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Abstract We search for weakly interacting fixed points in
extensions of the minimally supersymmetric standard model
(MSSM). Necessary conditions lead to three distinct classes
of anomaly-free extensions involving either new quark sin-
glets, new quark doublets, or a fourth generation. While inter-
acting fixed points arise prolifically in asymptotically free
theories, their existence is significantly constrained as soon
as some of the non-abelian gauge sectors are infrared free.
Performing a scan over ∼ 200k different MSSM extensions
using matter field multiplicities and the number of superpo-
tential couplings as free parameters, we find mostly infrared
conformal fixed points, and a small subset with ultraviolet
ones. All settings predict low-scale supersymmetry-breaking
and a violation of R-parity. Despite of residual interactions,
the running of couplings out of asymptotically safe fixed
points is logarithmic as in asymptotic freedom. Some fixed
points can be matched to the Standard Model though the
matching scale comes out too low. Prospects for higher
matching scales and asymptotic safety beyond the MSSM
are indicated.
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1 Introduction

Supersymmetry (SUSY) continues to be an important driver
for particle physics and model building. Over the past
decades, a plethora of supersymmetric extensions have been
constructed and scrutinised both in theory and experiment
as appealing templates for the next Standard Model (SM).
Thus far, however, the LHC has returned null results [1],
thereby strengthening earlier understandings from LEP [2].
Clearly, this state of affairs requires to rethink model building
paradigms and incentives, as well as vanilla parameter spaces
for masses and couplings in the ongoing quest for SUSY at
colliders and beyond, e.g. [3,4].

New directions for model building have arisen recently
from the theory frontier thanks to the discovery of particle
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theories with interacting ultraviolet (UV) fixed points [5–
12]. UV fixed points are key for a fundamental definition
of quantum field theory, in particular when asymptotic free-
dom is absent [5,6]. Without supersymmetry, they have by
now been observed abundantly in settings with simple [7–
10] or semi-simple [11] gauge groups. Yukawa interactions
are key for theories to become “asymptotically safe” (a term
originally coined for the field-theoretic UV completion of
gravity [13]) and lead to salient features such as the taming
of Landau poles, vacuum stability, power-law running, and
full conformal symmetry in the high-energy limit.

In a recent stream of works [14–19] these new model
building ideas have been used to construct concrete exten-
sions of the SM, with further benefits: UV-safe SM exten-
sions can broadly be probed at colliders [14,15], introduce a
characteristic novel type of flavor phenomenology [16], and
explain naturally the discrepancies with the SM predictions
in today’s data on the electron and muon anomalous mag-
netic moments [17,18], or the intriguing flavor anomalies
evidenced in rare B-meson decays [19], besides stabilizing
the Higgs.

With supersymmetry, it was long believed that UV com-
pletions beyond asymptotic freedom may not exist [20,21].
However, a recent discovery [12] has shown otherwise:
Yukawa interactions (tri-linear superpotential terms) con-
tinue to be key [5,6], except that gauge groups can no longer
be simple and the gaussian must be a “saddle” (see Fig. 1).
Accordingly, one is led to stable, unitary, and asymptotically
safe SUSY theories with superconformal symmetry in the
high-energy limit [12].

In this paper, we investigate whether concrete and weakly
coupled superconformal theories in the UV can be found
which connect with the known TeV-scale particle phe-
nomenology at low energies. For this, the minimally super-
symmetric SM (MSSM) provides an ideal starting point: its
weak gauge sector is unstable and the scenario of Fig. 1 is
naturally in reach, it offers basic ingredients for asymptoti-
cally safe SUSY theories such as several gauge groups and
trilinear superpotential couplings [12], it is phenomenologi-
cally acceptable and consistent with SM observations at low
energies, and it provides ample room for extensions which
can be dialed-through in search for fixed points.

While we are particularly interested in UV fixed points,
we will also search for IR (infrared) fixed points, which may
coexist or arise independently. Finding weakly interacting
UV and IR fixed points in supersymmetric theories is also of
interest because they corresponds to non-trivial superconfor-
mal field theories [22]. Moreover, IR fixed points and quasi
IR fixed points have been known to exist in the MSSM for a
long time, and have been explored in model building, includ-
ing for third generation fermion masses [23–33].

The outline of this paper is as follows. In Sect. 2 we
review the renormalisation group equations for supersym-

Fig. 1 Template phase diagram for an MSSM-like quantum field the-
ory with an interacting UV fixed point in the plane of the weak (α2) and
strong (α3) gauge couplings, also showing an interacting IR fixed point,
the free gaussian fixed point (G), and sample renormalisation group tra-
jectories with arrows pointing towards the IR. Note that the gaussian
must be a “saddle” with both relevant and irrelevant perturbations. Plot
adopted from [12]

metric gauge theories with matter, and discuss necessary con-
ditions and general features of perturbative fixed points. In
Sect. 3, we investigate UV and IR fixed points of the MSSM
with conserved or broken R-parity. We further explain the
rationale for several new types of MSSM extensions and
determine their respective fixed points. In Sect. 4, we focus
on the prospects of matching MSSM extensions with inter-
acting UV fixed points to the SM at low energies. In Sect. 5
we discuss our results and conclude. Auxiliary information
is provided in several appendices.

2 Renormalisation group for supersymmetry

We consider N = 1 supersymmetric gauge theories with
product gauge group

G =
∏

a

Ga (1)

and gauge couplings ga , where the index a runs over simple
and abelian group factors. Throughout we scale loop factors
into the definition of couplings and introduce

αa = g2
a/(4π)2. (2)

We also consider chiral superfields �i , which may or may
not carry local gauge charges, and which may further interact
through a superpotential. Mass terms are of no relevance for
this section and are neglected. Instead, we consider the most
general superpotential with canonically marginal couplings
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but omit canonically irrelevant interactions, hence

W (�) = 1

6
Y i jk �i � j �k (3)

with Yukawa couplings Y i jk , Yi jk = (Y i jk)∗. Yukawa cou-
plings are a necessity for asymptotically safe UV fixed points
to occur at weak coupling [5]. We are particularly interested
in theories which display interacting fixed points in the IR or
UV. Conformal critical points correspond to free or interact-
ing fixed points, which can be found using the renormalisa-
tion group equations.

2.1 Renormalisation group

In perturbation theory the renormalisation of the gauge cou-
plings up to two-loop level in the DR scheme is given by
[34,35]1

μ
dαa

dμ
≡ βa = α2

a

(−Ba + Cab αb − 2 Y4,a
)
, (4)

with indices a, b always referring to gauge couplings. The
one-loop coefficients Ba and the two-loop gauge coefficients
Cab are given by

Ba = 6CGa
2 − 2 SRa

2 , (5)

Cab = 4CGa
2

(
SRa

2 − 3CGa
2

)
δab + 8 SRa

2 CRb
2 . (6)

The subscripts a, b on the quadratic Casimir (CG
2 ) and on the

Dynkin index (SR
2 ) of the matter fields indicate the subgroup

of G. Using (5) we may rewrite the two-loop term as

Cab = 8 SRa
2 CRb

2 − 2CGa
2 Ba δab (7)

in terms of the one-loop terms. Evidently, the mixing terms
are manifestly non-negative (Cab ≥ 0 for a �= b) for any
semi-simple supersymmetric gauge theory. Also, for Ba < 0
we have Caa > 0 (no sum) in any quantum field theory [5].

The Yukawa couplings (3) contribute to the running of the
gauge couplings (4) starting at the two-loop level, with

Y4,a = Yi jk Y
i jk C Ra

2 (k)/d(Ga), (8)

and d(Ga) denotes the dimension of group Ga . Non-
renormalisation theorems for the superpotential guarantee
that the exact flow for the Yukawa couplings βY = dY/d ln μ

is given by

μ
d

dμ
Y i jk = Y i j� γ k

� + (i ↔ k) + ( j ↔ k) (9)

1 At the loop-levels considered in this work there is no difference
between the schemes DR and MS [36].

to any order in perturbation theory. Here, γ k
� denote the

anomalous dimension matrix of the chiral superfields. In per-
turbation theory, they read at one-loop

γ (1)k
� = 1

2
Yi j� Y

i jk − 2 αa C
Ra
2 (k) δk� . (10)

2.2 UV and IR fixed points

An important consistency condition arises through the flow
of the superpotential couplings [20]. Taking the sum of abso-
lute values squared of all superpotential couplings, |Y |2 =
Yi jk Y i jk , and also using (4), (10) we find

1

12
∂t |Y |2 = d(R)|γ (R)|2

+ αa d(Ga)
(
Y4,a − 4 αb S

Ra
2 CRb

2

)
,

(11)

with t = ln μ, d(R) the dimension of the representation
R, γ (R) the chiral superfield anomalous dimension, and
Yukawas rescaled as Yi jk → Yi jk/4π . A fixed point requires
the simultaneous vanishing of all beta functions. For the
gauge couplings, βa = 0 implies

2Y ∗
4,a = −Ba + Cab α∗

b , (12)

see (4). Expressions with an ’∗’ -superscript are understood
as being evaluated at a fixed point. Using (7), (11), and (12),
we then find from ∂t |Y |2 = 0 that

d(R)|γ∗(R)|2 = 1

2
Ba α∗

a d(Ga)
(

1 + 2CGa
2 α∗

a

)
(13)

must hold true for any fixed point. Since the left-hand-side
is by definition a positive number, positivity of the weighted
sum

d(Ga) Ba α∗
a > 0 together with α∗

a ≥ 0 (14)

is a necessary condition for interacting fixed points [12]. For
theories with a single gauge group this implies that asymp-
totically non-free theories (Ba < 0) cannot develop interact-
ing fixed points [12,20]. However, for theories with several
gauge groups, (14) mandates that at least one of the gauge
factors is asymptotically free [12], illustrated in Fig. 1.

A useful simplification arises through choices in the
Yukawa sector (see Appendix A for more details), in which
case the set of Yukawa couplings {Yi j�} can be mapped onto
a set {yi } such that the RG beta functions for the Yukawa
couplings squared are proportional to themselves. We may
then introduce the Yukawa couplings as

αi = y2
i /(4π)2, (15)
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and the beta functions (9) with (10) turn into

μ
∂αi

∂μ
≡ βi = αi

⎡

⎣
∑

j

Ei jα j −
∑

a

Fiaαa

⎤

⎦ , (16)

characterised by the one-loop matrix Ei j from superpoten-
tial contributions and the one-loop matrix Fia of gauge field
contributions. Throughout, indices i, j relate to Yukawa cou-
plings while indices a, b relate to gauge couplings (to avoid
confusion, we also have written out the required summations
explicitly). Moreover, the two-loop Yukawa term (8) simpli-
fies into a linear combination of the Yukawa couplings,

Y4,a = 1

2

∑

i

Dai αi (17)

for some coefficients Dai > 0. In these conventions, the beta
functions for the gauge couplings (4) reads

βa = α2
a

[
−Ba +

∑

b

Cab αb −
∑

i

Dai αi

]
, (18)

with the one-loop coefficients Ba , the two-loop matrixCab of
gauge field contributions and the two-loop matrix Dai from
the superpotential. In general, the elements of the matrices
D, E and F are positive or zero.

At weak coupling, theories may display Banks–Zaks (BZ)
fixed points and/or gauge-Yukawa (GY) fixed points [5]. The
former are always IR, while the latter can be IR or UV. BZ
fixed points are the solutions to βa/α

2
a = 0 with vanishing

superpotential couplings αi = 0, leading to

Ba =
∑

b

Cab α∗
b (19)

for each of the non-vanishing gauge couplings. Further,
gauge-Yukawa fixed points additionally have non-vanishing
superpotential couplings. In this case, assuming that the
matrix E can be inverted, we can solve βi/αi = 0 using (16)
to find the nullcline relation

α∗
i =

∑

j,a

(E−1)i j Fja α∗
a , (20)

relating the non-vanishing Yukawa couplings to the gauge
couplings. After inserting (20) into (18), and demanding that
βa/α

2
a = 0, we find the fixed point condition

Ba =
∑

b

C ′
ab α∗

b (21)

for each of the non-vanishing gauge couplings. The matrix
C ′ can be viewed as a Yukawa-shifted two-loop matrix,

C ′
ab = Cab −

∑

i, j

Dai (E
−1)i j Fjb, (22)

which follows from (7) and (18) after inserting (20). As such,
the shift C → C ′ takes into account the fact that the super-
potential couplings achieve a simultaneous fixed point.

In the following it turns out to be convenient to introduce
a notation to differentiate between different types of fixed
points. If gauge couplings αa , αb, . . . remain non-zero at a
fixed point, we refer to it as FPab···, where the indices relate
to the non-zero gauge couplings, see Table 1. Additionally,
Yukawa couplings may or may not be non-zero.

2.3 Two gauge sectors

To be concrete, we discuss a model with two gauge couplings
α2 and α3 and a superpotential, and with (4). This serves as a
template for the SU (2)× SU (3) sector of MSSM extensions
which is the focus of the following sections. We are inter-
ested in interacting UV or IR fixed point in settings where
asymptotic freedom is absent. Hence, (14) mandates

B3 > 0 > B2, (23)

or the other way around, but not both B2,3 < 0. With (23), α2

is a marginally irrelevant coupling close to the Gaussian, but
it may become (marginally) relevant close to an interacting
fixed point α∗

3 . In this setting, the sole BZ fixed point (19) is
given by

α∗
3 = B3

C33
, α∗

2 = 0. (24)

The option α∗
2 > 0 is not available because B2 < 0 with (7)

entailsC22 > 0. In turn, two options arise for GY fixed points
(21). First, the GY fixed point may be partially interacting
(FP3), in which case

α∗
3 = B3

C ′
33

, α∗
2 = 0 (25)

alongside a non-trivial superpotential coupling. It requires
that the shifted two-loop coefficient C ′

33 is positive. For this
partially interacting fixed point to become a UV fixed point, it
is required that α2 becomes marginally relevant in its vicinity
(see Fig. 1). Expanding β2 for small α2 and in the vicinity of
the interacting fixed point, we find

β2
∣∣
FP3

= B2,eff α2
2 + O(α3

2), (26)

with the effective one-loop coefficient B2,eff now given by

B2,eff = B2 − C ′
23 α∗

3 . (27)

Hence, the sufficient condition for the fixed point FP3 to be
UV reads

B2,eff > 0 > B2. (28)

which requires C ′
23 < 0.
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Second, the required fixed point may be fully interacting
(FP23). Using (21) one obtains

α∗
3 = B3 C ′

22 − B2 C ′
32

C ′
33 C

′
22 − C ′

23 C
′
32

, (29)

α∗
2 = B2 C ′

33 − B3 C ′
23

C ′
33 C

′
22 − C ′

23 C
′
32

(30)

to leading order in perturbation theory. Whether fixed points
of this type are UV or IR depends on the eigenvalue spectrum
of the stability matrix. Figure 1 illustrates the scenario in
which the partially interacting GY fixed point FP3 is UV,
and the fully interacting FP23 is IR. Most notably, α2 has
become marginally relevant owing to interactions at FP3.

2.4 Perturbativity

We close with a few remarks on the perturbativity of results.
Our explorative work adopts the leading non-trivial orders in
perturbation theory, which formally assumes that fixed point
couplings are asymptotically small, 0 < α 
 1. Paramet-
rically, this can be achieved in a large-N Veneziano limit,
e.g. [5–12]. However, one might wonder how large gauge
and Yukawa couplings may become, in practice, for pertur-
bation theory to still offer the correct picture? In general,
this question is very difficult to answer, particularly given
the asymptotic nature of the expansion, e.g. [37]. Based on
naïve dimensional analysis with couplings scaled in units of
natural loop factors [38], as done here, we take the view that

0 < α � 1 (31)

characterises the regime with perturbative control. It must
be clear, however, that this criterion is not rigorous, and that
it should ultimately be confirmed with higher loops or non-
perturbatively.

Some additional insights are offered by a recent non-
perturbative study of asymptotically safe UV fixed points in
SU (N )× SU (M) supersymmetric gauge theories with mat-
ter [39], but with significantly simpler superpotentials than
the MSSM extensions studied here. There, the method of
a-maximisation [40] has been used, giving non-perturbative
access to fixed points and chiral superfield anomalous dimen-
sions. Most importantly, it is found that the non-perturtbative
“phase space” of interacting UV fixed points is much larger
than the perturbative one, including settings with Standard
Model gauge groups and only few matter fields. Further,
comparing exact results with perturbative ones in regimes
where the underlying couplings have become of order unity,
it is observed that the latter provides fair estimates in some
parameter ranges (i.e. field multiplicities), yet poor estimates
in others [39]. We conclude that the size of the perturbative

Table 1 Classification of fixed points according to the values of gauge
couplings. Fixed points may be UV provided one or more Yukawa
couplings are non-vanishing at the fixed point

Fixed Point Gauge couplings Type

FP0 α∗
3 = 0 α∗

2 = 0 α∗
1 = 0 Free

FP1 α∗
3 = 0 α∗

2 = 0 α∗
1 > 0 Interacting

FP2 α∗
3 = 0 α∗

2 > 0 α∗
1 = 0 Interacting

FP3 α∗
3 > 0 α∗

2 = 0 α∗
1 = 0 Interacting

FP12 α∗
3 = 0 α∗

2 > 0 α∗
1 > 0 Interacting

FP13 α∗
3 > 0 α∗

2 = 0 α∗
1 > 0 Interacting

FP23 α∗
3 > 0 α∗

2 > 0 α∗
1 = 0 Interacting

FP123 α∗
3 > 0 α∗

2 > 0 α∗
1 > 0 Interacting

expansion parameter alone is not sufficient to identify the
likely range of perturbative control in more complex theo-
ries. Therefore, and for the sake of the present study, we adopt
the poor man’s criterion (31) with the understanding that
extensions to higher loop orders or proper non-perturbative
studies [39] are called for as soon as fixed point couplings
become of order unity. In addition, consistency of findings
is also checked against constraints imposed by unitarity and
the a-theorem.

3 MSSM and extensions

In this section we investigate fixed points of the MSSM
with conserved (Sect. 3.1) and broken R-parity (Sect. 3.2).
We then put forward strategies for interacting fixed points
in MSSM extensions based on additional matter fields and
Yukawa interactions (Sect. 3.3), and analyse three character-
istic types of extensions in full detail (Sects. 3.4–3.6).

3.1 MSSM with R-parity

We consider the SM gauge group

GSM = SU (3)C × SU (2)L ×U (1)Y (32)

and denote the hypercharge, the weak and strong gauge cou-
plings as α1, α2, and α3, respectively, with αa = g2

a/(4π)2

(a = 1, 2, 3) and ga the gauge couplings. The (left-handed)
chiral superfields of the MSSM are summarised in Table 2.
Consequently, the MSSM one-loop and two-loop gauge beta
coefficients in (18) are given by

B1 = −22, C11 = 398
9 , C12 = 18, C13 = 176

3 ,

B2 = −2, C21 = 6, C22 = 50, C23 = 48,

B3 = 6, C31 = 22
3 , C32 = 18, C33 = 28.

(33)

Notice that B2 < 0 and B1 < 0 imply that the hypercharge
and the weak gauge sector are not asymptotically free, and
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Table 2 Summary of
left-handed superfields in the
MSSM

Superfield SU(3)C SU(2)L U(1)Y Multiplicity

Quark doublets Q 3 2 + 1
6 3

Up-quark singlets u 3 1 − 2
3 3

Down-quark singlets d 3 1 + 1
3 3

Lepton doublets L 1 2 − 1
2 3

Lepton singlets e 1 1 +1 3

Up-Higgs Hu 1 2 + 1
2 1

Down-Higgs Hd 1 2 − 1
2 1

Bold values refer to representations under non-abelian gauge symmetries

imply that the running gauge couplings α1 and α2 may both
terminate in UV Landau poles unless they run into a fixed
point in the UV.

In principle, there may arise up to seven distinct classes
of interacting fixed points depending on whether one, two,
or three of the gauge couplings remain non-zero at the fixed
point. For want of language, we distinguish these using the
terminology of Table 1. For example, the class of fixed points
FP3 refers to all possible fixed points where the hypercharge
and weak gauge couplings vanish, the strong gauge coupling
remains non-zero, and none, some, or all of the Yukawa cou-
plings are non-zero. Notice that for fixed points of any type
to be UV, at least one of the Yukawa couplings must be non-
zero.

Next, we turn to the superpotential of the MSSM. Besides
anomaly-cancellation, we also impose invariance under R-
parity [41,42], characterised by the global U(1) symmetry

PR = (−1)3(B−L)+2s . (34)

Here B , L and s are baryon number, lepton number and spin,
respectively. The R-parity conserving superpotential of the
MSSM reads

WMSSM = Y i j
d di Q j Hd + Y i j

u ui Q j Hu + Y i j
e ei L j Hd

+μHuHd , (35)

where i, j = 1, 2, 3 correspond to flavor degrees of free-
dom, while gauge indices have been suppressed. As such,
the MSSM may have up to NY = 27 in general complex-
valued Yukawa couplings. In this work, we are mostly inter-
ested in the case where the Yukawa matrices Ye, Yd and Yu
in (35) are approximated by Ye ≈ 0, Yd ≈ diag(0, 0, yb),
Yu ≈ diag(0, 0, yt ) with yb and yt denoting the bottom and
top Yukawa couplings, respectively. The μ-term is a mass
term and does not play any role in the high energy limit of
the theory and can be ignored in our study. The MSSM super-
potential therefore reads

WMSSM ≈ ybd3Q3Hd + ytu3Q3Hu . (36)

It constitutes the backbone for the MSSM and MSSM exten-
sions studied in the following.

We now turn to the fixed points of the MSSM with the
R-parity conserving superpotential (36). In addition to the
gauge beta functions we have the Yukawa beta functions for
the bottom and top couplings αb,t = |yb,t |2/(4π)2, thus a
total of three gauge and two Yukawa couplings,

{α1, α2, α3, αb, αt }. (37)

The beta functions (16) for the bottom and top Yukawas are
given by

βb = αb

[
12αb + 2αt − 14

9
α1 − 6α2 − 32

3
α3

]
,

βt = αt

[
12αt + 2αb − 26

9
α1 − 6α2 − 32

3
α3

]
. (38)

The bottom and top Yukawa nullclines (20), defined as
the relations of couplings along which the top and bottom
Yukawa beta functions (38) vanish, are given by

αb = 29

315
α1 + 3

7
α2 + 16

21
α3,

αt = 71

315
α1 + 3

7
α2 + 16

21
α3.

(39)

Inserting these into the gauge beta functions (18) with the
MSSM coefficients (33), and also using the two-loop Yukawa
corrections to the running of the gauge couplings in (18)

D1b = 28

3
, D1t = 52

3
,

D2b = 12, D2t = 12,

D3b = 8, D3t = 8,

(40)

we are able to identify fixed point candidates. Since the hyper-
charge and SU (2) beta functions are both asymptotically
non-free (B1, B2 < 0), the only possibility for an interacting
fixed point in perturbation theory requires B3 α∗

3 > 0, see
(14). We find that all interacting fixed point candidates of the
type FP13, FP23, or FP123 invariably imply either α∗

1 < 0 or
α∗

2 < 0, which is unphysical. The only viable setting is a
fixed point of the type FP3, with trivial (α1, α2)|∗ = (0, 0)
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and non-trivial coordinates

(α3, αb, αt )|∗ =
(

63

166
,

24

83
,

24

83

)

≈ (0.38, 0.29, 0.29). (41)

Notice that both Yukawa couplings come out non-zero
and unified. The effective one-loop coefficients B1,eff and
B2,eff (28) are negative

B1,eff = −1102

83
≈ −13.3 ,

B2,eff = −4242

83
≈ −51.1, (42)

implying that the gauge-Yukawa fixed point of the MSSM is
IR. We have also explicitly checked that this conclusion is
robust against including the tau Yukawa coupling, and against
further finite entries in Yd , Yu and Ye of the MSSM superpo-
tential (35).

We conclude that the MSSM does not offer interacting
UV fixed points to the leading orders in perturbation theory.
For investigations of IR fixed points or quasi IR fixed points
in the MSSM or MSSM GUTs, we refer to the studies in
[23–33].

3.2 MSSM without R-parity

We now turn to the R-parity violating (RPV) MSSM with
superpotential

WRPV = WMSSM + λ′i jkdi Q j Lk + 1

2
λi jk Li L j ek

+1

2
λ′′i jkui d j dk + μ′i Li Hu . (43)

The first term in (43) is the MSSM superpotential provided
earlier. The second and third terms change lepton number
by one unit, �L = 1, and the fourth term changes baryon
number by one unit, �B = 1. The μ′ term is a mass term
irrelevant in the high energy limit. We therefore observe that
the violation of R-parity results in lepton and baryon number
violating processes, which may be relevant in processes like
proton decay. Due to the non-observation of such processes,
either the λ, λ′, μ′ and λ′′ couplings in (43) have to be small or
superpartner masses are large [42–48]. The RPV MSSM may
have up to NY = 108 independent Yukawa couplings, four
times as many as the R-parity preserving MSSM. Moreover,
for each of the interacting fixed point classes of Table 1 may
have up to 2NY different fixed points, depending on which of
the Yukawa couplings are vanishing or non-vanishing.

We now search for fixed points in the RPV MSSM. To
avoid constraints due to proton decay, we concentrate on the
λ′ terms, with flavor indices i, j, k = 1, 2, 3,

λ′i jkdi Q j Lk . (44)

Hence, in addition to the top and bottom Yukawa couplings
of the MSSM, we retain the RPV Yukawa couplings λ′

i jk .
For the sequel, we define

αλ′
i jk

= |λ′
i jk |2

(4π)2 . (45)

To avoid models with non-linear nullcline conditions (see
Appendix A) we limit ourselves here in the RPV MSSM and
the MSSM extensions studied in Sects. 3.4–3.6 to superpo-
tentials with permutation flavor symmetries or with danger-
ous terms switched off by selection rules. Here, we intro-
duce for each lepton species k = 1, 2, 3 a universal matrix
(λ′k)i j = λ′i jk , with

λ′k = λ′
(
M 0
0 0

)
. (46)

Here, M is a 2 × 2 matrix with entries either one or zero.
We denote by I1 the number of times an entry ’1’ appears
in M, 1 ≤ I1 ≤ 4, excluding the MSSM-limit (I1 = 0)
and the symmetry-breaking case with I1 = 3. The number
of remaining different matrices is 11. To avoid non-linear
Yukawa nullclines we do not allow for third generation quark
couplings in λ′k as top and bottom already appear in WMSSM.
This leads to a set of n = 3I1 additional Yukawa couplings
(45) which we denote as2

RPV Yukawa couplings: {α4, . . . , αn+4},
thus leading to a total of 3 gauge and 2+n Yukawa couplings.
In our analysis (I1 ≤ 4), we have retained up to n ≤ 12 RPV
Yukawa couplings. The evolution of the Yukawa couplings
are controlled by (38) together with

βλ′ = αλ′
[

36I1αλ′ − 14

9
α1 − 6α2 − 32

3
α3

]
. (47)

Here, due to the symmetries of (46), the one-loop beta func-
tions for αλ′

i jk
→ αλ′ are identical, although their values

do not need to be identical due to possibly different initial
conditions.3

Fixed points can be found from inserting the nullcline
of (47) into the gauge beta functions (18) with the MSSM
coefficients (33), and also noting that the two-loop Yukawa
contributions to the running of the gauge couplings take the
form

D1b = 28

3
, D1t = 52

3
, D1λ′ = 28I1,

D2b = 12, D2t = 12, D2λ′ = 36I1,

D3b = 8, D3t = 8, D3λ′ = 24I1. (48)

2 We label the αi starting from i = 4 because the symbols α1,2,3 are
already taken for the gauge couplings.
3 This is similar to the running of the top and bottom Yukawas (38)
which becomes identical for α1 = 0.

123



952 Page 8 of 27 Eur. Phys. J. C (2022) 82 :952

We find that the only viable interacting fixed point is of the
FP3 type, with trivial (α1, α2)|∗ = (0, 0) and

(α3, αb, αt , αλ′)|∗ =
(

189

274
,

72

137
,

72

137
,

28

137I1

)

≈
(

0.69, 0.53, 0.53,
0.20

I1

)
. (49)

Notice that α∗
λ′ now stands for any of the different RPV

Yukawas, all of which take the same finite fixed point value.
The fixed point is IR attractive and some of its couplings
are large. We observe that the RPV MSSM is not offering
interacting UV fixed points.

3.3 Constructing MSSM extensions

Next, we turn to extensions of the MSSM and the prospect
for interacting UV or IR fixed points. One may hope to find
an interacting UV fixed point provided that the Gaussian
corresponds to a saddle point [12]. Hence, at least one gauge
sector should remain asymptotically free while another one
should be infrared free. In our setting, the hypercharge one-
loop gauge coefficient (B1) is always negative, and remains
negative in any extension. Further, for the MSSM, we are in
the scenario where the non-Abelian gauge factors obey (23).
Hence, the one-loop gauge coefficient of the weak coupling
(B2) is negative, and will remain negative in any extension.
On the other hand, the one-loop coefficient of the strong
coupling in the MSSM reads B3 = 6, thus leaving room for
a finite number of additional colored superfields.

Specifically, each additional superfield in the representa-
tion R of SU (3)C lowers B3 by 2S3(R). For the fundamental
or anti-fundamental representation holds S3 = 1

2 , of which
one needs one each to avoid gauge anomalies. The sextet and
anti-sextet representations have S3 = 5

2 , yet gauge anomaly
cancellation dictates to include at least two of these, yield-
ing a wrong-sign B3 of −4. The representation with the next
higher Dynkin index is the adjoint, which is real with S3 = 3,
however, a single one of them leads already to B3 = 0. All
other, higher representations have S3 > 3 and are therefore
not viable. We conclude that there are only two possibilities to
add colored BSM superfields which keep B3 positive, either
one pair, or two pairs of (fundamental, anti-fundamental)
SU (3)C chiral superfields. These arguments do not limit the
number of colorless fields, such as leptons.

We are therefore led to three types of MSSM extensions:

Type I: New quark singlets and new leptons. On top of
the MSSM fields, type I models display nu addi-
tional pairs of up-quark singlets (u, u), nd new
down-quark singlets (d, d), and nL additional lep-
ton doublet pairs (L , L).

Type II: New quark doublets and new leptons. These
models display two additional quark doublets
(Q4, Q1), nL additional lepton and anti-lepton
doublet pairs (L , L).

Type III: A fourth generation and new leptons. These
extensions display a fourth generation with new
superfields (Q4, u4, d4, L4), and nL new lepton
and anti-lepton doublet pairs (L , L).

In addition, we also have the liberty to add nS gauge singlet
fields Si and suitable Yukawa couplings involving MSSM
and BSM matter fields. We find that the impact of singlets
for fixed points is subleading except in type II models, which
is why we include them there and only there. The field con-
tent of the MSSM extensions is summarised in Table 3, also
showing the SM gauge charges of matter fields. Note that
we are not concerned with the U (1)Y sector, which remains
infrared free. This is viable phenomenologically as long
as the U (1)Y Landau pole arises beyond the Planck scale.
Extensions which also aim at stabilising U (1)Y will be con-
sidered elsewhere. In the following, we investigate the avail-
ability of interacting fixed points for each of these settings in
detail.

3.4 New quark singlets and leptons

We begin with the first type of MSSM extension by adding
BSM quark singlets as well as lepton doublets to the MSSM.
The BSM particle content (see Tab 3) is characterised, respec-
tively, by the number of beyond-MSSM (u, ū), (d, d̄) and
(L , L̄) pairs,

nu, nd , nL , (50)

Asymptotic freedom of the strong force is lost for nu +nd ≥
3. A priori, no upper limits apply on nL . The number of matter
fields beyond the MSSM is

NBSM = Nq,BSM + NL ,BSM. (51)

where Nq,BSM = 2(nu+nd) and NL ,BSM = 2nL are the new
quark singlets and lepton doublets, respectively, and where
we count fermions and anti-fermions separately. The most
general gauge invariant and perturbatively renormalisable
superpotential then reads

W1 = Y i jkdi Q j Lk + Y
i jk

ui Q j Lk

+xb ybd3Q3Hd + xt ytu3Q3Hu, (52)

with top and bottom Yukawas denoted by yt and yb, and BSM

Yukawas Y i jk and Y
i jk

. Here i, j, k denote flavor indices,
while gauge indices are suppressed. The parameters xb,t ∈
{0, 1} allow us to switch the bottom and top Yukawas on and
off. In terms of the BSM matter field multiplicities (50), the
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Table 3 Field content of different types of MSSM extensions in comparison with the MSSM, also showing gauge charges of superfields under the
SM gauge groups

Superfield SU(3)C SU(2)L U(1)Y MSSM Extension I Extension II Extension III

Quark doublet Q 3 2 + 1
6 3 3 4 4

Anti-quark doublet Q 3 2 − 1
6 0 0 1 0

Up-quark u 3 1 − 2
3 3 3 + nu 3 4

Down-quark d 3 1 + 1
3 3 3 + nd 3 4

Anti-up-quark u 3 1 + 2
3 0 nu 0 0

Anti-down-quark d 3 1 − 1
3 0 nd 0 0

Lepton doublet L 1 2 − 1
2 3 3 + nL 3 + nL 4 + nL

Anti-lepton doublet L 1 2 + 1
2 0 nL nL nL

Lepton singlet e 1 1 +1 3 3 3 4

Up-Higgs Hu 1 2 + 1
2 1 1 1 1

Down-Higgs Hd 1 2 − 1
2 1 1 1 1

Gauge singlets S 1 1 0 0 0 nS 0

Bold values refer to representations under non-abelian gauge symmetries

superpotential (52) has up to

N general
Y = 3(3 + nd)(nL + 3) + 3(3 + nu)nL + 2 (53)

independent Yukawa couplings. In the fixed point search, we
focus on a subset of all possible non-zero Yukawa couplings,
parameterized by the following set of integers

xb, xt , I12, I13, I1d , I2d , I3d , I1u, I2u, I3u . (54)

These integers, if positive, indicate which type of Yukawa
couplings in (52) are taken to be non-zero, and how many of
them are retained. Specifically, we are interested in superpo-
tentials (52) which retain

type of monomial : how many of them

yb d3 Q3 Hd : xb,
yt u3 Q3 Hu : xt ,

y4 di Q1 Lk + y6 di Q2 Lk′ : I12,

y5 di Q1 Lk : I1d ,
y7 di Q2 Lk : I2d ,

y8 di Q1 Lk + y9 di Q3 Lk′ : I13,

y10 di Q3 Lk : I3d ,
y11 ui Q1Lk : I1u,
y12 ui Q2Lk : I2u,
y13 ui Q3Lk : I3u .

(55)

We again label couplings as indicated in footnote 2. To avoid
non-linear nullclines we also made choices as in the analysis
of the RPV MSSM (Sect. 3.2). Let us explain the construction
principle leading to (55):

(i) The bottom and top quarks d3 and u3 are only allowed
in the bottom or top Yukawa terms already present in
the MSSM, see (36). They can be switched on and off
individually with the parameters xb, xt ∈ {1, 0}.

(ii) Superfields di , i �= 3 that is, any of them but not the
third generation may appear in exactly one superpotential
term. This can still be more than one term, one for each
i �= 3. The number of times any di , i �= 3, appears
exactly once together with Q1, Q2, or Q3 is given by
I1d , I2d , and I3d , respectively.

(iii) The same as (ii) but for up-type singlets: The number of
times any ui , i �= 3, appears exactly once together with
Q1, Q2, or Q3 is given by I1u , I2u , and I3u , respectively.

(iv) Down-type quarks di , i �= 3 may be present in two dif-
ferent Yukawa monomials. With I12 (I13) we count down
quark superfields di , i �= 3 appearing exactly twice, once
with Q1 and once with Q2 (Q3).

(v) Each lepton doublet L and anti-lepton doublet L (both
MSSM and BSM) is allowed at most once in the super-
potential.

A concrete benchmark model where this machinery can be
seen at work is given in Sect. 4.1.

The reduced set of Yukawa interactions (55) is the result
of an extensive trial and error search. In fact, we have initially
performed scans within the much wider set of superpoten-
tials (52), but noticed that viable fixed point candidates do
not arise without down-quarks d̄i , i �= 3 appearing twice in
the superpotential. Moreover, we also noticed that ultraviolet
fixed points cannot be found if we allow for lepton doublets
to appear twice in the superpotential with each quark sin-
glet appearing at most once. We believe that our selection
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of Yukawa structures are the simplest ones to enable viable
fixed points.

As a result, in terms of (54) the number of independent
Yukawa couplings retained in our investigations reads

NY = 2(I12 + I13) +
3∑

i=1

(Iid + Iiu) + xb + xt . (56)

This is only a small subset of the formally allowed superpo-
tential terms (53), yet, suffices to identify interacting gauge-
Yukawa fixed points.

By construction, the models are described by three gauge
and NY independent Yukawa couplings. Due to remaining
flavor symmetries acting on quark singlets and on lepton
doublets appearing in terms of the same Yukawa coupling
type, we encounter at most 12 different types of Yukawa
beta functions corresponding to those of the bottom and top
Yukawas, and the 10 couplings yi introduced in (55), mod-
ulo copies thereof, see Sect. 4.1 for an example where sym-
metries reduce the number of independent beta functions.
The beta functions for the Yukawa couplings are given in
Appendix C.

Next, we detail the results of the fixed point search. The
selection rules i) - v) still allow for infinitely many MSSM
extensions. However, the number of new quark singlets is
bounded from above (Nq,BSM=2(nu+nd)≤4, see Sect. 3.3)
or else weakly-interacting fixed points cannot arise in pertur-
bation theory. Similarly, increasing the number of new lep-
tons makes the weak gauge coupling more infrared-free, and
it becomes increasingly challenging if not outright impossi-
ble to find ultraviolet fixed points. For these reasons, we limit
new matter field multiplicities as follows

0 ≤ nd ≤ 2 − nu,

0 ≤ nu ≤ 2 − nd ,

0 ≤ nL ≤ 11 .

(57)

The set of Yukawa couplings is restricted by

0 ≤ I1u ≤ I2u,

0 ≤ xb, xt ≤ 1,

0 ≤ I12, I13, I1d , I2d , I3d , I1u, I2u, I3u ≤ 4.

(58)

Overall, the above choices cover 112.600 different MSSM
extensions with up to NY = 12 independent Yukawa cou-
plings. Amongst these, we find 109.926 settings with viable
IR fixed points. Further, 114 models also show candidates for
interacting UV fixed points. Also, a small set of models do
not show interacting fixed point despite the strong gauge sec-
tor remaining asymptotically free. The reason for this is that
the Yukawa-induced corrections are so strong that the fixed
point becomes unphysical in perturbation theory (α3 < 0).
These settings would require a non-perturbative check.

Fig. 2 Fixed points of MSSM extensions (type I). Shown are the fixed
point values α∗

3 against the number of Yukawa couplings NY , corre-
sponding to 109.926 models, see text. The color coding indicates the
number of additional quark singlets Nq,BSM = 2(nu +nd ), and whether
the fixed point is UV or IR. 114 models have an UV FP3 (in red)

More specifically, in all models considered we find that
fixed points, if they arise, remain interacting in the strong
gauge sector with

0.027 ≈ 3

110
� α∗

3

∣∣
FP3

, (59)

in agreement with the analytical expression (103). The weak
and hypercharge gauge interactions are either switched off
(in which case fixed points are of the type FP3), or the weak
coupling remains non-zero as well (when fixed points are
of the type FP23), see Table 1. Fixed points with vanishing
strong gauge coupling, that is, FP1, FP2, or FP12, or fixed
points with all gauge couplings non-zero (FP123) do not arise
(see Appendix B).

As an aside, we have verified explicitly that no interacting
fixed points arise once Nq,BSM ≥ 6 by scanning 3.434.836
models including up to 4 pairs of singlet quarks, confirming
the reasoning put forward in Sect. 3.3.

All fixed points with both non-abelian gauge couplings
interacting, i.e. α∗

3 > 0 and α∗
2 > 0, and trivial or non-

trivial superpotential couplings turn out to be infrared. In
turn, the fixed points of the type FP3 are found to be either
infrared or ultraviolet. If they are infrared, all gauge and non-
trivial superpotential couplings are irrelevant. Most impor-
tantly, there are no outgoing RG trajectories along which the
weak gauge coupling can be switched on. Moreover, none of
the models with infrared FP3 have a simultaneous fixed point
of the type FP23.

In Fig. 2, we show the strong gauge coupling for all
fixed points of the type FP3. Also displayed are the num-
ber of non-trivial Yukawa couplings NY . Different numbers
of new quark singlets Nq,BSM lead to different branches
of fixed points. Their color-coding relates to Nq,BSM and
whether the fixed point is infrared (magenta: Nq,BSM = 0,
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Fig. 3 Spectroscopy of ultraviolet fixed points in type I models. Shown
are the ranges of α∗

3 , sorted according to numbers of BSM Yukawa
couplings (NY ), and the number of BSM superfields (NBSM )

yellow: Nq,BSM = 2, green: Nq,BSM = 4) or ultraviolet (red:
Nq,BSM = 2).

For NY = 0, and for any 0 ≤ Nq,BSM ≤ 4 we find an
infrared Banks–Zaks fixed point. For NY > 0, fixed points
are of the gauge-Yukawa type and can be IR or UV. For fixed
NY , we observe that the strong coupling becomes larger with
increasing Nq,BSM. For fixed Nq,BSM, we also observe that
the strong gauge coupling tends to increase with increasing
NY .

For each strand of models, Fig. 2 indicates that the Banks–
Zaks fixed point provides a lower bound on the strong cou-
pling. The reason for this is that non-trivial Yukawa couplings
reduce the effective two-loop coefficient and enhance α∗

3 . To
the leading orders in perturbation theory, the lower bounds
are α∗

3 ≥ 3
14 ≈ 0.214 for Nq,BSM = 0, α∗

3 ≥ 3
38 ≈ 0.089 for

Nq,BSM = 2, and α∗
3 ≥ 3

110 ≈ 0.027 as at the minimum (59)
for Nq,BSM = 4. Moreover, the models with Nq,BSM = 4
(green points) lead to weakly interacting IR fixed points, and
the threshold towards UV fixed points is not crossed. For
models with Nq,BSM = 0 (magenta points), the fixed point
is more strongly interacting, and once more a regime with
UV fixed points is not reached. Inbetween, the models with
Nq,BSM = 2 lead to weakly interacting IR fixed points for
any NY ≤ 7, and for some NY > 7 (yellow points). Overall
fixed points are mostly perturbative (α∗

3 
 1) in the sense
of naïve dimensional analysis (31), though with increasing
NY some of the fixed points become borderline perturbative
(α∗

3 � 1) or even strongly coupled (α∗
3 ≈ 1) such as in the

Nq,BSM = 0 strand. The latter require further confirmation
using higher loops, or non-perturbative methods [39].

Finally, provided that Nq,BSM = 2, that is, either a pair
of additional up-singlets (u, ū), or a pair of down-type ones
(d, d̄), and NY = 8, 9 or 10, we also find models where the
fixed point is UV with α2 becoming marginally relevant due
to quantum effects (red points).

In Fig. 3 we show α∗
3 at the UV fixed point as a function of

the number of BSM Yukawa couplings (NY), and the number
of BSM superfields (NBSM). Evidently, the fixed point tends
to become more strongly interacting the more independent
Yukawa couplings are present. The settings with UV fixed
points are further discussed in Sect. 4.

3.5 New quark doublets and leptons

For the second type of MSSM extensions, we introduce a
quark doublet Q4 and an anti-quark doublet Q1 as the new
colored field content beyond the MSSM. Furthermore, we
allow for nL pairs of BSM lepton and anti-lepton doublets L
and L . We also include nS gauge singlet superfields S. The
resulting superfield content (type II models) is summarized
in Table 3. We study the superpotential

W2 = Y i jkdi Q j Lk + Y
i jk

ui Q j Lk + Y i
S Si Q1Q4

+ xb ybd3Q3Hd + xt ytu3Q3Hu,
(60)

with i, j, k summing over all flavor indices and xb, xt ∈
{0, 1} are parameters which switch on and off the bottom and
top Yukawa couplings. The first few terms of (60) resemble
the non-MSSM terms of the superpotential (52) of model
type I, with the difference that here i and j run over different
numbers of flavors. We compensate for the smaller amount of

quark singlets, present in the Yukawa terms of Y i jk and Y
i jk

,
by including terms with Yukawa couplings Y i

S involving the
new anti-quark doublet Q1. The number of generally pos-
sible non-zero Yukawa couplings in the superpotential (60)
is

N general
Y = 3 · 4 · (nL + 3) + 3 · 4 · nL + nS + 2

= 24nL + 38 + nS,
(61)

with each term of the first line counts the number of Yukawa
couplings in the respective term of the superpotential (60).

To parametrize different models efficiently, we introduce
nL and nS to count leptons and singlets. Further, the non-zero
Yukawa couplings in (60) are parametrised by the integers

IQ, Id , Iu, x3, x3, x4, x4, xS, xb, xt , (62)

which count the different types of monomials appearing in
the superpotential according to

type of monomial : how many of them

yb d3 Q3 Hd : xb,
yt u3 Q3 Hu : xt ,

y4 d1,2 Q1,2 Lk : Id · IQ,

y5 u1,2 Q1,2 Lk : Iu · IQ,

y6 d3 Q1,2 Lk : x3 · IQ,

y7 u3 Q1,2 Lk : x3 · IQ,
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y8 d1,2 Q4 Lk : x4 · Id ,
y9 u1,2 Q4 Lk : x4 · Iu,
y10 Si Q1 Q4 : xS · nS. (63)

The selection of superpotentials with (62), (63) from general
superpotentials (60) is similar in spirit to the choices we made
previously for the MSSM with quark singlet extensions (type
I). Further details including all RG beta functions are detailed
in Appendix D.

To illustrate the construction principle, we consider a sub-
set of terms from (60)

W2 ⊃ Y 111d1Q1L1 + Y 142d1Q4L2 + Y
111

u1Q1L1

+ Y 313d3Q1L3 + Y
312

u3Q1L2

+ Y 1
S S1Q1Q4 + ybd3Q3Hd + ytu3Q3Hu .

(64)

It corresponds to the parameters

x3 = x3 = x4 = xS = xb = xt = 1,

x4 = 0, Id = Iu = IQ = nS = 1,

with nL ≥ 2. The map from (64) to (63) is given by

Y 111 ↔ y4, Y 142 ↔ y8, Y 313 ↔ y6,

Y
111 ↔ y5, Y

312 ↔ y7, Y 1
S ↔ y10

and the expressions for the Yukawa and gauge beta functions
(16), (18) can be found in Appendix D.

Within the general model setup (63) we scanned 79.920
models in the parameter ranges

1 ≤ nS ≤ 5, 0 ≤ nL ≤ 8,

0 ≤ Id , Iu ≤ 2, 1 ≤ IQ ≤ 2,

0 ≤ x3, x3, x4, x4, xS, xb, xt ≤ 1.

(65)

We find that amongst all possible interacting fixed points
(see Table 1) only those of the type FP3 where α∗

3 �= 0 are
realised. FP3 can be either of the Banks–Zaks type or of the
gauge-Yukawa type (25). It exists for all models and is found
to be IR and perturbative, with the strong gauge coupling
fixed point in the range

0.027 � α∗
3

∣∣
FP3

� 0.08. (66)

The numerical lower bound is in agreement with the bound
dictated by the leading order in perturbation theory, (59), and
fixed points are perturbative in the spirit of naïve dimensional
analysis (31). We do not find instances where the fixed point
FP3 becomes ultraviolet.

In Fig. 4, we compare the value of α3 at FP3 against the
number of Yukawa couplings NY for all scanned models. We
observe that gauge-Yukawa fixed points are more strongly
interacting than the Banks–Zaks fixed point. Moreover, all
fixed points are infrared and do not qualify as UV comple-
tions for the theory. Notice that our setup retains up to

NY = (Id + x3 + Iu + x3)IQ

+ x4 Id + x4 Iu + xSnS + xb + xt ,
(67)

Fig. 4 Fixed points of MSSM extensions (type II). Shown are the val-
ues for the strong coupling constant α∗

3 at the FP3 fixed point for all
79.920 MSSM extensions of type II given by the chiral superfields of
Table 3 and superpotential (60). Fixed points are IR throughout. Also
shown is the number of Yukawa couplings NY (67). Fixed points become
slightly more strongly interacting with increasing number of Yukawa
couplings

different Yukawa couplings. Of these, the scan (65) covered
models with up to NY = 23. From Fig. 4, we learn that
models tend to become more strongly interacting the more
Yukawa couplings are switched on. Hence, although our scan
only covered a small fraction of the N general

Y,scan = 307 different
Yukawa couplings that could have been retained according
to (61), (65), we do not expect that they would have opened
a window for weakly coupled UV fixed points.

3.6 Fourth generation and new leptons

Here, we turn to MSSM extensions involving fourth genera-
tion quark doublet Q4, and quark singlets d4 and u4. To avoid
gauge anomalies, a fourth lepton generation consisting of a
lepton doublet L4 and a lepton singlet e4 are added as well.
In addition, we allow for nL pairs of leptons and anti-leptons
(L , L) (see Table 3). The superpotential reads

W3 = Y i jkdi Q j Lk + Y
i jk

ui Q j Lk

+ ybd3Q3Hd + ytu3Q3Hu,
(68)

which looks similar to (52) of type I models. The main dif-
ference is the presence of Q4 in (68), and that non-trivial
bottom- and top Yukawa interactions are considered from
the outset. Note, possible terms ū4Q4Hu and d̄4Q4Hd have
not been included to avoid multiple appearances of the fourth
generation, and corresponding challenges, see Appendix A.
The maximal number of non-zero Yukawa couplings in W3

is given by

N general
Y = 4 · 4 · (nL + 4) + 4 · 4 · nL + 2

= 32nL + 66.
(69)
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Our models are characterised by the number nL of BSM
lepton pairs, and integers

I1d , I3d , I12, I13, I14, I1u, I4u (70)

characterising the Yukawa interactions in (68) as

type of monomial : how many of them

ybd3Q3Hd : 1,

ytu3Q3Hu : 1,

y4di Q1Lk + y5di Q2Lk′ : I12,

y6di Q1Lk + y7di Q3Lk′ : I13,

y8di Q1Lk + y9di Q4Lk′ : I14,

y10di Q1Lk : I1d ,
y11di Q3Lk : I3d ,
y12ui Q1Lk : I1u,
y13ui Q4Lk : I4u .

(71)

Flavor symmetries limit the number of different BSM beta
functions in (71) to be at most 10 (β4, . . . , β13). All beta
functions, and further details are given in Appendix D.

Based on this ansatz, we have scanned 3.868 models
within the ranges

0 ≤ I12, I13, I14, I1d , I3d , I1u, I4u ≤ 3,

0 ≤ nL ≤ 8.
(72)

Once more, we find that only FP3 arises, with any of the other
fixed point candidates coming out as unphysical. Moreover,
whenever it arises, FP3 is numerically small with couplings
in the range

0.027 � α∗
3 |FP3 � 0.10, (73)

and in accord with the lower bound on the gauge coupling
fixed point found to the leading orders in perturbation theory,
(59). We note that fixed points are reasonably perturbative in
the sense of (31). In total, we find that all 3.868 different
models show conformal fixed points of the type FP3, all of
which are infrared. We neither find any other types of fixed
points, nor candidates for ultraviolet fixed points.

In Fig. 5, we show α∗
3 at FP3 for all scanned type III mod-

els versus the number of Yukawa couplings NY . Again, we
observe that α∗

3 tends to grow for a larger numbers of Yukawa
couplings. In our scans, the number of Yukawa couplings
equals

NY = 2
4∑

i=2

I1i + I1d + I3d + I1u + I4u + 2. (74)

Hence the scanned parameter space (72) covers models with
up to 11 interacting Yukawa couplings. Based on the struc-
ture of results, and also in comparison with the previous two

Fig. 5 Fixed points of MSSM extensions (type III). Shown is α∗
3 at

the fixed point FP3 for models with superpotential (68), corresponding
to the 3.868 different models. All fixed points are IR and perturbative.
Also shown is the number of Yukawa couplings NY (74). The fixed
point tends to become more strongly interacting with larger NY

models, we do not expect to find UV fixed points by increas-
ing the number of independent Yukawas.

4 Ultraviolet completions

In this section, we focus on MSSM extensions with ultravi-
olet fixed points and the prospects for matching them to the
Standard Model at low energies.

4.1 Main features and benchmark

In Sect. 3.4, we obtained MSSM extensions with ultravi-
olet fixed points (type I models). They are summarised in
Table 4 showing for each model the number of left-handed
up-type quark singlets (nu), down-type quark singlets (nd),
and lepton (nL) chiral superfields, the parameters (54) char-
acterising the superpotential (55), the total number of super-
fields NBSM beyond the MSSM, the total number of non-
trivial Yukawa couplings NY , and the fixed point value
of the strong coupling α∗

3
. The models are sorted accord-

ing to increasing NY , α∗
3
, and NBSM , in this order. For all

models, we observe that the superpotential parameters obey
I12 + I13 + I1d + I2d + I3d + I1u + I2u + I3u = 5, and
I12 + I13 is either 1, 2 or 3. Furthermore, we always find that
the MSSM bottom and top Yukawa couplings are interacting
in the UV, and that nu + nd = 1.

Models with UV fixed points and vanishing α∗
2 always

come with an associated IR fixed point where α∗
2 remains

non-zero. In Fig. 6, we compare the corresponding values of
the strong gauge coupling. They are in the range

0.43 � α∗
3

∣∣
UV < α∗

3

∣∣
IR. (75)
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Table 4 Overview of the UV fixed points candidates in type I mod-
els obtained in Sect. 3.4. Shown is the number of left-handed up-type
quark singlets (nu), down-type quark singlets (nd ), and lepton (nL )

chiral superfields, the parameters (54) characterising the superpoten-

tial, the total number of superfields NBSM beyond the MSSM, the total
number of non-trivial Yukawa couplings NY , and the fixed point values
α∗

3
(see main text). Models are ordered according to increasing NY , α∗

3
,

and NBSM . A benchmark, model 7, is discussed further in Sect. 4.1

No. nu nd nL I12 I13 I1d I2d I3d I1u I2u I3u NBSM NY α∗
3

1 0 1 2 0 1 1 1 0 0 1 1 6 8 0.431

2 0 1 2 1 0 0 2 0 1 1 0 6 8 0.431

3 0 1 2 1 0 1 1 0 0 2 0 6 8 0.431

4 0 1 2 0 1 0 1 1 1 1 0 6 8 0.431

5 0 1 2 0 1 1 0 1 0 2 0 6 8 0.431

6 0 1 2 1 0 2 0 0 1 1 0 6 8 0.431

7 0 1 2 0 1 0 2 0 1 1 0 6 8 0.458

8 0 1 2 0 1 1 1 0 0 2 0 6 8 0.458

9 0 1 2 1 0 0 1 1 1 1 0 6 8 0.458

10 0 1 2 1 0 1 0 1 0 2 0 6 8 0.458

11 0 1 2 1 0 1 0 1 1 1 0 6 8 0.458

12 0 1 2 1 0 1 1 0 0 1 1 6 8 0.458

13 0 1 2 1 0 2 0 0 0 1 1 6 8 0.458

14 0 1 2 0 1 1 1 0 1 1 0 6 8 0.473

15 0 1 2 1 0 1 1 0 1 1 0 6 8 0.473

16 0 1 2 1 0 2 0 0 0 2 0 6 8 0.473

17 0 1 2 0 1 2 0 0 0 2 0 6 8 0.473

18 0 1 2 0 2 1 0 0 1 1 0 6 9 0.452

19 0 1 2 2 0 0 1 0 0 2 0 6 9 0.468

20 0 1 2 0 2 0 0 1 0 2 0 6 9 0.468

21 0 1 2 0 2 0 1 0 0 1 1 6 9 0.468

22 0 1 2 2 0 0 1 0 0 0 2 6 9 0.488

23 0 1 2 2 0 1 0 0 0 0 2 6 9 0.488

24 0 1 2 2 0 0 0 1 0 1 1 6 9 0.488

25 0 1 2 1 1 0 0 1 0 2 0 6 9 0.514

26 0 1 2 1 1 0 1 0 0 1 1 6 9 0.514

27 0 1 2 1 1 0 1 0 0 2 0 6 9 0.514

28 1 0 3 1 1 0 0 0 0 2 1 8 9 0.514

29 1 0 3 1 1 0 0 0 0 3 0 8 9 0.514

30 0 1 3 1 1 0 0 1 0 2 0 8 9 0.514

31 0 1 3 1 1 0 1 0 0 1 1 8 9 0.514

32 0 1 3 1 1 0 1 0 0 2 0 8 9 0.514

33 0 1 2 0 2 0 1 0 0 2 0 6 9 0.526

34 0 1 2 2 0 0 0 1 0 2 0 6 9 0.526

35 0 1 2 2 0 0 1 0 0 1 1 6 9 0.526

36 1 0 3 0 2 0 0 0 0 3 0 8 9 0.526

37 0 1 3 0 2 0 1 0 0 2 0 8 9 0.526

38 1 0 3 2 0 0 0 0 0 2 1 8 9 0.526

39 0 1 3 2 0 0 0 1 0 2 0 8 9 0.526

40 0 1 3 2 0 0 1 0 0 1 1 8 9 0.526

41 0 1 2 1 1 0 0 1 1 1 0 6 9 0.528

42 0 1 2 1 1 1 0 0 0 1 1 6 9 0.528

123



Eur. Phys. J. C (2022) 82 :952 Page 15 of 27 952

Table 4 continued

No. nu nd nL I12 I13 I1d I2d I3d I1u I2u I3u NBSM NY α∗
3

43 1 0 3 1 1 0 0 0 1 1 1 8 9 0.528

44 0 1 3 1 1 0 0 1 1 1 0 8 9 0.528

45 0 1 3 1 1 1 0 0 0 1 1 8 9 0.528

46 0 1 2 1 1 1 0 0 1 1 0 6 9 0.547

47 0 1 3 1 1 1 0 0 1 1 0 8 9 0.547

48 0 1 2 2 0 1 0 0 1 1 0 6 9 0.561

49 0 1 3 2 0 1 0 0 1 1 0 8 9 0.561

50 0 1 2 0 2 0 1 0 1 1 0 6 9 0.561

51 0 1 2 0 2 1 0 0 0 2 0 6 9 0.561

52 0 1 2 2 0 0 1 0 1 1 0 6 9 0.561

53 0 1 2 2 0 1 0 0 0 2 0 6 9 0.561

54 1 0 3 0 2 0 0 0 1 2 0 8 9 0.561

55 0 1 3 0 2 0 1 0 1 1 0 8 9 0.561

56 0 1 3 0 2 1 0 0 0 2 0 8 9 0.561

57 1 0 3 2 0 0 0 0 1 2 0 8 9 0.561

58 0 1 3 2 0 0 1 0 1 1 0 8 9 0.561

59 0 1 3 2 0 1 0 0 0 2 0 8 9 0.561

60 0 1 2 2 0 0 0 1 1 1 0 6 9 0.591

61 0 1 2 2 0 1 0 0 0 1 1 6 9 0.591

62 0 1 3 2 0 1 0 0 0 1 1 8 9 0.591

63 0 1 3 2 0 0 0 1 1 1 0 8 9 0.591

64 1 0 3 2 0 0 0 0 1 1 1 8 9 0.591

65 1 0 4 2 0 0 0 0 1 1 1 10 9 0.591

66 0 1 4 2 0 0 0 1 1 1 0 10 9 0.591

67 0 1 4 2 0 1 0 0 0 1 1 10 9 0.591

68 0 1 2 1 1 0 1 0 1 1 0 6 9 0.598

69 0 1 2 1 1 1 0 0 0 2 0 6 9 0.598

70 1 0 3 1 1 0 0 0 1 2 0 8 9 0.598

71 0 1 3 1 1 0 1 0 1 1 0 8 9 0.598

72 0 1 3 1 1 1 0 0 0 2 0 8 9 0.598

73 1 0 4 1 1 0 0 0 1 2 0 10 9 0.598

74 0 1 4 1 1 0 1 0 1 1 0 10 9 0.598

75 0 1 4 1 1 1 0 0 0 2 0 10 9 0.598

76 0 1 3 0 3 0 0 0 1 1 0 8 10 0.519

77 0 1 3 2 1 0 0 0 0 0 2 8 10 0.533

78 0 1 3 1 2 0 0 0 0 1 1 8 10 0.594

79 0 1 4 1 2 0 0 0 0 1 1 10 10 0.594

80 0 1 3 0 3 0 0 0 0 2 0 8 10 0.652

81 0 1 3 3 0 0 0 0 0 2 0 8 10 0.652

82 0 1 4 0 3 0 0 0 0 2 0 10 10 0.652

83 0 1 4 3 0 0 0 0 0 2 0 10 10 0.652

84 0 1 5 0 3 0 0 0 0 2 0 12 10 0.652

85 0 1 5 3 0 0 0 0 0 2 0 12 10 0.652

86 0 1 3 3 0 0 0 0 0 0 2 8 10 0.655
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Table 4 continued

No. nu nd nL I12 I13 I1d I2d I3d I1u I2u I3u NBSM NY α∗
3

87 0 1 4 3 0 0 0 0 0 0 2 10 10 0.655

88 0 1 5 3 0 0 0 0 0 0 2 12 10 0.655

89 0 1 3 1 2 0 0 0 1 1 0 8 10 0.680

90 0 1 4 1 2 0 0 0 1 1 0 10 10 0.680

91 0 1 5 1 2 0 0 0 1 1 0 12 10 0.680

92 0 1 3 2 1 0 0 0 0 1 1 8 10 0.705

93 0 1 4 2 1 0 0 0 0 1 1 10 10 0.705

94 0 1 5 2 1 0 0 0 0 1 1 12 10 0.705

95 0 1 3 3 0 0 0 0 1 1 0 8 10 0.722

96 0 1 4 3 0 0 0 0 1 1 0 10 10 0.722

97 0 1 5 3 0 0 0 0 1 1 0 12 10 0.722

98 0 1 6 3 0 0 0 0 1 1 0 14 10 0.722

99 0 1 3 2 1 0 0 0 0 2 0 8 10 0.738

100 0 1 4 2 1 0 0 0 0 2 0 10 10 0.738

101 0 1 5 2 1 0 0 0 0 2 0 12 10 0.738

102 0 1 6 2 1 0 0 0 0 2 0 14 10 0.738

103 0 1 3 1 2 0 0 0 0 2 0 8 10 0.738

104 0 1 4 1 2 0 0 0 0 2 0 10 10 0.738

105 0 1 5 1 2 0 0 0 0 2 0 12 10 0.738

106 0 1 6 1 2 0 0 0 0 2 0 14 10 0.738

107 0 1 3 3 0 0 0 0 0 1 1 8 10 0.750

108 0 1 4 3 0 0 0 0 0 1 1 10 10 0.750

109 0 1 5 3 0 0 0 0 0 1 1 12 10 0.750

110 0 1 6 3 0 0 0 0 0 1 1 14 10 0.750

111 0 1 3 2 1 0 0 0 1 1 0 8 10 0.767

112 0 1 4 2 1 0 0 0 1 1 0 10 10 0.767

113 0 1 5 2 1 0 0 0 1 1 0 12 10 0.767

114 0 1 6 2 1 0 0 0 1 1 0 14 10 0.767

Note that the UV fixed point candidates are at best borderline
perturbative in the sense of naïve dimensional analysis (31).
As such, they must be taken with a grain of salt as higher order
loop corrections [49,50] or non-perturbative effects [39,40,
51] are expected to be of a similar magnitude. In Fig. 6, the
black horizontal line indicates the onset of strong coupling
(α3 ≥ 1), which is the case for a few IR fixed points.

Our results are in accord with more formal constraints
such as the a-theorem, which states that the central charge
a = 3

32

[
2dG + ∑

i (1 − Ri )(1 − 3(1 − Ri )
2)

]
must be a

decreasing function along RG trajectories in any 4d quan-
tum field theory [52]. Here, dG denotes the dimension of the
gauge groups, i runs over all chiral superfields, and γi and
Ri = 2

3 (1 + γi ) the corresponding anomalous dimensions
and R-charges, respectively. We find

�a = aUV − aIR > 0 (76)

Fig. 6 The strong gauge coupling α∗
3 at the UV fixed point (FP3) (blue

stars) and the associated IR fixed point (FP23) (orange stars) for type I
models in Table 4. Models have two quark singlets beyond the MSSM,
plus leptons
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on any of the UV-IR connecting trajectories. Had the IR limit
been the Gaussian, validity of the a-theorem would imply
strong coupling and non-perturbatively large R-charges in
the UV, at least for some of the fields. In our models, this
cannot arise because the Gaussian is a saddle and the IR is not
free. Hence, no trajectories connect the UV to the Gaussian,
which supports the weak form of the a-theorem as aUV −
aG < 0. We have also checked that fixed points are in accord
with the positivity of central charges, the conformal collider
bound, and constraints from unitarity [52–56].

Next, we focus on a benchmark, model 7 from Table 4 and
matter content summarised in Table 5, and with the superpo-
tential

W1 ⊃ Y 411d4Q1L1 + Y 432d4Q3L2 + Y 124d1Q2L4

+ Y 225d2Q2L5 + Y
211

u2Q1L1

+ Y
122

u1Q2L2 + ybd3Q3Hd + ytu3Q3Hu .

(77)

The model features the parameters

I12 = I1d = I3d = I3u = 0,

I13 = I1u = I2u = xb = xt = 1,

I2d = 2, nu = 0, nd = 1, nL = 2,

(78)

see (55). Every term of the superpotential (77) contains
exactly one superfield beyond the MSSM. Hence even though
R-parity violation is a crucial feature of the superpoten-
tial (52), we can stay within experimental bounds in our
benchmark model if the masses of these fields beyond the
MSSM are large enough [42–48]. Further, the Yukawa cou-
plings of (55) and (77) are related as

Y 411 → y8, Y 432 → y9, Y 124 → y7,

Y
211 → y11, Y

122 → y12, Y 225 → y7,
(79)

and y4, y5, y6, y10, y13 = 0. Notice that the permutation fla-
vor symmetry

(d1, L4) ↔ (d2, L5). (80)

implies that the RG beta functions for the couplings Y 124

and Y 225 are equivalent, and mapped onto the same type
of beta function. The benchmark data is given in Table 6.
All non-zero components of FP23 are slightly larger than the
corresponding couplings at FP3.

Finally, we compare the benchmark superpotential (77)
with a sample superpotential (64) which arises in models with
additional quark doublets (see Sect. 3.5). Neglecting hyper-
charge (so that d and u have the same gauge representations),
we see that these two superpotentials differ in two aspects.
Firstly, in (64), u3 appears once outside of WMSSM, inducing
a mixing with yt (Et7 �=0 in Appendix D). Secondly, the term
involving Q1 in (64) has its gauge indices contracted in a dif-
ferent manner than Q2 in the superpotential (77), yielding a
Yukawa self-coupling term of E10,10 = 16 (see Appendix D)
instead of E12,12 = 12 (see Appendix C). While these dif-
ferences are small in that they lead to only small differences
in the beta functions, they suffice to alter the nature of the
fixed point from UV to IR.

4.2 Asymptotic safety with logarithmic scaling and UV
critical surface

In four dimensions, the free Gaussian fixed point of a gauge
coupling corresponds to a double-zero of its beta function (4).
This implies that the scaling dimension ∼ ∂αβ(α)|α∗=0 van-
ishes, meaning that the running of asymptotically free gauge
couplings becomes logarithmically slow close to the Gaus-
sian. Conversely, interacting fixed points generically corre-
spond to single zeros with ∂αβ(α)|α∗ �=0 �= 0, which implies
that the running of couplings becomes power law, and much
faster.

Table 5 Summary of
left-handed superfields in the
benchmark model, also showing
their gauge charges and
multiplicity (model 7 of
Table 4). The four bottom rows
show the superfield content
beyond the MSSM

Superfield SU (3)C SU (2)L U (1)Y Multiplicity

MSSM: quark doublet Q 3 2 + 1
6 3

Up-quark singlet u 3 1 − 2
3 3

Down-quark singlet d 3 1 + 1
3 3

Lepton doublet L 1 2 − 1
2 3

Lepton singlet e 1 1 +1 3

Up-Higgs Hu 1 2 + 1
2 1

Down-Higgs Hd 1 2 − 1
2 1

BSM: quark singlet d4 3 1 + 1
3 1

Anti-quark singlet d1 3 1 − 1
3 1

Lepton doublets L4,5 1 2 − 1
2 2

Anti-lepton doublets L1,2 1 2 + 1
2 2
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Table 6 Coordinates of the UV
and IR fixed points of the
benchmark model (model 7 of
Table 4)

α3 α2 αY411 αY432 αY124 αY225 α
Y
211 α

Y
122 α yt α yb

FP3 0.458 0 0.278 0.208 0.306 0.306 0.361 0.306 0.320 0.320

FP23 0.474 0.025 0.296 0.222 0.326 0.326 0.385 0.326 0.341 0.341

Perhaps unexpectedly, however, it turns out that the RG
scaling out of an interacting fixed point may still only be
logarithmic in some cases. The reason for this is that fixed
points may be partially interacting in gauge theories with
product gauge groups, meaning that some of the gauge cou-
plings are switched off at the fixed point. If so, the gauge
couplings which vanish at the fixed point only run logarith-
mically, even if the other couplings achieve an interacting
fixed point, e.g. (26).

Here, this scenario is realised for all UV fixed points.
Specifically, the weak gauge coupling vanishes in the UV,
where it represents a marginally relevant interaction as in
(26) with (27) and (28). In consequence, its RG running out
of the fixed point is given by

α2(μ) = δα2(�)

1 + B2,eff δα2 ln(μ/�)
, (81)

with δα2(�) the sole free parameter of the theory at the high
scale �, and B2,eff > 0 the interaction-induced one-loop
coefficient. Hence, despite of the theory being asymptoti-
cally safe with residual interactions in the UV, we find that
the marginally relevant coupling α2 runs logarithmically as
in asymptotic freedom. Further, dimensional transmutation
leads to a RG invariant mass scale

μtr = � exp
[ − B2,eff δα2(�)

]−1
, (82)

which is the analogue of the scale �QCD in QCD, and inde-
pendent of the high scale � � μtr where the RG flow is
started.

As an aside, we note that a power-law running of relevant
perturbations out of a UV fixed point with supersymmetry
can only arise if one or several of the asymptotically non-
free gauge couplings remain interacting in the UV. Here,
this minimally requires an interacting fixed point of the type
FP23 with both α∗

2 and α∗
3 non-zero, and outgoing trajec-

tories. Although this scenario does not arise in the models
studied here (nor in the models of [12]) it would be useful to
establish conditions under which power-law scaling becomes
available.

Another feature of the fixed points is that the strong
gauge coupling α3 and the non-trivial Yukawa couplings have
become marginally irrelevant interactions in the UV. Their
running is fully determined by the one of α2 along the outgo-
ing trajectory, α3(μ) = F3(α2(μ)) for the strong gauge cou-
pling and αi (μ) = Gi (α2(μ)) for the non-trivial Yukawas,
with F3(x) and Gi (x) model-dependent functions. Close to

the fixed point, this becomes

α3(μ) = α∗
3 + A3 α2(μ)

αi (μ) = α∗
i + Bi α2(μ)

(83)

with A3 and Bi model-dependent parameters. Hence, all
gauge and Yukawa couplings run logarithmically rather than
power-law close to the partially interacting UV fixed point,
which also percolates to other parameters including soft
supersymmetry breaking terms or gaugino masses [20]. Most
notably, the UV critical surface has only one free parame-
ter [12]. This should be contrasted with asymptotic freedom
where, instead, non-abelian gauge and Yukawa couplings
are all marginally relevant. Hence, interacting UV fixed
points with supersymmetry enhance the predictive power
over asymptotically free models and over fixed point the-
ories without supersymmetry [12].

4.3 Matching to the standard model

We now discuss the phase diagram of the benchmark model,
shown in Fig. 7, which is of the same form as anticipated in
Fig. 1. Relevant perturbations such as δα2 can trigger outgo-
ing RG flows. Specifically, Fig. 7 shows RG trajectories in the
(α3, α2) plane with Yukawas projected onto their nullcline
values, and the various fixed points, which are the Gaussian,
the UV (FP3), and the IR fixed point (FP23). Arrows on trajec-
tories point from the UV to the IR, and coloured trajectories
indicate separatrices between the various fixed points. The
dashed black line indicates the SM running of gauge cou-
plings, covering the range from MeV to Planckian energies.
The UV safe trajectory emanating from the UV fixed point is
depicted in orange. It would cross over into the IR fixed point
provided all fields remain massless. Further, we note a bound
for the IR fixed point value of the weak gauge coupling,

0.003 < α∗
2

∣∣
IR, (84)

or else the UV-IR connecting separatrix terminates at the IR
fixed point before the SM line is ever reached. Then, to match
the theory to the standard model, some fields need to decouple
and become massive. If this happens at the appropriate energy
scale, the UV safe trajectory can be matched to the SM, as
indicated in Fig. 7.

Next, we determine the matching scale μ = μSM. Recall
that since the UV safe theory only has a single free parame-
ter (81), α3(μ) is uniquely determined by α2(μ). Hence, the
UV-safe trajectory relates the gauge couplings as αUV

3 (μ) ≡
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Fig. 7 Shown are the RG flows of the benchmark model with particle
content as in Table 5 and superpotential (77), projected onto the (α2, α3)

plane, and all Yukawas on their nullclines. Full dots show the Gaussian,
the UV (FP3), and the IR fixed point (FP23), and arrows on trajectories
point from the UV to the IR. We also indicate the SM running of gauge
couplings (dashed black line), and the trajectory emanating from the
UV fixed point (orange)

α3(α2(μ)). Similarly, for the Standard Model we may express
the RG running of the strong gauge coupling in terms of the
weak gauge coupling and write αSM

3 (μ) ≡ αSM
3 (αSM

2 (μ)).
The matching scale is then uniquely determined from the con-
dition αUV

3 = αSM
3 , which has a unique solution for α2(μSM)

(see Fig. 7). We find

μSM � O(1GeV) (85)

for the benchmark model of Table 5, and, for that matter, for
any of the models in Table 4. Hence, despite of the remarkable
fact that the MSSM extension can be matched to the SM,
the matching scale comes out too low to be in accord with
observation. We conclude that the models cannot be taken as
viable UV completions of the SM.

The result (85) can be understood from (75), which pro-
vides a lower bound on α3, and the fact that the corresponding
IR fixed point is more strongly coupled. The latter implies
that α3(μ) remains larger than its UV fixed point value along
the trajectory down to the matching scale. Therefore, we con-
clude that α∗

3 being numerically too large at the UV fixed
point is the culprit for disallowing a successful matching of
δα2 perturbations.

4.4 Standard hierarchy

Given the result (85), we now discuss prospects for MSSM
extensions with UV fixed points where δα2 perturbations can
be matched to the SM. It either requires lower values for α3

in the UV, or a tilt of the UV-IR connecting separatrix, or a
combination of both.

Fig. 8 Template for the matching of an asymptotically safe MSSM
extension with 10−2 � α∗

3 |UV � α∗
3 |IR to the SM at low energies

(layout as in Fig. 7). Notice that the SM running dictates the bound (87)
for the strong gauge coupling in the UV

The first scenario is illustrated in Fig. 8, where the black
dashed line shows the SM running of couplings between the
TeV and the Planck scale. Here, we assume that the standard
hierarchy

α∗
3 |UV < α∗

3 |IR (86)

is observed. Unlike in the benchmark model, however, we
speculate that the fixed point coupling α∗

3 is small enough to
allow for a matching at TeV energies or above. More specif-
ically, this would require that the gauge coupling fixed point
sits within the range

0.001 � α∗
3

∣∣
UV � 0.01, (87)

and is smaller by at least one order of magnitude than what
has been found in our models, see (75). To leading order in
perturbation theory, we have observed the bound (59) for all
our models. This technical constraint may be overcome at
higher loop order, or non-perturbatively.

4.5 Inverted hierarchy

The second scenario questions the robustness of the hierarchy
(86). Assuming that MSSM extensions can be found where
the converse holds true,

α∗
3 |UV > α∗

3 |IR, (88)

a matching to the SM would become a possibility owing to
a “tilted” separatrix (Fig. 9) . Consequently, the separatrix
may cross the SM line in the energy range where α3 is small.

To check the feasibility of this in perturbation theory, we
look into the general expressions for fixed points (25), (29)
and (30) in terms of loop coefficients. After re-arranging
terms, we find that the UV and IR fixed points are related as

α∗
3

∣∣
IR = α∗

3

∣∣
UV − C ′

32

C ′
33

α∗
2

∣∣
IR. (89)
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Fig. 9 Template for the matching of an asymptotically safe MSSM
extension with 10−2 
 α∗

3 |UV to the SM at low energies (layout as
in Fig. 7). A successful matching requires α∗

3 |IR � α∗
3 |UV and a tilted

separatrix in comparison to Fig. 8

Hence, an inverted hierarchy requires C ′
32/C

′
33 > 0. For

sufficiently small one-loop factor Ba , the diagonal entries
C ′
aa are always positive in any QFT, though they may become

negative for larger positive Ba , while the off-diagonal terms
C ′
ab (a �= b) may have either sign for general Ba . Further,

(23) together with the mandatory sign flip (27), (28) requires
a negative C ′

23 < 0. Altogether, the necessary and sufficient
conditions for an inverted hierarchy are

B2 < 0,

B3 C
′
23 < B2 C

′
33,

B2 C
′
22 < B3 C

′
32,

0 < B3,C
′
32,C

′
33.

(90)

They imply that the Yukawa-shifted off-diagonal two-loop
coefficients must have opposite signs,

C ′
23 < 0 < C ′

32. (91)

Next, we check the conditions (91), and hence (90) for exten-
sions of the MSSM with superpotentials W involving quark
singlets q , quark doublets Q, lepton doublets L , and gauge
singlets S, which we write schematically as

W ⊃ yi (qQL), yi (SQQ), (92)

and where the index i counts the different Yukawa terms.4

The gauge beta functions (18) are characterised by the two-

4 All MSSM extensions considered in Sects. 3 and 4 are of this type.

loop matrix C ,

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

7
∑

SU(2)

d3(R) − 48 16
∑

SU(3)⊗SU(2)

1

6
∑

SU(3)⊗SU(2)

1 34
3

∑
SU(3)

d2(R) − 108

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(93)

where the sums account for the MSSM and BSM fields
charged under the SM gauge groups with dimension d2,3(R).
The off-diagonal entries, which are positive as in any quan-
tum field theory, obey

C32 = 3

8
C23. (94)

Turning to the Yukawas, they contribute to the running of the
gauge couplings with coefficients D3i = 8 and D2i = 12.
The Yukawa beta functions (16) are characterised by the one-
loop matrix E (which we do not need to specify explicitly),
and by the gauge contributions Fi3 = 32

3 and Fi2 = 6. The
latter are known explicitly because the superpotential (92)
has exactly two superfields in the fundamental representation
of either SU(3)C and SU(2)L . From (16), and in terms of (2)
and (15) we find the Yukawa nullclines

αi =
(

32

3
α3 + 6α2

)∑

j

(E−1)i j . (95)

Note that while the matrix elements of E are always posi-
tive, this does not need to hold true a priori for those of E−1.
However, for quantum field theories with physical perturba-
tive fixed points, the sums

∑
j (E

−1)i j must all be positive
to ensure positivity for all squared Yukawa couplings αi (we
have checked explicitly that this is true for all models studied
here). Consequently, we find the Yukawa-shifted two-loop
matrix (22) as

C ′ = C −
(

72 128
48 256

3

)∑

i j

(E−1)i j . (96)

To test (91) we focus on the off-diagonal elements, which
may take either sign. Most notably, the relation (94) continues
to hold true for the matrix C ′ where Yukawa-induced shifts
have been taken into account,

C ′
32 = 3

8
C ′

23. (97)

Thus, the condition (91), and hence (90), cannot be satisfied
for any of the models involving the MSSM with additional
quark singletsq , quark doublets Q, and lepton doublets L and
superpotential (92) (In Appendix F we show that the result
generalises for superfields in general representations.) We
conclude that the hierarchy (86) is a rather robust feature of
models and that scenarios with μSM � O(1 TeV) require
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either superpotentials different from those studied here,
higher order loop corrections, or non-perturbative effects.
We plan to explore these possibilities elsewhere.

5 Discussion and concluding remarks

Motivated by the recent discovery of interacting ultravio-
let fixed points in weakly-coupled supersymmetric theories
[12], we have performed a comprehensive search for fixed
points and asymptotic safety in extensions of the minimally
supersymmetric Standard Model involving either new quark
singlets, new quark doublets, or a fourth generation. We
thereby have performed a scan over about 200k different
MSSM extensions, most of which show infrared conformal
fixed points (Figs. 2, 4 and 5), and about a hundred candidates
with ultraviolet ones (Figs. 2, 3). All settings predict low-
scale supersymmetry-breaking and a violation of R-parity.

While interacting fixed points can arise prolifically in
asymptotically free gauge theories, here, we observe that
their occurrence is much more constrained due the loss of
asymptotic freedom in the weak gauge sector. The latter is an
unavoidable consequence of supersymmetry, following from
the already known charge carriers of the Standard Model. We
expect that the availability of interacting fixed points will
be equally constrained in other supersymmetric extensions
including string-inspired models with many vectorlike rep-
resentations, or supersymmetric grand unified theories.

By and large, in all models the fixed point couplings
(59), (66), (73) are found to be small in the sense of naïve
dimensional analysis. Enhancing the number of independent
superpotential couplings tends to enhance the values of fixed
point couplings (Figs. 2, 3, 4 and 5). Thus, a reduction of
flavor symmetry effectively requires stronger gauge inter-
actions to achieve conformality. In some settings couplings
may become borderline perturbative (Figs. 2, 6), which calls
for higher loop studies [49,50] or non-perturbative checks
[40,51] such as in [39]. We further noticed that models with
interacting UV fixed points always also display an interact-
ing IR fixed point [12], while the converse is not the case.
All our results are consistent with formal constraints such as
the a-theorem, positivity of central charges, the conformal
collider bound, and bounds from unitarity [52–56].

From a phenomenological perspective, the fixed point can-
didates in Table 4 are of interest as they may lead to ultra-
violet completions of the Standard Model. Supersymmetry
enhances the predictive power of interacting fixed points over
non-interacting ones, leading to a smaller number of funda-
mentally free parameters. However, although fixed points can
be matched to the Standard Model (Fig. 7) and the intrin-
sic R-parity violation can be tuned to stay within experi-
mental bounds [42–48], the matching scale comes out too
low (85). The reason for this null result is that the strong

gauge coupling α∗
3 in the UV is simply not small enough,

and that it grows along trajectories leaving the fixed point.
Settings with fixed point couplings in the range (84), (87)
can alleviate this impasse (Fig. 8), as can extensions where
the UV-safe separatrix is tilted towards smaller couplings
(Fig. 9). Either of these options require higher loops, non-
perturbative effects, or interactions beyond those consid-
ered here. We have not been concerned with the U (1)Y sec-
tor which remains infrared free despite of interacting fixed
points. This is viable phenomenologically because theU (1)Y
Landau pole arises beyond the Planck scale for most of the
fixed point scenarios discussed here. Still, it will be worth
investigating whether MSSM extensions can also stabilise
U (1)Y .

A perhaps unexpected aspect of partially interacting UV
fixed points is that the running of relevant perturbations
may still be only logarithmic (81), (83) as in asymptotic
freedom [12], rather than power-law. This feature perco-
lates to the running of other parameters such as soft super-
symmetry breaking terms, or gaugino masses. Therefore,
and much unlike fully interacting UV fixed points in non-
supersymmetric theories [7,11], relevant supersymmetric
perturbations would only show power-law running if at
least one of the asymptotically nonfree gauge couplings
remains interacting in the UV (meaning UV fixed points with
α∗

2 , α∗
3 > 0 in our models). If this scenario is realised, gaug-

ino masses will exhibit power-law running with scale, and
may offer a possible solution to the supersymmetric flavor
problem [20]. Future work should clarify if this scenario can
arise for semi-simple supersymmetric matter-gauge theories,
because if it does, it may open up yet another route to UV-
complete the Standard Model.
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Appendices

A. Yukawa nullclines

In this appendix, we have a look into Yukawa nullclines,
motivated by the observation that the one loop beta functions
of certain Yukawa couplings may not come out proportional
to the Yukawa couplings themself, but, instead, be driven by
inhomogeneous terms. Consider, for example, a model with
the superpotential

W = y1ABC + y2ABD + y3AEC + y4AED, (98)

involving chiral superfields A, B,C, D, and E . The one-loop
Feynman diagram

A

D

E

A

C

B

(99)

contributes to the running of y1 and yields a contribution
∝ y2 y∗

4 y3. Hence, the coupling y1 would seem unnatural
[57] in that it can be switched on by fluctuations, as long as
the other Yukawas are non-zero. Specifically, the system of
Yukawa beta functions for the superpotential (98) reads

βy1 = y1(3|y1|2 + 3|y2|2 + |y3|2 − A1) + y2y
∗
4 y3,

βy2 = y2(3|y2|2 + 3|y1|2 + |y4|2 − A2) + y1y
∗
3 y4,

βy3 = y3(3|y3|2 + 3|y4|2 + |y1|2 − A3) + y4y
∗
2 y1,

βy4 = y4(3|y4|2 + 3|y3|2 + |y2|2 − A4) + y3y
∗
1 y2,

(100)

where we absorbed the loop factor 4π into the couplings. The
coefficients Ai = Ai (g2) are positive and linear functions of
the gauge coupling squares g2 [5]. The Yukawa nullclines are
found by solving βyi = 0 in (100) for the Yukawas. In the
absence of inhomogeneous terms, the nullcline conditions are
linear functions of |yi |2. In the presence of inhomogeneous
terms, the nullcline conditions become cubic functions of yi .

Note that enhanced symmetry, for instance y1 = y2 = y3 =
y4 in (100), also lead to linear nullcline conditions.

In this work, we limit ourselves to superpotentials with lin-
ear nullcline conditions. In practice, this is achieved by per-
mutation symmetries (as seen above), or by selecting super-
potentials where any two trilinear terms have at most one
superfield in common.

B. Expressions for fixed points

General expressions for the partially interacting fixed points
FP3 and FP23 have been given in the main text, see (24),
(25), and (29), (30), respectively. Here, we provide formal
expressions for the fixed point candidates FP13 and FP123 in
terms of loop coefficients. For the fixed point FP13, we have

α∗
3

∣∣
FP13

= B3C ′
11 − B1C ′

31

C ′
11C

′
33 − C ′

13C
′
31

,

α∗
2

∣∣
FP13

= 0,

α∗
1

∣∣
FP13

= B1C ′
33 − B3C ′

13

C ′
11C

′
33 − C ′

13C
′
31

,

(101)

while for FP123, the expressions read

α∗
3

∣∣
FP123

= B3(C ′
12C

′
21 − C ′

11C
′
22) − B1(C ′

21C
′
32 − C ′

22C
′
31) − B2(C ′

12C
′
31 − C ′

11C
′
32)

C ′
12C

′
21C

′
33 − C ′

12C
′
23C

′
31 − C ′

13C
′
21C

′
32 + C ′

13C
′
22C

′
31 + C ′

11C
′
23C

′
32 − C ′

11C
′
22C

′
33

,

α∗
2

∣∣
FP123

= B1(C ′
21C

′
33 − C ′

23C
′
31) + B2(C ′

13C
′
31 − C ′

11C
′
33) − B3(C ′

13C
′
21 − C ′

11C
′
23)

C ′
12C

′
21C

′
33 − C ′

12C
′
23C

′
31 − C ′

13C
′
21C

′
32 + C ′

13C
′
22C

′
31 + C ′

11C
′
23C

′
32 − C ′

11C
′
22C

′
33

,

α∗
1

∣∣
FP123

= B1(C ′
23C

′
32 − C ′

22C
′
33) + B2(C ′

12C
′
33 − C ′

13C
′
32) − B3(C ′

12C
′
23 − C ′

13C
′
22)

C ′
12C

′
21C

′
33 − C ′

12C
′
23C

′
31 − C ′

13C
′
21C

′
32 + C ′

13C
′
22C

′
31 + C ′

11C
′
23C

′
32 − C ′

11C
′
22C

′
33

.

(102)

We emphasize that none of the studied models features a
physical fixed point candidate of the type FP1, FP12, FP13 or
FP123 with all couplings positive.

When interacting fixed point may exist, i.e., for Nq,BSM ≤
4, see Sect. 3.3, we can state a general lower bound on
α∗

3

∣∣
FP3

= B3/C ′
33. From (22) it is clear that C ′

33 < C33

and with the expressions of Appendix C we can write

α∗
3

∣∣
FP3

>
6 − Nq,BSM

28 + 34
3 Nq,BSM

>
3

110
≈ 0.027, (103)

where Nq,BSM ≤ 4 has been used.

C. Beta functions: new quark singlets

Here, we summarise formulæ for the perturbative RG equa-
tions of type I of MSSM extensions introduced in Sect. 3.4,
with superpotential terms parametrised by (55). In terms of
these parameters, the lower bounds on BSM matter fields
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(57) are given by

nmin
d = max{I12 + I13 + Id − 2, 0},

nmin
u = max{Iu − 2, 0},

nmin
L = max{2(I12 + I13) + Id − 3, Iu},

(104)

with Id = I1d + I2d + I3d and Iu = I1u + I2u + I3u . Using
(15) for the reduced BSM Yukawas (i = 4, . . . , 13), we con-
clude that the RG running of all models with (55) is encoded
by up to 15 different beta functions for the gauge couplings
{α1, α2, α3}, and up to 12 Yukawa couplings given by the
top and bottom Yukawas {αt , αb}, and nine beyond MSSM
Yukawas {α4, . . . , α13}, modulo additional copies due to fla-
vor symmetries. The corresponding Yukawa beta functions
are denoted as βt , βb, β4, . . . , β13, with ∂tαi ≡ βi . The gen-
eral beta functions for the Yukawa and gauge couplings are
given in (16) and (18), respectively, involving the loop coef-
ficients B,C, D, E and F . Using the gauge couplings (2)
and Yukawa couplings (15) with {yi } as in (55) the one-loop
gauge coefficients B read

B3 = 6 − 2(nu + nd),

B2 = −2 − 2nL ,

B1 = −22 − 16

3
nu − 4

3
nd − 2nL ,

(105)

The two-loop matrices C and D, and the one-loop matrices
E and F in the Yukawa sector are given by

C =
⎛

⎝
398
9 + 256

27 nu + 16
27nd + 2nL 18 + 6nL 176

3 + 256
9 nu + 64

9 nd
6 + 2nL 50 + 14nL 48

22
3 + 32

9 nu + 8
9nd 18 28 + 68

3 (nu + nd)

⎞

⎠ , (106)

D =

⎛

⎜⎜⎝

52
3 xt

28
3 xb

28
3 I12

28
3 I1d

28
3 I12

28
3 I2d

28
3 I13

28
3 I13

28
3 I3d

28
3 I1u

52
3 I2u

52
3 I3u

12xt 12xb 12I12 12I1d 12I12 12I2d 12I13 12I13 12I3d 12I1u 12I2u 12I3u

8xt 8xb 8I12 8I1d 8I12 8I2d 8I13 8I13 8I3d 8I1u 8I2u 8I3u

⎞

⎟⎟⎠ . (107)

E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 2xb 0 0 0 0 0 2I13 2I3d 0 0 2I3u
2xt 12 0 0 0 0 0 2I13 2I3d 0 0 2I3u
0 0 10+2I12 2I1d 4 0 2I13 0 0 2I1u 0 0
0 0 2I12 10+2I1d 0 0 2I13 0 0 2I1u 0 0
0 0 4 0 10+2I12 2I2d 0 0 0 0 2I2u 0
0 0 0 0 2I12 10+2I2d 0 0 0 0 2I2u 0
0 0 2I12 2I1d 0 0 10+2I13 4 0 2I1u 0 0
2xt 2xb 0 0 0 0 4 10+2I13 2I3d 0 0 2I3u
2xt 2xb 0 0 0 0 0 2I13 10+2I3d 0 0 2I3u
0 0 2I12 2I1d 0 0 2I13 0 0 10+2I1u 0 0
0 0 0 0 2I12 2I2d 0 0 0 0 10+2I2u 0
2xt 2xb 0 0 0 0 0 2I13 2I3d 0 0 10+2I3u

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (108)

F =
⎛

⎜⎝

26
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

26
9

26
9

26
9

6 6 6 6 6 6 6 6 6 6 6 6
32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

⎞

⎟⎠

T

. (109)

D. Beta functions: new quark doublets

Here we summarise formulæ for the perturbative RG equa-
tions of all gauge and Yukawa couplings for type II of MSSM
extensions Sect. 3.5, up to two loop for the gauge and one
loop for the Yukawa beta functions. We also give specifics
for the selection of superpotential couplings (63):

(i) The parameters 0 ≤ xb, xt ≤ 1 determine whether
respectively the MSSM bottom- and top-Yukawa cou-
plings are switched on (x = 1) or off (x = 0).

(ii) The first- and second generation quark doublets Q1

and Q2 can appear in terms involving up- and down
quark singlets di , ui . The parameter 1 ≤ IQ ≤ 2
indicates whether all terms containing Q1 and quark
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singlets are present while Q2 is absent (IQ = 1), or
whether both doublets appear simultaneously (IQ =
2). Which quark singlets are available is determined
by parameters introduced below.

(iii) With 0 ≤ x4, x4 ≤ 1, superpotential terms involving
Q4 and first- and second generation down quarks d1,2

(x4) and up-quarks u1,2 (x4) are switched on (x = 1)
or off (x = 0).

(iv) The parameter 0 ≤ Id ≤ 2 determines the first- and
second generation down quark singlet content in the
superpotential. For Id = 0, d1 and d2 are absent while
for Id = 1 only d1 is present in terms involving the
quark doublets Q1, Q2 and Q4, depending on whether

they are allowed according to the parameters IQ , x4

and x4. For Id = 2 the contruction is analogous to
the case Id = 1 but this time all respective terms
containing both d1 and d2 are present.

(v) With 0 ≤ Iu ≤ 2, the presence of superpotential terms
analogous to Id in (iv) is determined, but here concern-
ing the up quark singlets u1,2.

(vi) Terms containing the third generation quark singlets
d3 and u3 as well as the first- and second genera-
tion quark doublets Q1 and Q2 are switched on and
off with the parameters x3, x3. Here, x3 determines
whether such terms with d3 are present (x3 = 1) or
not (x3 = 0), while x3 analogously is responsible for
the presence of terms containing u3.

(vii) Each admitted Yukawa term gets amended by a lep-
ton L or anti-lepton L , with each of these appearing
at most once in the superpotential. In consequence,
the number of BSM leptons needs to be larger than
nL ,min = max{(1 + x4)Id + x3 − 3, (1 + x4)Iu + x3}.

(viii) The presence of the nS Yukawa terms involving the
gauge singlets Si are determined by the parameter 0 ≤
xS ≤ 1. For xS = 0 these terms do not appear in the
superpotential while for xS = 1 they do.

The one-loop gauge coefficients are given by B3 =
2, B2 = −14 − 2nL , B1 = − 74

3 − 2nL . Further, the two-
loop matrices C and D, and the Yukawa matrices E and F
as in (16) and (18) are given by

C =

⎛

⎜⎜⎝

1358
27 + 2nL 38 + 6nL 368

9
38
3 + 2nL 134 + 14nL 80

70
9 30 220

3

⎞

⎟⎟⎠ , (110)

D =
⎛

⎝
52
3 xt

28
3 xb

28
3 Id IQ

52
3 Iu IQ

28
3 IQx3

52
3 IQx3

28
3 Id x4

52
3 Iux4

4
3nSxS

12xt 12xb 12Id IQ 12Iu IQ 12x3 IQ 12x3 IQ 12x4 Id 12x4 Iu 12xSnS
8xt 8xb 8Id IQ 8Iu IQ 8x3 IQ 8x3 IQ 8x4 Id 8x4 Iu 8xSnS

⎞

⎠ , (111)

E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

12 2xb 0 0 0 4IQ x3 0 0 0
2xt 12 0 0 4IQ x3 0 0 0 0
0 0 (10+2Id )IQ 2Iu IQ 2IQ x3 2IQ x3 4x4 0 0
0 0 2Id IQ (10+2Iu)IQ 2IQ x3 2IQ x3 0 4x4 0
0 4xb 2Id IQ 2Iu IQ 12IQ 2IQ x3 0 0 0

4xt 0 2Id IQ 2Iu IQ 2IQ x3 12IQ 0 0 0
0 0 4IQ 0 0 0 10+2Id 2Iu x4 2nSxS
0 0 0 4IQ 0 0 2Id x4 10+2Iu 2nSxS
0 0 0 0 0 0 2Id x4 2Iu x4 16nS

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (112)

F =
⎛

⎝
26
9

14
9

14
9

26
9

14
9

26
9

14
9

26
9

2
9

6 6 6 6 6 6 6 6 6
32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

⎞

⎠
T

. (113)

E. Beta functions: fourth generation

We summarise formulæ for the perturbative RG equations of
all gauge and Yukawa couplings for type III of the MSSM
extensions introduced in Sect. 3.6. The labelling of Yukawa
couplings and the I -parameters is given by (71), with i �= 3
and the top- and bottom Yukawas always present. The free
parameters in (71) parameterize the superpotential as fol-
lows:

(i) The number of times down-quark singlets appear
exactly once in the superpotentials in terms involving
Q1 (or Q3) is denoted by I1d (or I3d ).

(ii) Appearances of down-quarks in exactly two superpo-
tential terms involving Q1 and Q2, or Q1 and Q3, or
Q1 and Q4 are counted by the parameters I12, I13 and
I14, respectively.
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(iii) We let each up-quark ui �= u3 appear at most once in
our investigated superpotentials. Then, I1u counts the
number of such terms additionally involving Q1, and
I4u those additionally involving Q4, with I1u+ I4u ≤ 3.

(iv) Each lepton doublet Li and each anti-lepton doublet L
(both MSSM and BSM) may appear at most once. To
accommodate for all Yukawa terms, the lepton number
counting parameter needs to fulfill

nL ≥ nL ,min (114)

with nL ,min = max{2I1+I1d+I3d−4, I1u+I4u} and
I1 = I12+I13+I14.

The one-loop gauge coefficients read B3 = 2, B2 =
−6−2nL , B1 = − 89

3 −2nL , while for the two-loop matri-
ces C, D, and the Yukawa matrices E, F , (16) and (18), we
obtain

C =

⎛

⎜⎜⎝

1574
27 + 2nL 16 + 6nL 704

9
22
3 + 2nL 71 + 14nL 64

88
9 24 220

3

⎞

⎟⎟⎠ , (115)

D =

⎛

⎜⎜⎝

52
3

28
3

28
3 I12

28
3 I12

28
3 I13

28
3 I13

28
3 I14

28
3 I14

28
3 I1d

28
3 I32

52
3 I1u

52
3 I4u

12 12 12I12 12I12 12I13 12I13 12I14 12I14 12I1d 12I32 12I1u 12I4u

8 8 8I12 8I12 8I13 8I13 8I14 8I14 8I1d 8I32 8I1u 8I4u

⎞

⎟⎟⎠ . (116)

E =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12 2 0 0 0 2I13 0 0 0 2I3d 0 0
2 12 0 0 0 2I13 0 0 0 2I3d 0 0
0 0 10+2I12 4 2I13 0 2I14 0 2I1d I1d , 0 2I1u 0
0 0 4 10+2I12 0 0 0 0 0 0 0 0
0 0 2I12 0 10+2I13 4 2I14 0 2I1d 0 2 + I1u , 0
2 2 0 0 4 10+2I13 0 0 0 2I3d 0 0
0 0 2I12 0 2I13 0 10+2I14 4 2I1d 0 2I1u 0
0 0 0 0 0 0 4 10+2I14 0 0 0 2I4u
0 0 2I12 0 2I13 0 2I14 0 10+2I1d 0 2I1u 0
2 2 0 0 0 2I13 0 0 0 10+2I3d 0 0
0 0 2I12 0 2I13 0 2I14 0 2I1d 0 10+2I1u 0
0 0 0 0 0 0 0 2I14 0 0 0 10+2I4u

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (117)

F =

⎛

⎜⎜⎝

26
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

14
9

26
9

26
9

6 6 6 6 6 6 6 6 6 6 6 6
32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

32
3

⎞

⎟⎟⎠

T

. (118)

F. Two-loop relations

In Sect. 4.5, we have analysed a condition for a reverted
hierarchy

α∗
3 |UV > α∗

3 |IR (119)

to occur at two-loop order in perturbation theory, where
α∗

3 |UV refers to the fixed point coupling at the partially inter-
acting UV fixed point FP3, and α∗

3 |IR refers to the fixed point
coupling at the corresponding IR fixed point FP23.

In this appendix, we study this relation in a more principled
manner, starting with a semi-simple supersymmetric gauge
theory with gauge group G2 × G3, coupled to matter and a
superpotential involving superfields A, B, and C which we
write schematically as

W =
∑

i

yi (ABC)i , (120)

and i counting the different Yukawa terms. We assume that A
and B are charged under one of the gauge groups, and B and
C are charged under the other. Then, from (6), we observe the
ratio of off-diagonal two-loop gauge contributions (a �= b)

Cab

Cba
=

∑
c

dc
dc(Ra)

SRa
2 (c)CRb

2 (c)

∑
c

dc
dc(Rb)

SRb
2 (c)CRa

2 (c)
. (121)

Here, c counts all superfields simultaneously charged under
the gauge groups Ga and Gb (without representation compo-
nents), and dc is the product of all dimensionalities of groups

123
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under which the field counted by c is charged. Using the iden-
tity SRa

2 (c) d(Ga) = dc(Ra)C
Ra
2 (c), the ratio (121) simpli-

fies into

Cab

Cba
= d(Gb)

d(Ga)
= N 2

b − 1

N 2
a − 1

(122)

for a �= b. We further specified to Gi = SU(Ni ) gauge
groups in the last step. Evidently, the general result (122)
falls back onto (94) for N2 = 2 and N3 = 3, as it must.

Next, we are interested in the ratio of the off-diagonal
Yukawa-shifted two-loop coefficients, which by definition
(22) take the form

C ′
ab

C ′
ba

= (C − DE−1F)ab

(C − DE−1F)ba
. (123)

Here, we assumed that the Yukawa and gauge beta functions
can always be written as in (16), (18). The key observation
is that for some superpotentials the off-diagonal Yukawa-
induced shift terms (DE−1F) simplify into expressions of
the form (E−1)(DF), meaning that any dependence on the
specifics of the Yukawa nullclines, encoded in the matrix
E−1, drop out in the ratio (DE−1F)ab/(DE−1F)ba . In our
case, we are left with the loop coefficients

Dai = 4

d(Ga)

∑

k

C Ra
2 (k), (124)

Fia = 4
∑

k̃

C Ra
2 (k̃), (125)

where Dai as defined in (17) comes from the term 2Y4,a in
(4), and Fia comes from the second term of the anomalous
dimensions (10). Both Dai and Fia are independent of the
Yukawa index i , implying that any dependence on the struc-
ture of the Yukawa nullclines drops out,

(DE−1F)ab

(DE−1F)ba
= (DF)ab

(DF)ba
= d(Gb)

d(Ga)
. (126)

Hence, since the ratio of the off-diagonal elements (121) and
the ratio of the shift terms (126) are identical, it follows that
the shifted matrix elements (123), again, have the same ratio,

Cab

Cba
= (DE−1F)ab

(DE−1F)ba
= C ′

ab

C ′
ba

. (127)

Since Cab for a �= b are positive numbers in any quantum
field theory, it follows that C ′

ab < 0 < C ′
ba is strictly out of

reach for these types of theories.
For other explicit examples of perturbatively controlled

supersymmetric quantum field theories with interacting fixed

points where the relations (122), (126), and (127) are
realised in a large-N Veneziano limit, we refer to the models
in [12].
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