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Abstract The shear viscosity η of a quark–gluon plasma
in equilibrium can be calculated analytically using multiple
methods or numerically using the Green–Kubo relation. It
has been realized, which we confirm here, that the Chapman–
Enskog method agrees well with the Green–Kubo result for
both isotropic and anisotropic two-body scatterings. We then
apply the Chapman–Enskog method to study the shear vis-
cosity of the parton matter from a multi-phase transport
model. In particular, we study the parton matter in the cen-
ter cell of central and midcentral Au + Au collisions at 200A
GeV and Pb + Pb collisions at 2760A GeV, which is assumed
to be a plasma in thermal equilibrium but partial chemical
equilibrium. As a result of using a constant Debye mass or
cross section σ for parton scatterings, the η/s ratio increases
with time (as the effective temperature decreases), contrary
to the trend preferred by Bayesian analysis of the experi-
mental data or pQCD results that use temperature-dependent
Debye masses. At σ = 3 mb that enables the transport model
to approximately reproduce the elliptic flow data of the bulk
matter, the average η/s of the parton matter in partial equi-
librium is found to be very small, between one to two times
1/(4π).

1 Introduction

In ultra-relativistic heavy ion collisions at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC), a quark–gluon plasma (QGP) has been created [1,2].
The comparisons [3–5] between the experimental measure-
ments of the anisotropic flows and theoretical models such
as hydrodynamics suggest that the QGP behaves like a near-
perfect fluid with a very small η/s (shear viscosity to entropy
density) ratio, not too far from the lower bound 1/(4π) from
the conformal field theory [6].
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Similar to hydrodynamics models, transport models can
also describe the large observed elliptic flow in high energy
heavy ion collisions once parton interactions are included [7–
10]. In these transport models, the interactions among par-
tons are typically represented by the interaction cross sec-
tion(s), including the magnitude and angular distribution,
which then determine the plasma properties including the
shear viscosity η and the heavy quark spatial diffusion coeffi-
cient Ds . Unlike hydrodynamics models, where the η/s ratio
(including its possible temperature dependence) is an input
parameter, transport model calculations can only be related
to the QGP shear viscosity or η/s after applying the rela-
tion between the parton cross section(s) and shear viscosity
[8,10–12].

The shear viscosity of a parton matter at a given tempera-
ture can be calculated analytically or numerically. Analytical
methods include the Israel–Stewart (IS), Navier–Stokes (IS),
relaxation time approximation (RTA), and Chapman–Enskog
(CE) [13,14] methods. They often give different results, espe-
cially for anisotropic scatterings. The shear viscosity can
also be numerically calculated with the Green–Kubo relation
[15–17]. An earlier study [18] has found that for two-body
anisotropic scatterings the Chapman–Enskog method agrees
well with the Green-Kubo result while the relaxation time
approximation (even a modified version RTA∗) does not.

In this study, we first examine the four analytical meth-
ods (IS, NS, RTA∗, CE) in comparison with the Green–
Kubo numerical results on the shear viscosity and η/s
ratio for massless partons in equilibrium under isotropic
or anisotropic two-body scatterings. We then apply the CE
method to the parton matter in the string melting version of a
multi-phase transport (AMPT) model [19], which we assume
as a QGP in partial equilibrium. In particular, we study the
time evolution of η and η/s of the center cell of the parton
matter in high energy Au + Au and Pb + Pb collisions. After
some discussions, we then summarize our findings.
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2 Methods

In addition to the isotropic scattering cross section, we also
consider the forward-angle scattering cross section, which
is based on the perturbative QCD (pQCD) gg → gg cross
section and implemented in the ZPC [20] and AMPT [21]
models. The differential cross section for forward scattering
is given by [21]

dσ

dt̂
= 9πα2

s

2

(
1 + μ2

ŝ

)
1

(t̂ − μ2)2
, (1)

where ŝ and t̂ are the standard Mandelstam variables, αs is
the strong-coupling constant, and μ is the Debye screening
mass. The factor (1 + μ2/ŝ) is used to make the total cross
section energy independent (i.e., independent of ŝ):

σ = 9πα2
s

2μ2 . (2)

The transport cross section, defined as [22]

σtr =
∫

dσ sin2 θcm, (3)

where θcm is the scattering angle in the two-parton center
of mass frame, often appears in the viscosity expressions
because the shear viscosity depends on the effectiveness of
momentum transfer of the parton scatterings. For the above
forward cross section, one gets [18,22]

σtr = 4a(1 + a)

[
(1 + 2a) ln

(
1 + 1

a

)
− 2

]
σ ≡ h(a) σ,

(4)

where a = μ2/ŝ. As a → 0, the cross section becomes
more forward-peaked and h(a) → 0. On the other hand, as
a → ∞, the differential cross section of Eq. (1) becomes
isotropic and h(a) → 2/3. Also note that the h(a) function
increases monotonously with a. Therefore, h(a) is directly
related to the anisotropy of the scattering cross section. Since
the transport cross section depends on ŝ even if the total
cross section does not, we take its thermal average [23] when
considering a parton matter at a given temperature T :

〈σtr〉 = σ

32

∫ ∞

0
du h

(
w2

u2

)

×
[
u4K1(u) + 2u3K2(u)

]
≡ σg0(w). (5)

In the above, w = μ/T, u = √
ŝ/T is the integration vari-

able, Kn is the modified Bessel function of the second kind,
and Boltzmann statistics is used for the thermal distribution.
The g0(w) function defined above is just the thermal average
of h(a), it thus approaches 0 as w → 0 but approaches 2/3
as w → ∞.

Next we examine four analytical methods and the numeri-
cal Green-Kubo method for calculating the shear viscosity of

a parton matter under isotropic or forward scatterings. Note
that we only consider a massless QGP. Therefore, the entropy
density is given by s = 4gBT 3/π2, where gB = 4(4 +3N f )

is the total degeneracy factor of the QGP with Boltzmann
statistics, and N f is the number of relevant quark flavors.

2.1 Israel–Stewart and Navier–Stokes Methods

The Israel–Stewart [24,25] and Navier–Stokes [14] expres-
sions for shear viscosity can be written respectively as

η IS = 6 T

5 σ
, η NS 	 1.2654

T

σ
(6)

for isotropic scatterings, where σtr = 2σ/3. They can be
generalized to anisotropic scatterings as [26]

η IS = 4 T

5〈σtr〉 , η NS 	 0.8436
T

〈σtr〉 . (7)

2.2 The modified relaxation time approximation

The relaxation time approximation is widely used in kinetic
theory, where one approximates the collision integral in the
Boltzmann equation as C[ f ] ∝ −( f − feq)/τ . Here f is
the particle distribution function with feq being the one in
equilibrium, and τ is the relaxation time. With Boltzmann
statistics, the RTA expression for the shear viscosity is given
by [27]

ηRTA = 4 T

5 σ
. (8)

In the modified RTA method (denoted as RTA∗ in this
study) [18], Eq.(8) is changed to the following:

ηRTA∗ = 4 T

5〈σtrvrel〉 . (9)

In the above, vrel = √
ŝ(ŝ − 4m2)/(2E1E2) is the relative

velocity between the two colliding partons, where E1 and
E2 represent respectively the energy of the two partons (each
with mass m); for massless partons one has 〈vrel〉 = 1. Note
that for isotropic scatterings this modification gives ηRTA∗ =
6T/(5σ), which fails to reproduce the original RTA result
of Eq. (8); however, it agrees with the Israel–Stewart (and
Chapman–Enskog) expression. For anisotropic scatterings,
it differs from the Israel–Stewart expression by a vrel term,
with the thermal average given by [18,28]

〈σtrvrel〉 = 8z

K 2
2 (z)

∫ ∞

1
dy y2(y2 − 1)K1(2zy)

×
∫

dσ sin2 θcm, (10)
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where z = m/T and y = √
ŝ/(2m). For massless partons

and the AMPT differential cross section of Eq. (1), we obtain

〈σtrvrel〉 = σ

16

∫ ∞

0
du h

(
w2

u2

)
u4K1(u) ≡ σg1(w), (11)

where g1(w) is effectively another thermal average of h(a).

2.3 The Chapman–Enskog method

The Chapman–Enskog method solves the Boltzmann equa-
tion by applying a series expansion on the distribution func-
tion [13]. The first-order result for the general case of massive
particles under an anisotropic cross section is given by [29]

ηCE = T

10

γ 2
0

c00
, (12)

where γ0 = −10K3(z)/K2(z), and

c00

γ 2
0

= 4z3

25K 2
3 (z)

∫ ∞

1
dy (y2 − 1)3

[(
y2 + 1

3z2

)
K3(2zy)

− y

z
K2(2zy)

] ∫
dσ sin2 θcm. (13)

For the special case of massless partons and the AMPT dif-
ferential cross section of Eq. (1), we then obtain [30]

c00

γ 2
0

= σ

51200

∫ ∞

0
du h

(
w2

u2

)
u6

[(
u2

4
+ 1

3

)
K3(u)

−u

2
K2(u)

]
≡ σ

8
g2(w). (14)

For isotropic scatterings, g2(w) = 2/3 and ηCE = ηIS. For
anisotropic scattering in general, we have

ηCE = 4 T

5 σg2(w)
. (15)

Comparing to ηIS in Eq. (7), we see that σg2(w) in the CE
method serves the role of 〈σtr〉 in the IS method, and g2(w)

is another thermal average of h(a) similar to g0(w) in Eq. (5)
and g1(w) in Eq. (11).

The η expressions in Eqs. (12) and (13) for the general
case of massive partons were given earlier [18,29], while
Eqs. (14) and (15) for the special massless case were shown
later [30]. Note that there is a typo in Eq.(35) and Eq. (38)
of Ref. [18], which give the η result for the modified RTA
and Chapman–Enskog methods respectively, where h(2zyā)

in the two equations should be h(a) = h(1/(2zyā)2) since
2zyā = √

ŝ/μ �= a with ā ≡ T/μ [18].

2.4 The Green–Kubo relation

The Green–Kubo relation [31,32] can be used to numerically
calculate the shear viscosity at or near equilibrium [15–17]. In
an earlier work [33], we have calculated the shear viscosity of
a massless gluon gas in equilibrium in a box under isotropic or

anisotropic two-body scatterings according to the following
form of the Green–Kubo relation [15]:

η = V

T

∫ ∞

0
dt 〈π̄ xy(t + t ′) π̄ xy(t ′)〉. (16)

In the above, V is the volume of the gluon gas, and the
bracket represents the time (t ′) and ensemble average. The
term π̄ xy(t) represents the volume-averaged xy-component
of the energy-momentum tensor at time t : π̄ xy(t) =∑

(pxi p
y
i /p0

i )/V [33]. The correlation function in the above
relation is known to damp exponentially with time [15,16]:

〈π̄ xy(t + t ′) π̄ xy(t ′)〉 = 〈π̄ xy(t ′) π̄ xy(t ′)〉 e−t/τ , (17)

where τ is the corresponding relaxation time. In addition,
the average variance of π̄ xy in equilibrium is given by
〈π̄ xy(t ′) π̄ xy(t ′)〉 = 4ε T/(15V ), where ε is the energy den-
sity of the partons in equilibrium. One then has

η = 4

15
ε τ. (18)

In practice, we first extract the relaxation time τ from the
numerical calculation of the correlation function in Eq. (17)
using the ZPC parton cascade [20,33] and then obtain the
shear viscosity from the above relation.

3 Results for gluons in a box

In this section, we consider a gluon gas in a box at a given
temperature with an elastic scattering cross section of σ =
2.6 mb and αs = √

2/3 [33], which corresponds to μ 	 0.69
GeV. Figure 1 shows the shear viscosity versus temperature
from the four analytical methods under isotropic scatterings
in panel (a) and the AMPT forward scatterings in panel (b).
We see in panel (a) that the viscosity for isotropic scatterings
at a fixed cross section is linear in T for each method, and
the results from the Israel–Stewart, modified relaxation time
approximation, and the Chapman–Enskog methods are all
the same. The results from the Navier–Stokes method is also
very close, only about 5% higher.

For forward scatterings, however, we see in panel (b)
that the viscosity results from the four methods are not the
same. At high temperatures, the viscosity from the Chapman–
Enskog method is much higher than results from the other
three methods that are relatively close to each other. Also, the
shear viscosity for forward scatterings is significantly higher
than that for isotropic scatterings for every method; this is a
result of the smaller transport cross section as h(a) < 2/3
for forward scatterings. At low temperatures, the four meth-
ods give almost the same result because a 
 1 there, which
makes the forward scattering cross section of Eq. (1) almost
isotropic. Note that the results shown in Fig. 1 apply not only
to massless gluons but also to massless partons.
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Fig. 1 The shear viscosity
versus temperature from four
analytical methods for massless
partons under (a) isotropic
scatterings or (b) forward-angle
scatterings, both at σ = 2.6 mb
with αs = 0.47. The methods
include Israel–Stewart (IS),
Navier–Stokes (NS), modified
relaxation time approximation
(RTA∗), and Chapman–Enskog
(CE)

(a) (b)

Results of the η/s ratio for the gluon gas are shown versus
the opacity parameter for isotropic scatterings in Fig. 2a and
the AMPT forward scatterings in Fig. 2b. The unitless opacity
parameter is defined as [33,34]

χ =
√

σ

π
/λ = n

√
σ 3

π
, (19)

where λ is the mean free path, and n is the parton number
density. For a gluon gas under isotropic scatterings, we then
have(η

s

)IS 	 0.1744

χ2/3 ,
(η

s

)NS 	 0.1839

χ2/3 . (20)

We see in Fig. 2a that the η/s ratios from the four analytical
methods are almost the same. They also agree well with the
circles, which represent our previous numerical results [33]
obtained from the Green–Kubo relation for four cases (T =
0.2 GeV and σ = 2.6 mb, T = 0.5 GeV and σ = 2.6
mb, T = 0.7 GeV and σ = 5.2 mb, T = 0.7 GeV and

σ = 10 mb). Note that the Green–Kubo results shown in this
section represent the results using parton subdivision with a
subdivision factor l = 106 [33] that essentially removes the
causality violation in parton cascade calculations.

Figure 2b shows the η/s results for forward scatterings.
Results from the Chapman–Enskog method agree well with
the previous numerical results from the Green–Kubo relation
[33], while results from the other three analytical methods are
too low. Note that the η/s ratio for anisotropic scatterings is
no longer only a function of the opacity parameter χ ; it also
depends on the αs value because the h(a) function leads to
a dependence of η on μ/T , which is ∝ αs/χ

1/3. At a fixed
αs value, which is the case for the calculations shown in
Fig. 2, the η/s ratio is still a function of χ only. Also note
that it has been shown earlier [18] that the Chapman–Enskog
method agrees well with the Green–Kubo results for forward
scatterings. Therefore, we shall mostly use the Chapman–
Enskog viscosity in the following.

Fig. 2 The ratio of shear
viscosity to entropy density
versus the opacity parameter χ

for massless gluons in
equilibrium under (a) isotropic
scatterings or (b) forward-angle
scatterings of σ = 2.6 mb with
αs = 0.47. Results from four
analytical methods (curves) are
compared with the numerical
values from the Green–Kubo
relation (circles)

(a) (b)
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4 Time evolution of η and η/s of the parton matter from
the AMPT model

We now consider the parton matter in the string melting ver-
sion of the AMPT model [21]. In an earlier study [19], we
have calculated the time evolution of the parton energy den-
sity ε, number density, mean transverse momentum 〈pT 〉,
and mean energy in the center cell of central and midcen-
tral Au+Au collisions at 200A GeV and Pb+Pb collisions
at 2760A GeV. Note that the study used the parton scat-
tering cross section given by Eq. (1) with σ = 3 mb and
αs = 0.33. We then extracted from each of these quanti-
ties the effective temperature including Tε and T〈pT 〉, which
are found to be quite different; this also means that the par-
ton matter is in partial (not full) equilibrium [19]. Partial
chemical equilibrium can be characterized by the fugacity
parameter exp(φ/T ), where φ is the chemical potential. The
shear viscosity for distributions in thermal equilibrium but
with a non-zero chemical potential has been calculated in
the relaxation time approximation [29,35], and the viscosity
can be shown to be independent of the fugacity for Boltz-
mann distributions. Therefore, the η expressions shown in
the previous Section can be applied to a parton matter under
partial chemical equilibrium.

Figure 3 shows the time evolutions of two effective tem-
peratures obtained earlier [19] from the AMPT model for
the center cell of central and midcentral Pb + Pb collisions at
2760A GeV in panel (a) and Au + Au collisions at 200A GeV
in panel (b). Central and midcentral collisions at the RHIC
energy refer to Au + Au events with b < 3 fm and b = 7.3 fm,
respectively; while those at the LHC energy refer to Pb+Pb
events with b < 3.5 fm and b = 7.8 fm, respectively. The
center cell is the volume within mid-spacetime-rapidity in
the center of the transverse plane within |x | < 1/2 fm and
|y| < 1/2 fm. Note that we have plotted the time evolu-
tions up to the time when the center cell reaches Tε = 155
MeV, approximately the temperature of the QCD crossover
transition at zero net-baryon density. The effective temper-
ature Tε is determined from the parton energy density [19]
assuming that the parton matter is a QGP with massless glu-
ons and (anti)quarks of three flavors under the Boltzmann
statistics, i.e., using ε = 3gBT 4

ε /π2 with gB = 52. On the
other hand, temperature T〈pT 〉 is determined from the mean
parton transverse momentum for massless partons under the
Boltzmann statistics, i.e., using 〈pT 〉 = 3πT〈pT 〉/4. In full
thermal and chemical equilibrium, these two temperature val-
ues are the same. However, we see from Fig. 3a and b that
they are very different for the parton matter from the AMPT
model, with Tε > T〈pT 〉 for the four collision systems. Note
that in principle the parton matter is not in full thermal equi-
librium because the pressures along different axes are not
isotropic during the evolution of the parton matter in the
AMPT model [19,36]. This causes the effective temperatures

extracted from 〈pT 〉, 〈p〉, and 〈p2
T 〉 to be different [19]. On the

other hand, the difference between Tε and T〈pT 〉 is typically
much larger [19]. Therefore, in this section we approximate
the parton matter in the center cell as a QGP in full ther-
mal equilibrium (at temperature T〈pT 〉) but partial chemical
equilibrium (with the energy density given by temperature
Tε) so that we can apply the analytical expressions for the
shear viscosity. Note that this corresponds to a QGP with the
fugacity of (Tε/T〈pT 〉)4.

Figure 4a shows the time evolutions of the shear viscos-
ity from the CE method for the parton matter in the cen-
ter cell in partial equilibrium. Since the shear viscosity is
determined by the momentum transfer but not fugacity, it
should be calculated with temperature T〈pT 〉 that represents
the momentum distribution. As expected for a constant cross
section, the shear viscosity decreases with time as the parton
matter cools down. The time evolutions of η/s are shown in
Fig. 4b. Note that throughout this Section the entropy den-
sity for the parton matter from the AMPT model is taken as
the full equilibrium value, seq = 4gBT 3

ε /π2, i.e., the value
when the parton matter is assumed to be a QGP in full equi-
librium with energy density ε. We see in Fig. 4b that the η/s
ratio strongly increases with time as the effective tempera-
ture decreases [12]. Also, the η/s ratio is lower at the LHC
energy than the RHIC energy and lower in central events
than semicentral events. These features are mainly because
of the higher entropy density at higher temperatures (s ∝ T 3)
and η ∝ T/g2(w), where 1/g2(w) grows with T slower
than ∼ T 1.4 within the relevant temperature range (as can
be observed from the CE curves in Fig. 1). In addition, at
very early times the η/s values from the AMPT model are
sometimes significantly below 1/(4π), the lower bound from
the conformal field theory [6]. This is partly a result of the
high parton density (or equivalently the high Tε) in the string
melting AMPT model despite the small parton cross section.

The η/s ratio in Fig. 4b decreases as the temperature
increases; this temperature dependence is opposite to that
preferred by the Bayesian analysis of heavy ion experimental
data [37], where the preferred η/s increases as the temper-
ature increases. This “wrong” temperature dependence is a
result of using a constant parton cross section. If we use in
Eq. (1) a temperature-dependent Debye mass as μ ∝ gT
with g being the QCD gauge coupling, we would have
σ ∝ αs/T 2 and thus ηCE/s ∝ 1/(αsg2) would increase with
T . This would be qualitatively similar to earlier pQCD stud-
ies [38,39] that used temperature-dependent Debye screen-
ing masses for 2 ↔ 2 and 1 ↔ 2 parton processes, which
showed that the η/s of the QGP increases with the tempera-
ture [40].

Our early study on the effective temperatures of the par-
ton matter [19] found that σ = 3 mb can roughly reproduce
the bulk observables in the four collision systems, including
the pion and kaon elliptic flows at low pT . An effective η/s
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(a) (b) (c)

Fig. 3 The time evolutions of the effective temperatures Tε and T〈pT 〉 for the center cell in (a) Pb + Pb collisions at 2760A GeV and (b) Au + Au
collisions at 200A GeV. (c) shows the time evolutions of the collision rates (in arbitrary units) for the center cell

Fig. 4 The time evolutions of
(a) the CE shear viscosity and
(b) η/s of the center cell in Pb +
Pb collisions at 2760A GeV and
Au + Au collisions at 200A
GeV. Here the parton matter
from the AMPT model is
considered as a QGP in partial
equilibrium, where the
momentum distribution
corresponds to temperature
T〈pT 〉 but the energy density
corresponds to temperature Tε .
Circle on each curve represents
the corresponding average η/s
weighed by the collision rate

(a) (b)

value averaged over its time evolution is a good overall mea-
sure of the property of the parton matter. Since parton scat-
terings convert the initial spatial geometry into anisotropic
flows including the elliptic flow [7,41], we use the collision
rate in the center cell as the weight in the average. From
Fig. 3c, we see that the collision rate (i.e., the number of
parton collisions per time in the center cell) rises at early
times before it decreases; the rise is because a parton is only
allowed to interact a finite formation time after it is produced
from the collision of the two nuclei. The circle on each curve
in Fig. 4b gives the average η/s value, which is very small
and ranges from just above 1/(4π) to about twice 1/(4π).

Because the AMPT model lacks inelastic parton processes
such as 2 ↔ 3 processes [42], its parton matter cannot
approach chemical equilibrium. We thus also calculate the
shear viscosity and η/s by assuming that the parton matter

is in full (chemical and thermal) equilibrium with the same
energy density (i.e., at temperature Tε). Figure 5 shows the
full equilibrium η in panel (a) and the η/s ratio in panel (b),
where η is calculated using temperature Tε (instead of T〈pT 〉
for the partial equilibrium case). Compared to Fig. 4a, we see
that the full equilibrium viscosity is significantly higher. This
is because Tε > T〈pT 〉, and note that the increase of η with
temperature is faster than linear for anisotropic scatterings
due to the 1/g2(w) term in Eq. (15). Compared to the par-
tial equilibrium case, the η/s ratios for the full equilibrium
case are significantly higher, and they are above 1/(4π) in
all times for the four collision systems. As shown by the cir-
cles in Fig. 5, the averaged η/s values are also significantly
higher than the partial equilibrium case, around three times
1/(4π) for the four systems. Note that the partial equilibrium
nature of the AMPT parton matter, particularly the low T〈pT 〉
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Fig. 5 Same as Fig. 4, but the
parton matter is assumed to be a
QGP in full equilibrium at
temperature Tε

(a) (b)

relative to the high energy density, helps the model to repro-
duce the large observed elliptic flow [7,43]; we now know
that this is related to its lower shear viscosity and η/s than
the full equilibrium case.

5 Discussions

Since the CE viscosity of Eq. (15) contains the g2(w) function
that involves an integral, we have fit it with the following to
make the calculation of ηCE easier for the parton cross section
of Eq. (1):

gfit
2 (w) = h

(
w2

v2

)
, with v = 11.31

−4.847 exp(−0.1378 w0.7338). (21)

Figure 6 shows that the viscosity values using the fit function
(dot-dashed curves) overlap with the exact CE results (solid
curves) regardless of the cross section value.

The AMPT model results in Sect. 4 have been obtained
at σ = 3 mb, because this value enables the string melting
version of the AMPT model to approximately reproduce the
elliptic flow data at low pT [7,19]. In the AMPT model with
the new quark coalescence that allows a parton to have the
freedom to form either a meson or a baryon [44], a smaller
parton cross section of σ = 1.5 mb is found to approximately
reproduce the elliptic flow data. In that case, the shear vis-
cosity would be higher (by a factor between one and two), as
shown by the two solid curves in Fig. 6.

An earlier study [12] used the IS method to estimate the
shear viscosity and η/s of the parton matter under forward
scatterings of the AMPT model. A recent study [45] used the

same estimates. They wrote the differential cross section as

dσ ′

dt̂
= 9πα2

s

2

1

(t̂ − μ2)2
, (22)

i.e., the same as Eq. (1) except for the factor (1 + a). Note
that the total cross section in this case would be given by
σ ′ = σ/(1 + a) [21], which depends on energy or tem-
perature. They further approximated the thermal average of
the transport cross section as 〈σ ′h(a)〉 	 σ ′h(a)|a→μ2/〈ŝ〉,
where 〈ŝ〉 = 18T 2. The shear viscosity is then estimated as
[12]

η′ 	 4 T 3

5πα2
s

[(
1 + μ2

9T 2

)
ln

(
1 + 18T 2

μ2

)
− 2

] . (23)

This estimated viscosity η′ for σ = 3 mb and αs = 0.33
is shown as the long dashed curve in Fig. 6. When we per-
form the proper thermal average of the transport cross section
instead of approximating it with a → μ2/〈ŝ〉, we get the IS
viscosity for dσ ′/dt̂ as shown by the dashed curve in Fig. 6.
We see that for dσ ′/dt̂ the estimated η′ is higher (or lower)
than the IS curve at high (or low) temperatures, reflecting the
inaccuracy of the approximation of the thermal average in
η′. We also see that the IS curve for dσ ′/dt̂ approach the IS
curve for dσ/dt̂ of Eq. (1) (dotted curve) at high tempera-
tures since (1 + μ2/ŝ) ∼ 1 there, while at low temperatures
ηIS for dσ ′/dt̂ is much higher due to its smaller total cross
section.

In this study we have only used the first-order Chapman–
Enskog expression for the shear viscosity, which is ηCE =
(6/5)T/σ for isotropic scatterings. Higher-order CE terms
have been derived earlier [29] and shown to only have a small
effect. For example, for massless particles under isotropic
scatterings, including the second-order term changes the ηCE

front coefficient from 6/5 to 1.256 while including terms up
to the 16th order only changes the front coefficient to 1.268.
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Fig. 6 The shear viscosity
versus temperature for a QGP in
full equilibrium under
forward-angle scatterings at
σ = 3 mb with αs = 0.33.
Results from the IS method, the
CE method, and a fit of the CE
result are shown, together with
the estimated shear viscosity
from Ref. [12] (long dashed
curve) and the IS result (dashed
curve) for dσ ′/dt̂ . The CE
results for σ = 1.5 mb are also
shown

Note that there is a typo in Eq. (25) of Ref. [29] for the
second-order CE term, where γ 2

0 c00 should be γ 2
0 c11; this

typo has been corrected in Ref. [18].

6 Conclusion

In this study, we investigate the shear viscosity and the η/s
ratio of a massless parton matter under isotropic or forward-
angle two-body scatterings. We first compare the analytical
results from the Israel–Stewart, Navier–Stokes, relaxation
time approximation, and Chapman–Enskog methods with the
numerical results from the Green–Kubo relation. We confirm
the earlier finding that only the Chapman–Enskog method
agrees well with the numerical results for anisotropic scat-
terings. We then apply the Chapman–Enskog method to cal-
culate the time evolution of the shear viscosity and η/s of the
center cell of the parton matter from the string melting AMPT
model for central and midcentral Au + Au collisions at 200A
GeV and Pb + Pb collisions at 2760A GeV. We approximate
the parton matter as a quark–gluon plasma in thermal equi-
librium at effective temperature T〈pT 〉 but in partial chemi-
cal equilibrium, where the energy density corresponds to a
higher effective temperature Tε . Due to the partial equilib-
rium nature, we use temperature T〈pT 〉 to calculate the shear
viscosity, which has a lower value than the case if the par-
ton matter were in full equilibrium at temperature Tε . For
the AMPT model that approximately reproduces the elliptic
flow data at low transverse momentum with a parton cross
section σ = 3 mb, the average η/s for each of the four
collision systems is found to be very small, between one to
two times 1/(4π). If the parton matter were in full thermal
and chemical equilibrium, the average η/s would be higher,
around three times 1/(4π). In addition, the η/s ratio from the
current model decreases as the temperature increases, con-

trary to pQCD results that use temperature-dependent Debye
masses. This is a result of the AMPT model using a constant
Debye mass for parton scatterings, which could be an area
for future improvements.
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