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Abstract It was first pointed out by Koyama and Tomi-
matsu that, under reasonable assumptions, the asymptotic
late-time tails of massive scalar perturbations in the far zone
of spherically symmetric black hole spacetimes decay uni-
versally as t−5/6. The late-time tail is furnished by the contri-
bution from the branch cut of the frequency-domain Green’s
function, which is constructed in terms of two appropriate
solutions of the corresponding homogeneous equation. The
present study focuses on some particular forms of the in-
going wave that were not explicitly considered in the original
derivations but nonetheless have been taken into account in
the literature by other authors. In this regard, we reassess the
authors’ arguments and provide a detailed complimentary
analysis that covers a few specific aspects. For some partic-
ular cases, the tail is found to possess the form t−1. We also
discuss the possible implications of the present findings.

1 Introduction

As one of the most intriguing concepts in theoretical physics,
the black hole is an extreme manifestation of gravity. The sub-
ject has received increasing attention in recent years owing
to the advent of experimental detections of the gravitational
wave, particularly those emanating from the coalescences
of black hole binaries. The gravitational radiations captured
by the LIGO and Virgo Collaboration [1–4] furnished direct
evidence of the black holes. Subsequently, it inaugurated a
novel era where the predictions of General Relativity can be
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empirically tested against other possible alternatives in the
strong-field regime.

Besides the gravitational waves, the presence of a black
hole can be inferred through the peculiar dynamics when it
interacts with matter. When a black hole is perturbed, the
system oscillates dissipatively, and the evolution is charac-
terized by the quasinormal modes (QNMs) [5–7]. The com-
plex frequencies of such modes are found to be irrelevant to
the initial conditions but governed by a few parameters of
the black hole, where the number is subject to the constraint
of various no-hair theorems [8,9]. On the theoretical side,
the QNMs can be interpreted from various viewpoints. The
emergence of discrete complex frequencies is attributed to
the in-going and out-going boundary conditions, defined for
the non-Hamiltonian system at the horizon and outer spatial
bound. As a scattering problem, the QNMs correspond when
the transmission or reflection coefficient becomes divergent.
Schutz and Will argued that it is feasible when the frequency,
as a complex number, is located in the vicinity of the peak
of the potential, which subsequently motivated the WKB
approach [10,11]. On the contrary, Ferrari and Mashhoon
[12] pointed out that the scenario can be transformed into a
bound state eigenvalue problem when the spatial coordinates
of the wave function are extended to the imaginary axis by
analytic continuation. Reminiscent of the atomic spectrum
of hydrogen in quantum mechanics, the continued fraction
method was introduced by Leaver [13]. Such an idea is also
clearly demonstrated by the matrix method [14–17] proposed
by some of us, where one solves a matrix equation for the
complex eigenvalues. By replacing the spacelike infinity with
a null infinity I +, the hyperboloidal approach [18] also suc-
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cessfully reformulates the problem into an eigenvalue prob-
lem of a non-selfadjoint operator. The latter has been utlized
in the recent developments on QNM instability [19–21]. In
terms of Green’s function, Leaver presented the problem in
terms of the Fourier spectrum decomposition [22], which
was in turn reformulated by Nollert and Schmidt [23] using
Laplace transform. For these approaches, the QNMs are asso-
ciated with the poles of the frequency-domain Green’s func-
tion.

A late-time tail often features the last stage of quasinor-
mal oscillations. Besides numerical approaches, the relevant
time profile can also be analyzed using Green’s function.
To be specific, the QNMs correspond to the poles, while
the branch cuts govern the late-time tails on the lower half
plane1 of Green’s function. As first pointed out by Price, the
late-time tails largely follow an inverse power-law form [24].
Mathematically, the origin of the late-time tail is attributed
to the branch cut and is largely understood as a manifestation
that the spectrum decomposition in terms of the QNM poles
is not complete. For massless perturbations, the tail is due
to a branch cut placed on the negative imaginary axis of the
frequency. The brach cut in question stretches out from the
origin, which is closely connected with the fact that the tail
is a late-time phenomenon. Moreover, it is governed by the
asymptotic properties of the potential, which subsequently
invited the interpretation in terms of the backscattering of
the wave packets by the spacetime far away from the horizon
[25]. For massless scalar perturbations in the Schwarzschild
black hole metric, the tail was found to be t−(2l+3) or t−(2l+2)

[24]. Further studies for various different metrics [25–29]
strongly indicated that such an inverse power-law form is a
general feature for massless perturbations in spherical space-
times. Among others, a comprehensive study was performed
by Ching et al. [25,26]. Besides the power-law form, the
exponential tails have also been observed in asymptotically
de Sitter spacetimes [30,31]. For massive perturbations, on
the other hand, Hod and Piran [32] discovered that an inter-
mediate late-time tail in Reissner–Nordström spacetime fol-
lows the form t−(l+3/2) sin(μt), where μ is the mass of the
field. In a series of seminal papers, Koyama and Tomimatsu
investigated the late-time tails in the Reissner–Nordström
[33] and Schwarzschild [33,34] spacetimes and found it pos-
sess the asymptotic form t−5/6 sin(μt+ϕ). Furthermore, they
demonstrated that the obtained result is essentially a universal
feature for spherically symmetric black holes, under mod-
erate assumptions [35]. The analytic result was confirmed
numerically for different angular momenta and various types
of perturbations [36–38]. In all the above cases, there are
two branch points located on the real axis of the frequency,
which are connected by a branch cut conveniently chosen

1 In this study, we adopt the notion of Fourier transform instead of
Laplace one.

to lie on the real axis. More recently, Cardoso et al. pointed
out [39] that the late-stage ringdown may serve to probe the
properties of the horizon and discriminate between differ-
ent gravitational systems. Following this line, the studies of
echoes in various systems, and inclusively, the exotic com-
pact objects such as gravastar, boson star, and wormhole.
From an empirical perspective, both the echoes and tails
occur in the last stage of the time profile. However, math-
ematically, the echoes are mainly attributed to a novel spec-
trum of poles of the Green’s function [40–43], that is distinct
from those of the late-time tail. These intriguing character-
istics further broaden the underlying physics regarding the
late-time waveforms.

The present work involves a study of the universal proper-
ties of the late-time tails of massive perturbations in spheri-
cally symmetric black holes. We revisit the general derivation
given by Koyama and Tomimatsu [35] and discuss possible
modifications when applied to some particular cases. To be
more specific, the late-time tail is furnished by the contribu-
tions originating from the branch cut of the out-going wave
function of the corresponding homogeneous equation. We
explicitly show that the branch cut in question resides below
the real axis of the frequency complex plane due to the physi-
cal boundary condition. On the other hand, the in-going solu-
tion of the homogeneous equation does not contain any singu-
larity and is mainly understood to play a minor role. However,
we point out that the original derivation has to be adapted
when the in-going waveform contains only one of the two
Whittaker functions Mκ,λ and Mκ,−λ. Such a choice cannot
be entirely ruled out because its context might be physically
relevant, as considered in the literature by some authors [44–
48]. Compared to the latter, a crucial point of our approach
resides in the requirement that the relevant waveform does
not contain any singularity. As elaborated further discussed
in Appendix A, it is a physically relevant requirement, which
is also manifestedly consistent with the present mathematical
formalism. Our derivations indicate complementarily that an
asymptotic power-law form holds as t−1 sin(μt) for some
apecific cases.

The remainder of the paper is organized as follows. In the
next section, we present the general form of the spherically
symmetric black hole metric and the approximation that gives
rise to the radial master equation of massive perturbations.
The asymptotic properties of the late-time tails are studied
in Sect. 3 by utilizing the analytic properties of the Whit-
taker functions and the boundary conditions. We analyze the
location of the branch cut and consider two specific cases
that complement the scenario to which the original formu-
lae cannot be straightforwardly applied. Further discussions
regarding relevant studies in the literature and concluding
remarks are given in Sect. 4.
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2 Green’s function for massive scalar perturbations in
spherically symmetric black hole spacetimes

Following [35] one considers a static spherically symmetric
black hole metric given by

ds2 = − f (r)dt2 + h(r)dr2 + r2(dθ2 + sin2 θdϕ2), (1)

where, in the present study, the observation takes place in the
far region, and one considers the following expansions of f
and h as a power series in 1/r

f = 1 − 2M

r
+ Q2

r2 + O

(
1

r3

)
(2)

and

h = 1 + 2M ′

r
+ Q

′2

r2 + O

(
1

r3

)
. (3)

Besides the gravitational mass M , the metric is specified
up to second-order terms, characterized by the parameters
M ′, Q, and Q′. It is noted that the proof does not reside
in that the metric Eq. (1) is a solution of Einstein field equa-
tions. However, it is assumed that the conclusion drawn from
the analysis based on the second-order expansions Eqs. (2)
and (3) is robust. As will become apparent below, such a treat-
ment essentially evaluates the dominant contributions from
the leading-order term, which contains a branch cut. A similar
approach has also been employed for massless perturbations
in the literature [25,26] and the results were shown to be valid
for different metrics and various types of perturbations.

Massive scalar perturbations are governed by the Klein–
Gordon equation

1√−g
∂μ(

√−ggμν∂ν�(t, r, θ, ϕ)) = μ2�(t, r, θ, ϕ), (4)

where μ is the mass of the field �. To proceed, one uses the
standard method of separation of variables for �(t, r, θ, ϕ),
namely,

�(t, r, θ, ϕ) =
∑
	,m


(t, r)

r
Y	m(θ, ϕ), (5)

where Y	m(θ, ϕ) is the spherical harmonics and 	 and m
stand for the angular and azimuthal number, respectively. The
resultant radial master equation for a given multiple moment
	 reads[

∂2

∂t2 − ∂2

∂r2∗
+ V (r)

]

(t, r) = 0, (6)

where r∗ is the tortoise coordinate

dr∗
dr

=
√

h

f
, (7)

and V is the effective potential

V = f

[
1

r
√

f h

(√
f

h

)′
+ 	(	 + 1)

r2 + μ2

]
, (8)

where the prime denotes a derivative with respect to the areal
radius r . It is noted that the radial wave function does not
depend on the azimuthal number m, owing to the spherical
symmetry. For simplicity, we have also omitted the index 	

in 
(t, r).
In terms of the Green’s function [49], the solution of

Eq. (6) is given by


(r∗, t) =
∫

[G(r∗, r ′∗; t)ψt (r
′∗, 0)

+Gt (r∗, r ′∗; t)ψ(r ′∗, 0)]dr ′∗ (9)

for t ≥ 0, where the retarded Green’s function G satisfies[
∂2

∂t2 − ∂2

∂r2∗
+ V

]
G(r∗, r ′∗; t) = δ(t)δ(r∗ − r ′∗). (10)

Its Fourier transform,

G̃(r∗, r ′∗;ω) =
∫

G(r∗, r ′∗; t)eiωt dt, (11)

can be expressed in terms of two linearly independent solu-
tions, denoted by 
̃i , where i = 1, 2, for the homogeneous
equation [5][

∂2

∂r2∗
+ ω2 − V

]

̃ = 0. (12)

To be specific, G̃(r∗, r ′∗;ω) can be given by

G̃(r∗, r ′∗;ω) = 1

W

{

̃1(r ′∗, ω)
̃2(r∗, ω) r∗ > r ′∗

̃1(r∗, ω)
̃2(r ′∗, ω) r∗ < r ′∗

, (13)

where W is the Wronskian

W ≡ W (
̃1, 
̃2) = 
̃1
̃2,r∗ − 
̃1,r∗
̃2. (14)

The boundary conditions for the solution 
̃1 is that it should
be an in-going wave on the event horizon [5]. Moreover, it
is noted that 
̃1 is well-behaved as it does not contain any
branch cut [26,32,35,50]. On the other hand, 
̃2 is required
to be an out-going wave at spatial infinity. Its branch cut
eventually gives rise to the late-time tail, as explored in the
following sections.

Using the specific forms, Eqs. (2) and (3), one may expand
the master equation Eq. (6) and neglect terms of order
O(1/r2) and higher to find

∂2
̃

∂r2 −U
̃ = 0, (15)

where
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U = (μ2 − ω2) − 2(M + M ′)ω2 − 2M ′μ2

r

−4(M2+MM ′)ω2 − (Q2−Q′2)ω2 − Q′2μ2 − 	(	 + 1)

r2 .

(16)

The above approximate form is readily recognized to be
Whittaker differential equation by introducing the variable

x = 2�r, (17)

where

� =
√

μ2 − ω2. (18)

To be specific, one arrives at the standard form [51]

d2
̃

dx2 +
[
−1

4
+ κ

x
− λ2 − 1/4

x2

]

̃ = 0, (19)

where the coefficients κ and λ are given by

κ = Mμ2

�
− (M + M ′)�, (20)

and

λ =
√

(Q2 − Q′2)(μ2 − � 2) − 4(M2 + MM ′)(μ2 − � 2) + Q′2μ2 +
(

	 + 1

2

)2

. (21)

A few comments are in order. The master equation Eq. (19)
can be viewed as a feasible approximation mainly for the
far region. In other words, in the vicinity of the horizon, the
properties of the effective potential Eq. (16) no longer ade-
quately reflect those of Eq. (8). As a result, the in-going wave
boundary condition of 
̃1 is likely to be distorted so that the
feature does not necessarily manifest itself in a solution in the
far region. Usually, some “matching” process [33,34] should
be employed if the specific waveform is of interest. Fortu-
nately, reminiscent of the case of massless perturbations [26],
for most of the time, it turns out [35] that the particular form
of 
̃1 is not a crucial ingredient for the late-time tails. In
this study, however, we will also explore a few exceptions
in Sects. 3.1 and 3.2. Meanwhile, what remains essential is
that 
̃1 shall not contain any branch cut, as it is a physically
pertinent requirement for a black hole metric.

3 Universal asymptotic properties of late-time tails

One may investigate the properties of the late-time tails in
terms of the time-domain Green’s function, which can be
obtained through the inverse Fourier transform

G(r, r ′; t) = 1

2π

∫ ∞

−∞
G̃(r, r ′;ω)e−iωt dω, (22)

where G̃(r, r ′;ω) is given by Eq. (13). The solutions 
̃1,2 are
proper linear combinations of the Whittaker functions [51]

Mκ,λ (x) = exp (−x/2) xλ+ 1
2 M

(
λ − κ + 1

2
, 1 + 2λ, x

)
,

Wκ,λ (x) = exp (−x/2) xλ+ 1
2U

(
λ − κ + 1

2
, 1 + 2λ, x

)
,

(23)

where M (λ − κ + 1/2, 1 + 2λ, x) and U (λ − κ + 1/2,

1 + 2λ, x) are confluent hypergeometric functions of the first
and second kinds. For given κ and λ, one may choose either
{Mκ,λ, Mκ,−λ} or {Mκ,λ,Wκ,λ} as the two linearly indepen-
dent solutions. According to Jordan’s lemma, for an observer
in the far region t > r − r ′ > 0 one may enclose the contour
of the integral in Eq. (22) by the lower half of the complex
plane. Here, the poles associated with the Wronskian on the
denominator is not relevant, since we are only interested in
the branch cut of 
̃2. In particular, if some branch cut exists
but were located on the upper half of the frequency plane, it
will not contribute to the late-time tail in the retarded Green’s
function. Therefore, one must also justify that not only 
̃2

contains some branch cut but it sits below the real axis of ω,
as well. The appropriate choice is


̃2(�, r) = Wκ,λ(2�r). (24)

The above statement can be justified as follows. In order
to apply any theorem regarding contour integral, the ana-
lytic continuation of 
̃2 on the complex ω plane can be
carried out, through the intermediate variable � , from its
definition on the real axis. From the physical viewpoint,

̃2 is also subject to the appropriate asymptotic behavior as
r → +∞, for a given ω on the real axis, where the frequency-
domain Green’s function Eq. (13) is defined. To be specific,
it must asymptotically converge to an out-going wave trav-
elling along the positive direction of r -axis when |ω| > μ,
namely, 
̃2 ∼ exp (−x/2) ∼ exp (i |� |r∗ sgnω). On the
other hand, it is suppressed exponentially when |ω| < μ,
namely, 
̃2 ∼ exp (−|� |r∗). In other words, the argument
of Eq. (18) on the real axis is defined to be

� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

+i
∣∣∣√ω2 − μ2

∣∣∣ ω < −μ∣∣∣√μ2 − ω2
∣∣∣ |ω| < μ

−i
∣∣∣√ω2 − μ2

∣∣∣ ω > μ

, (25)

It is straightforward to show that Eq. (25) is indeed satis-
fied by an analytic function, as will be elaborated below.
Indeed, by defining the argument of � on the real axis of ω,
Eq. (25) removes the arbitrariness regarding how ω bypasses
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the branch points, and subsequently, the analytic continuation
of 
̃2 into the complex plane. Moreover, the argument of �

must be consistent with a second constraint that, the proper
choice among the linear combinations of Whittaker func-
tions that provides an asymptotic out-going wave, Wκ,λ, is
valid only when | arg x | = | arg � | < 3π/2 [52]. As a result,
these conditions tightly dictate the argument of � as ω moves
along the real axis from −∞ to ∞. To be more specific, arg �

decreases continuously from π/2 to 0 as ω circles from the
above in the immediate vicinity of the branch point ω = −μ,
and then continue to decrease from 0 to −π/2 as it likewise
bypasses the second branch point at +μ. We note that other
possible intervals for arg x , such as 3π/2 ≤ arg � ≤ 5π/2
or −5π/2 ≤ arg � ≤ −3π/2, must be excluded as they
invalidate the asymptotic behavior. The above choice maps
the argument from [π, 0] of ω to [π/2,−π/2] of � . In other
words, if one tries to introduce an alternative contour that
bypasses at least one of the branch points below the real
axis, we can show that Eq. (25) will not be satisfied. As one
considers the contour that goes alone the real axis of ω while
bypassing both branch points from the above, Eq. (25) can
be rewritten into the following form

� = e−i π
2

(
ω2 − μ2

) 1
2
, (26)

where

0 ≤ arg(ω − μ), arg(ω + μ) ≤ π,

which is manifestly analytic above the contour in question.
Together with the asymptotic expansion of Wκ,λ, one ascer-
tains that 
̃2 is indeed analytic on the upper half plane of ω.
Now, for an arbitrary analytic function g, g(�) as a function
of ω usually possesses two branch points at ω = ±μ. Due
to physical boundary conditions, the above considerations
show that the branch cut that joins the two branch points
must be placed on the lower half-plane. Indeed, this conclu-
sion is also expected based on heuristic arguments, and we
will come back to further discussions in the last section of
the paper.

Different from the case of massless perturbations, for
which the branch cut is typically caused by a function of the
form ω1/2, it is essential to note that the infinity is no longer
a branch point of g(�). Therefore, as one closes the contour
integral of ω counter-clockwise alone a large circle in the
entire complex plane, the argument of � can be consistently
chosen to lag behind that of ω by π/2. It thus varies contin-
uously within the interval [−π, π ], inside the range where
g = Wκ,λ is analytic. Subsequently, the contribution of the
counter integral of Eq. (22) comes entirely from the branch
cut associated with � . A convenient choice is to place the
branch cut parallel to and immediately below the real axis of
ω [32,35] as shown in Fig. 1. Thus we have, anywhere away

Fig. 1 The chosen contour of the integration and the branch cut on the
complex plane of the frequency-domain Green’s function. The inverse
Fourier transform corresponds to the integral along the real axis. It is
complemented by an integral along a large semicircle in the lower half
of the complex plane, which is subsequently deformed to go around the
quasinormal poles and branch cut indicated in the plot

from the branch cut,

−π ≤ arg(ω − μ) ≤ π,

0 ≤ arg(ω + μ) ≤ 2π.

As a result, the relevant contribution is governed by the dif-
ference between the values of the integrand of Eq. (22) on
the two opposite sides of the branch cut. The argument of
either factor must evolve while avoiding the chosen branch
cut while encircling either one of the branch points. It is easy
to ascertain that the variable � is effectively differed by the
transformation � → �eiπ , thus Eq. (22) gives

G(r, r ′; t) = − 1

2π

∫ μ

−μ

F(r, r ′;ω)e−iωt dω, (27)

where

F(�) ≡ 
̃1
(
r ′,�eiπ

)

̃2

(
r,�eiπ

)
W

(
�eiπ

)

− 
̃1
(
r ′,�

)

̃2 (r,�)

W (�)
. (28)

For 
̃1, one requires that the wave form does not contain
any discontinuity when crossing the branch cut. The most
general form that satisfies the requirement by combining the
Whittaker functions is


̃1(�, r) = A(�)Mκ,λ(2�r) + B(�)Mκ,−λ(2�r), (29)

where

A = A(�) = a�−1/2−λ (30)

and

B = B(�) = b�−1/2+λ, (31)
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where a and b are some one-valued even functions of � . Fur-
ther discussions regarding the analytic properties of 
̃1 are
given in Appendix A. As discussed above, such a waveform
usually contains both the in-going and out-coming compo-
nents.

By using Eqs. (24) and (29), one can estimate the late-
time asymptotic form of Eq. (22). In what follows, we give
an account for the discontinuity of the relevant quantities
across the branch cut under the transformation � → �eiπ .
Subsequently, we elaborate on the specific case for evaluating
the Wronskian and the integration by saddle point approxi-
mation.

By making use of the relations [53]

Wκ,λ(2�r) = �(−2λ)

�
(−λ − κ + 1

2

)Mκ,λ(2�r)

+ �(2λ)

�
(
λ − κ + 1

2

)Mκ,−λ(2�r), (32)

and

M±κ,λ

(
eiπ 2�r

)
= (−1)λ+ 1

2 M∓κ,λ(2�r), (33)

one finds


̃1

(
r,�eiπ

)
= 
̃1 (r,�) , (34)

and


̃2

(
r,�eiπ

)
= (−1)

(
λ+ 1

2

)
�(−2λ)

�
(−λ + κ + 1

2

)Mκ,λ(2�r)

+(−1)

(
−λ+ 1

2

)
�(2λ)

�
(
λ + κ + 1

2

)Mκ,−λ(2�r).

(35)

It is worth noting that the master equation Eq. (19) does not
remain unchanged under the transformation � → �eiπ . In
particular, κ as the subscript of the Whittaker functions has
flipped its sign twice, owing to Eqs. (33) and (20), where
the second sign flip occurs to the master equation. Also, λ is
invariant by Eq. (21). We note that Eq. (34) confirms that 
̃1

does not possess any branch cut.
To proceed, we consider the following three cases.

3.1 The case B = 0

In the literature, this case has been explored by several
authors [44–48], but somewhat distinct formalism has been
utilized. The Wronskian Eq. (14) now gives

W1(�) = A(−2λ)(2�)
�(2λ)

�
(
λ − κ + 1

2

)
≡ A(−2λ)(2�)p+, (36)

where one defines

p+ = �(2λ)

�
(
λ − κ + 1

2

) . (37)

Also, the non-vanishing relation for the confluent hypergeo-
metric functions [51] has been employed to obtain

W
{
Mκ,λ(2�r), Mκ,−λ(2�r)

} = −(2λ)(2�). (38)

To calcuate the discontinuity of the Wronskian across the
branch cut, one makes use of Eqs. (34) and (35) and the
definition Eq. (14) to find

W1

(
�eiπ

)
= A(−2λ)(2�)

�(2λ)

�
(
λ + κ + 1

2

) (−1)

(
−λ+ 1

2

)

≡ A(−2λ)(2�)q+, (39)

where

q+ = �(2λ)

�
(
λ + κ + 1

2

) (−1)

(
−λ+ 1

2

)
. (40)

In deriving the above result, one should keep an eye on
Eqs. (34) and (35). To be specific, the discontinuity embeded

in A does not lead to a factor (−1)

(
−λ− 1

2

)
, while the factor

(−1)

(
−λ+ 1

2

)
on the r.h.s. of Eq. (35) has come through. Also,

we note that Eq. (39) cannot be obtained by simply flipping
the sign of � and κ in Eq. (36).

By putting the pieces together, Eqs. (34), (35), and (39),
one finds that the integrand given by Eq. (28) can be simpli-
fied to read

F1(�) = 1

(−2λ)(2�)A2 
̃1
(
r ′,�

)
F̃1(�)
̃1 (r,�) ,

(41)

where

F̃1(�) = (−1)2λ
� (−2λ) �

(
λ + κ + 1

2

)
�

(−λ + κ + 1
2

)
� (2λ)

−� (−2λ) �
(
λ + 1

2 − κ
)

�
(−λ − κ + 1

2

)
� (2λ)

. (42)

Due to Eq. (34), 
̃1
(
r ′,�

)
can be readily factorized out.

The other term, 
̃2 (r,�), can be simplified by separating the
irrelevant contributions which possess identical discontinuity
of the Wronskian. As a result, these terms cancel out in the
subtraction, and from the remaining ones, a second common
factor 
̃1 (r,�) can be pulled out.

Now, we turn to discuss the asymptotic behavior of
Green’s function. At a significant time scale t � 1, the inte-
gral receives contribution primarily from the region where
ω → ±μ or � → 0, which implies that κ → ∞. The
two 
̃1 factors in Eq. (41) do not depend sensitively on the
frequency ω when compared to the term Eq. (42). The latter
contains exponential exp(iπκ) that oscillates significantly in
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the relevant frequency region. This feature indicates the pos-
sibility of utilizing the saddle point approximation, where
one estimates the result by considering the part where the
oscillations evolve the slowest.

Using the asymptotical forms of � functions [53], one
approximates Eq. (42) as

F̃1(�) ≈ � (−2λ)

� (2λ)
κ2λ

[
(−1)2λ − ηeiπκ + γ e−iπκ

ηe−iπκ + γ eiπκ

]
,

(43)

where

η = −e
iπ

(
λ− 1

2

)
, γ = e

−iπ
(
λ− 1

2

)
. (44)

At this point, it is rather attempting to rewrite the integrand
as

F̃1(�)e−iωt ≈ � (−2λ)

� (2λ)
κ2λeiφei(2πκ−ωt), (45)

where the phase φ defined by

eiφ
?= η + γ e−2iπκ

η + γ e2iπκ
(46)

is hopefully a moderate function of ω as � → 0. Unfortu-
nately, this is usually not viable for two reasons. First, since
|η| = |γ |, one cannot ignore the phase oscillation from this
factor and move forward to employ the saddle point approx-
imation described later in Sect. 3.3. In fact, one can show
geometrically that φ, which is twice the inscribed angle, has
the same magnitude of the central angle subtending the same
arc, 2πκ . To be specific, we have

φ = −2πκ, (47)

where the initial phase shift arg η + 1/2 arg(γ /η) cancels
between the numerator and denominator, and the negative
sign before 2κ comes from the fact that the complex number
γ rotates clockwise and counter-clockwise on the numerator
and denominator, respectively. Equation (47) implies that the
intensive phase oscillations cancel out identically. If the ratio
γ /η is a real number, Eq. (46) is exact. In such case [45,46,
54] for perturbations with insignificant mass, the asymptotic
form of the tail is well-defined. To see this, one utilizes the
specific form of 
1, the Wronskian, and the expansion of
Whittaker in (2�r) at the limit � → 0, and the integral
simplifies to give∫ μ

−μ

eiφei(2πκ−ωt)dω ∼ t−1 sin(μt + ϕ0), (48)

where the phase ϕ0 might be a minor function of t . The
cancelation of the phase and the resultant asymptotic form
Eq. (48) can be readily verified by integrating numerically
Eq. (27) using Eqs. (41) and (43). The results are shown in
Figs. 2 and 3. Nonlinear fits were carried out for the obtained
profiles shown in Fig. 2, and the results are given in Table 1,

Fig. 2 The time-domain Green’s function obtained by numerical inte-
gration. The profiles are obtained by using parameters M = 1, λ = 1
for different masses μ = 0.1, 0.05, 0.01, and 0.005. For clarity, the data
have been multiplied by different constants, C = 10, 108, 1015, 1022,
respectively

Fig. 3 The envelope of one of the curves of Fig. 2, for μ = 0.005, is
compared to the forms t−1 and t−5/6

Table 1 The extracted exponent from the envelope of the oscillations
according to the form t−α sin(μt)

μ 0.005 0.01 0.05 0.1

α 1.019 1.009 1.058 1.054

Standard error 0.041 0.029 0.024 0.022

which are in reasonable consistency with the analytic form.
As shown explicitly in Fig. 3, although numerically adjacent,
this result is essentially different from the power-law t−5/6

that was claimed previously by some authors. The difference
in the resulting exponential can be traced back to the (second)
sign flip κ → −κ associated with the master equation due to
Eq. (20), which was not taken into account in some literature.

Second, when the ratio γ /η is complex [44], the module
of Eq. (46) is not unit. In fact, it becomes divergent when the
denominator attains zero, at an increasing rate as κ → ∞.
Although the Cauchy principal value of the integral Eq. (27)
may still exist, the result seems unmanageable.
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3.2 The case A = 0

This case is similar to the previous subsection. Instead of
Eqs. (36), (39), (41), and (42), we now have

W2(�) = B(+2λ)(2�)
�(−2λ)

�
(−λ − κ + 1

2

)
≡ B(+2λ)(2�)p−,

where

p− = �(−2λ)

�
(−λ − κ + 1

2

) .

W2

(
�eiπ

)
= B(+2λ)(2�)

�(−2λ)

�
(−λ + κ + 1

2

) (−1)

(
λ+ 1

2

)

≡ B(+2λ)(2�)q−, (49)

where

q− = �(−2λ)

�
(−λ + κ + 1

2

) (−1)

(
λ+ 1

2

)
, (50)

and the integrand Eq. (28) gives

F2(�) = 1

(+2λ)(2�)B2 
̃1
(
r ′,�

)
F̃2(�)
̃1 (r,�) ,

(51)

where

F̃2(�) = (−1)−2λ
� (2λ) �

(−λ + κ + 1
2

)
�

(
λ + κ + 1

2

)
� (−2λ)

−� (2λ) �
(−λ + 1

2 − κ
)

�
(
λ − κ + 1

2

)
� (−2λ)

. (52)

Again, the saddle point method cannot be applied to estimate
the asymptotic behavior.

3.3 The case AB �= 0

By employing Eq. (32), the Wronskian is found to be

W3(�) = (−2λ)(2�)
[
Ap+ − Bp−

]
, (53)

where p± have been defined above by Eqs. (37) and (49).
On the other hand of the branch cut, one finds

W3

(
�eiπ

)
= (−2λ)(2�)

[
Aq+ − Bq−

]
,

where q± are given by Eqs. (40) and (50).
The calculation of the integrand Eq. (28) is furnished by

Eqs. (34), (35), (53), and (54), and it demands a bit more
tedious efforts. It can be facilitated by the following algebraic
relations

1

2
(Ap+ + Bp−) 
̃1(�)

= 1

2

[
(Ap+ − Bp−)

(
AMκ,λ − BMκ,−λ

)]

+AB
̃2(�), (54)

and

1

2
(Aq+ + Bq−) 
̃1(�)

= 1

2

[
(Aq+ − Bq−)

(
AMκ,λ − BMκ,−λ

)]
+AB
̃2(�eiπ ). (55)

We observe that the terms in the brackets on the r.h.s. of
Eqs. (54) and (55) possess the same discontinuity as their
respective Wronskians. As a result, the ratio to the Wronskian
does not contain any discontinuity. They are identical for
both terms and readily canceled out when substituting into
Eq. (28). Subsequently, one finds

F3(�) = 1

(−2λ)(4�)AB

̃1

(
r ′,�

)
F̃3(�)
̃1 (r,�) ,

(56)

where

F̃3(�) = Aq+ + Bq−
Aq+ − Bq−

− Ap+ + Bp−
Ap+ − Bp−

. (57)

It is noted that Eqs. (56) and (57) are essentially Eqs. (32–34)
of Ref. [35]. Although it might not be apparent from a first
glimpse, Eqs. (41) and (42) can also be derived from Eq. (57).
For instance, Eq. (57) seems to vanish by substituting B = 0.
However, one may rewrite Eq. (57) as

F̃3(�) = 2B

[
q−

Aq+ − Bq−
− p−

Ap+ − Bp−

]
,

which, after the factor 2B partially cancels out the term AB
in the demoninator in Eq. (57), gives Eq. (41) by assuming
B = 0.

As pointed out by Koyama and Tomimatsu [33–35], one
might employ the saddle point approximation. From Eq. (57),
one separates a relevant factor that oscillates most drastically
and uses it to estimate the integration. One must justify that
it only oscillates moderately for the remaining term, even
though its apparent form might be rather sophisticated. By
using the asymptotic forms of � functions [53] at the limit
κ → ∞, it is not difficult to show that the first term of the
r.h.s. of Eq. (57) is irrelevant. For the second term, it gives

η+eiπκ + γ+e−iπκ

η−e−iπκ + γ−eiπκ
, (58)

where

η± = �(2λ)Aκ−λe−iπλ ± �(−2λ)Bκλeiπλ,

γ± = �(2λ)Aκ−λeiπλ ± �(−2λ)Bκλe−iπλ. (59)

Now, if one can show that |η±| > |γ±| for ω > 0, then
the r.h.s. of Eq. (58) can be rewrite as

F̃3(�)e−iωt ∼ eiφei(2πκ−ωt), (60)
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where

eiφ = η+ + γ+e−2iπκ

η− + γ−e2iπκ
. (61)

To be specific, we have

φ = (arg η+ − arg η−)

+ arctan
|γ+| sin(arg γ+ − arg η+ − 2πκ)

|η+| + |γ+| cos(arg γ+ − arg η+ − 2πκ)

− arctan
|γ−| sin(arg γ− − arg η− + 2πκ)

|η−| + |γ−| cos(arg γ− − arg η− + 2πκ)
.

(62)

When κ → ∞, it is noted that the argument φ also oscillates
violently by the same period as 2πκ . It varies within the range
of 2π , and as discussed below, its effect will not completely
compensate for the latter. On the other hand, if for ω < 0,
we have |η±| < |γ±|, and the same conclusion holds.

The saddle point is identified at the vanishing rate of
change for the phase, namely,

d

dω
(2πκ + φ − ωt) = 0, (63)

from which one finds

�0 =
√

μ2 − ω2
0 �

(
Cμ3M

t

) 1
3

, (64)

where

C = 2π + dφ

dκ

∣∣∣∣
�=�0

.

We note that complete cancelation does not occur because

dφ

dκ
∼ (−2π)

× |η+||γ+| cos(arg γ+ − arg η+ − 2πκ) + |γ+|2
|η+|2 + 2|η+||γ+| cos(arg γ+ − arg η+ − 2πκ) + |γ+|2

+c.c. > −2π,

where one estimates the dominant contribution from the
exponential dependence on κ , and the counter term “c.c.”
is obtained by the replacements η+ → η−, γ+ → γ− and
κ → −κ .

By further evaluating the derivatives

K0 = (2πκ + φ − ωt)|ω=ω0
� 2πκ(ω0) + φ(ω0) − μt,

K2 = d2

dω2 (2πκ + φ − ωt)

∣∣∣∣
ω=ω0

� 3μt

C2/3
(

μ3M
t

)2/3 ,

(65)

one finds the desired asymptotic form for the time-domain
Green’s function Eq. (27)

GC (
r, r ′; t) ∼ eiK0

∫
ei

1
2 K2ρ

2
dρ

∼ (μt)−5/6(μM)1/3μ sin(μt + ϕ0), (66)

where the direction of the steepest descent is alone ω ±
exp(iπ/4). and the phase shift ϕ0 is governed by φ(ω0)

and κ(ω0), with some minor dependence in t . The resultant
temporal dependence of the envelope is, therefore, t−5/6, as
explored by many authors.

If |η±| = |γ±| and λ is a real number, by using the same
arguments we have φ = −2πκ . Therefore, the strong oscil-
lation as � → 0 cancels out, and subsequently, at the small
mass limit, we also arrive at a late-time tail of the form t−1.

4 Further discussions and concluding remarks

In this study, we gave a detailed account of the derivations
of the late-time tails of massive perturbations in spherically
symmetric black hole metrics. A few aspects have been revis-
ited regarding the theoretical framework initially pioneered
by Hod and Piran [32], and Koyama and Tomimatsu [35].

The Green’s function Eq. (10) in the context of black hole
perturbation theory is strongly reminiscent of that in classi-
cal electrodynamics. In particular, if the effective potential
is suppressed, the formalism readily falls back to that of the
Lorentz gauge Maxwell equations for the scalar and vec-
tor potentials in free space [55]. Although different types of
Green’s functions obey the same equation, it is the causal-
ity, in terms of specific boundary conditions, that fixes the
remaining “liberty”. In the language of contour integration,
the difference between the retarded and advanced Green’s
functions correspond to distinct choices in shifting the mass
poles around the real frequency axis [55]. The above notion
continues to be the same in quantum field theory, except
that the role of the free field Green’s functions is replaced
by the propagators [56]. The current approach constructs
the Green’s function using Eq. (13), where the retarded
nature of the resulting formula is planted through the asymp-
totic behavior of the solution for the homogeneous equation.
Therefore, in principle, there is no more freedom regard-
ing the locations of the QNM poles and branch cuts. In
other words, these properties are well-defined. Indeed, the
whereabouts of the poles and cuts can be correctly “guessed”
using heuristic arguments based on the definition of retarded
Green’s function and Jordan’s lemma, as has been done in
most literature. Nonetheless, it is meaningful to ascertain the
mathematical consistency of the theory through an explicit
analysis of the analytic properties of the waveforms. More-
over, since the derived master equation is an approximation,
we understand that such a reassessment, as carried out in the
first part of Sect. 3, is relevant.
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In deriving the master equation Eq. (15), we have ignored
the first-order derivative term

M + M ′

r2

∂
̃

∂r
,

which is of O(1/r2). On the other hand, for the second-order
derivative, such terms were kept on the r.h.s. of Eq. (16).
This can be justified as follows. First, the resulting late-time
tail was independent of the value of λ and therefore read-
ily applied to the case where the term vanishes by assuming
λ = 1

4 . Indeed, the specific form of λ given by Eq. (21) is
not essential, as one only needs the property that is invariant
under the transformation � → �eiπ . Second, the relevant
region of the saddle point, the frequency, essentially van-
ishes and κ → ∞, which again ensures that the last term’s
effect is relatively insignificant. It is also consistent with the
obtianed asymptotic behavior of 
̃2 at large r , the ratio of
the two terms is largely determined by 
̃ ′

2/
̃2 ∼ � → 0.
Subsequently, many authors have interpreted such an approx-
imation as that the late-time tail is due to the backscattering
from the effective potential at spatial infinity, reminiscent of
the case of massless perturbations [26].

In [35], the authors elaborate a physical interpretation for
the condition when the asymptotic tail behaves universally
as t−5/6. It states that the fraction of the in-going wave in 
1

should be more significant than that of the out-going wave.
Indeed, the forms of 
̃1 discussed in Sects. 3.1 and 3.2 pos-
sess both in-going and out-going components. Moreover, for
the specific cases discussed in this study, it is not difficult
to show that the out-going wave becomes the dominant one.
To be specific, this occurs since κ is significant in our case.
Besides, due to the asymptotic form of the confluent hyperge-
ometric function M(±λ−κ +1/2, 1±2λ, x), the coefficient
of the out-going wave becomes more pronounced. The latter
can be readily identified using the phase given by Eq. (25),
as a result of the boundary constraint for 
̃2. Therefore, the
findings of the present work are consistent with the existing
results.
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Appendix A: Analytic properties of the in-going wave �̃1

In this Appendix, we elaborate further on the singularity of
the in-going wave 
̃1. One may argue that if the effective
potential vanishes in the vicinity of the horizon at least as
fast as an exponential form, the waveform does not contain
any branch cut. As shown in [26], if the potential decrease
faster than an exponential form, there will be no singularity.
The waveform contains a pole on the negative imaginary axis
for the marginal case of an exponential potential, but there is
no branch cut. However, since we are interested in the late-
time tail, a branch cut stemming from the real axis plays a
more significant role, and a non-oscillating pole is irrelevant.
This is because a power law decay, dictated by the cut, over-
whelms an exponential one, governed by a pole. Now, for
a generic black hole metric, one can show that the effective
potential indeed decreases asymptotically by an exponential
form. Roughly speaking, this is because the effective poten-
tial V (r) attains zero linearly, meanwhile the tortoise coordi-
nate implies r∗ ∝ ln(r − rh). Based on the above arguments,
it is physically plausible that the in-going wave does not con-
tain a branch cut, and as a result, the asymptotic behavior of
the late-time tail is mainly governed by the singularities in
the out-going wave. For instance, Eq. (17) of Ref. [33] gives
a general form of retarded Green’s function, and the asymp-
totic tail is governed mainly by the singularities embedded in
α and β, rather than the particular form of the in-going wave.
A more specific example for massless perturbations is given
by Eq. (4.12) Ref. [26], where it is evident that the specific
form of the in-going wave does not play a significant role in
the temporal dependence given later in Eq. (4.17). We note
that the above examples’ conclusions are rather general, not
restricted to the specific black hole metrics and approxima-
tions.

In practice, the analytic properties of the in-going wave are
often taken as a requirement, primarily when it is obtained
from an approximated potential and substantially distorted.
In the present work, for example, the master equation Eq. (6)
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is derived as a proximation to the potential at spatial infin-
ity. Therefore, it is not expected to precisely reproduce the
black hole metric in the vicinity of the horizon. Nonetheless,
according to the above discussions, it will not present a seri-
ous problem as long as the waveform 
̃1 does not contain any
branch cut. In what follows, we show that this is indeed the
case. Concerning the discussions around Eq. (25), for the in-
going wave, the boundary condition dictates a relation similar
to that presented in the main text. Again, this implies a jump
in the phase of � , namely, � → �eiπ as one traverses the
line segment between ±μ on the real axis of the frequency ω.
However, owing to Eq. (34), this will not cause a difference
in value (either the derivatives) of 
̃1 between the two sides
on the branch. In other words, even though � as a function
of ω inevitably possesses a branch cut, 
̃1 as a function of ω

is manifestly analytic in the relevant domain. As discussed
above, this was motivated and intentionally chosen.
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