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Abstract We revisit the problem of calculating the quasi-
normal modes of spin 0, 1/2, 1, 3/2, 2, and spin 5/2 fields
in the asymptotically flat Schwarzschild black hole space-
time. Our aim is to investigate the problem from the numer-
ical point of view, by comparing some numerical methods
available in the literature and still not applied for solving the
eigenvalue problems arising from the perturbation equations
in the Schwarzschild black hole spacetime. We focus on the
pseudo-spectral and the asymptotic iteration methods. These
numerical methods are tested against the available results in
the literature, and confronting the precision between each
other. Besides testing the different numerical methods, we
calculate higher overtones quasinormal frequencies for all
the investigated perturbation fields in comparison with the
known results. Additionally, we obtain purely imaginary fre-
quencies for spin 1/2 and 3/2 fields that are in agreement
with analytic results reported previously in the literature. The
purely imaginary frequencies for the spin 1/2 perturbation
field are exactly the same as the frequencies obtained for the
spin 3/2 perturbation field. In turn, the quasinormal frequen-
cies for the spin 5/2 perturbation field are calculated for the
very first time, and purely imaginary frequencies are found
also in this case. We conclude that both methods provide
accurate results and they complement each other.

a e-mail: alex.h.mamani@gmail.com (corresponding author)
b e-mail: angel.masa@ufabc.edu.br
c e-mail: lucas.t@ufabc.edu.br

1 Introduction

Perturbation theory is a very useful theoretical toolkit for
the investigation of the properties of a physical system. For
example, the stability under small perturbations. Investigat-
ing the harmonic oscillator problem, it drives into a second-
order differential equation with Dirichlet boundary condi-
tions whose solutions are characterized by a set of discrete
real frequencies, i.e., normal modes (NMs). However, there
are physical systems whose boundary conditions drive solu-
tions with complex frequencies, i.e., quasinormal modes
(QNMs), for example, a harmonic oscillator into a dissipative
medium, see for instance [1]. Thus, the investigation of the
quasinormal (QN) frequencies and their mathematical prop-
erties become a fascinating subject that may shed light on
the understanding of the universal properties of the physical
system under investigation.

In the context of gravity theories, perturbation theory is
essential for several reasons. One of the motivations is the
investigation of gravitational waves spectroscopy [2]. One
also may use perturbation theory to investigate the stabil-
ity of physical systems under small perturbations. It has
been shown that the perturbation equations may be writ-
ten as second-order differential equations, allowing us to
use numerical techniques implemented in differential equa-
tions to solve them. One of the boundary conditions considers
that classically noting comes out from the black hole interior
such that the boundary conditions at the horizon are ingoing
waves. In turn, at the spatial infinity the boundary condi-
tions are outgoing waves because nothing can come from
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outside of the spacetime. Solving the perturbation equations
under these particular boundary conditions drive to solutions
with discrete (complex) eigenvalues. Such eigenvalues are
the frequencies representing the characteristic oscillations of
the black hole that relaxes after being perturbed. One very
essential property of these frequencies is that they do not
depend on the initial condition (perturbation) and are fixed
completely by the properties of the black hole under investi-
gation.

The quasinormal modes are of particular interest in black
hole astrophysics. Direct observations showed in the coales-
cence of a binary system emits gravitational waves in the
form of QNMs, that is, the final system obeys the predic-
tions of black hole perturbation theory [3]. This fact alone is
enough to motivate the development, testing, and compari-
son of different methods for finding QNMs, but the relevance
of QNMs go far further than this fact. For reviews and addi-
tional discussions about QNMs in different contexts see, for
instance, [4–28] and references therein.

In turn, the first observation of the shadow of the super-
massive black hole M87* by the Event Horizon Telescope
Collaboration (EHT) [29,30] opens a new window for the
investigation of strong gravitational field phenomena. There
is also studies proposing a connection between the real part
of the quasinormal (QN) frequency with the radius of the
shadow, see the Refs. [31–35]. Among the new possibilities,
there are researched papers attempting to find constraints in
parameters arising in different models like in general uncer-
tainty principle (GUP), see for instance, refs. [36,37].

In this paper we revisit the calculation of quasinormal
modes for integer spin 0, 1 and 2 fields, as well as for semi-
integer spin 1/2, 3/2 and 5/2 fields. Since Chandrasekhar
calculated the quasinormal modes for s = 2 in Ref. [38],
the problem of calculating QNMs for other spin fields was
previously investigated in the literature using different tech-
niques (numeric and analytic), see for instance, Refs. [39–
44]. However, our approach here is from the numerical point
of view, for doing so we are going to use two numerical
methods well established in the literature. The first one is
the pseudo-spectral method used to solve differential equa-
tions expanding the solution in a base composed of special
functions [45]. The pseudo-spectral method, was used to cal-
culate the quasinormal modes of Schwarzschild black hole
for spin-zero fields in Ref. [46]. However, we extend the
method for calculating the QNMs for spin 1/2, 1, 3/2, 2,
and 5/2 fields. We also use the asymptotic iteration method
(AIM) proposed originally in Ref. [47]. This method was
extended to solve quasinormal modes in Ref. [43]. In the
present paper, we review the relatively unexplored asymp-
totic iteration method and apply it to the QNM problem. We
also introduce a new software package that implements the
latter method for usage in general second-order ordinary dif-
ferential equations (ODEs).

The paper is organized as follows. In Sect. 2 we write the
equations of motion describing the spin 0, 1/2, 1, 3/2, 2,
and 5/2 perturbation fields in a suitable form to apply the
numerical methods. In Sect. 3, we review and discuss the
pseudo-spectral method, focusing on the way in which this
method can be applied, by expanding the solution using one
or two special functions. Section 4 is devoted for discussing
the AIM and its extensions to calculate QN frequencies. We
also present an open-source code that can be used freely. In
turn, in Sect. 5 we present our numerical results obtained
in both methods, we also compare against numerical results
available in the literature. We leave the discussion of the
QNMs in the limit of large angular momentum for Sect. 6,
where we also compare against analytic results. Finally, our
conclusions are presented in Sect. 7. Additional details are
presented in Appendix A and Appendix B.

2 Equations of motion

Here we write the equations describing the field perturba-
tions on the gravitational background solution of the Einstein
equations. We focus on the metric for a spherically symmetric
black hole, which is given by [48]

ds2 =− f (r) dt2 + 1

f (r)
dr2 + r2dθ2+r2 sin2 θ dϕ2, (1)

where the horizon function of the Schwarzschild black hole
is given by

f (r) = 1 − 2M

r
. (2)

where M is the mass of the black hole, and r is the radial coor-
dinate which, in principle, belongs to the interval r ∈ [0, ∞).
The coordinates in the metric (1) are known as Schwarzschild
coordinates. As it is well known, this metric presents an event
horizon at r = 2M and a curvature (physical) singularity at
r = 0. In the asymptotic region, i.e., r → ∞, the metric
reduces to a flat metric. As long as the quasinormal modes
in this black hole spacetime are concerned, the interesting
region is the spacetime region spanned by the radial coordi-
nate r in the interval 2M < r < ∞.

We then follow the standard procedure in the study
of linear perturbations of the Schwarzschild black hole
spacetime (1). After chosen an specific perturbation field,
the corresponding partial differential equations are reduced
to a unique Schrödinger like ordinary differential equa-
tion for each field through a set of transformations. In
such an approach, the perturbation functions are decom-
posed in Fourier modes, in the form eiω t = ei(ωRe−i ωIm )=
eωIm t cos (ωRe t), what eliminates the time derivatives from
the differential equations, while the angular dependence is
dealt with by expanding in spherical harmonics as usual.
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As a final remark at this stage we mention that ordinary
QNM present frequencies with non-vanishing real and imag-
inary parts and represent oscillatory solutions, being expo-
nentially damped by the imaginary part of the frequency. On
the other hand, the modes with purely imaginary frequencies,
i.e., the modes for which the real part of the frequency van-
ishes, represent purely damping solutions because the respec-
tive perturbation functions go as eiω t = eωIm t .

2.1 Spin 0, 1 and 2 perturbations

Here we revisit the study of perturbations of integer spin,
such that scalar, vector, and gravitational perturbations in the
Schwarzschild black hole spacetime. This is a long-standing
problem, and there are a considerable amount of results pub-
lished in the literature, which is certainly interesting for one
of the purposes of the present work. In fact, it was proven
that the equations of motion can be written in a compact
form, the so-called, Schrödinger-like differential equations,
see for instance [4]. Thus, for massless scalar (s = 0), elec-
tromagnetic (s = 1) and vector type gravitational perturba-
tions (s = 2), the Schrödinger-like equations are given by

d2ψs(r)

dr2∗
+
[
ω2 − Vs(r)

]
ψs(r) = 0. (3)

where the potential is given by

Vs(r) = f (r)

[
� (� + 1)

r2 +
(

1 − s2
) 2M

r3

]
, (4)

where the tortoise coordinate is defined in terms of the areal
coordinate r by dr∗ = dr/ f (r). So far, the problem of cal-
culating quasinormal frequencies was reduced to solve an
eigenvalue problem. We will see that it is possible to solve
this problem following two approaches, one of them expand-
ing the function ψ in a base composed of special functions,
while the other solving directly the second-order differential
equation.

On the other hand, note that the potential (4) is zero at
the horizon, f (rh) = 0. Thus, the Schrödinger-like equa-
tion reduces to a single harmonic oscillator problem, whose
solutions are:

ψs(r) = c1 e
−iωr∗ + c2 e

iωr∗ , r → rh . (5)

The first of these solutions is interpreted as an ingoing wave,
i.e., a wave that travels inward and eventually falls into the
black hole event horizon. The second solution is interpreted
as an outgoing wave, i.e., a wave that travels outward with
respect to the black hole and can escape to space infinity.
Waves travelling as this second solution would represent
waves coming from the interior of the black hole. Since the
perturbation theory is implemented using classical assump-
tions, nothing is expected to come out from the black hole
interior, thus, in the following analysis we impose the first

solution as boundary condition at the horizon what is accom-
plished by setting c2 = 0.

We also need to investigate the spatial infinity, at r →
∞, where f (r) → 1 and the effective potential (4) also
vanishes. Thus, in such a limit the general solutions to the
wave equation (3) have the same form as the function given
in Eq. (5), i.e.,

ψs(r∗) = c3 e
−iωr∗ + c4 e

iωr∗ , r → ∞. (6)

The first solution is interpreted physically as waves coming in
from outside the universe and must be avoided by setting c3 =
0. In turn, the second solution represents waves going out of
the universe, this is the boundary condition at the spatial
infinity. Finally, note that the boundary conditions do not
depend explicitly on the angular momentum � nor the spin.

It is interesting to see the behavior of the tortoise coordi-
nate close to the horizon which is given by

r∗ =
∫

dr

f ′(rh)(r − rh)
≈ ln (r − rh)

f ′(rh)
, r → rh (7)

where rh = 2M . Thus, in terms of the radial coordinate, the
boundary condition at the horizon becomes ( f ′(rh) = 1/rh)

ψs(r) ∼ e
−iω

ln (r−rh )

f ′(rh ) ∼ (r − rh)
−i ω

f ′(rh ) . (8)

In turn, the tortoise coordinate at the spatial infinity becomes

r∗ =
∫

dr

f (r)
≈ r + rh ln r, r → ∞ (9)

while the asymptotic solution at the spatial infinity becomes

ψs(r) ∼ eiω(r+rh ln r) ∼ r i rhωeiωr . (10)

In the following, we are going to change our strategy and
use a new coordinate defined by u = 2M/r . This is equiv-
alent to the choice u = 1/r and then normalizing the mass
M to 2M = 1. The relation between the tortoise coordinate
r∗ and the new coordinate u becomes du/dr∗ = −u2 f (u).

We also constrained our analysis to the outer region of the
black hole, such that rh ≤ r < ∞. Hence, in terms of the new
coordinate, this region is bounded to the interval u ∈ [0, 1],
and the potential becomes

Vs(u) = f (u) u2
[
� (1 + �) +

(
1 − s2

)
u
]
, (11)

where f (u) = 1 − u.
To implement the pseudo-spectral method, the equations

on the background metric must be written in terms of the
Eddington–Filkenstein coordinates, see for instance the dis-
cussion in Ref. [46]. However, we found a short way to write
the equations going directly from the Schrödinger-like equa-
tion by implementing some transformations. In the end, these
transformations lead to a differential equation, which is the
same as the one obtained from the metric in Eddington–
Filkenstein coordinates. To write the perturbation equations
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in terms of the Eddington–Filkenstein coordinates we must
implement the transformation ψs → �s given by

ψs = �s(u)

u
e−iω r∗(u). (12)

Thus, Eq. (3) becomes
[
s2u2 − � (� + 1) u − 2 i ω

]
�s(u)

− u
(
u2 − 2 i ω

)
�′

s(u)+(1 − u) u3 �′′
s (u)=0,

(13)

where we have set M = 1/2 so that rh = 1. The asymptotic
solutions close to the horizon may be calculated using the
ansatz �s(u) = (1 − u)α . By substituting this ansatz into
(13) we get two solutions,

α = 0, α = 2 i ω. (14)

The solution forα = 0 is interpreted physically as the ingoing
waves at the horizon, while the other one is interpreted as a
wave coming out from the black hole interior. Therefore, the
second solution must be neglected in the following analysis.

In the same way, we consider the ansatz �s = uβ to get
the asymptotic solution close to the spatial infinity. Plugging
this ansatz in (13) we get the following solution,

�s(u) = c5 e
2 i ω/uu−2 i ω + c6 u. (15)

We want the divergent solution, such that we set c6 = 0.
Then, we implement the final transformation, which takes
into consideration the boundary conditions,

�s(u) = e2 i ω/uu−2 i ωφs(u), (16)

where φs(u) is a regular function in the interval u ∈ [0, 1]
by definition. Finally, the equation of motion describing spin
0, 1, and 2 perturbations is given by
[
� (� + 1) u − s2u2 − 4 iλ − 16 u (1 + u) λ2

]
φs(u)

+
[
u3 + 4i u

(
1 − 2u2

)
λ
]
φ′
s(u) − (1 − u)u3φ′′

s (u) = 0,

(17)

where we have used λ = ωM = ω/2. The final differential
equation is then a quadratic eigenvalue problem in λ. It is
worth also mentioning that in the limit of zero spin s → 0,
Eq. (17) reduces to Eq. (4.8) of Ref. [46]. These results just
prove that the alternative way for getting the equations for the
integer spin perturbations presented here is consistent with
other approaches found in the literature.

The differential equation (17) was solved numerically
using the pseudo-spectral and AIM methods. The results for
perturbations of spin 0, 1, and 2 are presented in Sects. 5.1,
5.2, and 5.3, respectively, where a comparison with the cor-
responding data in the literature is also performed.

In the following, we extend the analysis of the present
section to other kinds of perturbations.

2.2 Spin 1/2 perturbations

For half-integer spin perturbations the history is different,
the differential equations are quite distinct from (17). The
equation for the spin 1/2 Dirac field as a perturbation on the
Schwarzschild background was derived in Ref. [40] by using
the Newman–Penrose formalism. The analysis was general-
ized for arbitrary half-integer spin in Ref. [41]. The resulting
equation of motion for the perturbations may be written in
the Schrödinger-like form Eq. (3), where the potential for the
massless spin 1/2 field is given by

V1/2 = (1 + �)
√

f (r)

r2

[
(1 + �)

√
f (r) + 3M

r
− 1

]
. (18)

It is worth mentioning that we have found a typo in the defi-
nition of � in [40], which must be � = r(r − 2M).

We then implement the same transformations done in the
integer spin cases. First, we change the radial coordinate to
u = 2M/r , which is defined in the interval u ∈ [0, 1]. Then
by setting 2M = 1 the effective potential (18) becomes

V1/2 = (1 + �) u2
√

f (u)

[
(1 + �)

√
f (u) + 3u

2
− 1

]
. (19)

It is interesting pointing out that the asymptotic solutions
do not depend on the spin of the field, for that reason the
asymptotic solutions for this problem are the same as those
obtained in Eqs. (14) and (15). Then, similar transformations
as those given in Eqs. (12) and (16) can be applied also in
the present spin 1/2 case. Thus, the differential equation to
be solved is given by

R(u)φ1/2(u) + Q(u)φ′
1/2(u) + P(u) φ′′

1/2(u) = 0, (20)

in which the coefficients R(u), Q(u), and P(u) are given by

R(u) = u3 + u(1 + �)
(

1 + � − √
1 − u

)

+u2

2

[
(1 + �)

(
3
√

1 − u − 4
)

− 2�2
]

−4 i (1 − u)λ − 16u(1 − u2)λ2, (21)

Q(u) = u3(1 − u) + 4 i u λ
(

1 − u − 2u2 + 2u3
)

, (22)

P(u) = −u3(1 − u)2, (23)

respectively, and with λ standing for λ = Mω = ω/2.
As can be seen, the differential equation (20) is impreg-

nated by square roots that may difficult the convergence of the
numerical methods. To avoid the square roots, we implement
an additional change of variable χ2 = 1 − u. Nevertheless,
the new coordinate also belongs to the interval χ ∈ [0, 1].
The differential equation (20) becomes

R(χ)φ1/2(χ) + Q(χ)φ′
1/2(χ) + P(χ) φ′′

1/2(χ) = 0, (24)
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in which the coefficients R(χ), Q(χ), and P(χ) are given
by
R(χ) = 2(1 − χ2) [(� + 1)

×
(

1 + 2� χ − 3χ2
)

+ 2� χ + 2χ3
]

−8 i χ λ − 32 χ
(

2 − 3χ2 + χ4
)

λ2, (25)

Q(χ) = (χ2 − 1
) [(

1 − χ2)2 − 8 i
(
1 − 4χ2 + 2χ4)λ

]
,

(26)

P(χ) = −χ
(
1 − χ2)3

. (27)

In Sect. 5.4 we solve Eq. (24) by using the pseudo-spectral
and AIM methods and compare our results against the results
of Refs. [40,41].

2.3 Spin 3/2 perturbations

As well as for the spin 1/2 perturbation field, the perturba-
tion equation for spin the 3/2 field is quite different from
the integer spin fields. To get the relevant equation we use
the result obtained in Ref. [41], specifically Eq. (37) of that
reference, and by setting s = 3/2 on such an equation we get
the effective potential of the Schrödinger-like equation (3),

V3/2 = (1 + �)(2 + �)(3 + �)
√

f (r)

[2M + r(1 + �)(3 + �)]2

(
2M2

r2 + (1 + �)(3 + �)

×
[
(2 + �)

√
f (r) + 3M

r
− 1

])
.

(28)
As before, we change the radial coordinate to u = 1/r and
consider 2M = 1. Thus, the potential becomes

V3/2 = u2(1 + �)(2 + �)(3 + �)
√

1 − u

2
[
u + (1 + �)(3 + �)

]2

(
u2

2
+ (1 + �)(3 + �)

×
[
(2 + �)

√
1 − u + 3u

2
− 1

])
.

(29)
Following the procedure implemented from Eqs. (12)–(15),
where we go from the Schrödinger-like equation to a dif-
ferential equation suited to the numerical methods we are
working with, the differential equation (20) becomes

R(χ)φ3/2(χ) + Q(χ)φ′
3/2(χ) + P(χ) φ′′

3/2(χ) = 0, (30)

where the coefficients R(χ), Q(χ), and P(χ) are given by

R(χ) = 2
(
1 − χ2)[6 + 11� + 6�2 + �3 + 2χ5

+4χ4(2 + �) + 2χ3 (3 + 4� + �2)

−χ2 (2 − 7� − 6�2 − �3) + 2χ(2 + �)2 (2 + 4� + �2) ]

−16χ(2 + χ + �)2λ
[
i + 4

(
2 − χ2) (1 − χ2) λ

]
,

Q(χ) = − (
1 − χ2) (2 + χ + �)2

×
[(

1 − χ2)2 − 8 i (1 − 4χ2 + 2χ4)λ
]
,

P(χ) = −χ
(
1 − χ2)3

(2 + χ + �)2 .

where we have used the new coordinate χ2 = 1 − u to avoid
square roots. Again, we get a quadratic eigenvalue problem,
and the function φ3/2(χ) is regular in the interval χ ∈ [0, 1].
In Sect. 5.5 we solve Eq. (30) by using the pseudo-spectral
and AIM methods and compare our results against the results
of Refs. [41,49].

2.4 Spin 5/2 perturbations

It is believed that the investigation of higher spin fields may
shed some light on the understanding of fundamental physics,
like on new unifying theories for the fundamental interac-
tions, or new phenomenology beyond the standard model.
The main motivation for investigating the spin 5/2 field per-
turbation is the Rarita–Schwinger theory. Inspired by such
a theory, the authors of Ref. [50] computed some physical
observable for the spin 5

2 -field. In this section, we use the
generic equation obtained in Ref. [41], specifically Eq. (37),
to determine the quasinormal frequencies of this perturbation
field on the Schwarzschild black hole. The differential equa-
tion for the perturbations becomes so complicated, for that
reason, we write it in Appendix A. The resulting equation
is solved numerically by using the pseudo-spectral and AIM
methods. The numerical results are displayed in Sect. 5.6.

3 The pseudo-spectral method

It is well known that the Fourier method is appropriate to
solve periodic problems. Nevertheless, it cannot be applied
for nonperiodic problems due to the Gibbs phenomenon aris-
ing at the boundaries [51]. An alternative method to solve
nonperiodic problems is the pseudo-spectral method, which
recently has been applied to solve differential equations
numerically in many problems. The fact that the coordinate
domain is not periodic, u ∈ [0, 1], leads us to use this method
in the present problem. Note that the quadratic eigenvalue
problem can be written in the form (using the notation of
Ref. [46]),

c0(u, λ, λ2)φ + c1(u, λ, λ2)φ′ + c2(u, λ, λ2)φ′′ = 0. (31)

where φ is a function of the coordinate u alone and primes
indicate derivatives with respect to u. The coefficients of
this equation can be written as c j (u, λ, λ2) = c j,0(u) +
λ c j,1(u)+λ2 c j,2(u), where c j,0(u), c j,1(u), and c j,2(u) are
polynomials of u only.

The idea behind the pseudo-spectral method is to rewrite
the regular function φ(u) in a base composed of cardinal
functions, C j (u), in the form
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φs(u) =
N∑
j=0

g(u j )C j (u), (32)

where g(u) is a function of u. The next step is to evaluate the
differential equation (including these functions) on a grid or
collocation points. The best choice is the Gauss–Lobato grid
given by

ui = 1

2

(
1 ± cos

[
i

N
π

])
, i = 0, 1, 2, . . . , N (33)

Note that (33) maps the interval [−1, 1] into [0, 1].
Evaluating on the grid, the polynomials of (31) become

elements of a matrix c j (ui , λ, λ2) = c j,0(ui ) + λ c j,1(ui ) +
λ2 c j,2(ui ). Then, the matrix representation of the quadratic
eigenvalue problem (31) can be written as
(
M̃0 + M̃1λ + M̃2λ

2
)
g = 0, (34)

where

(M̃0) j i = c0,0(ui )Dji + c1,0(ui )D
(1)
j i + c2,0(ui )D

(2)
j i ,

(M̃1) j i = c0,1(ui )Dji + c1,1(ui )D
(1)
j i + c2,1(ui )D

(2)
j i ,

(M̃2) j i = c0,2(ui )Dji + c1,2(ui )D
(1)
j i + c2,2(ui )D

(2)
j i ,

(35)

here Dji , D
(1)
j i , and D(2)

j i represent the cardinal function and
its derivatives. Defining g̃ = λg, the last equation may be
written in the form

M̃0 g +
(
M̃1 + M̃2λ

)
g̃ = 0, (36)

This is the first step to linearize the quadratic eigenvalue prob-
lem. For a generalization of this procedure see for instance
Ref. [52]. Therefore, the matrix representation of the eigen-
value problem may be written as

(M0 + M1 λ) · �g = 0, (37)

where we have defined the new matrices

M0 =
(
M̃0 M̃1

0 1

)
, M1 =

(
0 M̃2

−1 0

)
, �g =

(
g
g̃

)
.

(38)

Notice that M0 and M1 are (N + 1) × (N + 1) matrices and
�g is a (N + 1)−dimensional vector with components g j =
g(u j ), j = 0, 1, . . . , N . Finally, the QN frequencies are
determined by solving the linear system (37). The procedure
is described here for a quadratic eigenvalue problem, but it
can be easily extended to arbitrary order in the eigenvalues
whenever the power of the frequency is an integer. However,
in cases where the value of the effective potential changes at
the spatial infinity, as in the case of a massive scalar field, see
for instance [53], the implementation of the pseudo-spectral
method is not obvious because the power of the frequency
turns out semi-integer such that it is not possible to write the
eigenvalue problem in the form of Eq. (34).

Having described the procedure to calculate the eigenval-
ues, we need to specify the cardinal functions. We realized
that these functions must depend on one or more Chebyshev
polynomials of the first kind Tk(u). In the following, we con-
sider two forms for the cardinal functions. The first model
takes into consideration one Chebyshev polynomial in the
form,

C j (u) = Tj (u). (39)

We call this particular choice pseudo-spectral I. The second
model considers two Chebyshev polynomials [46]

C j (u) = 2

Np j

N∑
m=0

1

pm
Tm(u j )Tm(u),

⎧⎪⎨
⎪⎩

p0 = 2,

pN = 2,

p j = 1.

(40)

We call this choice pseudo-spectral II. It is worth mentioning
that the pseudo-spectral method inevitably leads to the emer-
gence of spurious solutions that do not have any physical
meaning. To eliminate the spurious solutions we use the fact
that the relevant QN frequencies do not depend on the number
of Chebyshev polynomials being considered. An additional
check of consistency is to plot the eigen-functions φs(u),
which must satisfy the boundary conditions, i.e., φs(u) must
be regular in the interval u ∈ [0, 1]. Note that the problem
of calculating QN frequencies does not depend on any ini-
tial guess, such as the shooting method, for example. We
get directly the frequencies by using, for instance, Mathe-
matica’s built-in function Eigenvalues, or Eigensystem. One
may consider this fact as an advantage in relation to other
methods available in the literature.

Finally we mention that the Chebyshev polynomials of
the first kind Tk(x) are defined in the interval x ∈ [−1, 1],
and have special properties [51], but the collocation points
(33) map this interval into the interval of interest, i.e., u ∈
[0, 1]. In turn, the error associated with the pseudo-spectral
method is of the order O

(
1/NN

)
for sufficiently smooth

regular functions [54]. For further details on this subject, see
for instance Ref. [46].

4 The asymptotic iteration method

The asymptotic iteration method (AIM) is a numerical
method recently proposed in Ref. [47] for solving homo-
geneous second-order ordinary differential equations of the
form,

y′′(x) − λ0(x)y
′(x) − s0(x)y(x) = 0, (41)

where primes denote derivatives with respect to the variable
x (that is defined over some interval that is not necessarily
bounded), λ0(x) �= 0 and s0(x) are C∞. These equations can
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be found in many different areas of physics, such as the time-
independent Schrödinger equation in Quantum Mechanics,
or General Relativity, such as the differential equations for
black hole perturbations Eq. (3) (where we can restore the
first derivative if the standard radial coordinate is used instead
of tortoise coordinates). Here we present a brief review con-
cerning the AIM and discuss some implementation details of
such a method. The AIM is based upon the following theo-
rem:

Theorem 1 Let λ0 and s0 be functions of the variable x ∈
(a, b) that are C∞ on the same interval. The differential
equation (41) has a general solution of the form

y(x) = exp

(
−
∫

αdt

)

×
[
C2 + C1

∫ x

exp

(∫ t

(λ0(τ ) + 2α(τ))dτ

)
dt

]

(42)

if for some n > 0 the condition

α ≡ sn
λn

= sn−1

λn−1
(43)

or equivalently

δ ≡ snλn−1 − λnsn−1 = 0 (44)

is satisfied, where

λk(x) ≡ λ′
k−1(x) + sk−1(x) + λ0(x)λk−1(x) (45)

sk(x) ≡ s′
k−1(x) + s0λk−1(x) (46)

with k being a integer that ranges from 1 to n.

From now on, we shall refer to the condition expressed
by Eq. (44) as the AIM quantization condition. Provided that
Theo. 1 is satisfied we can find both the eigenvalues and
eigenvectors of the second order ODE using, respectively,
Eqs. (44) and (42). More specifically, the quasinormal modes
of one perturbed black hole will be the complex frequency
values ω that satisfy Eq. (44) for any value of x .

Despite being quite general, the method presents a com-
putational difficulty hidden in Eqs. (45) and (46): Not only
the definition of the n-th coefficients are coupled and recur-
sive they also involve the derivatives of previous entries. In
practice this means that to compute the quantization condi-
tion, Eq. (44), using n iterations we end up computing the
n-th derivatives of λ0 and s0 multiple times. Depending on
the size of the original functions, the size and complexity of
each coefficient can quickly spiral out of control. To address
these issues, Cho et. al. have proposed in Ref. [43] to instead
of computing these coefficients directly, use a Taylor expan-
sion of both λ and s around a point ξ where the AIM is

to be performed (we remind the reader that the results are
independent of the choice of ξ ), that is,

λn(ξ) =
∞∑
i=0

cin(x − ξ)i , (47)

sn(ξ) =
∞∑
i=0

din(x − ξ)i , (48)

where cin and din are the Taylor coefficients of the expansions
of λn and sn around ξ , respectively. By plugging Eqs. (47)
and (48) into Eqs. (45) and (46) one gets

cin = (i + 1)ci+1
n−1 + din−1 +

i∑
k=0

ck0c
i−k
n−1, (49)

din = (i + 1)di+1
n−1 +

i∑
k=0

dk0c
i−k
n−1. (50)

Finally, using Eqs. (49) and (50) the quantization condition,
Eq. (44), becomes

δ ≡ d0
n c

0
n−1 − d0

n−1c
0
n = 0. (51)

In order to better visualize and understand the improved
algorithm, it is useful to arrange the cin (or din) coefficients
as elements ci,n (or di,n) of a matrix C (or D), where the
index i indicates the matrix row and the index n represents
the matrix column, i.e.,

C =

⎛
⎜⎜⎜⎝

c0,0 c0,1 · · · c0,n−1 c0,n

c1,0 c1,1 · · · c1,n−1 c1,n
...

...
. . .

...
...

ci,0 ci,1 · · · ci,n−1 ci,n

⎞
⎟⎟⎟⎠ .

Notice that, when using Eq. (51), only the last and the before
last top elements of the matrix (from left to right) are actually
required, i.e., only the elements c0,n−1 and c0,n are necessary.
Note also that, by using Eqs. (49) and (50), to compute an
element in row i and column n, one needs to have previously
computed the column n−1 up to at least row i+1. In practice
this means that the matrix C “grows diagonally” and in order
to compute n columns, one needs at least i = n rows. This
formulation motivates us to view Eqs. (49) and (50) not as
recursion relations, but as recipes for iteration, i.e., given the
first column of the matrix C , one can use Eqs. (49) and (50)
rewritten as

cin+1 = (i + 1)ci+1
n + din +

i∑
k=0

ck0c
i−k
n , (52)

din+1 = (i + 1)di+1
n +

i∑
k=0

dk0c
i−k
n , (53)

to compute the next column of the matrix.

123



897 Page 8 of 16 Eur. Phys. J. C (2022) 82 :897

With this insight, we can now devise an algorithm that
performs n iterations of the AIM. Remember that if n itera-
tions are to be performed, one needs at least i = n rows of
coefficients and thus we shall truncate the Taylor expansions
at i = n. The algorithm steps are the following:

1. Construct two arrays of size n where the i-th element is
ci0 (or di0) where i ranges from zero to n. We shall call
these icda (initial c data array) and idda (initial d data
array).

2. Construct two arrays of size n to contain the current col-
umn of c (or d) indexes. We shall call these ccda (current
c data array) and cdda (current d data array)

3. Construct two arrays of size n to contain the previous
column of c (or d) indexes. We shall call these pcda
(previous c data array) and pdda (previous d data array).

4. Initialize ccdawith data from icda and cddawith data
from idda.

5. Perform n AIM steps using the evolution Eqs. (52) and
(53). That is, repeat the following n times:

(a) Copy the content from ccda into pcda
(b) Copy the content from cdda into pdda
(c) Rewrite each element of ccda and cdda using Eqs.

(52) and (53), respectively.

6. After n iterations, the current and previous data array con-
tain the sought coefficients. Apply the quantization con-
dition, Eq. (51), using the first indexes of each array (as
they represent the i = 0 coefficients). Explicitly, perform
cdda[1]*pcda[1] - pdda[1]*ccda[1]1.

7. Finding the roots of the resulting expression from the last
step yields the eigenvalues of the ODE (in the context of
this work, the quasinormal modes).

This implementation is realized in the Julia [55] package
called QuasinormalModes.jl [56]. The implementa-
tion makes use of an additional buffer array for each coeffi-
cient family in order to allow for thread-based parallelization
to take place during the main AIM loop. All AIM numerical
results from this work were obtained with the aforementioned
package.

5 Numerical results for the QN frequencies

5.1 Spin 0 QN frequencies

Our numerical results for the quasinormal frequencies of the
spin 0 perturbation field are displayed in Table 1. The first two

1 Given that Julia uses 1 based array indexes, we are also using 1 based
arrays for the algorithmic description. This means cdda[1] refers to
the first element of the cdda array and so on so forth.

columns show the data from the pseudo-spectral method with
different numbers of interpolating polynomials, the third col-
umn shows the results from the AIM method, while the fourth
and fifth columns are reproduction of the results from Refs.
[41,42], respectively. Notice that in Refs. [41,42] the WKB
method was used to calculate the quasinormal frequencies.
As can be seen, the pseudo-spectral method I (calculated with
60 polynomials) and pseudo-spectral method II (calculated
with 40 polynomials) provide results, which are practically
the same as those provided by the AIM, within six decimal
places of precision. The numerical methods employed here
provide more accurate results than those obtained by using
the WKB approximation and allows us to calculate addi-
tional frequencies for spin 0 fields not reported previously in
the literature.

5.2 Spin 1 QN frequencies

Our numerical results for the quasinormal frequencies for
spin 1 fields are displayed in Table 2 compared against
the results of Refs. [41,42], where the WKB method was
employed. The first two columns show the data from the
pseudo-spectral method with different numbers of interpo-
lating polynomials, the third column shows the results from
the AIM method, while the fourth and fifth columns are repro-
ductions of the results from Refs. [41,42], respectively. As
can be seen from the table, the pseudo-spectral method I (cal-
culated with 60 polynomials) and pseudo-spectral method
II (calculated with 40 polynomials) provide results that are
practically identical to those provided by the AIM. The
numerical methods we are working with provide more accu-
rate results than those obtained by using the WKB approx-
imation and allow us to present additional frequencies for
spin 1 fields not reported previously in the literature.

5.3 Spin 2 QN frequencies

Our numerical results for the quasinormal frequencies of the
spin 2 perturbation field are displayed in Table 3 compared
against the results of Refs. [41,42], where the WKB method
was employed. The first two columns show the data from the
pseudo-spectral method with different numbers of interpolat-
ing polynomials, the third column shows the results from the
AIM method, while the fourth and fifth columns are repro-
ductions of the results from Refs. [41,42], respectively. As
seen from the table, the pseudo-spectral method I and pseudo-
spectral method II provide results that are practically equal
to those provided by the AIM. The numerical results we
are working with provide more accurate results than those
obtained by employing the WKB approximation. It is worth
mentioning that, in this case, we obtain additional solutions
to the eigenvalue problem which does not represent gravi-
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Table 1 Quasinormal frequencies of the spin 0 perturbations normalized by the mass (Mω) compared against the results of Refs. [41,42]

l n Pseudo-spectralI (60 polynomials) Pseudo-spectralII (40 polynomials) AIM100 iterations Ref. [41] Ref. [42]

0 0 ±0.110455 − 0.104896i ±0.110455 − 0.104896i ±0.110455 − 0.104896i 0.1046 − 0.1152i ±0.1105 − 0.1008i

1 0 ±0.292936 − 0.097660i ±0.292936 − 0.097660i ±0.292936 − 0.097660i 0.2911 − 0.0980i ±0.2929 − 0.0978i

1 ±0.264449 − 0.306257i ±0.264449 − 0.306257i ±0.264449 − 0.306257i – ±0.2645 − 0.3065i

2 0 ±0.483644 − 0.096759i ±0.483644 − 0.096759i ±0.483644 − 0.096759i 0.4832 − 0.0968i ±0.4836 − 0.0968i

1 ±0.463851 − 0.295604i ±0.463851 − 0.295604i ±0.463851 − 0.295604i 0.4632 − 0.2958i ±0.4638 − 0.2956i

2 ±0.430544 − 0.508558i ±0.430544 − 0.508558i ±0.430544 − 0.508558i – ±0.4304 − 0.5087i

3 0 ±0.675366 − 0.096500i ±0.675366 − 0.096500i ±0.675366 − 0.096500i 0.6752 − 0.0965i –

1 ±0.660671 − 0.292285i ±0.660671 − 0.292285i ±0.660671 − 0.292285i 0.6604 − 0.2923i –

2 ±0.633626 − 0.496008i ±0.633626 − 0.496008i ±0.633626 − 0.496008i 0.6348 − 0.4941i –

3 ±0.598773 − 0.711221i ±0.598773 − 0.711221i ±0.598773 − 0.711221i – –

4 0 ±0.867416 − 0.096392i ±0.867416 − 0.096392i ±0.867416 − 0.096392i 0.8673 − 0.0964i –

1 ±0.855808 − 0.290876i ±0.855808 − 0.290876i ±0.855808 − 0.290876i 0.8557 − 0.2909i –

2 ±0.833692 − 0.490325i ±0.833692 − 0.490325i ±0.833692 − 0.490325i 0.8345 − 0.4895i –

3 ±0.803288 − 0.697482i ±0.803288 − 0.697482i ±0.803288 − 0.697482i 0.8064 − 0.6926i –

4 ±0.767733 − 0.914019i ±0.767733 − 0.914019i ±0.767733 − 0.914019i – –

Table 2 Quasinormal frequencies of the spin 1 perturbations normalized by the mass (Mω) compared against the results of Refs. [41,42]

l n Pseudo-spectralI (60 polynomials) Pseudo-spectralII (40 polynomials) AIM100 iterations Ref. [41] Ref. [42]

1 0 ±0.248263 − 0.092488i ±0.248263 − 0.092488i ±0.248263 − 0.092488i 0.2459 − 0.0931i ±0.2482 − 0.0926i

1 ±0.214515 − 0.293668i ±0.214515 − 0.293667i ±0.214515 − 0.293668i – ±0.2143 − 0.2941i

2 0 ±0.457596 − 0.095004i ±0.457595 − 0.095004i ±0.457596 − 0.095004i 0.4571 − 0.0951i ±0.4576 − 0.0950i

1 ±0.436542 − 0.290710i ±0.436542 − 0.290710i ±0.436542 − 0.290710i 0.4358 − 0.2910i ±0.4365 − 0.2907i

2 ±0.401187 − 0.501587i ±0.401187 − 0.501587i ±0.401187 − 0.501587i – ±0.4009 − 0.5017i

3 0 ±0.656899 − 0.095616i ±0.656899 − 0.095616i ±0.656899 − 0.095616i 0.6567 − 0.0956i ±0.6569 − 0.0956i

1 ±0.641737 − 0.289728i ±0.641737 − 0.289728i ±0.641737 − 0.289728i 0.6415 − 0.2898i ±0.6417 − 0.2897i

2 ±0.613832 − 0.492066i ±0.613832 − 0.492066i ±0.613832 − 0.492066i 0.6151 − 0.4901i ±0.6138 − 0.4921i

3 ±0.577919 − 0.706331i ±0.577919 − 0.706331i ±0.577919 − 0.706330i – ±0.5775 − 0.7065i

4 0 ±0.853095 − 0.095860i ±0.853095 − 0.095860i ±0.853095 − 0.095810i 0.8530 − 0.0959i –

1 ±0.841267 − 0.289315i ±0.841267 − 0.289315i ±0.841267 − 0.289315i 0.8411 − 0.2893i –

2 ±0.818728 − 0.487838i ±0.818728 − 0.487838i ±0.818728 − 0.487838i 0.8196 − 0.4870i –

3 ±0.787748 − 0.694242i ±0.787748 − 0.694242i ±0.787748 − 0.694242i 0.7909 − 0.6892i –

4 ±0.751549 − 0.910242i ±0.751549 − 0.910242i ±0.751549 − 0.910242i – –

tational waves, see the discussion in Appendix B for more
details on this point.

5.4 Spin 1/2 QN frequencies

Our numerical results for the quasinormal frequencies for
spin 1/2 fields are displayed in Table 4 compared against
results available in the literature. The first two columns show
the data from the pseudo-spectral method with different num-
bers of interpolating polynomials, the third column shows
the results from the AIM method, while the fourth and fifth
columns are reproductions of the results from Refs. [40,41],
respectively. As can be seen, the results obtained using the

pseudo-spectral I and II are in perfect agreement with the
results obtained using the AIM within the decimal places
considered. Note that the numerical methods we are working
with provide more accurate results than the results reported in
Refs. [40,41], where the authors employed the WKB approx-
imation. Note that we also show additional frequencies not
reported previously in the literature, for example for � = 1
and n = 1.

It is worth pointing out that we also found purely imag-
inary frequencies, that arise when investigating the quasi-
normal modes in the limit of large �. Our numerical results
are displayed in Table 5, where we show the first five purely
imaginary frequencies. As it is seen from the table, the agree-
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Table 3 Quasinormal frequencies of spin 2 perturbations normalized by the mass (Mω) compared against the results of Refs. [41,42]

l n Pseudo-spectralI (60 polynomials) Pseudo-spectralII (40 polynomials) AIM100 iterations Ref. [41] Ref. [42]

2 0 ±0.373672 − 0.088962i ±0.373672 − 0.088962i ±0.373672 − 0.088962i 0.3730 − 0.0891i ±0.3736 − 0.0890i

1 ±0.346711 − 0.273915i ±0.346711 − 0.273915i ±0.346711 − 0.273915i 0.3452 − 0.2746i ±0.3463 − 0.2735i

2 ±0.301053 − 0.478277i ±0.301053 − 0.478277i ±0.301053 − 0.478277i – ±0.2985 − 0.4776i

3 0 ±0.599443 − 0.092703i ±0.599443 − 0.092703i ±0.599443 − 0.092703i 0.5993 − 0.0927i ±0.5994 − 0.0927i

1 ±0.582644 − 0.281298i ±0.582644 − 0.281298i ±0.582644 − 0.281298i 0.5824 − 0.2814i ±0.5826 − 0.2813i

2 ±0.551685 − 0.479093i ±0.551685 − 0.479093i ±0.551685 − 0.479027i 0.5532 − 0.4767i ±0.5516 − 0.4790i

3 ±0.511962 − 0.690337i ±0.511962 − 0.690337i ±0.511962 − 0.690337i – ±0.5111 − 0.6905i

4 0 ±0.809178 − 0.094164i ±0.809178 − 0.094164i ±0.809178 − 0.094164i 0.8091 − 0.0942i ±0.8092 − 0.0942i

1 ±0.796632 − 0.284334i ±0.796632 − 0.284334i ±0.796632 − 0.284334i 0.7965 − 0.2844i ±0.7966 − 0.2843i

2 ±0.772710 − 0.479908i ±0.772710 − 0.479908i ±0.772710 − 0.479908i 0.7736 − 0.4790i ±0.7727 − 0.4799i

3 ±0.739837 − 0.683924i ±0.739837 − 0.683924i ±0.739837 − 0.683924i 0.7433 − 0.6783i ±0.7397 − 0.6839i

4 ±0.701516 − 0.898239i ±0.701516 − 0.898239i ±0.701516 − 0.898239i – ±0.7006 − 0.8985i

Table 4 Quasinormal frequencies of the spin 1/2 perturbations normalized by the mass (Mω) compared against the results of Refs. [40,41]

l n Pseudo-spectralI (60 polynomials) Pseudo-spectralII (40 polynomials) AIM100 iterations Ref. [41] Ref. [40]

0 0 ±0.182963 − 0.096982i ±0.182963 − 0.096982i ±0.182963 − 0.096824i – –

1 0 ±0.380037 − 0.096405i ±0.380037 − 0.096405i ±0.380037 − 0.096405i 0.3786 − 0.0965i 0.379 − 0.097i

1 ±0.355833 − 0.297497i ±0.355833 − 0.297497i ±0.355833 − 0.297497i – –

2 0 ±0.574094 − 0.096305i ±0.574094 − 0.096305i ±0.574094 − 0.096305i 0.5737 − 0.0963i 0.574 − 0.096i

1 ±0.557015 − 0.292715i ±0.557015 − 0.292715i ±0.557015 − 0.292715i 0.5562 − 0.2930i 0.556 − 0.293i

2 ±0.526607 − 0.499695i ±0.526607 − 0.499695i ±0.526607 − 0.499695i – –

3 0 ±0.767355 − 0.096270i ±0.767355 − 0.096270i ±0.767355 − 0.096270i 0.7672 − 0.0963i 0.767 − 0.096i

1 ±0.754300 − 0.290968i ±0.754300 − 0.290968i ±0.754300 − 0.290968i 0.7540 − 0.2910i 0.754 − 0.291i

2 ±0.729770 − 0.491910i ±0.729770 − 0.491910i ±0.729770 − 0.491910i 0.7304 − 0.4909i 0.730 − 0.491i

3 ±0.696913 − 0.702293i ±0.696913 − 0.702293i ±0.696913 − 0.702293i – –

4 0 ±0.960293 − 0.096254i ±0.960293 − 0.096254i ±0.960293 − 0.096254i 0.9602 − 0.0963i 0.960 − 0.096i

1 ±0.949759 − 0.290148i ±0.949759 − 0.290148i ±0.949759 − 0.290148i 0.9496 − 0.2902i 0.950 − 0.290i

2 ±0.929494 − 0.488116i ±0.929494 − 0.488116i ±0.929494 − 0.488116i 0.9300 − 0.4876i 0.930 − 0.488i

3 ±0.901129 − 0.692520i ±0.901129 − 0.692520i ±0.901129 − 0.692520i 0.9036 − 0.6892i 0.904 − 0.689i

4 ±0.867043 − 0.905047i ±0.867008 − 0.905066i ±0.867043 − 0.905047i – –

Table 5 Purely imaginary frequencies for spin 1/2 perturbations nor-
malized by the mass (Mω). The numerical values of such frequencies
are exactly the same as for the purely imaginary frequencies arising in
the QNM of spin 3/2 perturbations

Pseudo-spectralI (60
polynomials)

Pseudo-spectralII (40
polynomials)

AIM100 iterations

− 0.250000i − 0.250000i − 0.250000i

− 0.500000i − 0.500000i − 0.500000i

− 0.750000i − 0.750000i − 0.750000i

−1.000000i −1.000000i −1.000031i

−1.2499998i −1.250000i −1.246550i

ment between the numerical methods is perfect for low over-
tones but it gets worse for higher overtones. It is worth men-

tioning that these results are in perfect agreement with the
analytic solution, Mω = −in/4, n → ∞, obtained in
Refs. [57,58], see also references therein.

5.5 Spin 3/2 QN frequencies

Our numerical results for the quasinormal frequencies for
spin 3/2 field are displayed in Table 6 compared against
results available in the literature. The first two columns show
the data from the pseudo-spectral method with different num-
bers of interpolating polynomials, the third column shows
the results form the AIM method, while the fourth and fifth
columns are reproductions of the results from Refs. [41,49],
respectively. As can be seen, the results obtained using the
pseudo-spectral I and II are in perfect agreement with the
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Table 6 Quasinormal frequencies of spin 3/2 perturbations normalized by the mass (Mω) compared against the results of Refs. [41,49]

l n Pseudo-spectralI (60 polynomials) Pseudo-spectralII (40 polynomials) AIM100 iterations Ref. [41] Ref. [49]

0 0 ±0.311292 − 0.090087i ±0.311292 − 0.090087i ±0.311292 − 0.090087i – 0.3112 − 0.0902i

1 0 ±0.530048 − 0.093751i ±0.530048 − 0.093751i ±0.530048 − 0.093751i – 0.5300 − 0.0937i

1 ±0.511392 − 0.285423i ±0.511392 − 0.285423i ±0.511392 − 0.285423i – 0.5113 − 0.2854i

2 0 ±0.734750 − 0.094878i ±0.734750 − 0.094878i ±0.734750 − 0.094878i ±0.7346 − 0.0949i 0.7347 − 0.0948i

1 ±0.721047 − 0.286906i ±0.721047 − 0.286906i ±0.721047 − 0.286906i ±0.7206 − 0.2870i 0.7210 − 0.2869i

2 ±0.695287 − 0.485524i ±0.695287 − 0.485524i ±0.695287 − 0.485524i – 0.6952 − 0.4855i

3 0 ±0.934364 − 0.095376i ±0.934364 − 0.095376i ±0.934364 − 0.095376i ±0.9343 − 0.0954i 0.9343 − 0.0953i

1 ±0.923502 − 0.287560i ±0.923502 − 0.287560i ±0.923502 − 0.287560i ±0.9233 − 0.2876i 0.9235 − 0.2875i

2 ±0.902599 − 0.483957i ±0.902599 − 0.483957i ±0.902599 − 0.483957i ±0.9031 − 0.4835i 0.9025 − 0.4839i

3 ±0.873342 − 0.687024i ±0.873343 − 0.687024i ±0.873342 − 0.687024i – 0.8732 − 0.6870i

4 0 ±1.131530 − 0.095640i ±1.131530 − 0.095640i ±1.131530 − 0.095640i ±1.1315 − 0.0956i 1.1315 − 0.0956i

1 ±1.122523 − 0.287908i ±1.122523 − 0.287908i ±1.122523 − 0.287908i ±1.1224 − 0.2879i 1.1225 − 0.2879i

2 ±1.104976 − 0.483096i ±1.104976 − 0.483096i ±1.104976 − 0.483096i ±1.1053 − 0.4828i 1.1049 − 0.4830i

3 ±1.079852 − 0.683000i ±1.079852 − 0.683000i ±1.079852 − 0.683000i ±1.0817 − 0.6812i 1.0798 − 0.6829i

4 ±1.048599 − 0.889113i ±1.048596 − 0.889115i ±1.048599 − 0.889113i – 1.0484 − 0.8890i

Table 7 Quasinormal frequencies of spin 5/2 perturbations normalized by the mass (Mω)

l n Pseudo-spectralI (60 polynomials) Pseudo-spectralII (40 polynomials) AIM100 iterations

0 0 ±0.462727 − 0.092578i ±0.462727 − 0.092578i 0.462727 − 0.092577i

1 0 ±0.687103 − 0.094566i ±0.687103 − 0.094566i 0.687103 − 0.094566i

1 ±0.670542 − 0.285767i ±0.670542 − 0.285767i 0.670542 − 0.285767i

2 0 ±0.897345 − 0.095309i ±0.897345 − 0.095309i 0.897345 − 0.095309i

1 ±0.884980 − 0.287266i ±0.884980 − 0.287266i 0.884980 − 0.287266i

2 ±0.861109 − 0.483113i ±0.861109 − 0.483113i 0.861109 − 0.483113i

3 0 ±1.101190 − 0.095648i ±1.101190 − 0.095648i 1.101190 − 0.095648i

1 ±1.091300 − 0.287886i ±1.091300 − 0.287886i 1.091300 − 0.287886i

2 ±1.071999 − 0.482895i ±1.071999 − 0.482895i 1.071999 − 0.482895i

3 ±1.044272 − 0.682307i ±1.044272 − 0.682307i 1.044272 − 0.682307i

4 0 ±1.301587 − 0.095829i ±1.301587 − 0.095829i 1.301587 − 0.095829i

1 ±1.293328 − 0.288184i ±1.293328 − 0.288184i 1.293328 − 0.288184i

2 ±1.277107 − 0.482604i ±1.277107 − 0.482604i 1.277107 − 0.482604i

3 ±1.253526 − 0.680366i ±1.253526 − 0.680366i 1.253526 − 0.680366i

4 ±1.223513 − 0.882554i ±1.223512 − 0.882553i 1.223513 − 0.882554i

results obtained using the AIM. We also realized that these
results are in very good agreement with the results reported
in Ref. [49], where the authors also employed the AIM, and
with the results from Ref. [41], where the authors employed
the WKB approximation.

As in the spin 1/2 field perturbations, we also find purely
imaginary frequencies for the spin 3/2 field. The numeri-
cal results are displayed in Table 5 for the three routines we
are working with. Such frequencies arise when investigating
the quasinormal modes in the limit of large �. Notice that
these results are also in agreement with the analytic solu-
tions obtained in Refs. [57,58]. It is worth pointing out that

the numerical values of these purely imaginary frequencies
are the same for spin 1/2 and 3/2 fields. We do not have
an explanation for this fact, maybe it is just a coincidence.
Notice also that these frequencies can be written as fractions,
multiples of 1/4, i.e., 1/4, 2/4, 3/4, 4/4, ∼ 5/4, . . ..

5.6 Spin 5/2 QN frequencies

Our numerical results for the quasinormal frequencies for
spin 5/2 fields are displayed in Table 7. As can be seen, the
results obtained by using the pseudo-spectral I and II are in
perfect agreement with the results obtained using the AIM

123
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Table 8 Purely imaginary frequencies of spin 5/2 perturbations nor-
malized by the mass (Mω)

Pseudo-spectralI (60
polynomials)

Pseudo-spectralII (40
polynomials)

AIM100 iterations

− 0.125000i − 0.125000i − 0.125000i

− 0.375602i − 0.375602i − 0.378659i

− 0.626877i − 0.626877i − 0.623931i

− 0.878946i − 0.878948i − 0.907374i

within the decimal places considered. It is worth mentioning
that we present here the quasinormal frequencies for spin 5/2
perturbation fields for the very first time.

In turn, we also found purely imaginary frequencies. Our
numerical results are displayed in Table 8. It turns out that
these results satisfy the sequence 1/8, ∼ 3/8, ∼ 5/8, ∼ 7/8,
. . ., in general,

Mω = −i
(2n + 1)

8
, n = 0, 1, 2, 3, . . . . (54)

As it happens in the cases of spin 1/2 and 3/2 perturbations,
these frequencies arise when investigating the frequencies in
the limit of large �. As can be seen, the discrepancy between
both methods increases as the imaginary frequency gets neg-
ative.

6 QNMs for � � 1 and n � 1

It is also interesting to calculate the quasinormal frequencies
in the limit of large �, where analytic solutions are available
in the literature to compare with. The analytic solutions were
obtained in Ref. [59], such that the real and imaginary parts
of the frequencies are given by

MωRe = 1

3
√

3

(
� + 1

2

)
,

MωIm = − 1

3
√

3

(
n + 1

2

)
.

(55)

Before comparing our numerical results against the analytic
solutions, it is worth mentioning that these analytic solu-
tions were obtained for integer spin perturbations. We do not
expected that these results can be applied for semi-integer
field perturbations, in principle.

Let us now compare our numerical results against the ana-
lytic solutions (55). Our numerical results for s = 0 field are
displayed in Figs. 1 and 2, as a function of � and n, respec-
tively. As can be seen, the real part as a function of � fits
well the analytic result (55). Meanwhile, the imaginary part
of the frequency as a function of n also fits well the analytic
solution.

Fig. 1 The real (top panel) and imaginary (bottom panel) parts of the
frequency as a function of � for the scalar s = 0 field in the case n = 0,
the fundamental mode. The crosses (+) represent the AIM results, the
exes (x) indicate the pseudo-spectral, while the solid black line in the
top panel is the plot of the function MωRe given in Eq. (55)

It is worth pointing out that the numerical results obtained
using the pseudo-spectral and AIM are in agreement, as seen
in these figures. To observe the numerical difference we plot-
ted the difference of the frequencies |MωAIM

Re − MωPS
Re| and

|MωAIM
Im − MωPS

Im| in logarithmic scale and displayed the
results in Fig. 3. It is seen that the difference between the
numerical results is very small and slightly increases with
the increase of n.

In turn, our numerical results for the spin 1/2 perturbation
field are displayed in Fig. 4. As can be seen, the numerical
and analytic results are in agreement. This means that the
analytic results are also valid for perturbations for spin 1/2.

7 Discussion and conclusion

We have calculated the quasinormal frequencies for spin 0,
1/2, 1, 3/2, 2, and 5/2 fields on the Schwarzschild black
hole in asymptotically flat space-time. We have employed
the pseudo-spectral and AIM methods. The main difference
between these methods lies in the way they solve the eigen-
value problem. While the pseudo-spectral method expands
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Fig. 2 The real (top panel) and imaginary (bottom panel) parts of the
frequency as a function of n for the spin s = 0 field with � = 30. The
crosses (+) represent the AIM results, the exes (x) indicate the pseudo-
spectral, while the solid black line in the bottom panel is the plot of the
function MωIm given in Eq. (55)

the solution on a base of cardinal functions, the AIM cal-
culates the roots of a characteristic polynomial. In doing
so, the results obtained for a spin-zero field applying the
pseudo-spectral method are in good agreement with the
results obtained by employing the AIM and also in good
agreement with literature values.

We displayed results with six decimal places in Tables 1,
2 and 3. The results show that both methods are in agreement
at least up to the sixth decimal place. We point out that the
quasinormal frequencies obtained for spin 0, 1, and 2 fields do
not bring any additional information to what we know from
the literature. In turn, for spin 1/2 and 3/2 fields, our results
obtained for both methods are in agreement, these results are
also in agreement with results available in the literature. For
these fields, we have obtained additional frequencies which
are purely imaginary, see Table 5. We also calculated the
quasinormal frequencies for a spin 5/2 field, which are dis-
played in Table 7. We have observed that the pseudo-spectral
method and the AIM show good agreement. Additional fre-
quencies, which are purely imaginary, were also obtained
and displayed in Table 8. Hence, the pseudo-spectral method
calculated a set of quasinormal frequencies, while the AIM

Fig. 3 The figure shows the difference between the frequencies
obtained by means of the AIM and the ones obtained from the pseudo-
spectral method, in logarithmic scale, as a function of n for the spin
s = 0 perturbation field. The top panel is for the real part of the fre-
quency, while the bottom panel is for the imaginary part of the frequency

used a guess to start looking for solutions. Our main conclu-
sion is that both methods complemented each other in the
task of calculating the QNM frequencies.

Additional comments concerning the numerical analysis
may be of interest. The use of 60 polynomials for the pseudo-
spectral method I and 40 polynomials for the pseudo-spectral
method II are the minima necessary to reach the precision
one desires in the calculation, say 30 decimal places in such
a case. An additional issue concerning the pseudo-spectral
method is related to the reason why such a method does
not yield, for instance, the 30 expected eigen-frequencies
for � = 30. We tried increasing the number of polynomials
but, with fixed precision, we were unable to go beyond 16
solutions. We realized that by increasing the number of poly-
nomials and the precision we were able to reach 30 eigen-
frequencies. Similar difficulties are also present in the AIM:
For certain problems (those with more simple ODE coeffi-
cients such as the quantum harmonic oscillator), the method
furnishes the complete spectra of the ODE without the need
for fine-tuning or arbitrary precision. For black hole prob-
lems, however, one can easily find 2 or 3 overtones of a
mode without modifying the method’s parameters. Further
overtones may or may not be found by tuning x0, as this
value affects the speed at which the method converges. At
the time of writing this paper, it is not yet clear whether this
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Fig. 4 The figure shows the real (top panel) and imaginary (bottom
panel) parts of the frequency as a function of n for the spin s = 1/2
field in the case � = 30. The crosses (+) represent the AIM results, the
exes (x) indicate the pseudo-spectral, while the solid black line in the
bottom panel is the plot of the function MωIm given in Eq. (55)

difficulty comes from the nature of the method itself or the
implementation used in this work (where ODE coefficients
are expanded using a Taylor series around x0), but we believe
that such questions might be answered soon in the light of
new works investigating the AIM’s applicability conditions
such as [60]

In the next stage of the present work, we shall address
the problem of calculating QNMs for massive test fields,
extending the analysis to other black hole spacetimes such as
the Reissner–Nordström, Kerr, and the Kerr–Newman black
holes, as well as considering the contribution of the cosmo-
logical constant.
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AppendixA:Fundamental equations for the spin 5/2 per-
turbations

Here we present additional details of the spin 5/2 field. First,
we write the effective potential V5/2(u) that appears in the
Schrödinger-like equation when written in terms of the vari-
able u = 1/r . It assumes the form

V5/2 = u2 f

4S(u)

{
4

[
75L2 (23 + 3L3) u + 9L3

2u
6

+L2
2

[
25L4 − 9u7

(
9 + L3{3 + u2 − 3u}

+u
{
3 + 6u2 − 13u

} )] − 450u2 [2u − (3 + �)2]
]

−15u2 f 1/2
[

2u

(
35
√

7 + L3 − 221 + 4L3
3(u − 1)

+3L2
3

(√
7 + L3 − 6u − 16

)
+ 14u

(
5
√

7 + L3 − 98
)

+L3

(
22
√

7 + L3 − 189 − 456u + 14u
√

7 + L3

))

+L2

[
12 − 20

√
7 + L3 + 9u3(33 + 46u)

+L3

(
141u3 − 4

√
7 + L3

) ]]}
, (A.1)

where, to simplify the expressions, we introduced the nota-
tion

S(u) =
[
5 (L2 + 6u) + 3L2u

3 f 3/2(u)
]2

,

L1 = 11 + �(6 + �),

L2 = (1 + �)(5 + �),

L3 = �(6 + �),

L4 = (2 + �)(4 + �).

Following the procedure explained in Sect. 2.2, we transform
the Schrödinger-like equation into an equation suitable to
apply the numerical methods we are working with. Moreover,
to avoid square roots, we have used the variable χ2 = 1 − u,
such that the final differential equation is
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R(χ)φ5/2(χ) + Q(χ)φ′
5/2(χ) + P(χ)φ′′

5/2(χ) = 0, (A.2)

where P(χ), Q(χ), and R(χ) are given by

R(χ) = χ
(
1 − χ2)

[
100L2L4 − 800L2L4

(
χ2 − 1

)

+ 60
[
10(17 + L3) + L2χ

(√
7 + L3(5 + L3) − 3

) ]

× (
χ2 − 1

)2 + 15L2χ (305 + 133L3)
(
χ2 − 1

)5

+ 36L2
2 (10 + 3L3)

(
χ2 − 1

)7 + 108L2
2L3

(
χ2 − 1

)8

+ 36L2
2(L3 − 10)(χ2 − 1)9 − 180L2

2(χ
2 − 1)10

+ 18L2(2(5 + L3)
2 − 305χ)(χ2 − 1)6

− 60χ
[
35
√

7 + L3 − 636

+ L3

(
7
√

7 + L3 − 208 + L3 (2L3 − 7)
) ] (

χ2 − 1
)4
]

− 30χ
(
1 − χ2)4

(
240 + χ

[
35
√

7 + L3 − 221

− L3

(
189 − 22

√
7 + L3 + L3

{
48 − 3

√
7 + L3

+ 4L3

})])
− 16λχ

[
i + 4λ

(
2 − 3χ2 + χ4) ] t (χ),

Q(χ) = (
χ2 − 1

) [
1 + χ2 (χ2 − 2

)
(1 − 16iλ) − 8iλ

]
t (χ),

P(χ) = χ
(
χ2 − 1

)3
t (χ),

(A.3)

where the auxiliary coefficient t (χ) is given by t (χ) =[
30

(
χ2 − 1

) + L2
(
3χ9 − 9χ7 + 9χ5 − 3χ3 − 5

)]2
.

Appendix B: Further comments on the numerical QN
frequencies

In this appendix we comment on additional details found
when analyzing the quasinormal frequencies of the
Schwarzschild black hole by employing the AIM and pseudo-
spectral methods for integer spin perturbation fields s = 2
and s = 1.

For completeness, we started our search for solutions to
the eigenvalue problem for s = 2 by setting � = 0 in
Eq. (17), we do not get any solution. Then, we set � = 1 and
we get the solutions Mω0 = ±0.110455 − 0.104896i and
Mω1 = ±0.086158 − 0.348079i , corresponding to n = 0
and n = 1, respectively. It is also interesting to point out
that the solution for � = 1 and n = 0 arises in both meth-
ods employed in this work, while the solution for � = 1 and
n = 1 arises in the asymptotic iteration method alone. As a
consistency check, we solved the same problem by employ-
ing the Leaver continued fraction method [39] and obtained
the same results as from the AIM. However, as investigated by
Regge–Wheeler [61], and Zerilli [61] modes with � = 1 rep-
resent an addition of angular momentum to the background

metric given by Eq. (1). Hence, such modes do not generate
gravitational waves.

On the other hand, investigating the electromagnetic per-
turbation, s = 1, for � = 0 we obtained

Mωn = −i
(n + 1)

4
, n = 0, 1, 2, . . . (B.4)

in both methods.
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