularization.

In this case the regularized versions of the auxiliary func-
tions (23) have the form
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R�,i
0 (x) = 1

4π2t�i (x)
, R�,i

1 (x) = − ln(t�i (x)μ2)

16π2 ,

R�,i
2 (x) = t�i (x)

(
ln(t�i (x)μ2) − 1

)
64π2 , (98)

where i = 1, 2, and μ is an auxiliary dimension parameter
that takes a finite value.

Let us move on to the calculation. We start with the first
type of regularization. In this case the functions R�,1

j (x),
where j = 0, 1, 2, does not satisfy relations (90) and (91). It
means that we need to compute all integrals I1–I8 separately.
Let us note that the region |x | � 1/� does not give a contri-
bution to the integrals. Hence, we should consider only the
region |x | > 1/�. Then, using the basic formulae∫ 1/μ

1/�

dr

r
= ln(�/μ) = L ,

∫ 1/μ

1/�

dr

r
ln(rμ) = − L2

2
, (99)

we get the results presented in the second column of the tables
in Sect. 5.3.

Answers for the second type of regularization can be
obtained with some simplifications, because the objects
R�,2

j (x), where j = 0, 1, 2, satisfy relations (91). Hence,
we can express I1–I8 through some basic auxiliary integrals.
They have the form

I1
aux =

∫ 1/μ2

0
ds

s2

64π6(s + 1/�2)3
IR= 1

(4π)4

8L

π2 , (100)

I2
aux =

∫ 1/μ2

0
ds

−s ln
(
(s + 1/�2)μ2

)
π2(4π)4(s + 1/�2)2

IR= 1

(4π)4

2(L2 − L)

π2 , (101)

I3
aux =

∫ 1/μ2

0
ds

s

16π4(s + 1/�2)2
IR= 1

(4π)4 32L . (102)

These integrals have been defined from the point of conve-
nience. Of course, we can use any their linear combinations.
Then, we have

I1
IR= π2c2

2

223
I1
aux − π2c2

2

2
I2
aux − 5c2

2

273
I3
aux, (103)

I8
IR= π2c2

2

243
I1
aux + π2c2

2

273
I3
aux, (104)

I3
IR= π2c2

2

24 I1
aux − π2c2

2

2
I2
aux, I4

IR= −π2c2
2

2
I1
aux, (105)

I5
IR= −π2c2

2

24 I1
aux + π2c2

2

2
I2
aux, (106)

I6
IR= −π2c2

2

24 I1
aux, I7

IR= π2c2
2

25
I1
aux. (107)

A contribution from I2 is a little bit different and can be
obtained with the use of I1

aux–I3
aux and the following equality

∫ 1/μ2

0
ds

s3 ln
(
(s + 1/�2)μ2

)
2(s + 1/�2)4

IR= −L2 + 11L/6. (108)

Finally, after all calculations we get the third column in
the tables in Sect. 5.3.
Cutoff-3, smoothed version of the cutoff-1 In the previous
section we have studied two types of a cutoff regularization.
Let us draw attention to the fact that no one satisfies repro-
ducing equations (90) in the form

−∂xμ∂xμ R1(x) = R0(x),

−∂xμ∂xμ R2(x) = 2R1(x) − 1
16π2 .

(109)

So in this section we want to deform the cutoff-1 regular-
ization in such way that the last equations would be satisfied.
Moreover, we take the first function R�,3

0 (x) = R�,1
0 (x) in

the same form, see formulae (96) and (98). The next functions
can be defined as follows

R�,3
1 (x) = 1

4π2

{
− 1

4 ln(|x |2μ2) − 1
8 |x |−2�−2;

1
2 L − 1

8 |x |2�2,
(110)

4π2 R�,3
2 (x) = − α̃L

8�2 +
{

κ
�,3
2,1 ;

κ
�,3
2,2 ,

(111)

with

κ
�,3
2,1 = 1

16
|x |2( ln(|x |2μ2) − 1

) + 1

16
�−2 ln(|x |2�2)

+ 1

96
|x |−2�−4 + 3

32
�−2,

κ
�,3
2,2 = −1

8
|x |2 L + 1

96
|x |4�2 + 1

32
|x |2,

where α̃ is an auxiliary number from R. Also, the first line
corresponds to the region |x | > 1/�, while the second one
to the region |x | � 1/�. In the rest of the work this notation
will be omitted as a rule.

In addition to equalities (110) and (111), these functions
also have the property of intermediate smoothness, which
can be written as follows

R�,3
i (x)

∣∣∣|x |=1/�−0
= R�,3

i (x)

∣∣∣|x |=1/�+0
, (112)

where i = 1, 2.
Additionally, we need to introduce two auxiliary functions

R�,3
3 (x) and R�,3

4 (x), which solve the following equations

−|x |2
16

R�,3
0 (x) + R�,3

1 (x) + ∂xμ∂xμ

(
− |x |2

48
R�,3

1 (x)

+ 5

12
R�,3

2 (x) − 5

293π2 R�,3
3 (x)

)
= 0 (113)

and

−|x |2
16

R�,3
0 (x) + ∂xμ∂xμ

(
− |x |2

48
R�,3

1 (x)

− 1

12
R�,3

2 (x) + 1

293π2 R�,3
4 (x)

)
= 0, (114)

which are actually equalities from (10), reformulated for (25)
and (26). They have the form
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R�,3
3 (x) = |x |2 − 8

5

{
1
4 �−2 ln(|x |2�2) + 1

6 |x |−2�−4;
1

24

(|x |4�2 − �−2
) + 1

6 �−2,
(115)

R�,3
4 (x) = |x |2 + 8

{
1
4 �−2 ln(|x |2�2) + 1

6 |x |−2�−4;
1

24

(|x |4�2 − �−2
) + 1

6 �−2.
(116)

Now we are ready to proceed the calculations. Following
the general idea we need to compute integrals (29)–(35) with
the use of new formulae. Fortunately, we can do some simpli-
fications. Indeed, we can note that the integrals I1 and I4–I9

have the same singularities as in the case of the cutoff-1 reg-
ularization. Hence, we need to compute only three objects:
I2, I3, I10.

All results are presented in the two tables in Sect. 5.3.

5.3 Tables of form factors

In the section we present our calculations in the form of
two tables, see below. In the first one we give the singular-
ities of integrals (29)–(35) for different types of regulariza-
tion: dimensional one from Sect. 5.1, cutoff-1, cutoff-2, and
cutoff-3 from Sect. 5.2.

Dim. reg. Cutoff-1 reg. Cutoff-2 reg. Cutoff-3 reg.

Integral (4π)4μ2ε

c2
2

(
IR
part

)
(4π)4

c2
2

(
IR
part

)
(4π)4

c2
2

(
IR
part

)
(4π)4

c2
2

(
IR
part

)
I1 −1/ε2 − 5/8ε −L2 − L/4 −L2 + 5L/4 −L2 − L/4
I2 1/ε2 + 5/8ε L2 + 5L/4 L2 − 11L/36 L2 + 5L(1/4 + α̃/6)

I3 −1/ε2 − 1/4ε −L2 −L2 + 3L/2 −L2 + L/2
I4 −2/ε −4L −4L −4L
I5 1/ε2 + 1/4ε L2 L2 − 3L/2 L2

I6 −1/4ε −L/2 −L/2 −L/2
I7 1/8ε L/4 L/4 L/4
I8 1/8ε L/4 L/4 L/4
I9 4/ε2 4L2 4L2 4L2

I10 0 −2L −2L −2α̃L

In the second table we present several linear combinations
of the integrals, computed above, such as contribution (37)
to the pure effective action (14) and its separate parts (61)–
(65), (68), and (71). Also, we study additional counterterm
(86) from Sect. 4.4 to compare the answer for the dimensional
regularization.

Dim. reg. Cutoff-1 reg. Cutoff-2 reg. Cutoff-3 reg.

Contribution (4π)4μ2ε

g2c2
2

(
IR
part

)
(4π)4

g2c2
2

(
IR
part

)
(4π)4

g2c2
2

(
IR
part

)
(4π)4

g2c2
2

(
IR
part

)
J1 −4/ε2 − 5/2ε −4L2 −4L2 + 53L/9 −4L2 + 5α̃L/3
J2 8/ε2 + 3/ε 8L2 8L2 − 106L/9 8L2 − 10α̃L/3
J3 2/ε2 + 1/ε 2L2 − L 2L2 − 35L/9 2L2 − L(2 + 5α̃/3)

J4 1/8ε −L/2 −17L/36 −L − 5α̃L/12
− ∑4

n=1 Jn −6/ε2 − 13/8ε −6L2 + 3L/2 −6L2 + 41L/4 −6L2 + 3L(1 + 3α̃/4)

−J5 −3/8ε −L −35L/36 −L(1 + 5α̃/12)

−J6 6/ε2 6L2 − 5L 6L2 − 5L 6L2 − 5α̃L
− ∑6

n=1 Jn −2/ε −9L/2 77L/18 L(2 − 5α̃/3)

−J7 −5/6ε not exist −25L/36 0
− ∑7

n=1 Jn −17/6ε — 43L/12 L(2 − 5α̃/3)

Let us comment the last results. First of all, we note that
our formula (37) reproduces the correct results for the second
loop in the case of dimensional regularization, see [20]. Thus,
we have checked it.

Secondly, we draw attention to the fact, that the countert-
erm in the case of cutoff-1 can not be calculated, because the
regularization after the first derivative loses the smoothness
near the diagonal. Of course, it is possible to compute it by
using the determinant of the operator [47], but it is not the
main aim of our paper.

At the same time we have obtained the same value for the
divergent part of the pure effective action (14) in the case of
cutoff-1, as it was calculated in [18]. Additionally, we have
got the results for two supplemental regularizations, one of
which depends on the auxiliary parameter that can be chosen
based on additional physical considerations.

5.4 Shift of a special type

In this section we are going to present the fourth type of
cutoff regularization, which is based on a shift of special

type of the cutoff-3, see [18]. Indeed, we can deform the
function R�,3

0 (x) in the region |x | � 1/� in the following
form
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R�,3
0 (x) → R�,4

0 (x) = R�,3
0 (x) + R̃�

0 (x),

R̃�
0 (x) = 1

4π2

{
0, |x | > 1/�;

�2 f0
(
�2|x |2), |x | � 1/�,

(117)

where the auxiliary function has the following properties:
f0(·) ∈ C∞([0, 1],R)

, ∂xμ∂xμ�2 f0
(
�2|x |2) → 0 in the

sense of generalized functions for � → +∞, and f0(1) = 0.
Then, according to the general idea, described above, we

need to find such R̃�
i (x), i = 1, 2, that equalities (109) would

be satisfied for R�,3
i (x) → R�,3

i (x) + R̃�
i (x). This leads to

the relations

−∂xμ∂xμ R̃�
1 (x) = R̃�

0 (x),

−∂xμ∂xμ R̃�
2 (x) = 2R̃�

1 (x).

(118)

They can be integrated in a very simple way. Firstly, let
us note that the ordinary Laplace operator ∂xμ∂xμ has the
following form r−3∂r r3∂r , where r = |x |, in the polar coor-
dinates, in the case of applying to the spherically-symmetric
functions. Secondly, let us define the following operation

ψ : C∞([0, 1],R) → C∞([0, 1],R)
, (119)

which acts according to the formula

ψ( f )(τ ) = −1

4

∫ τ

0
dt t−2

∫ t

0
ds s f (s), (120)

for all f ∈ C∞([0, 1],R)
and τ ∈ [0, 1].

Further, we introduce some auxiliary objects

f1 = ψ( f0) ∈ C∞([0, 1],R)
, (121)

a( f0) = 1

4

∫ 1

0
ds s f0(s) = − f ′

1(1) ∈ R, (122)

b( f0) = 1

4

∫ 1

0
ds f0(s) = − f ′

1(1) − f1(1) ∈ R. (123)

After all the preparations, we can write out the answer in
the form

R̃�
1 (x) = 1

4π2

{
a( f0)|x |−2�−2;

f1
(|x |2�2

) + b( f0),
(124)

R̃�
2 (x) = 1

4π2

{
κ�

2,1;
κ�

2,2,
(125)

with

κ�
2,1 = −1

2
�−2a( f0) ln

(|x |2�2)

+|x |−2�−4
(

−1

2
a( f0) + 2a( f1) + 1

4
b( f0)

)
,

and

κ�
2,2 = 2�−2ψ( f1)

(|x |2�2) − 1

4
|x |2b( f0)

+�−2
(

−1

2
a( f0) + 2b( f1) + 1

2
b( f0)

)
,

where the continuity properties of the first derivative were
used. In the same way we can reformulate and solve equations
(115) and (116). So we get for i = 3, 4

ρi

293π2 R̃�
i (x) = − 1

12
R̃�

2 (x) − |x |2
48

R̃�
1 (x)

+ �−2

64π2

{
a( f̂0)|x |−2�−2;

ψ( f̂0)
(|x |2�2

) + b( f̂0),
(126)

where f̂0(s) = s f0(s), ρ3 = 5, and ρ4 = −1.
Now we are ready to calculate the integrals (29)–(35).

Firstly, we note that it is convenient to use for computing the
results for the cutoff-3 case from the tables in Sect. 5.3. For
example, the integrals I4, I6, I7, and I8 are not violated. So
they equal

I4
IR= c2

2

(4π)4

( − 4L
)
, I6

IR= c2
2

(4π)4

( − L/2
)
,

I7
IR= c2

2

(4π)4

(
L/4

)
, I8

IR= c2
2

(4π)4

(
L/4

)
.

The next group of integrals has additional terms. Then, using
(124) and (125) we get

I1
IR= c2

2

(4π)4

(
− L2 − L/4 − 8La( f0)

−L
∫ 1

0
ds s f 2

0 (s)

)
, (127)

I2
IR= c2

2

(4π)4

(
L2 + 5L(1/4 + α̃/6)

+L
∫ 1

0
ds s3( f ′

0(s)
)2

)
, (128)

I3
IR= c2

2

(4π)4

(
− L2 + L/2 − 8La( f0)

−L
∫ 1

0
ds s f 2

0 (s)

)
, (129)

I5
IR= c2

2

(4π)4

(
L2 + 8La( f0) + L

∫ 1

0
ds s f 2

0 (s)

)
. (130)

Further, the diagonal parts are equal to

I9
IR= c2

2

(4π)4

(
4L2 + 16Lb( f0)

)
, (131)

I10
IR= c2

2

(4π)4

( − 2α̃L(1 + f0(0))
)
. (132)
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Hence, after all summations we get

−
6∑

n=1

Jn
IR= g2c2

2

(4π)4 L

(
2 − 5α̃

(
1/3 + f0(0)

)

−80a( f0) + 24b( f0) − 10
∫ 1

0
ds s f 2

0 (s)

+4
∫ 1

0
ds s3( f ′

0(s)
)2

)
. (133)

For example, if we take f0(s) = 1 − s, then we get

a( f0) = 1

24
, b( f0) = 1

8
, (134)

∫ 1

0
ds s f 2

0 (s) = 1

12
,

∫ 1

0
ds s3( f ′

0(s)
)2 = 1

4
, (135)

and

−
6∑

n=1

Jn
IR= g2c2

2

(4π)4 L(11 − 40α̃)/6. (136)

The last example describes the cutoff regularization that pre-
serves the continuity of the first and the second derivatives of
the function R0

∣∣
IR-reg.. As we see, there is one additional free

parameter. In our opinion, it can be chosen from the point
of view of some additional physical requirement, following
from model properties.

6 Conclusion

In the present work we have derived new formula (36) for
the two-loop contribution to the pure effective action (14).
This formula is universal and can be used for any type of the
regularization that does not deform the Seleey–DeWitt coef-
ficients. Actually, the answer depends on the three functions
(23) from the heat kernel expansion and their deformation
in the process of regularization, see, for example, (87), (98),
(110), and (117).

To verify the correctness of the obtained formula (37), we
performed calculations for several types of regularization,
such as dimensional one and cutoff one in several forms, see
the tables from Sect. 5.3. All the results are consistent with
those obtained earlier in other papers, see [18,20]. More-
over, we have shown that all regularizations do not lead to
double-logarithmic (L2) and non-logarithmic (� and �2)
singularities. At the same time we need to draw attention to
the fact that the singularities from �4-term differ from other
ones, because they depend only on the value of regularized
functions (23) at zero, while other divergencies depend on a
behaviour in some neighborhood. In some sense they have a
different nature that can be studied in further.

Also, we should note that in the case of general cutoff reg-
ularization, we have some auxiliary parameters. We believe

that they will be concretized after satisfying additional phys-
ical requirements. As an example of such conditions we can
give the gauge invariance. We hope that such conditions
would give a relation between singularities of two types (at
zero and near zero), mentioned in the previous paragraph.

As it is known, the dimensional regularization keeps the
main relations in the pure Yang–Mills theory, such as the
gauge invariance or Slavnov–Taylor identities. The situation
with other schemes can be different. For example, a cutoff
regularization can violate the properties mentioned above. In
this case we need to apply a procedure that can restore the
relations by introducing some additional vertices to the the-
ory. However, the previous vertices stay the same. It means
that we need to calculate some additional diagrams, in addi-
tion to those that we have already analyzed. Hence, we need
to repeat all the calculations from this paper anyway. And
these time-consuming calculations can be skipped, using our
new formula instead. Let us note that some useful remarks
on restoring of the properties can be found in the papers [61–
64]. However, these works are devoted to the momentum
representation, while the coordinate representation should
be studied separately.

Additionally, we need to note that the consideration of a
regularization that transforms the Seeley–DeWitt coefficients
as well is also possible. In this case we should use formulae
(54)–(60) and (67) from the proof instead of (29)–(35). The
detailed description of such types of regularization is not
included in the present work and will appear later.

Also, we want to comment multi-loop calculations. Actu-
ally, to do them, we need to improve the mathematical for-
malism. For example, we need to adopt a star–triangle rela-
tion, which expresses the integration of several Green’s func-
tions through a multiplication of the Green’s functions, to
the regularization under study. Such kind of equality is very
remarkable and appears in the theory of integrable models
quite frequently. Unfortunately, this relation does not hold in
a general case. Moreover, even in the “good” situations it can
be deformed after using a regularization.

In our opinion, the first step to do the multi-loop calcula-
tions is connected with the analysis of the star-triangle rela-
tions in the asymptotic form. It means that we need to keep
only first several corrections on both sides. We believe that
one of the ways to make this is related to the investigation of
the Seeley–DeWitt coefficients and “local” heat kernels, see
[56].
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