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Abstract We investigate the early time development of the
anisotropic transverse flow and spatial eccentricities of a fire-
ball with various particle-based transport approaches using a
fixed initial condition. In numerical simulations ranging from
the quasi-collisionless case to the hydrodynamic regime, we
find that the onset of vn and of related measures of anisotropic
flow can be described with a simple power-law ansatz, with
an exponent that depends on the amount of rescatterings in
the system. In the few-rescatterings regime we perform semi-
analytical calculations, based on a systematic expansion in
powers of time and the cross section, which can reproduce
the numerical findings.

1 Introduction

Collisions of heavy nuclei at high energies create a highly
dynamical system, which develops some collective behavior
over a timescale of order 10 fm/c. The emission pattern of
particles in the final state appears to be strongly correlated to
the initial system geometry determined by the overlap region
of the colliding nuclei. In particular, initial asymmetries in
the geometry are converted into transverse momentum space
anisotropies, referred to as anisotropic flow, as the system
evolves [1–3].

When two nuclei collide, the transverse geometry of their
overlap region is customarily characterized in the transverse
plane by spatial eccentricities. In polar coordinates (r, θ),
these are defined by [4–6]

εxnein�n ≡ −〈rneinθ 〉x
〈rn〉x , (1)
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where 〈· · · 〉x is an average over the transverse plane – x
denotes the transverse position vector –, weighted with the
centered entropy or energy density.1 The angle �n is the n-th
participant plane angle, which we shall set equal to 0 in the
following.

In turn, momentum space anisotropies are mostly charac-
terized by the Fourier coefficients of the transverse momen-
tum distribution of emitted particles [7]:

vnein�n ≡ 〈einϕp〉p, (2)

where ϕp is the azimuth of a particle transverse momentum p
and �n is the n-th “event plane” angle. The angular brackets
now denote an average over the momentum distribution of
particles.

Most of the modern models of the dynamics of the fire-
ball created in high-energy nuclear collisions include a fluid
dynamical stage [8–13] or a proxy thereof – possibly pre-
ceded by a dynamical “prehydrodynamic” evolution [14] and
a subsequent transport “afterburner” –, which describes well
a large amount of the experimentally measured anisotropic-
flow signals from collisions of heavy nuclei [1]. However,
the application of fluid dynamics to smaller systems or in
peripheral collisions is more disputed [15,16]. In addition,
several approaches still compete for the early dynamics.

A possible description of the system is given by kinetic
transport theory, as we do in this paper. Within that model,
it is possible to model (part of) the fireball evolution from
the few-collisions regime to the hydrodynamic limit. In this
paper we investigate how the early-time evolution of several
observables varies between these two extremes.

In the next section we introduce the tools we employ in
this paper, which consist of a numerical transport code on the
one hand and an analytical approach to the kinetic Boltzmann

1 In the paper, we will consider averages weighted with particle number
or energy.
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equation via a Taylor-series ansatz on the other hand. Within
both approaches we investigate several characteristics of a
system of massless particles, in particular its anisotropic flow
and spatial eccentricities, focusing on their development at
early time (Sect. 3). Finally we summarize our main findings
and discuss them in Sect. 4.

2 Methods and setup

In this section we briefly present the two methods used in
our study, namely a numerical transport model (Sect. 2.1)
and an analytical approach to the kinetic Boltzmann equation
(Sect. 2.2). Both require as starting point an initial distribu-
tion function, which we specify in Sect. 2.3.

2.1 Transport simulations

To simulate the expansion of a system of relativistic degrees
of freedom, we use on the one hand a numerical code imple-
menting the covariant transport algorithm introduced in Ref.
[17]. As in Ref. [18], to which we refer for further details, we
consider massless (test) particles, modeled as hard spheres.
Since we focus on characteristics of the system, namely its
anisotropic flow and the evolution of the spatial eccentrici-
ties, which are mostly driven by transverse dynamics – at
least at the qualitative level –, the system is purely two dimen-
sional. This restriction to the transverse plane allows us to
overcome the statistical noise on the observables, in particu-
lar in the few collisions limit.

An advantage of the transport algorithm over the analyt-
ical calculations of Sect. 2.2 is that one can smoothly cover
the whole range from free-streaming to the hydrodynamic
limit with a single model, by changing the cross section σ .
To ensure covariance and locality, we make sure that the sys-
tem remains dilute even in the fluid-dynamical regime: the
parameter D ≡ n−1/2/�mfp, which compares the relative
sizes of the typical distance n−1/2 between particles and the
mean free path given by �mfp ≡ 1/(nσ) – both estimated in
the initial state at the center of the system, where the parti-
cle density n is maximum –, is smaller than 0.1 for all our
simulations.

The computation time of the simulations typically grows
as N 3/2

p , where Np denotes the number of test particles in
the system. To reduce statistical fluctuations, for every setup
(initial geometry, Knudsen number) that we consider we per-
form Niter. iterations of the simulation, which is equivalent
to performing a single run with Np · Niter. test particles but
computationally cheaper. We typically use Np = 2 × 105

particles in the initial state and Niter. = O(103), so that their
product is always larger than 108.

To allow a more accurate comparison with the analytical
calculations presented in Sect. 2.2, which only account for

the loss term of the kinetic Boltzmann equation, we also per-
formed simulations with a “2 → 0” collision kernel. That is,
two (test) particles that collide disappear from the system,
which obviously violates every conservation law: energy,
momentum, particle number. For those simulations we intro-
duced labels “active” and “passive” for the test particles. A
collision can then only happen between two “active” parti-
cles. After the collision, these are then labeled as “passive”
for the remainder of the evolution and from that moment on
they are no longer taken into account in the computation of
any observable.

2.2 Analytical calculations

A dilute system of particles undergoing binary collisions can
also be described by a single-particle phase space distribution
f (t, x,p) obeying the kinetic Boltzmann equation with the
appropriate 2 → 2 collision term. In the regime of large
Knudsen numbers, i.e. when the particles undergo very few
rescatterings, one can expect that f (t, x,p) will not depart
much from a free-streaming distribution. This observation
underlies a number of (semi-)analytical studies, in particular
of anisotropic flow, in the few-collisions limit, using various
approximations for the collision kernel [19–27].

Irrespective of any approximation, it was pointed out in
Ref. [28] that one can start from a Taylor expansion of the
phase-space distribution at early times

f (t, x,p) = f (0)(x,p) + t ∂t f (t, x,p)
∣
∣
0

+ t2

2
∂2
t f (t, x,p)

∣
∣
0 + · · · , (3)

where f (0) denotes the initial distribution while the succes-
sive time derivatives are evaluated at the initial time t = 0. By
making use of the relativistic Boltzmann equation, rewritten
in the form

∂t f (t, x,p) = − p
E

· ∇x f (t, x,p) + C[ f ], (4)

one can replace every time derivative in Eq. (3), so that
given the form of the collision kernel, the whole evolution
of f (t, x,p) is governed by the initial distribution and its
spatial derivatives [28]:

f (t, x, p) = ff.s.(t, x, p) + t C[ f ]∣∣0
+ t2

2

(

− p
E

· ∇xC[ f ] + ∂tC[ f ]
)

0

+ t3

3!
((

p · ∇x
)2

E2 C[ f ] − p
E

· ∇x∂tC[ f ] + ∂2
t C[ f ]

)

0

+ O(t4), (5)

where ff.s. is obtained by grouping all terms which do
not contain the collision kernel and is therefore the free-
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streaming distribution with the same initial condition at
t = 0. Again, the time derivatives of the collision kernel can
be re-expressed using the Boltzmann equation, so that only
f (0) and its spatial derivatives are involved. Note that these
time derivatives of C[ f ] actually involve increasing powers
of the cross section characterizing the rescatterings [28], as
will be illustrated in the following section.

From this point, one can in principle compute any quantity
at early times. Obviously if more orders in time are included,
the result will be closer to the full solution, although it will
always depart at later times when only a finite number of
powers of t are taken into account. To match the numerical
simulations, we shall make all analytical calculations in 2
dimensions and with massless particles.

A drawback of the analytical approach is that the gain
term of the usual 2 → 2 collision kernel of the Boltzmann
equation is difficult to handle. In contrast to the loss term,
the “particle of interest” – that with the same momentum
as appears on the left hand side of the Boltzmann equation
– does not enter it directly, and the form of the differential
cross section does matter. To bypass this issue, here we only
consider the loss term of the collision integral, i.e. a 2 → 0
collision kernel [19,20]

C2→0[ f ] = − E

2

∫

f (p) f (p1)vrel.σ d2 p1, (6)

with vrel. the Møller velocity between the two colliding par-
ticles, while for brevity we did not denote the time and posi-
tion variables. This collision term clearly does not conserve
energy, momentum or particle number, but on the other hand
we are able to push our calculations to higher order in the
total cross section σ .

As stated above, we also implement a 2 → 0 collision
kernel in the numerical code by ignoring particles that have
already undergone a collision. A remaining important differ-
ence between the analytical calculations and the simulations
is the order in σ . While the analytical calculations contain
only a finite amount of orders due to the Taylor expansion,
the numerical simulations contain the total cross section to
all orders.

2.3 Initial distribution function

In this paper, similar in that respect to other studies in the
literature [19–22,24–27], we use a simplified semi-realistic
geometry for the initial state for both our numerical and ana-
lytical investigations.

We assume that the initial phase space distribution f (0)

factorizes like

f (0)(x,pT) = F(x)G(pT, T (x)), (7)

where the spatial part F governs the geometry, while the
momentum part G takes the form of a thermal distribution
with a temperature that can depend on position:

G(pT) = 1

2πT (x)2 e
−|pT|/T (x). (8)

Note that G is normalized to unity, so that F(x) is actually
the particle-number density. The temperature is determined
by the latter via

T (x) ∝ √

F(x), (9)

following the equation of state of a perfect gas of massless
particles in two dimensions. This relation implies that the
central region will have a higher temperature than the outer
ones.

Using polar coordinates in the transverse plane, the profile
in position space is taken to be

F(r, θ) = Np e− r2

2R2

2πR2

[

1 −
3

∑

k=2

ε̃ke− r2

2R2
( r

R

)k
cos(kθ)

]

,

(10)

where Np is the total initial number of particles and R a char-
acteristic system size, which sets the typical time scale of the
system evolution. The value of R (6.68 fm in the calculations)
alone is irrelevant for the results, it is only meaningful when
combined with σ (which in two dimensions has the dimen-
sion of a length) and Np to yield a dimensionless quantity
like the Knudsen number. Consistent with the normalization
of the momentum distribution G, F is normalized to Np, so
that the initial phase-space distribution is also normalized to
the total number of particles, as it should.

The two (real) parameters ε̃2 and ε̃3 give the degree of
asymmetry of the initial geometry: a straightforward integral
gives for the eccentricities (1) εx2 = ε̃2/4 and εx3 = ε̃3/

√
2π

with �2 = �3 = 0, where the latter choice was made for
the sake of simplicity, without any impact on our results.2

All results shown in the following were obtained with initial
profiles such that only one eccentricity ε̃2 or ε̃3 is non-zero
– up to numerical fluctuations. Our standard choice for the
non-vanishing ε̃n is that it yields εxn � 0.15.

An important feature is that the initial distribution (7) is
isotropic in momentum space. This is a necessary ingredient
for the analytical calculations and it is mostly fulfilled by the
transport simulations, up to numerical fluctuations that we
now discuss. In the initial state of the transport simulation,
Np test particles are first sampled from the particle number

2 If ε̃n is taken to be complex, then the symmetry-plane angle �n is the
argument of ε̃n .
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Fig. 1 v2 (left) and v3 (right) as function of t/R for different Knudsen numbers. The green shaded region marks the interval for the upper end
points of the fits with Eq. (11)

density (10), and their momenta are sampled from the Boltz-
mann distribution (8) with the appropriate local temperature.
Due to the finite number of particles, the resulting initial
(transverse) momentum distribution, integrated over all posi-
tions, is not exactly isotropic, but shows small anisotropic
flow coefficients of order 1/

√

2Np [7]. Discarding the initial
v1 is easy, by subtracting 1/Np times the total momentum
of the system from the momentum of every particle.3 How-
ever, setting the other initial Fourier coefficients to zero is
not so easy. To circumvent the problem, we perform Niter.

iterations with exactly the same initial geometry, i.e. the posi-
tions of the Np test particles are unchanged, but with differ-
ent samplings of the momentum distribution. The results of
the Niter. simulations with the same geometry are then aver-
aged, reducing fluctuations in particular in the initial state
by a factor

√
Niter.. As stated in Sect. 2.1, this is (at least

to a good approximation) equivalent to performing a single
simulation with Np · Niter. test particles, but computation-
ally significantly cheaper. In our simulations, the initial vn
values after averaging over iterations is close to zero within
the expected numerical uncertainty. Accordingly we shall
systematically shift our anisotropic-flow curves to start at 0,
adding at t = 0 an error bar indicating the numerical fluctu-
ation 1/

√

2NpNiter..
We characterize the amount of rescatterings in the evo-

lution via the Knudsen number Kn ≡ �mfp/R, where the
particle mean free path �mfp is estimated at the center of the
system – where the particle density is largest – in the initial
state. A small Knudsen number means a large mean num-
ber of rescatterings per particle, corresponding to the “fluid

3 Strictly speaking, this slightly deforms the momentum distribu-
tion (8), but only minimally, as shown by the agreement with analytical
calculations using Eq. (8).

dynamical limit”, while a large Kn means a system with few
rescatterings: by construction, Kn is inversely proportional
to the cross section σ .

3 Results

In this section we present our results, starting in Sect. 3.1 with
the change in the early-time scaling behavior of anisotropic
flow as one goes from the few collisions regime to the hydro-
dynamic limit. In the following subsections we focus on the
few collisions regime and compare the numerical and ana-
lytical approaches for the early time behaviors of the number
of rescatterings (Sect. 3.2), anisotropic flow (Sect. 3.3), and
eventually spatial eccentricities and other geometric quan-
tities (Sect. 3.4). Eventually, we discuss alternative observ-
ables to quantify the momentum anisotropies in Sect. 3.5,
again across the whole range of Knudsen numbers and com-
paring with analytical calculations when Kn is large.

3.1 Onset of anisotropic flow from small to large Knudsen
number

Let us first investigate how the early-time development of
anisotropic flow – here quantified via the Fourier harmon-
ics (2) of the particle transverse-momentum distribution, as
is most often done – evolves across Knudsen numbers for
a fixed initial geometry. As is customary in transverse flow
studies [29,30], “early times” are to be understood in com-
parison to the typical transverse size of the system R, say
roughly t/R of order 0.1–0.5.

As is well known and will be shown again below, the value
of vn at a fixed final time increases with the number of rescat-
terings in the system, when going from the free-streaming
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limit Kn → ∞ – in which no anisotropic flow develops – to
the fluid-dynamical limit Kn → 0. Throughout this paper we
are not so much interested in that known behavior, but rather
in the onset of vn(t), namely its dependence on t at early
times. Let us quickly recall the findings in the literature: In
fluid dynamics, numerical simulations [5,9,31,32] or general
scaling arguments [33] yield v2(t) ∝ t2 and more generally
vn(t) ∝ tn at early times. In contrast, transport simulations
[17,34] or analytical studies [19,20] in the few-rescatterings
regime yield the slower growth vn(t) ∝ tn+1. Here we wish
to bridge the gap between the two regimes, looking at both
elliptic flow v2 and triangular flow v3. In this subsection, we
use the normal 2 → 2 collision kernel in our simulations.

In Fig. 1 we display v2(t) and v3(t) at early times, namely
for t ≤ 0.7R resp. t ≤ 0.9R, where R is the typical system
size, for various Knudsen numbers ranging from Kn = 0.02
to Kn ≈ 10. The latter amounts to less than 0.1 rescatterings
per particle on average, while in the former case the parti-
cles rescatter about 25 times on average, corresponding to
the fluid-dynamical regime. As expected, for larger Knudsen
numbers the spatial asymmetry is less efficiently translated
into a momentum anisotropy. Note also that for a fixed t and
a given Kn the value of v3 is significantly smaller than that
of v2, which is why we restrict ourselves to a smaller range
in Kn.

Inspired by the known results, we fit the onset of those
curves with a power-law ansatz

vn

(
t

R

)

= βn

(
t

R

)γn

. (11)

To account for the small initial flow value due to the finite test
particle number, we shifted all curves to zero at t = 0. Since
we are only interested in the scaling exponent γn this shift
does not influence our result, yet has the benefit that we do not
have to introduce an extra offset parameter in the fit routine.
More physical information is contained in the parameters βn

and γn which are functions of the Knudsen number. In fact, it
is somewhat intuitive that βn should increase with decreasing
Kn, which is what we indeed found.

A somewhat problematic issue is the size of the interval
in t/R over which we should perform the fit. The lower end
point of the fitting interval is always taken at t = 0. Regarding
the upper end point of the interval, on the one hand it should
not be too large to make sure that we are still fitting early-
time behavior. On the other hand, this final end point should
not be too small either, otherwise the signal to be fitted is
too small and may still be contaminated by numerical noise.
Accordingly, we defined a range of values, represented by
the green bands in Fig. 1, for the maximum time of the fitting
interval: 0.3 ≤ tmax/R ≤ 0.55 for v2 resp. 0.4 ≤ tmax/R ≤

0.65 forv3. We randomly chose 500 values for tmax,4 and used
them to perform fits with the power law (11) for all values
of Kn. In Fig. 2 we show for n = 2 and n = 3 the exponents
γn of these fits, joining by gray lines the values obtained at
different Knudsen numbers but with the same value of tmax.
We then performed a weighted average of the exponents γn
over the 500 different realizations of the fit interval, giving
less weight to the fits with larger uncertainties by using

γ̄n =
∑

j γn, j/σ
2
γn , j

∑

j 1/σ 2
γn , j

, (12)

where σ 2
γn , j

is the (squared) uncertainty on γn, j given by the
fitting routine for the j-th realization, while j runs over the
500 realizations. Performing the 500 realizations of the fit
gives a better insight on the range of possible exponents at
each Knudsen number and provides a very conservative error
band for the uncertainty on the exponent, which is actually
not symmetric about the average value (12).

Even accounting for the uncertainty bands, γ2 (top panel
of Fig. 2) and γ3 (bottom panel) show a clear trend, namely
a crossover from the hydrodynamic (γn = n) to the few-
collisions regime (γn = n+1) over some range in the Knud-
sen number. Comparing the horizontal axes of the two plots,
we see that the transition takes place over a much smaller
Kn-range for v3. Moreover, the change in the early-time evo-
lution of v3 takes place for a typical Kn for which v2 is already
close to its fluid-dynamical behavior.

The latter finding parallels the already known different
behaviors of the “final” values of v2 and v3 – that is, once
vn(t) has reached its maximum value and evolves only lit-
tle – with varying Knudsen number: starting from the free-
streaming limit and decreasing Kn, the v2 signal rises before
that of v3 [18,34], as we also show in Fig. 3 for the specific
initial conditions used in this paper. The fits to the points
were performed with [35]

v2 = v
hydro
2

1 + Kn/Kn0
(13)

and [34]

v3 = v
hydro
3 (1 + B3Kn)

1 + (A3 + B3)Kn + C3Kn2 , (14)

where the parameter v
hydro
n is the value in the ideal fluid-

dynamical limit. That v3 departs from its few-rescatterings
behavior at a smaller Kn than v2 can readily be explained at
least on the qualitative level: At fixed system size R, a trian-
gular structure, as will give rise to v3, involves a smaller typi-
cal “wavelength” (in the azimuthal direction) than an elliptic

4 We drew tmax from a uniform distribution over the respective range
of values.
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Fig. 2 Scaling exponent γ2 (left) and γ3 (right) as a function of the Knudsen number. The gray lines indicate the 500 realizations of the fit over
different time intervals, while the green points correspond to the weighted average (12)

Fig. 3 vn/εn as a function of the Knudsen number and the mean num-
ber of rescatterings Nresc. per particle, where vn and Nresc. are estimated
at time t = 100R. The fits were performed with Eqs. (13)–(14). The
colored bands show the 1σ fit error

shape. To resolve this smaller wavelength, a smaller mean
free path is needed, i.e. a smaller Knudsen number.5

As a final remark, note that fitting the slow early-time
growth of triangular flow in the few-collisions regime,
v3(t) ∝ tγ3 with γ3 ≈ 4, appears to be at the limit of what we
can do with reasonable uncertainties. This is why we did not
try to investigate the early time behavior of v4, which should
grow as t4 in the hydrodynamic limit and slower when going
to larger Knudsen numbers.

5 An alternative argument in the language of fluid dynamics was given
in Ref. [34].

3.2 Number of rescatterings

In the few-rescatterings regime we have expansion (5) at our
disposal, with which one can compute the early-time behav-
ior of observables. Keeping only the first non-vanishing con-
tribution from the Taylor expansion to a given observable,
in particular vn(t), one can hardly expect to obtain a non-
integer scaling exponent like the γn found at “intermediate”
Knudsen numbers in the previous subsection. However, we
can investigate whether summing the contributions from sev-
eral terms in the Taylor expansion could lead to an effective
behavior similar to that of the full transport simulations.

We begin with the number of rescatterings in the sys-
tem, scaled by twice the number of particles Np in the ini-
tial state, where we include the factor 2 since each collision
involves two particles. In analytical calculations, this number
of rescatterings per particle Nresc. is simply one half of the
integral over time of the collision rate, i.e. it can be deduced
from the integral of the 2 → 0 collision kernel (6) over phase
space:

Nresc.(t) = 1

2Np

∫ t

0
(t ′) dt ′

= 1

Np

∫ t

0

∫

−C2→0[ f (t ′, x,p)] d2x d2p
E

dt ′.

(15)

Note that this formula also holds for a system undergoing
any kind of binary collisions between two identical particles,
despite the apparently restrictive notation 2 → 0.

Using expansion (5) one can compute the phase-space
distribution at time t ′ entering Eq. (15). As stated in Sect. 2.2,
we were able to calculate f (t, x,p) at early times only in the
2 → 0 scenario, which is why we now consider also that
model – in which the total particle number is not conserved

123



Eur. Phys. J. C (2022) 82 :961 Page 7 of 19 961

Fig. 4 Number of rescatterings per particle for Kn ≈ 25 (full) and
Kn ≈ 5 (dashed) for the 2 → 0 collision kernel simulation (green).
The analytical results – computed up to O(t11) – are shown at O(σ )

(blue) and O(σ 5) (orange) for the corresponding Knudsen numbers

– in the numerical simulations. On the analytical side, we
computed Nresc. up to order t11, considering terms up to order
σ 5 in the cross section.6

The importance of going beyond linear order in σ is visible
in Fig. 4. There we show in green the results of simulations
at a Knudsen number of order 25 (full line) at a Kn ≈ 5
(dashed line), where the latter are scaled by a factor 1/5: if
Nresc.(t) was simply proportional to σ , the two curves would
coincide, which is clearly not the case.

We also display in blue the computed Nresc.(t) at order
σ : the curves at Kn ≈ 25 and Kn ≈ 5 do coincide, as they
should, and they are reasonably close to the value of numeri-
cal simulations at Kn ≈ 25 up to t/R ≈ 0.3. The agreement
between analytical and numerical results is further increased
when going up to order σ 5 (in orange) for both values of Kn
we consider here.

Overall the number of rescatterings can thus be well
described in the analytical approach. This is a necessary
ingredient in our study since other observables of more com-
plicated nature, as e.g. vn(t), depend in a way or another on
the number of rescatterings. Note that Kn ≈ 5 means that
about 16% of the initially present particles disappear during
the whole system evolution, most of them in the initial stage
shown in Fig. 4. Accordingly, the results of 2 → 2 and 2 → 0
simulations differ significantly over that time interval, which
is why it is necessary to compare the latter with our (equally
2 → 0) analytical approach.

6 Strictly speaking, at O(t11) one finds terms up to order σ 10, so our
Nresc.(t) at order t11 is incomplete. Every new order in σ means a
significant increase in the number of terms to be calculated, which is
why we were slightly inconsistent here.

3.3 Anisotropic flow coefficients

Let us come back to our starting point, namely the behavior
of anisotropic flow harmonics vn at early times, in a system
without “preflow”, i.e. vn(t = 0) = 0. As in the case of the
number of rescatterings and in contrast to Sect. 3.1, here we
compute the flow coefficients in the 2 → 0 scenario, as was
done in Refs. [19,20]. It turns out that at large Kn numerical
simulations with the full 2 → 2 kernel or the 2 → 0 version
yield very similar results for v2(t) as long as t � R.7 Note
that it is hardly possible to study the dependence ofvn over the
full Kn range as in Figs. 2 und 3, but only at large Kn, since
Kn = 1 means that already about 60–80% of the initially
present particles disappear.

In Fig. 5 we show our results for the development of ellip-
tic flow v2(t) for two values of the Knudsen number. The
outcome of the simulations is shown in green, where the
error bar at t = 0 is the statistical error due to finite particle
number in the initial state of the simulation, as described
in Sect. 2.1. The blue resp. orange curve shows v2(t) as
obtained within the analytical approach starting from the
Taylor expansion (5), including terms up to order t15 but
keeping only the linear order in σ resp. terms up to order σ 3.
In Ref. [28] we showed that the contributions at O(σ ) show
up at odd orders starting from t3, those atO(σ 2) start at order
t4 and show up at even order in t , while O(σ 3)-terms again
show up in odd powers of t from order t5 on.

For the calculations at the largest Knudsen number (upper
panel of Fig. 5) we find an nice agreement between the numer-
ical and analytical results at order σ up to t/R ≈ 0.4. The
agreement extends even further at O(σ 3), where including
these extra terms seems to slow down the growth of v2(t),
such that at t/R = 1 the two curves differ by less than 10%
– which is by far not obvious for a Taylor expansion in t/R.

For the five times smaller Knudsen number Kn = 5 (lower
panel), the importance of including higher powers of σ is
even more striking, since it yields a pretty good agreement
between the analytical calculations and the simulation up to
t/R ≈ 0.6.

Overall the inclusion of higher orders in the cross section
has a major impact on the numerical comparison. In partic-
ular, it is clear that considering enough powers in t and in
σ allows to reproduce the behavior that was quantified by
a Kn-dependent scaling exponent γ2 in Sect. 3.1. Note that
further orders in time will indeed improve the curve at late
times but not visibly at early times and including those terms
is extremely costly computationally. Similarly higher pow-

7 The signal in the 2 → 0 setup is slightly smaller than in the 2 → 2
case, and the deviation between both models increases with decreasing
Kn, which is due to the faster dilution in the 2 → 0 system. For a
more in-depth study of the differences between the 2 → 2 and 2 →
0 collision kernels, including also the late time behavior of the flow
coefficients, we refer to Ref. [36].
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Fig. 5 Elliptic flow v2 as a function of t/R for Kn ≈ 25 (top) and
Kn ≈ 5 (bottom). Results from the numerical 2 → 0 simulations are
shown in green and the analytical results are shown to O(σ ) (blue) and
O(σ 3) (orange). Both analytical curves include terms up to O(t15)

ers in the cross section would guarantee a better result for
smaller Knudsen numbers but we are again limited by the
computational power.

Turning now to triangular flow v3, one first finds [36] that
numerical simulations with the 2 → 0 model differ more
than those with the 2 → 2 collision kernel, especially at
larger times (t � R). Looking back at Fig. 3, we see that
at Kn ≈ 5 or 25 the v3 signal at the end of the evolution
is already quite small in 2 → 2 simulations, and thus it
is even smaller in 2 → 0 calculations stopped at t = R.
Accordingly, the noise from numerical fluctuations, in par-
ticular the small non-zero v3 in the initial state, starts to play
an important role – especially in the simulations at Kn ≈ 25
which we present below. As argued in Ref. [28], a non-
vanishing v3 can lead to a (small) linear rise of v3(t) at early
times, which is indeed what we observe.

In addition, there is an unpleasant feature in the analytical
calculations with the 2 → 0 collision term, namely that they

Fig. 6 Triangular flow v3 as a function of t/R for Kn ≈ 25 (top) and
Kn ≈ 5 (bottom). Results from the 2 → 0 collision kernel are shown
in green and the analytical results are shown to O(σ 2) (orange)

yield vanishing odd flow harmonics at all times, in particular
v3, if one considers only terms of O(σ ) [36]. On the other
hand, an advantage of the Taylor series approach is that we
can go to higher orders in σ , which we attempted here.

With these caveats in mind, we present our results for v3(t)
in Fig. 6, for the same values of the Knudsen number as Nresc.

and v2. Here the analytical calculations include terms up to
order t11 and O(σ 2). This means that the leading order at
early times is v3(t) ∝ σ 2(t/R)5, i.e. a very slow growth.

To remain careful in our statements, let us just notice that
the analytical and numerical signals seem to be of the same
magnitude. This came somewhat as a surprise to us, because
it means that in a 2 → 0 scenario v3 grows as σ 2, not pro-
portional to σ . In contrast, the simulations with a 2 → 2
collision kernel clearly give v3 rather proportional to σ – see
for instance Fig. 3 and the successful fit with Eq. (14) which
gives v3 ∝ Kn−1 at large Kn. Nevertheless, this seems to
be the message conveyed by our findings in Fig. 6, together
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with the “success” of the analytical approach in describing
the numerical results.

As we shall see in Sect. 3.5, an alternative measure of
triangular flow, namely weighted with the particle energy,
gives rather different results.

3.4 Spatial characteristics

Let us now discuss the early-time dependence of various spa-
tial characteristics, for instance the eccentricities εxn or the
mean square radius of the expanding system. A significant
difference with anisotropic flow is that most of these char-
acteristics evolve in a free streaming system, in the absence
of rescatterings. Indeed, it was even found in Ref. [28] that
the change in the geometrical “observables” caused by par-
ticle rescatterings is at times subleading with respect to the
free evolution. Accordingly, we first look at collisionless sys-
tems, and check that we can describe them in our analytical
approach, i.e. taking into account only the term ff.s. in Eq. (5),
before we turn to systems with (few) collisions. Through-
out this subsection we come back to simulations with the
2 → 2 collision kernel, which makes no difference in the
free streaming case but is rather crucial when collisions are
allowed.

An important class of geometrical quantities, which are
correlated with anisotropic flow via rescatterings, are the
spatial eccentricities. Here we consider both eccentricities
computed via Eq. (1) with particle-number weighting

εxn(t) ≡ −

∫

f (t, x,p) rneinθ d2x d2p
∫

f (t, x,p) rn d2x d2p
, (16)

where we used the fact that for our special case of ini-
tial geometry (10) the reaction-plane angle �n is zero, and
energy-weighted eccentricities ε

x,E
n

εx,En (t) ≡ −

∫

E f (t, x,p) rneinθ d2x d2p
∫

E f (t, x,p) rn d2x d2p
, (17)

with E ≡ |p| the energy of a particle with momentum p. The
behavior of these eccentricities in a free streaming system is
readily computed [28]:

εn(t) � εn(0)

1 + an(t/R)2 , (18)

where the approximate equality is actually exact in the case
n = 2, while for n = 2 it holds up to terms of order (t/R)4

and possibly higher (if n = 4). For the initial condition(s)
we consider in this paper, see Sect. 2.3, the coefficient a2

equals 1/2 if a particle number weight is used, i.e. for εx2(t),

while it is 3/4 for ε
x,E
2 (t) with energy weight. In the third

Fig. 7 Time evolution of the spatial eccentricities in a collisionless
system. The top panel shows particle-number weighted eccentricities
εx2 , εx3 , the bottom panel eccentricities ε

x,E
2 , εx,E3 with energy weighting.

The dotted curves are fits with Eq. (18) and the parameters given in
Table 1

harmonic, a3 takes the respective values 3/4 for εx3(t) and

9/8 for ε
x,E
3 (t). Note that these numerical values are valid

only for the initial distribution (7)–(10), while Eq. (18) holds
for any initial distribution in the freely streaming case.

For our numerical calculations, we start with an input
value of εxn = 0.15 in the initial state. Due to the finite num-
ber of particles, which is Np = 2 × 105 in this subsection,
this value is not reached exactly in the simulations.8 In addi-
tion, the energy-weighted initial eccentricities ε

x,E
2 and ε

x,E
3

can differ from each other, since the momentum (and thus
energy) distribution depends on the position. Figure 7 shows
the time dependence of the eccentricities in free-streaming.
The full curves showing the free-streaming evolution can
be nicely fitted with Eq. (18) resulting in the fit parameters
of Table 1, where we fitted the numerical simulations up to
t/R = 0.5. For particle-number and energy weighting, and

8 To minimize fluctuations, we have fixed the initial positions for
Niter. = 3.2 × 104 iterations and resampled the momenta only.
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Table 1 Parameters of the fit function Eq. (18) for εn with particle-
number and energy weight

Weight ε2(0) a2

Particle number 0.1496 0.5005

Energy 0.250 0.745

Weight ε3(0) a3

Particle number 0.1499 0.7626

Energy 0.246 1.141

for both n = 2 and n = 3, the fitted εn(0) coincide with the
initial values computed directly at the beginning of the simu-
lations. In turn, the fitted values of an are in good agreement
with the analytical prediction: as could be anticipated, the
agreement is better for n = 2, in which case Eq. (18) is exact,
than forn = 3, in which case the denominator contains higher
(even) powers of t . Note that the energy-weighted eccentric-
ities ε

x,E
n decrease slightly faster than their particle-number

weighted counterparts, which is reflected in the larger values
of an .

In the free-streaming case there is no transfer of spatial
asymmetry into a momentum anisotropy and thus no buildup
of anisotropic flow. That is the reason why the eccentricity
decreases most slowly in the collisionless case: introducing
rescatterings in the system will lead to a faster decrease. With
collisions it is even possible to change the sign of the eccen-
tricity – as observed in fluid-dynamical simulations [32],
while for the free-streaming case this does not happen. How-
ever, at large Knudsen numbers (Kn ≈ 25 or 5) the change in
the evolution of eccentricities due to rescatterings is barely
visible (see Fig. 8), even at large times. For reference, we also
include the behavior of the eccentricities for a system close
to the fluid-dynamical regime, namely at Kn ≈ 0.1. One
sees that sizable deviations from the collisionless behavior
only appear for t � R. This is consistent with the fact that
it takes about a similar time for anisotropic flow to acquire a
sizable value across the whole system, and thus to affect the
evolution of geometry.

To pinpoint the influence of rescatterings, let us investigate
the behaviors of the numerator and denominator of the eccen-
tricity separately. Here we only discuss results relevant for εx2
and ε

x,E
2 , since the behaviors in the third harmonic (shown in

Appendix B) are similar. To see the effect of collisions more
easily, we will subtract the free-streaming behaviors.

Let us start with the numerator of the eccentricity, i.e.
(minus) the average value of r2 cos(2θ), where the averaging
can be done with particle-number or energy weighting. This
is actually the simpler case, since in the free streaming case
– and in the absence of initial anisotropic flow, as we assume
throughout this subsection – that quantity remains constant
over time: any evolution is thus due to rescatterings. We show

Fig. 8 Time evolution of the spatial eccentricities in a collisionless (full
lines) and in an interacting system with few rescatterings (dotted and
dashed lines). The top panel shows particle-number weighted eccen-
tricities εx2 , εx3 , the bottom panel eccentricities ε

x,E
2 , ε

x,E
3 with energy

weighting. For comparison, we also show the behavior in a system in
the fluid-dynamical regime (dotted-dashed lines)

this departure from the free-streaming value in Fig. 9 for
simulations with Knudsen number Kn ≈ 25 (top panel) and
Kn ≈ 5 (bottom panel). To obtain dimensionless quantities,
we scaled the curves by the initial value of the corresponding
average of r2 cos(2θ): each curve thus represents the relative
change in the average value due to rescatterings.

One sees that this relative change is of order a few 10−4 for
the system with Kn ≈ 25, and of order 10−3 when Kn ≈ 5.
The latter signal is thus about 5 times larger than the former,
i.e. seems to scale with Kn−1 or equivalently σ or the number
of rescatterings in the system.

To quantify the behaviors displayed in Fig. 9, we tried to
fit the curves with a simple power-law ansatz

−〈r2 cos(2θ)〉x,p(t) + 〈r2 cos(2θ)〉f.s.
x,p ∝

(
t

R

)χ

. (19)

As in Sect. 3.1, we perform the fit over a time interval from
t = 0 to some final t/R in the range 0.35–0.7, letting the end
point of the interval vary. The fit results for the exponents lie
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Fig. 9 Time evolution of the departure of −〈r2 cos(2θ)〉x,p with
particle-number (green) and energy (blue) weighting from its free
streaming value, for simulations with Kn ≈ 25 (top panel) or Kn ≈ 5
(bottom panel)

in the range χ = 3.5–5.5. This is a rather slow growth, and
we know from our fitting of the early-time behavior of v3(t)
in Sect. 3.1 that it probably points at an exponent χ ≥ 4, but
we do not want to make any strong claim. Indeed, the signal
of Fig. 9 is one to two orders of magnitude smaller than that
of v3(t).

With our analytical approach, one finds invoking general
principles – namely particle-number or energy conservation,
depending on the weight of the average – that the contri-
butions from the Taylor expansion (5) at order t2 and below
vanish, leaving χ ≥ 3 [28]. We can further show that the con-
tributions from the loss term of the 2 → 2 collision kernel
vanish at any order, invoking parity arguments in momentum
space. Unfortunately, we were unable to compute the con-
tribution from the gain term of the collision integral, so we
cannot give a more accurate prediction than the inequality
χ ≥ 3, in agreement with the fit values that we find.

Turning now to the denominator of εx2 , i.e. the mean square
radius, it differs from the numerator in that it is evolving in

Fig. 10 Time evolution of the departure of 〈r2〉x,p with particle-
number (green) or energy (blue) weighting from its free streaming
behavior, for simulations with Kn ≈ 25 (top panel) or Kn ≈ 5 (bottom
panel)

a collisionless system:

〈r2〉f.s.
x,p(t) = 〈r2〉x,p(0) + 〈v2〉x,p(0) t2, (20)

where v2 denotes the squared (transverse) velocity of the
particles – here simply equal to the squared velocity of light
since we consider massless particles.

We show in Fig. 10 the departure 〈r2〉x,p(t)−〈r2〉f.s.
x,p(t) of

the mean square radius in a interacting system from this free-
streaming evolution, scaled by the initial value of 〈r2〉x,p.
The departure is negative, which means that rescatterings
slow down the system expansion: this seems intuitive, since
collisions cannot accelerate the outwards motion of parti-
cles already traveling at the speed of light. As in the case
of 〈r2 cos(2θ)〉x,p, one sees that the relative deviation of the
mean square radius computed with particle weight from its
free-streaming behavior (green curves) changes by about a
factor of 5 from Kn ≈ 25 to Kn ≈ 5, i.e. it seems to scale
linearly with the number of rescatterings. A power-law fit of
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these curves

〈r2〉x,p − 〈r2〉f.s.
x,p ∝

(
t

R

)χ ′

(21)

yield exponents in the range χ ′ = 4.1–4.5, depending on
the end point of the time interval chosen for the fit. In the
analytical approach we found χ ′ ≥ 3 [28], consistent with
the numerical finding.

Quite strikingly, the blue curves in Fig. 10 representing
the energy-weighted mean square radius stay constant. That
is, rescatterings in the system do not modify the evolution
of the energy-weighted 〈r2〉x,p, i.e. of the denominator of
ε
x,E
2 (t). We detail in Appendix A how this can actually be

shown within our analytical approach [28], mostly invoking
energy and momentum conservation – one has however to
beware that it holds only for a two-dimensional system of
massless particles. This absence of departure from the free-
streaming behavior is specific to the mean square radius:
as shown in Fig. 16 in Appendix B, the evolution of the
energy-weighted average of the cubed radius does depend
on the amount of rescatterings in the system. Yet the qual-
itative differences between particle-number weighted and
energy-weighted quantities like the moments 〈r2〉x,p, 〈r3〉x,p
(Figs. 10, 16) show that the transport of energy density in the
system does not match one-to-one that of particle-number
density.

3.5 Alternative measures of anisotropic flow

Motivated by the observation at the end of the previous sub-
sections, we now look at alternative measures of anisotropic
collective flow. We shall compute the latter in both numeri-
cal simulations and analytical calculations and check if their
early-time behaviors agree with the results obtained for vn(t)
in Sects. 3.1 and 3.3.

One possibility, which was adopted in a number of recent
kinetic theory studies [22,24–27], is to consider the Fourier
harmonics of the transverse energy distribution. Using the
terminology of Sect. 3.4, these are effectively “energy-
weighted anisotropic flow coefficients”

vE
n (t) ≡

∫

E f (t, x,p) cos[n(φp − �E
n )] d2x d2p

∫

E f (t, x,p) d2x d2p
, (22)

with �E
n the n-th harmonic event plane. In contrast, the tra-

ditional coefficients (2) are “particle-number weighted” flow
harmonics. In the following �E

n = 0, consistent with the
orientation of the initial-state symmetry planes �n = 0.

For massless particles, as we consider throughout the
paper, with pz = 0, the energy-weighted elliptic flow vE

2
actually coincides with a definition that has been used in

fluid-dynamical simulations [8,37], 9 namely (in our two-
dimensional setup)

ε
p
2 ≡

∫
[

T xx (x) − T yy(x)
]

d2x
∫

[

T xx (x) + T yy(x)
]

d2x
. (23)

Note that the notation emphasizes the similarity to the geo-
metrical eccentricities. Definition (23) involves two diagonal
components T xx and T yy of the energy-momentum tensor

Tμν(x) ≡
∫

pμ pν f (t, x,p)
d2p
E

. (24)

An advantage of Eq. (23) is that it can also be implemented
for a system that is not described as a collection of particles
or a particle density distribution, but rather in terms of its
energy momentum tensor. In particular, there is no need to
“particlize” the system using a Cooper–Frye-like approach.

As in Sect. 3.1, let us first look at the behavior of ε
p
2 across

a large range of Knudsen numbers. The results of simulations
with the 2 → 2 collision kernel from the few-rescatterings
regime (Kn ≈ 25) to the fluid-dynamical limit (Kn ≈ 0.02)
for the onset of ε

p
2 (t) = vE

2 (t) is displayed in the top panel
of Fig. 11.

Similar to v2(t), we fit the early time development with a
power law ansatz

ε
p
2

(
t

R

)

= β ′
2

(
t

R

)γ ′
2

, (25)

performing 500 different realizations of the fit over varying
time intervals. The change with Kn of the resulting scaling
exponents γ ′

2 is shown in the bottom panel of Fig. 11. The
dependence of γ ′

2 on the Knudsen number closely parallels
that of γ2 (Fig. 2), seemingly ranging from 2 in the fluid-
dynamical limit – as found in earlier hydrodynamical simu-
lations – to roughly 3 in the few-rescatterings regime. That
is, ε

p
2 (t) behaves as v2(t) at early times.

Using the same arguments as in Ref. [28] (especially
Sect. IV.1), one finds that in the absence of initial flow, the
leading contribution to ε

p
2 (t) at early times is

ε
p
2 (t) ∝ σ t3 + O(t4), (26)

where the term at order t4 is actually of order σ 2. This is
similar to the scaling of v2(t) and is shown as dotted line in
the lower panel of Fig. 11. We computed the proportionality
coefficient – as well as terms up to O(t9) at linear order in σ

– for the 2 → 0 collision kernel. This is compared to results
from numerical simulations, also with the 2 → 0 kernel, in
Fig. 12.

9 Note that there is a misprint in the definition of ε
p
2 in Eq. (3.2) of Ref.

[37], as mentioned in Ref. [12].
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Fig. 11 Upper panel: early time dependence of ε
p
2 = vE

2 for various
Knudsen numbers. Lower panel: dependence of the scaling exponent
γ ′

2 [Eq. (25)] on the Knudsen number, using the same color code as in
Fig. 2

Fig. 12 Early time evolution of ε
p
2 = vE

2 at Kn ≈ 25. The results of
the 2 → 0 simulation are shown in green, the analytical calculation at
O(σ ) in blue

Fig. 13 Early time development of energy-weighted triangular flow
vE

3 for Kn ≈ 25 (top panel) and Kn ≈ 5 (bottom panel) from numerical
simulations with the 2 → 0 collision kernel (green) and analytical
calculations at O(σ ) (blue)

The results from both approaches are in good agreement
until t/R � 0.4, and we know from our investigations of
v2(t) that we can improve the agreement by including higher
orders in σ and t in the (already extensive) analytical calcu-
lations.

Setting n = 3 in Eq. (22) gives the energy-weighted tri-
angular flow vE

3 .
We show in Fig. 13 results of simulations (green curves)

with the 2 → 0 collision kernel at both Kn ≈ 25 (top panel)
and Kn ≈ 5 (bottom panel). Comparing with the particle-
number weighted v3(t) in Fig. 6, the vE

3 (t) signal is signif-
icantly larger, and in particular less sensitive to noise in the
initial state.

Figure 13 also shows the results of analytical calculations
(blue curve), where in contrast to v3 we already find a non-
vanishing vE

3 at O(σ ) and including terms up to order t10

– while in the same 2 → 0 scenario v3 was found to scale
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as O(σ 2). The analytical results and those of simulations
are actually in quite good agreement for both Knudsen num-
bers being considered, especially given the relative size of
the initial fluctuations of the numerical signal, which yield
a visible linear rise at small t/R. Other differences like the
different curvature as t/R ≈ 1 could certainly be improved
by including more orders in σ and in t/R in the analytical
approach.

As mentioned above, a drawback of the coefficients vn or
vE
n from the theorist’s point of view is that their definition

assumes a particle-based model. For massless particles with
pz = 0, vE

2 coincides with the “momentum space eccentric-
ity” ε

p
2 , Eq. (23), defined in terms of the energy momentum

tensor, but the latter has no straightforward generalization to
higher harmonics. A possible measure of anisotropic flow at
the “macroscopic” level – i.e. a priori usable for any micro-
scopic model – was proposed in Ref. [5] for hydrodynamical
calculations, which has the advantage of being generalizable
for any harmonic. The simplest example is the measure of
elliptic flow, via10

α
p
2 ≡

∫
[

T 0x (x)ux (x) − T 0y(x)uy(x)
]

d2x
∫

T 00(x)u0(x) d2x
, (27)

where uμ(x) is the system flow velocity. For a collection
of particles of a single species as considered in the present
paper, the natural choice for that velocity is

uμ(x) = Nμ(x)
√

Nμ(x)Nμ(x)
, (28)

with

Nμ(x) ≡
∫

pμ f (t, x,p)
d2p
E

. (29)

In analytical calculations, implementing the above equa-
tions is straightforward. The numerical implementation of
α
p
2 in the transport algorithm is more challenging than in

a hydrodynamic simulation, as we do not have the energy-
momentum tensor directly given at each point in space and
time. To calculate the necessary quantities, we divided the
system of test particles into Ncells = 402 cells on a rectan-
gular grid. 11 We then computed the sum of the momentum
components px resp. py of the particles in each cell, which
we denote by Px resp. Py . For each cell, we also computed

10 We use a different notation from the original one [5] and adapt it to
our two-dimensional setup.
11 We have checked that our result is independent of the number of
cells chosen in the computation by varying the number of cells from
Ncells = 202 to Ncells = 1202 and fixing Np = 5 × 105 particles.
Fluctuations in the signal arise above Ncells = 602, as the number of
particles in the individual cells is too small.

Fig. 14 Time dependence of α
p
2 for simulations (full lines) in a colli-

sionless (green) system or in the few collisions regime (orange), together
with the analytical result in the free streaming case (dotted blue line)

the total energy Etot., the number of particles, and the mean
velocity per particle v̄x ≡ Px/Etot. and v̄y ≡ Py/Etot.. Then
we can approximate the numerator of Eq. (27) by

〈

T 0xux − T 0yuy
〉

x ≈ 1

Ncells

Ncells∑

i=1

Px,i v̄x,i − Py,i v̄y,i
√

1 − v̄2
x,i − v̄2

y,i

(30)

and the denominator by

〈

T 00u0
〉

x ≈ 1

Ncells

Ncells∑

i=1

Etot.,i
√

1 − v̄2
x,i − v̄2

y,i

, (31)

where the term in the denominators is due to the normaliza-
tion of the velocity.

In the analytical approach starting from the Taylor expan-
sion (5), a necessary ingredient is the calculation in the free-
streaming case. It turns out that in a collisionless system α

p
2

is not constant, but grows quadratically with time:

α
p
2 (t) ∝ t2 + O(t3), (32)

where the proportionality factor of the term in t2 involves
the initial spatial eccentricity εx2. This non-constant behavior
is somewhat unexpected, since no anisotropic (here elliptic)
flow in the usual acceptation of the term develops in a free
streaming system.

In turn, collisions modify this behavior at order t3, consis-
tent with the onset of v2(t) or ε

p
2 (t), yet subleading compared

to the collisionless evolution.
In Fig. 14 we show the early-time behavior of α

p
2 for a

transport simulation with a moderate number of rescatterings
(full orange line) with the 2 → 2 collision kernel and in the
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free-streaming case (full green curve), together with the ana-
lytical calculation for the collisionless system (dotted blue
curve). As anticipated, rescatterings only lead to a sizable
departure from the free streaming behavior when t/R ≈ 0.8,
but their contribution is subleading at early times.

4 Discussion

In this paper, we have studied the early time development of
several quantities describing the asymmetry in the transverse
plane, either in position or in momentum space, of a system
of massless particles. For that purpose, we used simulations
from a numerical transport code and semi-analytical calcu-
lations based on a recently introduced [28] Taylor expan-
sion of the single-particle phase space density at early times.
Results from both approaches were compared in the few-
rescatterings regime where the application of the analytical
model makes sense. We also performed numerical simula-
tions over a large range of Knudsen numbers, to study the
early-time behavior of anisotropic flow coefficients from the
few-rescatterings regime to the fluid-dynamical limit.

In a system with few rescatterings, we found that the
Taylor-expansion based ansatz can indeed capture the numer-
ical findings at early times, namely the scaling behavior
vn(t) ∝ tn+1 – which also holds for the energy-weighted
anisotropic flow coefficientsvE

n (t)–, the change in time of the
number of rescatterings in the system, or the slow departure
of geometrical characteristics like the spatial eccentricities
εxn(t) from their free-streaming evolution. We also showed
that including higher-order terms in t and/or in the cross sec-
tion σ improves the quality of the analytical predictions – say
typically until t/R ≈ 0.5. However, we should quickly add
that any new order in t or in σ typically means the appear-
ance of many more terms in the calculations. It would thus be
highly desirable to find resummation schemes if one wishes
to push the analytical expansion to larger times.12

Letting the number of rescatterings per particle grow,
so that we can also reproduce the hydrodynamic limit, we
found that the early-time scaling behavior of vn(t) changes
smoothly from tn+1 at large Knudsen number to tn when Kn
is small. We quantified this change via a non-integer scaling
exponent vn(t) ∝ tγn , which we cannot find directly in the
Taylor-series approach. It could be that a double resummation
in t and σ can indeed provide such a non-analytic behavior,
but it could also be an artifact from our fitting ansatz and
procedure. In any case, we view γn as an effective exponent
characterizing the behavior of vn(t) on times of order 0.1–

12 For v2(t) in the 2 → 0 scenario and with our specific case of initial
condition, one can find an analytical expression resumming all order in
t at O(σ ) [36], and it seems feasible also at O(σ 2), although we did not
attempt it.

0.5R. On such a time scale set by the transverse system size,
the fluid-dynamical scaling behavior appears as the many-
collision limit of kinetic theory. This convergence in studies
of anisotropic flow was found previously (for the vn values
at the end of the system evolution) in Refs. [17,38], which
use a similar two-dimensional setup as ours, or Ref. [27] in
the case of a longitudinally boost-invariant expansion.13

Instead of defining early times in comparison to R as
we did, one could replace the latter by the mean free path
�mfp = Kn · R. In that case, we would expect that for times
smaller than say about 0.3�mfp, kinetic theory yields the
behavior vn(t) ∝ tn+1 of the few-collisions regime [28],
even for values of Kn “in the fluid-dynamical limit”, that is
much smaller than 1. Unfortunately, investigating this “very
early” behavior in a setup with Kn � 1 is unfeasible with
our cascade code if we wish to remain in the dilute regime.
Yet with this alternative definition of “early times”, depend-
ing – at fixed initial geometry – on the interaction strength,
we would probably find different scaling laws for the flow
coefficients according as the system is described by kinetic
theory (irrespective of the Knudsen number) or fluid dynam-
ics. This would be similar to the finding that kinetic theory in
the RTA and hydrodynamics have different early-time attrac-
tors for the ratio of longitudinal pressure over energy density
[39].

While we cannot claim that our findings are of immediate
relevance for heavy-ion phenomenology, although this is not
excluded for the case of small systems, yet we think that they
may still be of interest, in particular for studies of the initial
stages [14]. Whatever dynamical model is used for the prehy-
drodynamic evolution, some amount of anisotropic flow will
develop – unless of course it is assumed that the system is
freely streaming –, and it is not uninteresting to know whether
the model is “hydro-like” or rather “few-collisions-like”, or
somewhere inbetween. One could even assume as initial-
stage model a set of simple scaling laws like vn(t) ∝ tγn and
similar for other properties of the system, and see how this
affects global Bayesian reconstructions of the properties of
the medium created in heavy ion collisions.

More on the theoretical side, our results are relevant
for searches for the existence of dynamical attractor solu-
tions for systems with transverse dynamics [40]: even “late
time attractors” have to accommodate qualitatively different
“early time” behaviors. In that respect, it would be interesting
to extend our study to spatially asymmetric setups for which
analytical results in the hydrodynamic limit are known [41].
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Appendix A: Energy-weighted mean square radius

In this Appendix, we show that in a two-dimensional system
of massless particles described by the Boltzmann equation –
with a “physical” collision kernel C[ f ] implementing energy
and momentum conservation –, the evolution of the energy-
weighted mean square radius of the system actually does not
depend on the presence of collisions, i.e. it behaves as if the
system were collisionless.

Mathematically, the conservation of energy and momen-
tum in the collisions translates into the identity

∫

pμC[ f ] d2p
E

= 0, (A1)

at any position x and for any μ ∈ {0, 1, 2}, where p0 ≡ E
denotes the energy. Differentiating this equation with respect
to time and exchanging time derivative and integration over
momentum space, one deduces for any j ≥ 0

∫

pμ∂
j
t C[ f ] d2p

E
= 0, (A2)

again valid at any x and where the time derivative can be
evaluated at any time, in particular in the initial state.

Now let us look at the early-time Taylor expansion (5) of
the phase space distribution f (t, x,p). Multiplying it by the
energy E = |p|, one finds that the terms due to collisions at

order tk with k ≥ 1 are all of the form
(

− p · ∇x

E

)j

∂
k−1− j
t C[ f ]∣∣0.

When calculating the energy-weighted mean square radius,
i.e. the denominator of Eq. (17) with n = 2, we thus
encounter at order tk integrals of the form
∫

r2
(
p · ∇x

E

)l

∂k−1−l
t C[ f ]∣∣0 d2x d2p (A3)

with k ≥ 1 and 0 ≤ l ≤ k − 1. We shall several times use
the property that since the system has a finite size, f and in
turn C[ f ] and all its derivatives vanish at (spatial) infinity.

When l = 0 – as happens for instance for the linear term
in t in the Taylor expansion –, expression (A3) takes the form
of the integral over x of r2 times an integral of the type (A2)
with j = k−1 and μ = 0. Thus all those terms vanish thanks
to energy conservation.

In the case l = 1, we first consider the integral over x in
Eq. (A3), and integrate once by parts to get rid of the gradient.
This replaces for instance x2 px∂x by −2xpx in the integrand,
while the integrated term, involving ∂k−2

t C[ f ]|0 at infinity,
is zero. The remaining integral is of the form

−2
∫

xpx + ypy
E

∂k−2
t C[ f ]∣∣0 d2x d2p.

Fixing x and looking at the integral over momentum space,
it is of the type (A2) with μ = 1 or 2, and thus equals 0 due
to momentum conservation.

For l = 2, a twofold integration by parts over x replaces
r2(p · ∇x )

2∂k−3
t C[ f ]|0 in the integrand of Eq. (A3) by

2(p2
x + p2

y)∂
k−3
t C[ f ]|0. Since the particles are massless and

propagate in 2 dimensions, p2
x + p2

y equals E2, which can-
cels out the denominator of the integrand. The integral thus
becomes

2
∫

∂k−3
t C[ f ]∣∣0 d2x d2p,

which is zero due to energy conservation [Eq. (A2) for μ =
0].

When l ≥ 3, one can again transform the term (A3) by
integrating twice by parts over x. Discarding the vanish-
ing integrated terms, the effect of the twofold integration
by parts amounts to the symbolical replacement of r2(∇x )

l

by 2(∇x )
l−2 in the integrand. Since l − 2 ≥ 1, what remains

in the integrand is still a spatial derivative of a function that
vanishes as |x| → ∞: a further integration over space thus
yields 0.

All in all, we thus find that all integrals of the form (A3)
vanish for the specific case under study. This is not the case
for massive particles or for particles with pz = 0.

Anticipating on the following Appendix, note that we used
twice – for the cases l = 2 and l ≥ 3 – a twofold integration
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Fig. 15 Time evolution of the departure of −〈r3 cos(3θ)〉x,p with
particle-number (green) or energy (blue) weighting from its free stream-
ing value, for simulations with Kn ≈ 25 (top panel) or Kn ≈ 5 (bottom
panel)

by parts over x to get rid of r2 and two spatial derivatives in
the integrand. If r2 is replaced by r3, then the reasoning used
to find that the terms with l = 2 vanish no longer works.

Appendix B: Early time evolution of the numerator and
denominator of the triangularity εx3

In this Appendix we discuss the influence of rescatterings on
the numerator and denominator of the spatial triangularity
εx3, namely the particle-number or energy weighted average
values of −r3 cos(3θ) and r3. Their departures from the cor-
responding free streaming behaviors, scaled by their respec-
tive values in the initial state, are shown in Figs. 15 and 16
for simulations at Kn = 25 (top panels) and Kn = 5 (bottom
panels).

A first observation is that these relative deviations from
the collisionless case roughly scale linearly with the number

Fig. 16 Time evolution of the departure of 〈r3〉x,p with particle-
number (green) or energy (blue) weighting from its free streaming
behavior, for simulations with Kn ≈ 25 (top panel) or Kn ≈ 5 (bottom
panel)

of rescatterings, since they are about 5 times larger at Kn = 5
than at Kn = 25. This is similar to what was obtained in the
second harmonic in Sect. 3.4.

Fitting the early time behaviors with single power laws,
like those of Eqs. (19) and (21), gave us rather inconclusive
values of the scaling exponents in the range 4–5.7. Again,
given the smallness of the signal and the slowness of its evo-
lution, we do not know how much we can trust those results,
as our early-time fits may be dominated by numerical noise
(which is clearly visible in both panels of Fig. 16).

A difference with the second-harmonic results of Sect. 3.4
is that the energy-weighted mean cubed radius deviates from
its free streaming behavior. And indeed, in our analytical cal-
culations we find that the arguments that allowed us to show
that 〈r2〉x,p with energy weight is zero do not hold for 〈r3〉x,p.
Interestingly, one sees that the rate of growth of 〈r3〉x,p with
energy weight is increased by rescatterings, while that of
〈r3〉x,p with particle-number weight is decreased. This means
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Fig. 17 Evolution of the anisotropic flow coefficient v2 (green) and the eccentricity ε
p
2 in momentum space (blue) for the 2 → 2 collision kernel

in the few collisions limit (left) and in the hydrodynamic limit (right). The arrows indicate the corresponding values at t/R ≈ 30

that rescatterings redistribute the energy density in the sys-
tem, and more precisely they tend to transport energy from
the inner region – which had the largest energy density in the
initial state – towards the outer region, which seems quite
intuitive.

Appendix C: Elliptic momentum anisotropy ε
p
2 at large

times

In this Appendix, we present for completeness a few results
from our calculations of the momentum space eccentricity
ε
p
2 that go beyond the “early-time behavior” that is the main

scope of the paper.
Figure 17 compares the evolution of ε

p
2 – which we

recall coincides with the energy-weighted elliptic flow vE
2

in our setup – and the particle-number weighted v2. This is
shown both for calculations with elastic binary collisions (full
curves), in which case both the few-rescatterings regime (left
panel: Kn ≈ 25) and the fluid-dynamical limit (right panel:
Kn ≈ 0.06) are illustrated, and in the 2 → 0 scenario (dashed
curves), in which only the calculations at large Knudsen num-
ber make sense. All simulations shown in Fig. 17 were per-
formed with the same initial phase space distribution, with
εx2 � 0.15.

Qualitatively, ε
p
2 (t) and v2(t) behave similarly: both rise

until t/R ≈ 2, and then they either saturate or slightly
decrease (2 → 2 collision kernel). In the case of v2(t)
this agrees well with what was found using a slightly dif-
ferent initial profile but a similar transport algorithm [34].
The decrease is more pronounced (about 20%) in the 2 → 0
scenario, which is discussed more extensively in Ref. [36].

On a quantitative level, ε
p
2 is systematically larger than

v2, irrespective of the model under consideration. In the

fluid dynamical regime, one finds ε
p
2 ≈ 2v2 at late times,

as already argued in the literature [35] for two-dimensional
expanding systems. Yet overall, v2 and its energy-weighted
version ε

p
2 = vE

2 have parallel behaviors, both in the 2 → 2 or
2 → 0 scenarios. This contrasts with their triangular coun-
terparts v3 and vE

3 , which as we saw in Sects. 3.3 and 3.5
behave differently in the 2 → 0 model.
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