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Abstract We calculate the shear (η) and bulk viscosity
(ζ ) of Self Interacting Dark Matter (SIDM) fluid using the
kinetic theory formalism. Using the astrophysical constraints
on dark matter self-interaction cross section over mass σ/m,
we demonstrate that viscous SIDM fluid violates the lower
bound on the ratio of shear viscosity to its entropy density,
η/s = 1

4π
. Then, considering the η/s bound as universal,

we derive a theoretical upper limit on the ratio of velocity
average dark matter self interaction cross-section to its mass
and also estimate an upper limit on SIDM mass. We report
that mass of the SIDM particle should be sub-GeV scale.
Furthermore, with the assumption of a power-law form of
η and ζ , we study its evolution in the light of low redshift
observations. We show that at the large redshift, the SIDM
viscosity is small, but at the small redshift, it becomes suffi-
ciently large and contributes significantly to cosmic dissipa-
tion. As a consequence, viscous SIDM can explain the low
redshift observations and also consistent with the standard
cosmological prediction.

1 Introduction

The collision-less cold dark matter (CDM), along with
the cosmological constant (ΛCDM model of cosmology)
explains the large scale structure (greater than the O (100
Mpc) scale) of the Universe. But on the small scales, it faces
major issues such as the core cusp problem, missing satel-
lites problem, too big to fail problem etc. For more detail
on the small scale issues, see reviews [1,2]. It has been pro-
posed that instead of the DM to be collision-less, if the DM
particles interact with each other via elastic scattering over
the scale where the problem is severe, then it can address the
above mentioned problems [3–7]. The success of the SIDM
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lies in the fact that at the small scale due to large density, the
SIDM behaves like a collisional dark matter, but on a large
scale due to small density, it behaves like the collision-less
DM. Thus the SIDM can explain both the small and large
scale observations very well.

It is pointed out that the collisional nature of SIDM on
the small scales can lead to viscosity. The SIDM fluid having
viscosity is defined as viscous self-interacting dark matter
(VSIDM) fluid. In Ref. [8], using the kinetic theory for-
malism, we have calculated the viscous coefficients of the
VSIDM fluid. There we show that the viscous dissipation of
the VSIDM becomes prominent at present, and consequently,
it can explain the present observed accelerated expansion of
the Universe. Therefore, the VSIDM fluid model can unify
both the dark sectors, i.e., dark matter and dark energy, of
the Universe. Furthermore, in Refs. [9,10], using this frame-
work, we study the cosmic evolution at the small redshifts,
and report that the decreasing fluid velocity gradients on ear-
lier time can explain the late time cosmological observations.

The inclusion of viscosity in the cosmic fluid has richer
dynamical consequences in comparison with the ideal cosmic
fluid. In literature, the effect of cosmic viscosity, especially
bulk viscosity (unlikely shear viscosity, it is consistent with
the homogeneity and isotropy on the large scale structure),
has been explored in the different epochs of cosmic evolution.
For a homogeneous and isotropic expansion (Friedmann–
Lamaitre–Robertson–Walker space time metric) of Universe,
the presence of the bulk viscosity contribute the negative
pressure, so the total cosmic fluid pressure (PT ) becomes,
PT = P − 3ζH , where P is kinetic pressure and H is Hub-
ble expansion rate. In case of sufficiently large cosmic vis-
cosity, the total fluid pressure may be negative and leads to
accelerated expansion of the Universe. Therefore, the viscous
cosmic fluid may explain the early time acceleration (cosmic
inflation) [11–14], and also the late-time cosmic acceleration
[15–26]. In recent work, Floerchinger et al. [27], argued that
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at late time of the cosmic evolution when the structure forma-
tion takes place then due to large velocity gradients, the shear
viscosity may also become important and play significant role
in cosmic dissipation. If the shear viscosity is large enough, it
can also leads to accelerated expansion. However, it remains
unclear which kind of particles in the Universe can produce
such a large viscosity. Later, in Ref. [8], we proposed that
the VSIDM could provide a possible source to create such
a large viscosity. Further, in Ref. [28], authors have found
that the viscous dark matter can reduce the tension between
the Planck and local measurements of the Hubble expansion
rate. In other works [29,30], we show that the dark matter
viscous energy dissipation can increase its temperature, and
also lead to visible photon production [30,31]. These gen-
erated photons may increase the number density of photons
in the Rayleigh–Jeans limit of the Cosmic Microwave Back-
ground (CMB) radiation, and can explain the 21-cm anomaly
reported by EDGES collaboration [30].

Furthermore, the presence of the cosmic viscosity may
cause to alter the standard cosmic evolution history and the
large scale structure formation. A large DM viscosity can
increase the DM temperature [29], decay of gravitational
potential fluctuations [24], reduces the growth of the density
perturbation [32,33] and damping of the gravitational waves
[34–36]. Therefore, the DM viscosity is severely constrained
from the different astrophysical and cosmological observa-
tions. For recent work on cosmic viscosity, see Refs. [37–41],
and also, to study the effect of cosmic viscosity on early and
late time of evolution of the Universe, see review [42].

In this work, we estimate the bulk and shear viscosity of
SIDM in the kinetic theory framework and study its evo-
lution at late time of the cosmic evolution. We check the
dependency of bulk viscosity onto the sound speed and find
that for a large sound speed Cn > 0.0027, ζ becomes large
in comparison with the Cn = 0 case. Further, considering
the astrophysical limit on σ/m, we show that the VSIDM
violates the lower bound on η/s, given by η/s = 1

4π
[43],

Then in the assumption that the conjectured KSS bound is
universal, we derive a constraint on ratio of velocity average
self-interacting scattering cross-section to its mass. Later, we
also explore the parameter space for SIDM mass and report
that the SIDM particle mass should be sub-GeV scale.

Here, we also explore the evolution of SIDM viscosities
(both shear and bulk viscosity) in light of the low redshift
observations. For this purpose, we assume that during the
small redshift 0 < z ≤ 2.5, the cluster scale may not be com-
pletely virialized, but gravitationally bound, and the DM fluid
velocity gradient is constant on a scale ∼ 3−20 Mpc. In this
case, the viscous coefficients of SIDM fluid may vary with
the redshift. Further, in order to study the viscous evolution,
we consider the power-law form for bulk ζ(a) = ζ0 (a/a0)

α ,
and shear viscosity, η(a) = ζ0 (a/a0)

α for Cn = 0 case,
where a and a0 represents the scale factor at any epoch and its

present value, respectively. We then use Einstein’s equation
and energy–momentum conservation equations and calculate
the background quantities such as the Hubble expansion rate,
H(z) and deceleration parameter, q(z) for small redshift.

Then, assuming the length scale of spatial average as
∼ 20 Mpc [9], which is much larger than the cluster scale,
we estimate the best fit value of the model parameter, α

which explain the cosmic chronometer data and also obtained
the correct value of deceleration parameter in the matter-
dominated era. The best fit value of the model parameter
suggests the decreasing DM viscosity on the earlier times
(large redshift) and also explains the low redshift observa-
tions. In the VSIDM fluid model, we also calculate the age
of the Universe and find that it is smaller than the age inferred
from the CMB anisotropy data [44] but larger than the glob-
ular cluster age [45].

The arrangement of our work is as follows: in Sect. 2,
we briefly discuss the motivation of viscous self-interacting
dark matter and estimate the mean free path and the length
scale over which the SIDM viscosity and spatial averages
should be estimated. Then we calculate the bulk and shear
viscosity of SIDM from the kinetic theory in relaxation time
approximation. In Sect. 3, we study the KSS bound violation
in the presence of VSDIM fluid. Later, in the assumption
that KSS lower bound is universal, we derive a theoretical
upper limit on 〈σv〉/m and also estimate the constraint on
SIDM mass. In Sect. 4, using the Einstein field equations
and energy–momentum conservation equations, we derive
the dependency of the deceleration parameter on the SIDM
viscosity. Further, we set up the coupled differential equa-
tions for the Hubble rate and deceleration parameter at low
redshifts. In Sect. 5, we estimate the best-fit values of the
model parameter and discuss our results. In the last Sect. 6,
we conclude our work.

2 Viscous self-interacting dark matter (VSIDM)

SIDM is a lucrative alternative candidate to address the small
scale problems faced by the collisionless dark matter, due
to large DM self-interactions at those relevant scales, see a
review [2]. On the small scales, the DM density is large; hence
the collisions are efficient, whereas, on the large scales due
to small density, DM behaves as collisionless. Therefore, the
SIDM can explain both the small and large scale structure
data. Unlike the CDM, where only the gravitational inter-
action is important, in case the SIDM halo, the collisions
between the DM particles also participate into the halo for-
mation. A large DM self-interaction cross-section causes the
heat transfer between the outer and inner layer of the DM
halo, and leads to the core profile towards the central region
of the DM halo which matches with the astrophysical obser-
vations [46–48].
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Since the small scales demands the non zero self-
interaction between the DM particles, hence it is interesting
to explore the viscous effect contributed via this interaction.
But before this, we estimate the scale over which the SIDM
viscosity needs to be calculated.

2.1 Scale of the SIDM viscosity and spatial averages

The minimum scale on which the viscosity coefficients of
VSIDM fluid should be calculated will depend on the length
scale over which the fluid description of the SIDM particle
is valid. The hydrodynamic description of the SIDM parti-
cles will be valid when the mean free path of the dark matter
particle, λSIDM is less than the length scale, L under consid-
eration, i.e. λSIDM < L (also see Section 4). In the dilute
gas approximation, the mean free path of SIDM particle is
given by λSIDM = 1√

2

( 1
nσ

)
[49]. In a simplified manner, the

expression can be re-written as

λSIDM ∼ 3 × 109
(

m/σ

gm/cm2

) (
M�kpc−3

ρ

)
kpc , (1)

where, m/σ and ρ should be taken in units of gm/cm2

and M�kpc−3, respectively. Using the isothermal profile
for the SIDM particles (which happens due to at least one
scattering between the DM particles) for cluster scale and
ρ ∼ 2 × 107 M�kpc−3, σ/m = 0.1 cm2/g as obtained
from Ref. [50], we get λSIDM = 150 kpc, which is smaller
than the cluster size DM halo (∼ Mpc). Thus we assume that
the length scale, where viscosity estimation has to be done,
should be at least cluster or larger scales (i.e. supercluster
scale), see also Refs. [8,9].

In this study, we are interested to calculate the viscous
coefficients of SIDM fluid at a late time, when the DM halo
has been gravitationally bound and more or less virialized
(so that the fluid description is valid). In order to estimate
the viscous coefficients of the SIDM, we apply the kinetic
theory in the relaxation time approximation. Using the kinetic
theory and hydrodynamics, one can derive the expression for
bulk ζ and shear viscosity η as [51–53]

ζ = 1

T

∫
d3 p

(2π)3 τ(Ep)

[
EpC

2
n − p2

3Ep

]2

f 0
p , (2)

η = 1

15T

∫
d3 p

(2π)3 τ(Ep)
p4

E2
p

f 0
p , (3)

where τ(Ep), T and f 0
p represent the relaxation time, temper-

ature and the equilibrium distribution function of the SIDM,
respectively. Here Cn = ∂P

∂ε

∣∣
n is the speed of sound at con-

stant number density and Ep = (p2+m2)
1
2 is the total energy

of a SIDM particle. Further, one can also obtain the entropy
density, s of the viscous SIDM medium as

s = 1

T

∫
d3 p

(2π)3

[
Ep + p2

Ep

]
f 0
p . (4)

In the relaxation time approximation, one assumes that colli-
sions between the particles are sufficient enough to take sys-
tem close to the local thermodynamic equilibrium in relax-
ation time. In this work, we approximate the relaxation time
to the thermal average relaxation time, τ̃ . For the scattering
process a(pa) + b(pb) ↔ c(pc) + d(pd), τ̃a is defined as

τ̃−1
a =

∑

b

nb〈σabvab〉, (5)

Here, 〈σabvab〉 is the average velocity weighted cross-
section, defined as

〈σabvab〉 =
∫
d3 pad3 pb σab vab exp

(−Ea
T

)
exp

(−Eb
T

)

∫
d3 pad3 pb exp

(−Ea
T

)
exp

(−Eb
T

) .

(6)

where, σab is the scattering cross-section and vab is the rel-
ative velocity between a and b interacting particle. Further,
nb represents the number density of particle b, given by

nb =
∫ ∞

0

d3 pb
(2π)3 f 0

pb . (7)

From Eq. (5), we see that the value of τ̃a depends on the par-
ticle physics motivated model. Here we assume that the DM
particles are colliding with themselves elastically and take
na = n and 〈σabvab〉 = 〈σv〉. We emphasize the assumption
that the relaxation time approximation holds, when the dark
matter particle scatters with each other at least one time in
the DM halo formation time thalo, i.e. thalo/τ̃a ≈ 1. In Ref.
[8], it has been shown that for the SIDM, the relaxation time
approximation is valid at galactic and cluster scale and hence
can be applied for its viscosity estimation on these scales.

In order to calculate the SIDM viscosity, we assume
that the DM is non-relativistic, and follow the Maxwell-
Boltzmann distribution. This implies that Ep ∼ m + p2

2m and

f 0
p = exp

(
− pμuμ

T

)
, where pμ and uμ represents the four

momentum and four velocity of the SIDM particle, respec-
tively. In the rest frame of DM fluid, i.e., uμ = (1, 0, 0, 0)

and constant sound speed, integration of Eq. (2) provides us
an expression for the SIDM bulk viscosity as (keeping terms
upto (T/m)3 and neglecting higher orders)

ζ = m

12〈σv〉

[

12C4
n

(m
T

)
+ 5(4 + 9C4

n)

(
T

m

)

+ (−2 + 3C2
n )

{

12C2
n + 70

(
T

m

)2
}

+ 315

(
T

m

)3
]

(8)
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Using the same assumptions as above, we can also esti-
mate the shear viscosity from Eq. (3) as

η = m

〈σv〉
(
T

m

) [
1 − 7

(
T

m

)
+ 63

4

(
T

m

)2 ]
. (9)

Further, from Eq. (4) the expression for entropy density is
obtained as

s =
(
m2

2π

) 3
2
(
T

m

) 1
2
[

2 + 5

(
T

m

)
− 15

(
T

m

)2
]

(10)

From above Eqs. (8), (9) and (4), we see that the viscous
coefficients (η, ζ ) and entropy density depends on the ratio
of SIDM temperature to its mass (T/m) and its higher orders
O [

(T/m)2, ...
]
. We assume that the VSIDM behaves like

cold dark matter, hence T/m ∼ v2
vd � 1, where vvd is

the DM velocity dispersion on the scale of our interest. The
VSIDM model respect the DM coldness criteria since from
cluster to supercluster scale T/m varies from 10−5 to 10−4.
Thus, for a good approximation it is sufficient to put the
linear term in T/m and neglect the higher order term in the
expressions of Eqs. (8), (9) and (4). Therefore the simplified
form of the bulk and shear viscosity is written as

ζ = m

〈σv〉
(
T

m

)[
5

3

(
1 + 9

4
C4
n

)
− 2C2

n

(
1 − 3

2
C2
n

) (m
T

)

+ C4
n

(m
T

)2
]

, (11)

η = m

〈σv〉
(
T

m

)
. (12)

Here we find that the shear and bulk viscosities depend on
mass (m), temperature T , velocity average scattering cross-
section (〈σv〉) of the SIDM particles. We emphasize that
the expression for shear and bulk viscosity is quite general
and can be applied to the non-relativistic fluid follow the
Maxwellian distribution with constant sound speed, and val-
idates the relaxation time approximation.

Further, using the argument of equi-partition of energy
1
2m〈v2〉 = 3

2T and relation between the root-mean square

and average velocity relation,
√〈v2〉 = 1.085〈v〉, we get the

simplified form of the SIDM bulk and shear viscosity from
Eqs. (11) and (12) as

ζ = 1.18

3

m〈v〉2

〈σv〉

[
5

3

(
1 + 9C4

n

4

)
− 5.1

C2
n

〈v〉2

(
1 − 3

2
C2
n

)

+ 6.5

(
Cn

〈v〉
)4

]

, (13)

η = 1.18

3

(
m

〈σv〉
)

〈v〉2 (14)

We point out that for vanishing sound speed case, i.e.,
Cn = 0, we get the expressions of SIDM viscosity as same
as reported in Ref. [8].

3 Fundamental properties of SIDM from η/s bound

In the previous section, we have calculated the SIDM viscos-
ity. Here, we study the SIDM properties in the light of η/s

bound. In Ref. [43], Kovtun, Son and Starinets (KSS) have
conjectured a bound on the ratio between the shear viscosity
to entropy density η/s (also known as KSS bound), given by

η

s
≥ 1

4π
. (15)

There it has been argued that the lower bound on η/s, i.e.
η
s = 1

4π
is universal and can be applied for various classes of

quantum field theories. The success of the viscosity bound
lies in the fact that no experiment has yet confirmed the vio-
lation of the lower bound given in Eq. (15). However, there
are some theoretical studies where the violation from the
KSS bound has been reported, see Refs. [54–57]. For a sta-
tus report on this topic, we refer [58].

In our VSIDM model, the ratio of shear viscosity to
entropy density, η/s is obtained by using Eqs. (9) and (10),
which gives us

η

s
= 1

2

(
2π

m2

) 3
2
(

m

〈σv〉
) (

T

m

) 1
2

. (16)

From the above equation, we see that η/s depends on the
velocity average cross section 〈σv〉, temperature, T and mass
of SIDM particle. Using 〈σv〉 ∼ σ 〈v〉 in Eq. (16), we see
that η/s only depends on m and σ/m. Thus to study the η/s

as a function of DM mass, m we need to provide the σ/m
values on cluster scales.

As discussed in Sect. 2, the constraint on σ/m are
obtained from the small scale observations, which explana-
tion requires the self-interactions between the DM particles.
A strong upper limit on the σ/m comes from the merging
cluster IE 0657-56, which require σ/m < 1.25 cm2/gm
[5]. However, a velocity dependent scattering cross-section,
which explain the galactic to cluster scale issues requires
slightly smaller value of σ/m. On cluster scale, the velocity
dependent σ demands σ/m ≈ 0.1 cm2/gm [50].

In Fig. 1, using Eq. (16), we plot η/s on the cluster scale
as a function of DM mass for the different values of σ/m
at present z = 0. Here solid blue and solid black line cor-
responds for σ/m = 1.25cm2/gm and σ/m = 0.1cm2/gm,
respectively. The red solid line corresponds for the lower
KSS bound, i.e. η/s = 1/4π . Since η/s ∝ m−3, so it
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Fig. 1 The ratio of shear viscosity to entropy density, η/s is plotted as
a function of DM mass. The red line corresponds for KSS lower bound,
η
s = 1

4π
[43]

decreases for large DM mass, therefore it is possible that
for some large DM mass, η/s may be smaller than its lower
limit inferred from KSS bound (solid red line). From Fig. 1,
it is clear that larger is the σ/m, smaller is the DM mass
on which the η/s comes below the KSS lower bound. For
example, for σ/m = 1.25 cm2/gm , m = 0.21 GeV and for
σ/m = 0.1cm2/gm, m = 0.5 GeV.

In the above discussion, it becomes clear that in the
VSIDM model, the KSS bound is violated or not depends
on the DM mass. We will explain both the possibility in
upcoming subsections.

3.1 KSS lower bound violation in VSIDM fluid

In Fig. 1, since the η/s comes below the KSS lower bound,
thus we may assume that the VSIDM fluid can violate the
η/s = 1

4π
bound. The DM mass over which the DM does not

respect the KSS bound depends crucially on the σ/m value.
The violation of η/s bound can be confirmed when the future
DM detection experiment will detect the larger mass of DM
particle inferred from the KSS lower bound.

3.2 Constraint on SIDM properties from KSS bound

In this case, we assume that the KSS lower bound is univer-
sal; thus, it allows us to study the SIDM microphysics such
as scattering cross-section σ and it’s mass. This assump-
tion is based on the fact that no experiment has reported the
violation of KSS bound in any fluid, viz superfluid Fermi
gas [59], Quark–Gluon liquid [60]; therefore, this bound is
well established by the experiment up to their current preci-
sion. Furthermore, considering the KSS bound as universal,
the properties of dark sectors, viz dark matter [61] and dark
energy [57] has also been investigated in the literature.

The constraint on 〈σv〉/m can be obtained by using Eqs.
(16) and (15), which provides us

〈σv〉
m

≤ (2π)
5
2

(
1

m

)3 (
T

m

) 1
2

. (17)

This represents a theoretical constraint on the ratio of velocity
average DM self-interaction cross-section to its mass using
the KSS bound. We see that the bound on 〈σv〉/m depends
on the mass and the temperature of the SIDM particles. We
emphasize that this limit is general and can be used to esti-
mate the model parameters for the various particle physics
model of SIDM. In the approximation 〈σv〉 ∼ σ 〈v〉 and

〈v〉 ∼ ( 3T
m

) 1
2 , the above inequality can be manifest in term

of σ/m as

σ

m
≤ 1.2 × 10−2

(
GeV

m

)3 [
cm2

gm

]
. (18)

We see that the constraint on σ/m depends on the SIDM
mass and not on its temperature.

Furthermore we point out that the small scale observations
provides a constraint on σ/m value, which have discussed
above. Therefore, now our interest is to derive a constraint
on the DM mass. For this purpose, we use Eq. (18), and
obtained as

m ≤ 0.23

(
m/σ

gm/cm2

) 1
3

GeV. (19)

The implies that the DM mass allowed from KSS bound
depends only on σ/m value. It is also clear that the larger
σ/m, the smaller the DM mass allowed. For σ/m =
1.25cm2/gm (upper limit from the cluster merger) , m ≤
0.21 GeV and for σ/m = 0.1cm2/gm (required to explain
the cluster scale issues for velocity dependent σ ), we get
slightly larger DM mass, m ≤ 0.5 GeV.

Here, we mainly focus on the second possibility, which
assumes that the VSIDM respects the KSS bound. Thus,
based on the above discussion, we conclude that the KSS
lower bound impose restrictions on DM mass and allowed
only sub-GeV SIDM mass. Since bound on the DM mass
only depends on σ/m value; therefore, the constraint on the
DM mass will be improved further for more precise numer-
ical simulations and astrophysical observations on σ/m in
future.

Recent direct detection experiments for the DM searches
have almost failed to detect the particle dark matter candi-
date of the mass range varies from few GeV to TeV scale
(Weakly-interacting massive particles (WIMP) like DM par-
ticles). Therefore, our result provides a new window of the
DM mass range, which is crucial for the future dark mat-

123



1060 Page 6 of 13 Eur. Phys. J. C (2022) 82 :1060

ter search experiments. We refer Ref. [62] for details of the
experiment, which will probe the sub-GeV DM mass range.

4 Viscous self interaction dark matter cosmology

In this Section, we investigate the effects of VSIDM fluid
on the cosmic evolution history of the Universe through Ein-
stein’s equation and energy–momentum conservation equa-
tions following the formalism discussed in Refs. [8,27].

In the VSIDM model, we assume that the Universe is
mainly dominated by the dark matter with no dark energy
component. In the Landau frame with first-order gradient
expansion, the energy momentum tensor of the VSIDM can
be written in terms of the ideal and the viscous contributions
as

Tμν = Tμν
ideal + Tμν

visc (20)

where, the ideal and viscous terms are given by

Tμν
ideal = εuμuν + PΔμν ,

Tμν
visc = ΠBΔμν + Πμν , (21)

where, ε, uμ and P represents the energy density, four veloc-
ity and kinetic pressure of the dark matter fluid. In Eq.
(21), Δμν = uμuν + gμν is defined as the projection oper-
ator, which is orthogonal to the four velocity vector, i.e.
uμΔμν = 0. Here, ΠB and Πμν represents bulk and shear
stress, which forms are given as

ΠB = −ζ∇μu
μ (22)

Πμν = −η

[
ΔμαΔνβ + ΔμβΔνα − 2

3
ΔμνΔαβ

]
∇αuβ.

(23)

The important property of shear stress is that it is orthogonal
to the four velocity vector, uμΠμν = 0 and also traceless,
Π

μ
μ = 0.
To study the cosmic evolution in the VSIDM model, we

apply the Einstein equations, and energy momentum conser-
vation equations, given as

Gμν = −8πGTμν and ∇μT
μν = 0. (24)

Further, we assume the scalar metric perturbation of the form

ds2 = a2(τ )
[
−(

1 + 2ψ(τ, x)
)
dτ 2 + (

1 − 2φ(τ, x)
)
dx2

]

(25)

and neglect the vector and tensor perturbations in metric. In
the above Eq. a(τ ) is scale factor and ψ, φ are the potentials,
respectively. At the late time, we assume ψ, φ � 1 (see Ref.

[27] and references therein) and fluid velocity is small, i.e.
v2 � 1. Then, using the average energy density equation
and the average trace of Einstein’s equation, one can get the
evolution equation of deceleration parameter q as [27]

dq

dz
+

(
q − 1

1 + z

) [
2q − (1 + 3ŵeff)

]
= 4πGD(1 − 3ŵeff)

3(1 + z)H3

(26)

where, the D term is defined by

D = (1 + z)2
〈
η

[
∂iv j∂iv j + ∂iv j∂ jvi − 2

3
∂ivi∂ jv j

]〉

s

+ (1 + z)2
〈
ζ [∇ · v]2

〉

s
+ (1 + z) 〈v · ∇(P − 6ζH)〉s .

(27)

Where 〈A〉s represents the spatial average of A. Here v is
the peculiar velocity, and spatial derivative represents the
derivative w.r.t. comoving coordinate. The effective Equation
of State (EoS) is given by ŵeff = 〈P〉eff〈ε〉s , where 〈P〉eff is
effective pressure, which is the sum of the kinetic and the
bulk viscous pressure of SIDM, i.e. 〈P〉eff = 〈P〉s +〈ΠB〉s .
We also define the EoS corresponding to the bulk viscous
pressure of the VSIDM as ŵB = 〈ΠB 〉s

〈ε〉s . From Eq. (26) it is
clear that the dynamics of the Universe depends on the dark
matter effective EoS, ŵeff and D term.

Further, from Eq. (26) it is manifest that the Universe will
be in accelerated phase if [27]

4πGD

3H3 >
1 + 3ŵeff

1 − ŵeff
. (28)

provided that ŵeff �= 1. The above condition suggests that
for accelerated expansion, the dissipational effects of the DM
should be sufficiently large. For example, for the present
observed cosmic acceleration, 4πGD

3H3 |z=0 = 4.13 [9]. Thus,
in order to study the strength of viscous dissipation and its
effect on the cosmic evolution at small redshift, we need to
calculate the D term given in Eq. (27), which will be done
in the next Section.

4.1 Calculation of D term

From Eq. (27), we see that the term D crucially depends on
the spatial average of the velocity gradient and viscosities.
Thus its calculation demands the explicit estimation of the
spatial averages. In this work, without going into the detail
calculation of the spatial averages, we will approximate the
dissipation term D using the following assumptions:

(i) We focus our analysis only on small redshift intervals.
In this study, this interval can be typically estimated using the
hydrodynamical validation of the SIDM model. For SIDM
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particles, the fluid description is applicable when the relax-
ation time or mean free time, τ of SIDM is less than the
Hubble time, i.e., τH < 1, where τ = (

ρσv
m )−1 [27]. In

order to estimate the relaxation time, we focus on massive
clusters that were formed at an earlier time, z ∼ 2.5 [63,64].
Further, we also consider that the density profile of the clus-
ter and the velocity dispersion of the DM do not change
substantially, although this is not always the case [64]. For
simplicity, we take ρ ∼ 2 × 107 M�kpc−3, σ/m = 0.1
cm2/g and v ∼ 1000 km/sec [50]. The Hubble expansion

rate is given by H(z) ≈ H0
[
ΩM0 (1 + z)3 + ΩΛ

]1/2
, where

ΩM0, ΩΛ and H0 correspond to the present values of mat-
ter density (DM and baryon), dark energy, and the Hubble
expansion rate, respectively. Their values are taken from the
Planck 2018 data [65]. Then, using the above-mentioned val-
ues we find that on large redshifts, the τH value increases
and on z = 2.5, τH(z = 2.5) ∼ 0.64 < 1 . So, using the
above-simplified assumptions, we find that the fluid dynam-
ics is valid for 0 ≤ z ≤ 2.5. However, at a comparably larger
redshift, z > 2.5, the clusters have not been observed except
their progenitors, i.e., protoclusters [64,66] and thus limit
out analysis. In the future, information about a more precise
cluster formation history will constrain our analysis further.
Therefore, in light of the above, we focus our study on a small
redshift, 0 ≤ z ≤ 2.5.

(i i) To estimate the spatial avarges, we assumed the lower
limit of the spatial average as a fluid scale (from which the
fluid description of the DM starts, i.e., cluster size scale, ∼ 3
Mpc) and an upper limit as a homogeneity scale of Universe,
i.e., ∼ 100 Mpc. It is because our interest is to estimate the
effect of the local inhomogeneities on the background quanti-
ties such as Hubble expansion rate and deceleration parame-
ter, which is defined on the homogeneity scale. Furthermore,
we argue that the small length scale physics is contributing
significantly to the viscosity contribution; therefore, spatial
averages should be estimated on small scales. This can be
understood using the Navier–Stokes equation, given by [67]

ρ
(
∂t u

i + u j · ∇ j u
i
)

= − ∂P

∂xi

+ ∂

∂x j

[
η

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
+ ζ

∂uk

∂xk
δi j

]
.

(29)

Now since the viscous coefficient is proportional to the mean
free path, η ∼ ρvλmfp/3 (where v and λmfp represents the
average velocity, and mean free path, respectively), therefore
if we compare the second or third term on the right-hand side
with the last term on the left-hand side, we find that as the
length scale increases the viscous contribution decreases and
hence on the large scale, the effect of the viscosity can be
ignored. Thus we may conclude that the major contribution
from the viscous term comes from the smaller length scales,

i.e., cluster scales. Our argument also supports the conclusion
as suggested in Ref. [68] that the viscosity effect plays an
important role on the length scale less than the Hubble scale.

(i i i) Further we assume that on the redshift of our inter-
est 0 ≤ z ≤ 2.5, the length scale equal to or larger than
the cluster scale (between the fluid element scale to homo-
geneity scale, viz 3 Mpc ≤ L ≤ 100 Mpc.), the spa-
tial average peculiar velocity gradient 〈∂v〉s is constant, i.e.
〈∂v〉s ∼ constant . Then we can approximate

〈∂v〉s ∼ v0/L , (30)

wherev0 and L represents the peculiar velocity and comoving
length scale. In particular, our assumption implies that the
peculiar velocity and comoving length scale varies in such a
way that so that the ratio of these two becomes constant for the
low redshift. To check the validity of the above assumption at
present, we calculate the v0/L on a typical cluster and larger
scale. For typical cluster scale L ∼ 3 Mpc, DM velocity v0 ∼
1000 km/s, so v0/L ∼ 10−17 sec−1 and for typical larger
scale L ∼ 20 Mpc and v0 ∼ 6000 km/s so v0/L ∼ 9×10−18

s−1. This suggests that the velocity gradient decreases but
in a first approximation, we treat the velocity gradient as a
constant on these scales, and hence validates our assumption.
However, as the scales become large and approach towards
homogeneity viz 20 Mpc < L ≤ 100 Mpc, the fluid velocity
gradient decreases significantly and they does not contribute
much in dissipation. Therefore, we neglect the contribution
of velocity gradient on the large scale, L > 20 Mpc in the
calculation of dissipation.

(iv) The variation of viscosity coefficients ζ, η are inde-
pendent with space since they depend on the thermal distri-
bution of the dark matter [9]. Here we assume that the dark
matter viscosity may vary within the low redshift interval,
0 < z ≤ 2.5. In order to study the variation in ζ and η from
Eqs. (13) and (14), we need to understand the evolution of
the m/〈σv〉, Cn = 0 and 〈v〉 with redshift individually, that
depends on the particle physics model of the SIDM. In this
study, assigning the redshift dependence information in the
power-law form, we consider the bulk and shear viscosities
of the SIDM fluid as

ζ(z) = ζ0

(
a

a0

)α

= ζ0

(
1

1 + z

)α

, (31)

η(z) = η0

(
a

a0

)α

= η0

(
1

1 + z

)α

, (32)

where, α is the viscosity parameter whose sign decides how
the SIDM viscosities are evolving with the redshift. Here,
a
a0

= 1
1+z , where a0 = 1 is the present value of the scale

factor. Furthermore, ζ0 = ζ(z = 0) and η0 = η(z = 0) rep-
resents the present values of bulk and shear viscosity, respec-
tively. Their values can be estimated from the Eqs. (13) and
(14) using the cluster scale constraint at present.
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Thus, utilizing the above approximations, we may evalu-
ate the D term given in Eq. (27) as

D ∼
(

4

3
η0 + 2ζ0

) (v0

L

)2 (
1 + z

)2−α
. (33)

From the above equation, it is clear that for very large aver-
aging length scale (L → ∞) or vanishing viscosity coeffi-
cients (η = 0, ζ = 0), D term becomes zero and the VSIDM
fluid behaves like a dissipationless fluid. We also see that for
α = 2, the dissipation will constant with the redshift. In the
assumption v0/L is constant, η0 and ζ0 is fixed at z = 0,
therefore, D terms will depend only on α parameter.

4.2 Background cosmology in VSIDM model

Furthermore, equipped with the simplified form of D, now
we will set up the evolution equations for the Hubble expan-
sion rate and deceleration parameter. Assuming the cold
VSIDM fluid, i.e. ŵeff ≈ 0 and using Eq. (33), Eq. (26)
simplifies as

dq

dz
+ (q − 1) (2q − 1)

(1 + z)
= β

(
1 + z

H̄3

)
. (34)

Here β is the dissipation parameter, which is given as

β = 4πG

3H3
0

(
4

3
η0 + 2ζ0

) (v0

L

)2 (
1 + z

)−α
. (35)

where H̄ = H/H0 is dimension-less Hubble expansion rate
and H0 = H(z = 0) is the value of the present Hubble
expansion rate. The dissipation term, β depends on exponent
power, α and averaging length scale, L .

In order to solve the Eq. (34), we need to provide the
expression for the Hubble expansion rate. For this purpose,
we use the definition of deceleration parameter q(z) = −1+
(1 + z) H ′

H , and obtain the evolution equation for H̄ as

d H̄

dz
=

(
q + 1

1 + z

)
H̄ . (36)

Thus, we have obtained the coupled differential equations in
q(z) and H̄(z) given by Eqs. (34) and (36). These equations
can be solved numerically by using the initial conditions at
present, i.e. H̄(z = 0) = 1 and q(z = 0) = −0.60 [69]. The
solution of q(z) and H̄(z) effectively depends on two free
parameters α and L , i.e. q(z, α, L) and H̄(z, α, L). In this
work, we will not calculate the averaging length scale, L but
for the rest of our analysis we consider L ∼ 20 Mpc which is
estimated in Ref. [9]. So the solutions for q and H̄ depend on
only one free parameter, α, which will be estimated in next
Section.

5 Analysis and results

In this section, we will first estimate the value of the free
parameter, α using the low redshift observations, and the
standard ΛCDM model prediction. Then, using the best fit
value of α, we will see the evolution of viscosity and bulk
viscous EoS of the VSIDM fluid.

5.1 Hubble expansion rate

In Fig. 2, we have plotted the Hubble expansion rate, H(z) as
a function of redshift for different values of α with the cosmic
chronometer data obtained from the Ref. [70]. The black, red
and blue solid lines corresponds for α = 1.11, α = 1.22 and
α = 1.33, respectively.

To compare our viscous model with the standard cosmol-
ogy, we have also plotted the Hubble expansion rate derived
from the standard ΛCDM model (purple dashed line) in the
Fig. 2. Here we see that the Hubble expansion depends on
the dissipative strength of the dark matter, high is dissipa-
tion, large will be the H(z). Although on small redshift, all
models contribute equally to the Hubble rate, while on the
large redshift due to difference in the dissipation term, all
models contribute unequally in the H(z) and start deviating
with each other.

We find that for α = 1.11 case, the H(z) increases quickly
and becomes very large at earlier times and does not fit the
Hubble data at large redshift. Further, α = 1.33 case the
H(z) increases slowly in comparison with the α = 1.11
case and does not fit the high redshift Hubble data. But for
α = 1.22 case, the H(z) explain the cosmic chronometer
data and matches with the standard cosmological prediction.

Fig. 2 The Hubble expansion rate, H(z) obtained from our VSIDM
model have been plotted with cosmic chronometer data and ΛCDM
prediction as a function of redshift. A model with α = 1.22 fit the
cosmic chronometer data and matches with the ΛCDM prediction
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Fig. 3 The Distance modulus, μ(z) obtained from the VSIDM model,
have been plotted with the Union 2.1 SNe Ia data for different values
of viscosity parameter, α. The plot suggests that the VSIDM model fits
the SNe Ia data very well

5.2 Fitting of Supernovae data

To fit the supernovae data from the VSIDM model, we calcu-
late the measurable quantity distance modulus μ. It is defined
as μ ≡ m − M , where m and M represents the apparent and
absolute magnitude of Type Ia supernovae (SNe Ia). In terms
of the luminosity distance dL, the distance modulus, μ is
defined as

μ(z, α) = 5 log10

(
d̄L(z, α)

Mpc

)
+ 25, (37)

where, d̄L(z, α) is a dimensionless luminosity distance,
defined as d̄L(z, α) = H0 dL(z, α). The luminosity distance
is given as

dL(z, α) = (1 + z)

H0

∫ z

0

dz

H̄(z, α)
. (38)

Further, using Eq. (37), we plot the distance modulus as
a function of redshift for different values of α along with the
SNe Ia data in Fig. 3. We take Union 2.1 compilation SNe
Ia data from the Refs. [71,72], which consists of 580 SNe
data. It can be clearly seen that the values of α considered
here, i.e., α = 1.11, 1.22, and α = 1.33, fit the SNe Ia data
equally well. It implies that the fitting of SNe Ia data cannot
suggest the correct evolution of the SIDM viscosity.

5.3 Deceleration parameter, q

The deceleration parameter (q) defined in the Eq. (34) pro-
vides the information, whether the Universe is in the accel-
erating (for q > 0) or the decelerating phase (for q < 0).
In order to see the epoch of decelerated to accelerated phase
transition ztr (i.e. epoch of q > 0 to q < 0) in our VSIDM

Fig. 4 The deceleration parameter, q(z) obtained from the VSIDM
model parameters, have been plotted with the ΛCDM model prediction

model, we plot the q(z) for different values of α, as a function
of redshift in Fig. 4. The black, red and purple solid lines cor-
responds for α = 1.11, α = 1.22 and α = 1.33, respectively.
The purple dashed line corresponds for ΛCDM prediction.
We can see that for large α, the transition point is earlier
(on large redshift). For α = 1.11, 1.22 and α = 1.33, the
transition points are ztr = 0.58, ztr = 0.66 and ztr = 0.81,
respectively. The transition point corresponding to α = 1.22
matches with the ΛCDM model prediction.

We point out from Fig. 4 that for α = 1.11 case, the
deceleration parameter increases and settles around q ∼ 0.7
for large redshift. It is quite in contrast with our expecta-
tion that q should approach 0.5 in the matter-dominated era.
Also, it does not explain the large redshift Hubble data cor-
rectly, see Sect. 5.1. For α = 1.33 case, at higher redshift,
q is decreasing and approaching towards q ∼ 0.16, which
is below the expected value of q = 0.5 in matter-dominated
era. We may thus safely conclude that the case for α = 1.11
or α = 1.33 is surely not the case to describe the cosmic
evolution appropriately.

Furthermore, from Fig. 4 we can see that for α = 1.22
case, the deceleration parameter saturates around q ∼ 0.49,
which is very close to our expectation and slightly different
from the ΛCDM model q prediction. The important feature
of this model is that the H(z) obtained from this model over-
laps with the ΛCDM expectation of the Hubble parameter
and describes the cosmic chronometer data correctly. Hence
assuming Cn = 0, α = 1.22 is the most intriguing possibil-
ity to explain the Hubble data and q value and matches with
some of the ΛCDM prediction.

5.4 Statefinder technique

As we have seen in the previous subsection that the best fit
value of the model parameter for VSIDM, α = 1.22 matches
with the ΛCDM model prediction. To see the deviation of the
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Fig. 5 The Statefinder pair (r, s) evolution for the best fit model param-
eter α = 1.22 in the VSIDM model of the Universe

VSIDM model with the ΛCDM model, we adopt a geometric
diagnostic approach, as discussed in Ref. [73], which was
introduced to differentiate between the different dark energy
models.

In this approach, one calculates a Statefinder parameter
pair {r, s}, which is related to the higher-order derivative
of the Hubble expansion rate. In terms of the redshift, the
Statefinder parameters are defined as

r(z) = 1 − 2(1 + z)

(
H ′
H

)
+ (1 + z)2

[(
H ′
H

)2

+ H ′′
H

]

(39)

s(z) = 1

3

(
r(z) − 1

q(z) − 1
2

)

(40)

The idea lies in the fact that {r, s} pair is a fixed point given
by {1, 0} for ΛCDM model , and may varies for the other
models. In Fig. 5, we plot the evolution of r − s plane for the
best fit value of the parameter α. We find that for our VSIDM
model the pair lies on the second quadrant of r − s plane in
the past and evolve towards the first quadrant. The present
value of pair in VSIDM model {r, s} is {0.87, 0.03} which
clearly implies that the VSIDM model is different from the
ΛCDM model.

5.5 Evolution of VSIDM viscosity on small redshift

In this subsection, we study the evolution of the bulk and
shear viscosity of the VSIDM fluid with the redshift. In Fig. 6,
using Eqs. (31) and (32), we plot, η(z) and ζ(z) as a function
of redshift for the best fit values of the viscosity parameter,
i.e. α = 1.22. The blue line refer for the shear viscosity and
the rest of the other lines corresponds for the bulk viscosity
for different values of sound speed. We see that the ζ and η

are large at present, z = 0 and decreases on the larger redshift
z > 0. We also find that for small sound speed, Cn < 0.027,
negative term in Eq. (11) becomes large and decreases ζ in
comparison with theCn = 0 counterpart. But for large sound

Fig. 6 The bulk viscosity (ζ ) and shear viscosity (η) of VSIDM have
been plotted as a function of redshift for the best fit model parameter,
α = 1.22. The blue line corresponds for shear viscosity, and the rest of
the lines corresponds for bulk viscosity at different sound speeds

speed, Cn > 0.027, the positive term in Eq. (11) becomes
large and increases ζ .

Further, we emphasize that the value of the VSIDM vis-
cosity obtained here can only be possible at the late times
when the non-linear structure formation takes place, and
collapse objects are formed. Otherwise, as shown in Refs.
[32,33], for a sufficiently large DM viscosity at earlier times,
the DM density perturbation may washout, and non-linear
structure formation will not be possible.

As we have discussed above, at present (z = 0), the vis-
cous contribution from the bulk as well as shear DM viscosity
increases on low redshift; thus, we may expect some conse-
quences. In the Ref. [8], we have shown that at present, z = 0,
the viscous effects of VSIDM are significant and can explain
the present observed acceleration of the Universe. Further,
these results also provide us the physical basis of the cosmic
acceleration and also why it starts at a late (low redshift), not
at an early (large redshift).

5.6 EoS for VSIDM bulk viscosity

In this subsection, we study the evolution of EoS of VSIDM
fluid on small redshift. In Fig. 7, we plot the equation of state
corresponding the SIDM bulk viscosity, ŵB as a function of
the redshift for the best fit value of viscosity parameter, i.e.
α = 1.22. We see that on the small redshift ŵB subsequently
becomes more negative and at present, ŵB(z = 0) = −1.2
and on large redshift, ŵB increases and approaches towards
ŵB ∼ 0.

5.7 Age of universe

Further, using the VSIDM model, we calculate the Universe
age, which is required for a model to describe the cosmic
evolution correctly. The age of Universe at any redshift, tU(z)
is obtained from the Hubble expansion rate as
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Fig. 7 The equation of state, ŵB of VSIDM model as a function of
redshift for best fit model parameter

Fig. 8 The age of the Universe is plotted as a function of the Hubble
expansion rate. The red point corresponds for tU = 13 Gyr and H0 =
71.5 Km sec−1Mpc−1 obtained from the best fit model parameter

tU(z) =
∫ ∞

z

dz

(1 + z)H(z)
(41)

In this work, we have assumed that the SIDM viscosity
becomes effective only at late time z ≤ 2.5, and conse-
quently, the viscous effect modifies the evolution of the Uni-
verse only at a late time. At the early time z > 2.5, the
evolution of the Universe is governed through standard cos-
mology. Thus we consider

H(z) =
{

Hvisc ifz ≤ 2.5,

HΛCDM ifz > 2.5,
(42)

where Hvisc is obtained from the Eqs. (34) and (36) and
HΛCDM ≈ H0

[
ΩB(z) + Ωχ(z)

]1/2. Thus, using the best
fit value of α, we get

tU ∼ 0.974

H0
. (43)

In Fig. 8, we plot the age of the Univere, tU in the VSIDM
model as a function of the Hubble expansion rate. We see that
as the H0 increases, tU decreases. In VSIDM model, using the
best fit value of model parameter,α = 1.22, tU = 13 Gyr. Our
estimation of tU is slightly small in comparison with the age
of the Univere (13.76 Gyr) obtained in the CMB anisotropy
data [44] and larger than the age of globular cluster (12.9
Gyr) [45].

6 Conclusion

The self-interacting dark matter may solve the small scale
puzzles of collision-less cold dark matter. In the case, if SIDM
fluid is viscous, it may affect the cosmic evolution history and
explain the present observed accelerated expansion of the
Universe. In this work, we study the evolution of the viscous
effect of SIDM from the low redshift observational data.

We calculate the bulk viscosity of VSIDM using the
kinetic theory and relaxation time approximation. The
VSIDM viscosities are calculated in the non-linear regime,
assuming that the DM halos are gravitationally bound and
may not completely virialize in 0 < z ≤ 2.5. We check the
dependency of bulk viscosity on sound speed and find that
for low sound speed, Cn < 0.0027, ζ is small but for a high
sound speed Cn > 0.0027, ζ becomes large in contrast with
the Cn = 0 case.

Furthermore, using the astrophysical constraints on the
cluster scale, we find that the VSIDM fluid violates the KSS
lower bound, i.e., η/s = 1

4π
. Later assuming the KSS bound

as Universal, we derive a constraint on velocity average self-
interacting scattering cross-section to its mass and explore
the SIDM mass for the values of σ/m from the observations.
We show that the KSS bound constraint the DM mass range
severely and allowed only a sub-GeV (O(0.1) GeV) mass of
the SIDM particle. In the future, this limit will be improved
for a more precise estimation of σ/m.

In this work, we also explore the SIDM viscosity evolution
in the light of low redshift observations. For this purpose, we
assume the power law form of bulk ζ(z) = ζ0 (a/a0)

α and
shear viscosity η(z) = η0 (a/a0)

α of SIDM at the redshift of
our interest. Then inspired from the observational evidence
that velocity gradient is constant on typical cluster and super-
cluster scale at the present, we assume it to be constant on
the low redshift interval 0 ≤ z ≤ 2.5.

Later, we calculate the Hubble expansion rate and decel-
eration parameter and find that it depends on the viscos-
ity parameter, α, and fluid length scale, L . We assume the
L = 20 Mpc, which is larger than the typical cluster size
DM halo. Further, using the cosmic chronometer data points
and the correct value of the deceleration parameter at the
matter-dominated era, we obtain α = 1.22. The best fit val-
ues of model parameter shows that the viscous coefficients, η
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and ζ are large at present, z = 0 and decrease at earlier time
z > 0. The deceleration to an acceleration transition point
in this model is ztr = 0.66 We also find that the VSIDM
model fits with the supernovae data very well. Although our
VSIDM model matches the ΛCDM prediction but using the
Statefinder technique, we find that our model is different from
the ΛCDM model. In VSIDM model, the age of the Uni-
verse is 13 Gyr, which is smaller than the age inferred from
the CMB anisotropy data but larger than the globular cluster
age.

Thus we conclude the VSIDM model can unify the dark
sectors (DM and dark energy) and maybe a possible alter-
native theory of the standard model of cosmology at a small
redshift. In case the KSS bound is Universal, our result pro-
vides a new DM mass window (sub-GeV scale), which will
be crucial for future particle dark matter searches. We also
point out that if the future DM detectors confirm a larger DM
mass particles inferred from our bound, then KSS bound may
not be Universal. Our results are independent of the SIDM
particle physics model.
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