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Abstract The operator definition of generalised transverse
momentum-dependent (GTMD) distributions is exploited to
compute for the first time the full set of one-loop corrections
to the off-forward matching functions. These functions allow
one to obtain GTMDs in the perturbative regime in terms of
generalised parton distributions (GPDs). In the unpolarised
case, non-perturbative corrections can be incorporated using
recent determinations of transverse-momentum-dependent
(TMD) distributions. Evolution effects for GTMDs closely
follow those for TMDs and can thus be easily accounted
for up to next-to-next-to-leading logarithmic accuracy. As a
by-product, the relevant one-loop anomalous dimensions are
derived, confirming previous results. As a practical appli-
cation, numerical results for a specific kind of GTMD are
presented, highlighting some salient features.
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1 Introduction

At present, the study of the hadronic structure is a particu-
larly lively field of research. On the one hand, this is a very
interesting topic in itself, and on the other hand, it is instru-
mental to precision physics at present and future high-energy
colliders.

The case of the unpolarised collinear parton-distribution
functions (PDFs) of the proton is emblematic of the huge
effort that is being put into the study of the hadronic struc-
ture. Driven by the experimental activity of colliders such as
HERA, Tevatron, and the Large Hadron Collider (LHC), and
by a steady methodological and theoretical progress, PDFs
are nowadays known with an astonishing precision [1–5].
Driven by the need for accuracy, the study of unpolarised
collinear fragmentation functions (FFs) has also recently
been intensified, leading to accurate determinations [6–11].

Although PDFs and FFs have a broad phenomenological
applicability, they encode partial information on the hadronic
structure corresponding to the longitudinal-momentum dis-
tribution of partons inside hadrons. Transverse-momentum-
dependent (TMD) distributions are instead also sensitive to
the transverse momentum of partons, thus extending the
information provided by PDFs and FFs [12,13]. Also, due to
their relevance in hot topics such as the precision determina-
tion of the mass of the W boson, TMDs are currently receiv-
ing particular attention, and much work is being invested in
their determination [14–19].

Another typology of distributions relevant to the study
of the hadronic structure is that of generalised parton dis-
tributions (GPDs). These distributions give us access to the
energy-momentum tensor of hadrons [20,21], providing us
with a handle on important quantities like the transverse posi-
tion of partons [22,23] and their angular momentum [24].
Phenomenological determinations of GPDs do exist [25–27],
but as of today, they are much less developed than mod-
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ern analyses of PDFs/FFs and TMDs. However, the recent
approval of the electron-ion colliders in China (EicC) [28]
and in the USA (EIC) [29], has revived the interest in GPDs
that is now a rapidly growing field. In addition, new technolo-
gies on the lattice [30,31] have made first-principle computa-
tions of GPDs more accessible, giving additional momentum
to their study.

It turns out that PDFs, TMDs and GPDs are all projec-
tions of more general quantities, usually referred to as gen-
eralised TMDs (GTMDs), that can be considered as their
mother distributions [32–38]. As of today, very little is quan-
titatively known about GTMDs, and most of the existing stud-
ies are based on models [39–52]. In spite of recent proposals
to access GTMDs experimentally [53–55], data sensitive to
these distributions is presently scarce, making phenomeno-
logical studies laborious.

The goal of this paper is to exploit as much as possible our
knowledge of the projections of GTMDs, namely GPDs and
TMDs, to reconstruct GTMDs themselves to the best accu-
racy possible. For this purpose, a proper definition of GTMDs
has to be devised, which enables the computation of relevant
perturbative quantities. In the spirit of TMD factorisation,
this was done in Ref. [56], where generalising the TMD oper-
ators to the off-forward case, a rapidity-divergence-free def-
inition of GTMD correlators was given. We will start from
this definition to compute for the first time the full set of the
so-called matching functions at one-loop accuracy. These
functions allow one to obtain GTMDs in terms of GPDs by
accounting for the emission of partons with large transverse
momentum kT , whose effect is thus computable in perturba-
tion theory. We will finally use these matching functions to
reconstruct realistic GTMDs also accounting for evolution
and non-perturbative effects.

The outline of the paper is as follows. In Sect. 2.1, we will
give a precise operator definition of the GTMD correlators
of our interest. Section 2.2 is devoted to the renormalisation
of the ultraviolet (UV) divergences of these correlators and
to the derivation of their evolution equations. In Sect. 2.3, we
will state the GTMD matching formula that factorises large-
kT emissions into a set of matching functions to be convo-
luted with GPDs. In this section, we will exploit this matching
formula to express the one-loop matching functions in terms
of perturbative quantities, namely, the soft function and the
unsubtracted parton-in-parton GTMD correlator, whose one-
loop corrections are computed in Sects. 2.4 and 2.5, respec-
tively. At this point, we will be in a position to obtain the
explicit expression for the one-loop matching functions. In
Sect. 2.6, we will show that, as expected, these expressions
tend to their TMD counterpart in the forward limit. As a by-
product of UV renormalisation, in Sect. 2.7, we will extract
the anomalous dimensions that govern the GTMD evolution
at one loop, finding that they agree with the TMD ones. A
numerical implementation of the matching functions, com-

bined with other existing perturbative and non-perturbative
ingredients, puts us in a position to reconstruct realistic quark
and gluon GTMDs to high accuracy. A study of the resulting
distributions is presented in Sect. 3 where we will consider
the behaviour of GTMDs under different points of view, com-
menting on some peculiar features. Finally, in Sect. 4, we will
draw our conclusions.

2 Theoretical setup and results

As argued in the pioneering Ref. [56], a sound definition of
GTMDs, that is, a definition free of rapidity divergences and
that can thus be used for phenomenology, requires taking
into proper account the soft function. In this section, we will
review the reasoning of Ref. [56] that leads to a rapidity-
divergence-free definition of the GTMD correlator. Working
in the space of the Fourier-conjugate variable of the par-
tonic momentum kT , denoted by bT , we will formulate the
explicit definition of the GTMD correlator both for quarks
and gluons. We will then state the matching formula that, for
bT � 0, allows us to express the GTMD correlator in terms
of (collinear) GPD correlators by means of perturbatively
computable matching functions. Appealing to the concept of
parton-in-parton distributions (see, e.g., Refs. [13,57]), we
will finally obtain the one-loop corrections to these match-
ing functions.

This programme requires the computation of the first per-
turbative correction to the soft function and the so-called
unsubtracted GTMD correlators. By combining these two
quantities, we will explicitly exhibit the cancellation of the
rapidity divergences and obtain, for the first time, the full
set of off-forward matching functions at one loop. In addi-
tion, we will show that their forward limit coincides with the
one-loop TMD matching functions, as it should. Finally, as a
by-product of the renormalisation of the UV divergences, we
will also derive the GTMD evolution equations and extract
the leading-order term of the relevant anomalous dimensions,
confirming previous results.

The seminal work of Refs. [35,38] has provided us with a
thorough classification of the structures that emerge from the
analysis of the GTMD correlators for spin-1/2 targets. How-
ever, if taken literally, the GTMD definitions given in those
papers produce divergent results upon inclusion of radiative
corrections, even after the customary renormalisation of the
UV divergences. Exactly like in the TMD case [13,58], these
spurious divergences are of infrared (IR) origin and stem
from the region of loop momenta k where the rapidity of the
emitted partons, y = ln(k+/k−), becomes large [59]: hence,
they are usually called rapidity divergences. This “inconve-
nience” can be fixed in two main steps:
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1. removing the overlap of the GTMD correlator with the
soft modes by means of the so-called zero-bin (or soft)
subtraction; and

2. redistributing the soft function, that typically appears in
a factorisation theorem along with two beam functions,
between the two GTMD correlators: this usually amounts
to assigning the square root of the soft function to each of
them.

An implementation of these steps is guaranteed to lead to
a cancellation of the rapidity divergences. The reader is
referred to, for example, Refs. [60,61] and references therein
for a more detailed discussion in the TMD framework.

In order to perform an explicit perturbative calculation,
rapidity divergences need to be regulated on a diagram-by-
diagram basis. Several rapidity-divergence regulators have
been proposed so far in the literature. However, for a specific
class of regulators [61,62], steps (1) and (2) combine in a way
that the net effect is that the unsubtracted GTMD correlator
has to be divided by the square root of the soft function. In this
paper, we will use the principal-value regulator, originally
introduced in Ref. [63], that indeed belongs to this class of
regulators.

2.1 Operator definition of GTMDs

This brief introduction allows us to finally give the exact defi-
nition for the quark and gluon GTMD correlators that will be
used for the computation of the one-loop matching functions.
As anticipated above, it is convenient to work in bT space
which simply amounts to taking the Fourier transform of the
kT -space GTMD correlators. In addition, for definiteness,
we will limit the discussion to the specific twist-2 GTMD
correlators whose forward limit gives the unpolarised quark
and gluon TMDs. The corresponding operator definition for
a generic hadronic target H is then

F̂i/H (x, ξ,bT , t) = Ŝ
− 1

2
i (bT )�̂i/H (x, ξ,bT , t), i = q, g,

(1)

where Ŝi is the appropriate soft function, and �̂i/H is the
unsubtracted GTMD correlator. The quark and gluon corre-
lators, respectively, read as

�̂q/H (x, ξ,bT , t) =
∫

dy

2π
e−i x(n·P)y

〈
Pout

∣∣∣
[
ψqW

†
n,q

] (η

2

)

× /n

2

[
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] (−η

2

)∣∣∣∣ Pin

〉
,

�̂g/H (x, ξ,bT , t)

= nμnν

x(n · P)

∫
dy

2π
e−i x(n·P)y

〈
Pout
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[
Fμj
a W †

n,g

]

×
(η

2

) [
Wn,gF

ν j
a

] (
−η

2

)∣∣∣ Pin

〉
, (2)

where we have used the following shorthand definitions:
η = yn + bT ,1 Pin/out = P ± �/2, t = �2, and
ξ = 2n · �/n · P . Here, ψq indicates the spinor of the quark
flavour q and Fμν

a the gluon field strength, while Wn,i is the
Wilson line in the n direction. The integrals run between −∞
and +∞, and a summation over repeated Lorentz indices is
understood. Also, the index j in �̂g/H is summed over and
it runs over the (physical) transverse components, that is,
j = 1, 2. n and n (the latter appearing below) are light-like
four-vectors, n2 = n2 = 0, and their scalar product evaluates
to n · n = 1.2 Also notice that the parton index i , labelling
both the soft function Ŝi and the Wilson line Wn,i , denotes
the colour-group representation. Specifically, for i = q(g),
the fundamental (adjoint) representation of the SU(3) gen-
erators is to be used. Finally, the symbol ˆ over Ŝi and �̂i/H

indicates that these quantities are bare, that is, they are UV
divergent in four dimensions.

The definition of the GTMD correlators is still incom-
plete because we have not specified Ŝi and Wi . In fact, the
precise form of these quantities depends on the choice of the
gauge. Two specific gauges are usually considered in this
context: the Lorentz gauge (∂ · A = 0) and the light-cone
gauge (n · A = 0). When considering kT -integrated quan-
tities, which corresponds to setting bT = 0, the light-cone
gauge is often preferred. The reason is that the Wilson lines
reduce to unity with a consequent reduction of the number of
diagrams to be considered (see, e.g., Refs. [57,63]). This sim-
plification, however, comes at the price of a more complicated
gluon propagator. Conversely, when kT is left unintegrated,
so that bT �= 0, two types of Wilson line, longitudinal and
transverse, enter the game [62,64]. It turns out that in light-
cone gauge, the longitudinal Wilson lines unitarise, but the
transverse ones do not [64]. The opposite happens in Lorentz
gauge where the transverse Wilson lines unitarise while the
longitudinal ones do not. As a consequence, using the light-
cone gauge at bT �= 0 brings no advantage over the Lorentz
gauge in that the presence of the transverse Wilson lines inval-
idates the argument of a smaller number of diagrams.3 Yet, in

1 Here, the transverse vector bT is to be interpreted as a four-
dimensional embedding with null time and longitudinal components
and the transverse component coinciding with bT . This notation is
repeatedly used below.
2 In light-cone coordinates defined as aμ = (a+, a−, aT ) with a± =
(at ± az)/

√
2, the components of n and n are usually chosen to be

nμ = (0, 1, 0) and nμ = (1, 0, 0).
3 It should be pointed out that the choice n · A = 0 does not entirely fix
the gauge. Therefore, one can use the remaining freedom to set to zero
the transverse component of the gauge field at light-cone infinity in a
way that the transverse Wilson line also unitarises [65]. However, this
additional gauge condition can only be enforced at either positive or
negative (or a combination of the two) light-cone infinity, implying that
the transverse Wilson line cannot be made to unitarise simultaneously
for all kinematics. I am indebted to S. Rodini for drawing my attention
to this aspect.
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Fig. 1 Graphical representation of the quark (left) and gluon (right) unsubtracted GTMD correlators defined in Eq. (2)

light-cone gauge, the gluon propagator remains more com-
plicated than in Lorentz gauge. In conclusion, in the GTMD
case (as well as in the TMD one), the Lorentz gauge seems
to be a preferable choice for perturbative calculations and is
the one adopted here.

The choice of the gauge finally allows us to write the
explicit form of the soft function:

Ŝi (bT ) = 1

Ni
Trc〈0|Wn,i (bT )W †

n,i (bT )Wn,i (0)W
†
n,i (0)|0〉,

i = q, g, (3)

with Nq = Nc = 3 and Ng = N 2
c − 1 = 8 being the

dimensions of the fundamental and adjoint representations
of the colour group, respectively. A trace over the colour
indices is indicated by Trc. The Wilson line, also entering the
definition of the unsubtracted GTMD correlators in Eq. (2),
is given by

Wv,i (bT ) = P exp

[
−igt [i]α vμ

∫ ∞

0
ds Aμ

α (bT + sv)

]
, (4)

where t [i]α are the generators of SU(3) in the fundamental
(i = q) or adjoint (i = g) representations. It is interest-
ing to observe that the soft function in Eq. (3) reduces to
one at bT = 0. This can immediately be seen by plugging
the Wilson line into Eq. (4) and using twice the identity
W †

v,i (0)Wv,i (0) = INi×Ni whose trace cancels against the
factor 1/Ni in Eq. (3). We will explicitly verify this property
up to one loop below. This explains why the soft function in
kT -integrated correlators plays no role.

A graphical representation of the unsubtracted GTMD
correlators defined in Eq. (2) is given in Fig. 1. Here, the
double lines with an arbitrary number of gluons attaching
to the hadronic blobs represent the (expansion of the) Wil-
son line. Notice that the actual Wilson line that connects
the space-time points −η/2 and η/2 runs back and forth
along the light-cone direction defined by n (future- or past-
pointing, according to the process) and that the two branches
are connected along the transverse direction defined by bT
at light-cone infinity. This latter connection is suppressed in
Lorentz gauge and can thus be neglected.

A graphical representation of the soft function defined in
Eq. (3) is instead given in Fig. 2. Two pairs of longitudinal
Wilson lines in n and n directions are joined at the origin

Fig. 2 Graphical representation of the soft function defined in Eq. (3)

and at the space-time point with transverse displacement bT .
An arbitrary number of gluons is exchanged including loop
corrections represented by the grey blob. Each gluon attach-
ment to the Wilson lines comes with an SU(3) generator t [i]α

in the appropriate representation, as indicated by the index i
associated to the Wilson lines.

2.2 Renormalisation and evolution of GTMDs

The subtracted GTMD correlator F̂i/H in Eq. (1), while being
free of rapidity singularities, is UV divergent. In order to
renormalise it, we need to separately renormalise the soft
function Ŝi and the unsubtracted GTMD correlator �̂i/H .

The soft function is renormalised multiplicatively as fol-
lows:

Si (bT , μ, ζ, δ)

= lim
ε→0

Z−1
S,i (bT , Q, ζ, μ, δ, ε)Ŝi (bT , Q, δ, ε). (5)

For completeness, in this expression, we have explicitly
reported all the possible dependences that emerge from a
perturbative calculation. Specifically, we have the scale Q
and the regulator δ introduced by the regularisation of the
rapidity divergences (to be discussed in Sect. 2.4), and the
scale μ and the dimensional regulator ε introduced by the
regularisation of the UV divergences. Also notice the pres-
ence amongst the dependences of the renormalisation con-
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stant ZS,i of the (squared) scale ζ , usually dubbed rapidity
scale, also discussed in Sect. 2.4.

The renormalisation of the unsubtracted GTMD correla-
tors is also purely multiplicative, that is, it does not imply any
convolution nor mixing between quark and gluon operators:

�i/H (x, ξ,bT , t, μ, δ)

= lim
ε→0

Z−1
�,i (ξ, μ, δ, ε)�̂i/H (x, ξ,bT , t, δ, ε). (6)

This simple pattern is a direct consequence of the fact that the
bT displacement prevents any contact divergence of the oper-
ators. Using Eqs. (5) and (6) in Eq. (1), one can easily deduce
the renormalisation of the subtracted GTMD correlator:

Fi/H (x, ξ,bT , t, μ, ζ )

= lim
ε,δ→0

Z1/2
S,i (bT , Q, ζ, μ, δ, ε)Z−1

�,i (ξ, μ, δ, ε)

×F̂i/H (x, ξ,bT , t, δ, ε)

= lim
δ→0

S−1/2
i (bT , μ, ζ, δ)�i/H (x, ξ,bT , t, μ, δ). (7)

Exploiting the fact that in the limit ε, δ → 0, the bare
subtracted GTMD correlator does not depend on either the
renormalisation scale μ or on the rapidity scale ζ , it is pos-
sible to derive the following evolution equations:

d lnFi/H (x, ξ,bT , t, μ, ζ )

d ln
√

ζ
= Ki (bT , μ),

d lnFi/H (x, ξ,bT , t, μ, ζ )

d ln μ
= γi (μ, ζ ). (8)

The anomalous dimensions Ki and γi derive from the renor-
malisation constants as follows:

Ki (bT , μ) = lim
ε,δ→0

d ln ZS,i (bT , Q, ζ, μ, δ, ε)

d ln ζ
,

γi (μ, ζ ) = lim
ε,δ→0

d ln[Z1/2
S,i (bT , Q, ζ, μ, δ, ε)Z−1

�,i (ξ, μ, δ, ε)]
d ln μ

.

(9)

The first equation in Eq. (8) is usually referred to as the
Collins–Soper equation [66,67], while the second is a more
common renormalisation-group equation.

The anomalous dimensions in Eq. (9) can be mutually
related by observing that the cross-derivative of the GTMD
correlator must coincide. Indeed, it turns out that

dKi (bT , μ)

d ln μ
= dγi (μ, ζ )

d ln
√

ζ
≡ −γK ,i (as(μ)), (10)

where the anomalous dimension γK ,i , usually called cusp
anomalous dimension, only depends on the strong coupling
as = g2/16π2 = αs/4π . Therefore, it is a purely pertur-
bative quantity that, for sufficiently large scales, admits the

following expansion:

γK ,i (as(μ)) =
∞∑
n=0

an+1
s (μ)γ

[n]
K ,i . (11)

Equation (10) can be solved w.r.t. both Ki and γi express-
ing these anomalous dimensions in terms of more fundamen-
tal quantities computable in perturbation theory. To do so, we
need appropriate boundary conditions. For Ki , the boundary
condition is conveniently set at the scale μ = b0/|bT | ≡ μb,
with b0 ≡ 2e−γE and γE the Euler constant, where it admits
the perturbation expansion as

Ki (bT , μb) =
∞∑
n=0

an+1
s (μb)K

[n]
i . (12)

With this boundary condition, the solution to Eq. (10) reads
as

Ki (bT , μ) = Ki (bT , μb) −
∫ μ

μb

dμ′

μ′ γK ,i (as(μ
′)). (13)

We notice that, thanks to the integral in the r.h.s., this expres-
sion resums all powers in as through its evolution, prevent-
ing the presence of potentially large logarithms. However,
as we will explicitly see below, a perturbative calculation of
Ki at a generic fixed scale μ produces terms accompanied
by powers of ln(μ/μb). Since bT is usually integrated over,
these logarithms can become arbitrarily large, invalidating
any fixed-order calculation. Therefore, in phenomenological
applications the resummed expression of Ki in Eq. (13) is to
be preferred over a fixed-order calculation.

We now solve Eq. (10) for γi . In this case, the boundary
condition is conveniently set at

√
ζ = μ/

√
1 − ξ2 where the

anomalous dimension can be expanded as

γi (μ,μ/
√

1 − ξ2) ≡ γF,i (as(μ)) =
∞∑
n=0

an+1
s (μ)γ

[n]
F,i . (14)

Owing to the fact that the r.h.s. of Eq. (10) does not depend
of ζ , the solution to the evolution equation is particularly
simple and reads

γi (μ, ζ ) = γF,i (as(μ)) − γK ,i (as(μ)) ln

(√
(1 − ξ2)ζ

μ

)
.

(15)
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In conclusion, the evolution equations for the GTMD cor-
relator take the explicit form4

d lnFi/H (x, ξ,bT , t, μ, ζ )

d ln
√

ζ

= Ki (bT , μb) −
∫ μ

μb

dμ′

μ′ γK ,i (as(μ
′)),

d lnFi/H (x, ξ,bT , t, μ, ζ )

d ln μ

= γF,i (as(μ)) − γK ,i (as(μ)) ln

(√
(1 − ξ2)ζ

μ

)
, (16)

where the relevant anomalous dimensions Ki (bT , μb), γF,i ,
and γK ,i are all perturbative quantities. As a by-product of
the calculation of the matching functions presented below,
we will extract the leading-term coefficients K [0]

i , γ
[0]
F,i , and

γ
[0]
K ,i . Unsurprisingly, they turn out to be identical to those

obtained in TMD factorisation.

2.3 Matching on GPDs

As mentioned above, the transverse displacement bT is
Fourier conjugated to the partonic transverse momentum kT .
As a consequence, when bT � 0, which corresponds to the
emission of partons with large kT , it is legitimate to expect
such emissions to be treatable in perturbation theory. As a
matter of fact, in this regime, hard emissions can be factorised
into perturbatively calculable quantities, the matching func-
tions, that allow one to express the GTMD correlators in
terms of the corresponding collinear GPD correlators. The
matching formula reads

Fi/H (x, ξ,bT , t, μ, ζ )

=
∫ ∞

x

dy

y
Ci/k

(
y,

ξ

x
,bT , μ, ζ

)
Fk/H

(
x

y
, ξ, t, μ

)

≡ Ci/k(x, κ,bT , μ, ζ )⊗
x
Fk/H (x, ξ, t, μ) , (17)

where Fk/H , with k = q, g, are the renormalised GPD cor-
relators whose explicit definition can be found, for example,
in Ref. [57]. In addition, we have defined κ ≡ ξ/x .

4 While the explicit form of the renormalisation-group equation in
Eq. (16) coincides with the result of Ref. [56] (see Eq. (22) of that
paper), it seems to differ from the result of the more recent Ref. [68] (see
Eq. (30) therein). However, this difference, that simply amounts to hav-
ing ζ rather than (1−ξ2)ζ in the logarithm multiplying the cusp anoma-
lous dimension, is effectively immaterial. Indeed, the arbitrariness of
the rapidity scale ζ allows one to make replacement (1 − ξ2)ζ → ζ ,
thus reproducing the result of Ref. [68]. However, care must be taken
when computing physical observables in terms of GTMDs. In this case,
the product of the rapidity scales associated to the GTMDs involved in
the calculation is usually constrained by kinematics (see e.g. Eq. (31)
of Ref. [68]). Therefore, the specific value of the single rapidity scales
does not matter provided that their combination obeys the appropriate
constraint.

In order to extract the matching functions Ci/k , we make
use of the concept of parton-in-parton distribution [13]
(sometimes also referred to as quark-target model, see, e.g.,
Ref. [69]). The idea is to replace the hadronic states involved
in the correlators in Eq. (2) and in their collinear analogues
with partonic states. Since the action of partonic fields on par-
tonic states is computable in perturbation theory, this enables
a direct calculation. It should be pointed out that the validity
of this procedure is tightly connected to factorisation and the
universality of the resulting partonic distributions [13]. Since
so far, to the best of my knowledge, no actual factorisation
theorems involving GTMDs have been proven,5 here we sim-
ply assume its applicability. The parton-in-parton version of
Eq. (17) is then

Fi/j (x, ξ,bT , μ, ζ )

= Ci/k(x, κ,bT , μ, ζ )⊗
x
Fk/j (x, ξ, μ) , (18)

where j = q, g. Notice that we have dropped the dependence
on t that does not participate in a partonic computation. Now
all quantities involved in the matching formula admit a per-
turbative expansion:

Fi/j (x, ξ,bT , μ, ζ ) =
∞∑
n=0

ansF [n]
i/j (x, ξ,bT , μ, ζ ),

Fk/j (x, ξ, μ) =
∞∑
n=0

ans F
[n]
k/j (x, ξ, μ),

Ci/k(x, κ,bT , μ, ζ ) =
∞∑
n=0

ans C[n]
i/k(x, κ,bT , μ, ζ ). (19)

At the lowest order in as , where no additional radiation is
allowed, one finds that

F [0]
i/j (x, ξ,bT , μ, ζ ) = F [0]

i/j (x, ξ, μ) = Dj (ξ)δi jδ(1 − x),

(20)

with Dq(ξ) = √
1 − ξ2 and Dg(ξ) = 1 − ξ2 [57]. This

immediately implies that:

C[0]
i/k(x, κ,bT , μ, ζ ) = δikδ(1 − x). (21)

These results allow us to determine the one-loop (O(as))
correction to Ci/j in terms of the one-loop GTMD and GPD
parton-in-parton correlators:

C[1]
i/j (x, κ,bT , μ, ζ )

= D−1
j (ξ)

[
F [1]
i/j (x, ξ,bT , μ, ζ ) − F [1]

i/j (x, ξ, μ)
]
. (22)

5 However, factorisation is often assumed. See, for example, Refs. [52–
55]. After the publication of this paper, factorisation for exclusive dou-
ble Drell–Yan within the soft-collinear effective theory (SCET) frame-
work was proven in Ref. [68].
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Using the perturbative expansion of the renormalised soft
function Si and unsubtracted parton-in-parton GTMD corre-
lator �i/j :

Si (bT , μ, ζ, δ) =
∞∑
n=0

ans S
[n]
i (bT , μ, ζ, δ),

�i/j (x, ξ,bT , μ, δ) =
∞∑
n=0

ans �
[n]
i/j (x, ξ,bT , μ, δ), (23)

with S[0]
i (bT , μ, ζ, δ) = 1 (see Eq. (44)) in Eq. (7), we obtain

F [1]
i/j (x, ξ,bT , μ, ζ ) = �

[1]
i/j (x, ξ,bT , μ, δ)

−1

2
Dj (ξ)δi jδ(1 − x)S[1]

i (bT , μ, ζ, δ). (24)

Notice that, while the single terms on the r.h.s. of this equa-
tion depend on the rapidity regulator δ, the l.h.s. does not.
This means that this dependence must cancel in this specific
combination, confirming at one loop the rapidity-divergence
safety of the definition in Eq. (1). Plugging this identity into
Eq. (22) finally gives

C[1]
i/k(x, κ,bT , μ, ζ )

= D−1
k (ξ)

[
�

[1]
i/k(x, ξ,bT , μ, δ) − F [1]

i/k (x, ξ, μ)
]

−1

2
δikδ(1 − x)S[1]

i (bT , μ, ζ, δ). (25)

Therefore, the computation of the one-loop corrections to
the matching functions boils down to computing parton-in-
parton unsubtracted GTMD and GPD correlators, and the
soft function at the same order. Moreover, the computations
of �

[1]
i/k and of F [1]

i/k are closely related, with the latter recently
presented in Ref. [57]. This similarity can be exploited to
simplify the calculation. First of all, we notice that they are
both made of a “real” and a “virtual” contribution:6

�
[1]
i/k = �

[1],real
i/k + �

[1],virt
i/k , F [1]

i/k = F [1],real
i/k + F [1],virt

i/k .(26)

Since the virtual contribution to the GTMD correlator in
kT space must, for kinematic reasons, be proportional to
δ(2)(kT ), its Fourier transform is independent from bT . But
this is precisely the same kinematics used to compute the
virtual contribution to the GPD correlator. Therefore, one
finds

�
[1],virt
i/k = F [1],virt

i/k , (27)

6 Strictly speaking, since both GTMDs and GPDs are involved in exclu-
sive processes, all contributions are virtual. However, one can distin-
guish between contributions that only affect either the left or the right
part of the operator (i.e. that live at −η/2 or η/2, with reference to
Fig. 1), defined as virtual, and contributions that instead connect the
two parts, defined as real. This is done in analogy with the inclusive
case in which the final-state cut sets the real contributions on shell.

such that

�
[1]
i/k − F [1]

i/k = �
[1],real
i/k − F [1],real

i/k . (28)

To compute the difference in the r.h.s., we can again use the
results of Ref. [57]. To do so, we observe that the only differ-
ence between F [1],real

i/k , and �
[1],real
i/k in bT space is that the kT

integral in the latter is weighted by the phase eibT ·kT , reflect-
ing the displacement of the partonic fields. Specifically, one
finds

�
[1],real
i/k (x, ξ,bT , μ, δ)

= Dk(ξ)
[
P [0],real
i/k (x, κ, δ) − εR[1]

i/k(x, κ)
]
μ2ε4π

×
∫

d2−2εkT
(2π)2−2ε

eibT ·kT
k2
T

, (29)

whereP [0],real
i/k is the real (and rapidity divergent) contribution

to the one-loop GPD splitting functions, while the “residual”
functions R[1]

i/k were so far unknown and are computed here
for the first time (see Sect. 2.5). Importantly, the exponential
in the integral in Eq. (29) regulates the UV divergence for
kT → ∞ [70]. As a consequence, the UV divergences of the
GTMD correlator can only be in the virtual (diagonal) part,
hence the simple renormalisation pattern in Eq. (6).

The kT integral in Eq. (29) can be computed analytically
and evaluates to

4π

∫
d2−2εkT
(2π)2−2ε

eibT ·kT
k2
T

= πεb2ε
T �(−ε)

= −πεb2ε
T (1 + γEε)

εIR
+ O(ε), (30)

where bT ≡ |bT |. In the rightmost equality, we have high-
lighted the fact that the pole for ε → 0 is of infrared origin.
This divergence is cancelled in the difference in Eq. (28)
by an analogous divergence in the UV-renormalised GPD
correlator. To see this, we observe that the real part of the
renormalised GPD correlator can be written as

F [1],real
i/k (x, ξ, μ)

= Dk(ξ)Sε

[
P [0],real
i/k (x, κ, δ)

(
ln μ2 − μ2ε

εIR

)

−εR[1]
i/k(x, κ)

(
μ2ε

εUV
− μ2ε

εIR

)]
, (31)

where

Sε = (4π)ε

�(1 − ε)
= 1 + ε (ln 4π − γE) + O(ε2). (32)

From Eq. (31), it is apparent that the UV divergence has
been removed leaving a ln μ2, while the infrared divergence
is still present. In addition, we also retained the next term
in the expansion in powers of ε. This term, proportional to
R[1]

i/k , multiplies a scaleless integral in which UV (1/εUV)
and IR (1/εIR) poles cancel, giving a vanishing result [71]
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that does not contribute to F [1],real
i/k . However, since the IR

contribution is cancelled by the GPD correlator, the UV pole
does give a finite contribution in the combination in Eq. (28).
Indeed, using Eqs. (29) and (31), Eq. (28) yields

�
[1]
i/k(x, ξ,bT , μ, δ) − F [1]

i/k(x, ξ, μ)

= Dk(ξ)

[
−P [0],real

i/k (x, κ, δ) ln

(
μ2

μ2
b

)
+ R[1]

i/k(x, κ)

]
,

(33)

where the limit ε → 0 has already been taken using the
equality

lim
ε→0

Sε − πεb2ε
T (1 + γEε)

ε
= ln

4e−2γE

b2
T

= ln
b2

0

b2
T

= ln μ2
b.

(34)

Remarkably, all divergences have cancelled, leaving a finite
quantity. Plugging Eq. (33) into Eq. (25), we obtain

C[1]
i/k(x, κ,bT , μ, ζ ) = −P [0],real

i/k (x, κ, δ) ln

(
μ2

μ2
b

)

+R[1]
i/k(x, κ) − 1

2
δikδ(1 − x)S[1]

i (bT , μ, ζ, δ). (35)

It is now convenient to extract the rapidity divergence from
P [0],real
i/k in a way to facilitate the cancellation against the

soft function S[1]
i . To this purpose, we now introduce the

particular strategy that will be used to regulate the rapidity
divergences. We will employ the principal-value prescription
[63] that acts on eikonal propagators of the kind 1/(n · k)
and 1/(n · k) by replacing them with their principal-valued
version, that is

1

(n · k) → PV
1

(n · k) = 1

2

[
1

(n · k) + iδ(n · p)
+ 1

(n · k) − iδ(n · p)
]

= (n · k)
(n · k)2 + δ2(n · p)2 , (36)

with δ → 0, and analogously for 1/(n ·k) with p replaced by
p. The momenta p and p are to be thought as the light-like
momenta (p2 = p2 = 0) of two highly energetic projectiles
that collide with large centre-of-mass energy (p+ p)2 = 2p ·
p ≡ Q2 � �2

QCD. Q is precisely the scale first introduced
in Eq. (5) as a consequence of the regularisation of rapidity
divergences and that will appear explicitly only in the soft
function. When integrating over the partonic momentum k,
the longitudinal projection (n · k) is usually parameterised as
(n · k) = (1 − z)(n · p), with the variable z running in the
interval z ∈ [0, 1]. One can then show that the principal-value
prescription is equivalent to replacing

1

1 − z
→
(

1

1 − z

)
+

− δ(1 − z) ln δ, (37)

where the +-prescription is defined as
∫ 1

0
dz

(
1

1 − z

)
+

f (z) =
∫ 1

0

f (z) − f (1)

1 − z
, (38)

for a test function f well behaved at z = 1.
It is opportune to stress that the principal-value prescrip-

tion defined in Eq. (36) is not guaranteed to work beyond
one-loop accuracy. As pointed out in Refs. [60,72,73], a
better regularisation that preserves the exponentiation of the
eikonal propagators and that ensures the correct implemen-
tation of the zero-bin subtraction at all orders should be
adopted. To this purpose, exponentially regulated Wilson
lines are introduced in the definition of the relevant objects.
See also Ref. [74] for another implementation of the expo-
nential regularisation of rapidity divergences.

Having defined the specific procedure to regularise the
rapidity divergences, we can replace P [0],real

i/k in Eq. (35) with

the full splitting function P [0]
i/k using the following equality:

P [0],real
i/k (x, κ, δ)

= P [0]
i/k(x, κ) − P [0],virt

i/k (x, κ, δ)

= P [0]
i/k(x, κ) − δikδ(1 − x)2Ci[

Ki − ln(1 − ξ2) − 2
∫ 1

0

dz

1 − z

]

= P [0]
i/k(x, κ) − δikδ(1 − x)2Ci[

Ki − ln(1 − ξ2) + 2 ln δ
]
. (39)

In the second line, we have used the explicit form of the
virtual contribution to the splitting function extracted from
Ref. [57]. The colour factors Ci are defined as

Cg = CA = Nc = 3, Cq = CF = N 2
c − 1

2Nc
= 4

3
, (40)

and the values of the coefficient Ki are

Kq = 3

2
, Kg = 11CA − 4n f TR

6CA
, (41)

with TR = 1/2 and n f the number of active quark flavours.
Finally, in the third line of Eq. (39), we have used Eq. (37)
to regularise the divergent integral in z. We can now plug
Eq. (39) into Eq. (35) to obtain

C[1]
i/k(x, κ,bT , μ, ζ )

= −P [0]
i/k(x, κ) ln

(
μ2

μ2
b

)
+ R[1]

i/k(x, κ)

+δikδ(1 − x)

[
2Ci

(
Ki − ln(1 − ξ2) + 2 ln δ

)
ln

(
μ2

μ2
b

)

−1

2
S[1]
i (bT , μ, ζ, δ)

]
. (42)
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Since the splitting functions P [0]
i/k have been computed in

Ref. [57], all we are left with to obtain the one-loop correction
to the matching functions is to compute the soft function S[1]

i

and the residual functions R[1]
i/k . This will be done next in

Sects. 2.4 and 2.5, respectively.

2.4 The soft function

Many calculations of the soft function to one-loop order and
beyond exist in the literature. For example, one-loop results
can be found in Refs. [58,61,72,74–76]. As of today, also
two-loop [72,74,77] and three-loop [78,79] results have been
presented. As mentioned above, the soft function is affected
by rapidity divergences. They are caused by the presence
of eikonal propagators like 1/(n · k) and cannot be regu-
lated by means of dimensional regularisation. Therefore, an
additional regulator needs to be introduced. We will use the
principal-value prescription [63] introduced in the previous
section that, to the best of my knowledge, is used here for the
first time to compute the soft function. The soft function is
also affected by UV divergences that we regularise by means
of dimensional regularisation.

The ultimate goal of this section is to compute the first two
terms, n = 0, 1, of the series in Eq. (23) for the renormalised
soft function. To do so, we start from the perturbative series
of the bare soft function:

Ŝi (bT , Q, δ, ε) =
∞∑
n=0

ans Ŝ
[n]
i (bT , Q, δ, ε). (43)

The leading order, n = 0, is trivial. To compute it, we
simply approximate all the Wilson lines in Eq. (3) with the
unity operator in the appropriate colour-group representation.
This immediately gives

Ŝ[0]
i (bT , Q, δ, ε)

= 1

Ni
Trc〈0|INi×Ni INi×Ni INi×Ni INi×Ni |0〉 = 1. (44)

We now move on to computing the one-loop correction,
that is, the term n = 1 in the series in Eq. (43). One-
loop diagrams in which the gluon attaches to Wilson lines
pointing in the same light-cone direction are proportional to
either n2 = 0 or n2 = 0, and thus give no contribution. On
the contrary, the diagrams displayed in Fig. 3 have a gluon
that attaches to Wilson lines pointing in different directions.
Therefore, they are proportional ton·n = 1, giving a non-null
contribution. Applying standard Feynman rules in Lorentz
gauge [13] and using the principal-value prescription to reg-
ulate the eikonal propagators, diagrams (a) and (b) along with
their respective Hermitian conjugates separately evaluate to

Ŝ[a+a†]
i = −as4Ci (4πμ2)ε

1 + cos(πε)

2

×
(
Q2δ2

)−ε

�2(ε)�(1 − ε),

Ŝ[b+b†]
i = −as4Ci (4πμ2)ε�(−ε)

×
[(

b2
T

4

)ε(
ln

Q2δ2

μ2
b

− ψ(−ε) − γE

)

−1 + cos(πε)

2

(
Q2δ2

)−ε

�(ε)�(1 − ε)

]
. (45)

The net result for the one-loop correction to the bare soft
function is

Ŝ[1]
i (bT , Q, δ, ε)

= a−1
s

[
Ŝ[a+a†]
i + Ŝ[b+b†]

i

]

= −4Ci (4πμ2)ε�(−ε)

(
b2
T
4

)ε (
ln

Q2δ2

μ2
b

− ψ(−ε) − γE

)

= 4Ci

(
− S2

ε

ε2 + 1

2
ln2

(
μ2

μ2
b

)
−
(
Sε

ε
+ ln

(
μ2

μ2
b

))
ln

(
μ2

Q2δ2

)

+π2

12
+ O(ε)

)
. (46)

This result agrees with that of Ref. [72] despite the differ-
ent (but closely related) regularisation of the rapidity diver-
gences.

A couple of additional comments are in order. First,
from the second line of Eq. (46), we immediately see that
Ŝ[1]
i (bT = 0, Q, δ, ε) = 0. This reflects the fact that the soft

function must unitarise for bT = 0. Considering the leading-
order result in Eq. (44), this requirement is indeed fulfilled
to one-loop accuracy by our calculation. It is also interesting

to observe that Ŝ[b+b†]
i is UV finite:

lim
ε→0

Ŝ[b+b†]
i (bT , Q, μ, δ, ε) = 4Ci

(
1

2
ln2

(
Q2δ2

μ2
b

)
+ π2

12

)
.

(47)

This was to be expected because the transverse displacement
bT regulates the UV divergence in real diagrams. This is a
further consistency check of the calculation.

We can now renormalise the soft function. This is done
multiplicatively as in Eq. (5). Considering the first two orders
of the bare soft function, Eqs. (44) and (46), the renormali-
sation constant ZS,i in the MS scheme reads 7

ZS,i (bT , Q, ζ, μ, δ, ε) = 1

−as4Ci

[
S2
ε

ε2 + Sε

ε
ln

(
μ2

Q2δ2

)
+ ln

(
μ2

μ2
b

)
ln

(
ζ

Q2

)]

7 Notice that in the MS scheme, poles in Sε/ε, rather than in 1/ε, are
subtracted. The expansion in the second line of Eq. (46) is purposely
written in terms of Sε/ε in view of renormalisation in the MS scheme.
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Fig. 3 Non-vanishing one-loop
diagrams contributing to the soft
function. The vertical bars
indicate the final-state cuts that
set all partons that they cross on
the mass shell

(a) (b)

+O(a2
s ). (48)

Here, the arbitrary rapidity scale ζ is introduced as a proxy
to parameterise finite O(as) contributions. Using this renor-
malisation constant, one obtains the first two coefficients of
the perturbative expansion of the renormalised soft function:

S[0]
i (bT , μ, ζ, δ) = 1,

S[1]
i (bT , μ, ζ, δ) = 2Ci

(
4 ln

(
μ2

μ2
b

)
ln δ + ln2

(
μ2

μ2
b

)

−2 ln

(
μ2

μ2
b

)
ln

(
μ2

ζ

)
+ π2

6

)
. (49)

Evidently, S[1]
i is still affected by a rapidity divergence

for δ → 0. This divergence is precisely what is needed to
cancel an analogous divergence of the unsubtracted GTMD
correlator. Indeed, plugging S[1]

i into Eq. (42), one finds

C[1]
i/k(x, κ,bT , μ, ζ )

= −P [0]
i/k(x, κ) ln

(
μ2

μ2
b

)
+ R[1]

i/k(x, κ)

−δikδ(1 − x)2Ci

[
1

2
ln2

(
μ2

μ2
b

)

−
(
Ki + ln

(
μ2

(1 − ξ2)ζ

))
ln

(
μ2

μ2
b

)
+ π2

12

]
, (50)

where the rapidity divergence has cancelled, leaving an
explicitly finite result. We now just need to compute the resid-
ual functions R[1]

i/k to complete the picture.

2.5 The unsubtracted GTMD correlators

In this section, we present the results for the one-loop unsub-
tracted parton-in-parton GTMD correlators �i/k as defined
in Eq. (2). This calculation is functional to the extraction of
the residual functions R[1]

i/k and of the renormalisation con-
stant Z�,i in Eq. (6).

Practically speaking, the computation is closely related to
that of the splitting functions P [0]

i/k presented in Ref. [57].

As already discussed in Sect. 2.3, the real contribution to
the unsubtracted parton-in-parton GTMD �

[1],real
i/k is a sim-

ple generalisation of the real contribution to the respective
GPD F [1],real

i/k (see Eq. (29)). In addition, as again discussed

in Sect. 2.3, the virtual contribution �
[1],virt
i/k coincides with

F [1],virt
i/k . The only new element w.r.t. Ref. [57] is that we need

to retain not only the pole part of the correlator but also the
first finite correction in the expansion in powers of ε. This is
precisely where the residual functions R[1]

i/k reside.
The main difference between the theoretical setup of this

work and that of Ref. [57] is the choice of the gauge. While
here we opted for the Lorentz gauge, in Ref. [57] the light-
cone gauge was used. However, a simple analysis shows that
this difference is immaterial, at least at one-loop accuracy.
The reasoning runs as follows. The GPD correlators are by
construction gauge-invariant, signifying that the light-cone-
gauge result of Ref. [57] must coincide with a calculation in
Lorenz gauge.8 Now, the differences between the GPD and
the GTMD correlators are

1. a transverse displacement of the operator that causes the
appearance of a phase in the real diagrams (see Sect. 2.3);
and

2. the appearance of a transverse Wilson line at light-cone
infinity.

We have already discussed in Sect. 2.3 how to take care of
the phase, while, in Lorentz gauge, the transverse Wilson line
gives no contribution. The conclusion is that, at least at one
loop, the light-cone-gauge calculation of the GPD correlators
can be entirely “recycled” to obtain the GTMD correlators in
Lorentz gauge. Based on this conclusion, we refer the reader
to Ref. [57] for the details of the calculation. Here, we only
report the result for the bare unsubtracted GTMD correlators:

�̂
[1]
i/k(x, ξ,bT , μ, δ)

8 I have explicitly verified this statement in the q/q channel by re-
performing the calculation of Ref. [57] in Lorentz gauge.
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= Dk(ξ)

[
− Sε

εIR
P [0],real
i/k (x, κ, δ) − P [0],real

i/k (x, κ, δ)

× ln
μ2

μ2
b

+ R[1]
i/k(x, κ)

+δikδ(1 − x)2Ci

(
Ki − ln(1 − ξ2) + 2 ln δ

) μ2εSε

εUV

+O(ε)

]
, (51)

where we have labelled the poles as IR or UV. Using the
leading-order result

�̂
[0]
i/k(x, ξ,bT , μ, δ) = Dk(ξ)δikδ(1 − x), (52)

that descends from Eq. (20), we can extract the MS renor-
malisation constant Z�,i as defined in Eq. (6) up to one loop:

Z�,i (ξ, μ, δ, ε)

= 1 + as2Ci

(
Ki − ln(1 − ξ2) + 2 ln δ

) Sε

ε

+O(a2
s ). (53)

The residual functions R[1]
i/k in Eq. (51) are best given for

non-singlet and singlet GTMD combinations, respectively
defined as

�− =
∑
q

�q/k − �q/k, �+ =
(∑

q �q/k + �q/k

�g/k

)
.

(54)

The sums run over the active quark flavours and the anti-
quark correlators are defined as

�q/k(x, . . .) = −�q/k(−x, . . .). (55)

In addition, it is convenient to introduce the following decom-
position:

R±,[1](y, κ)

= θ(1 − y)R±,[1]
1 (y, κ) + θ(κ − 1)R±,[1]

2 (y, κ). (56)

In the non-singlet sector one finds
{R−,[1]

1 (y, κ) = 2CF
1−y

1−κ2y2 ,

R−,[1]
2 (y, κ) = 2CF

(1−κ)y
1−κ2y2 ,

, (57)

while the singlet results are{
R+,[1]

1,qq (y, κ) = R−,[1]
1 (y, κ),

R+,[1]
2,qq (y, κ) = 2CF

1−κ
κ(1−κ2 y2)

,

{R+,[1]
1,qg (y, κ) = 4n f TR

y(1−y)
(1−κ2 y2)2 ,

R+,[1]
2,qg (y, κ) = 4n f TR

(1−κ)y2

(1−κ2 y2)2 ,⎧⎨
⎩
R+,[1]

1,gq (y, κ) = 2CF
(1−κ2)y
1−κ2 y2 ,

R+,[1]
2,gq (y, κ) = −2CF

1−κ2

κ(1−κ2 y2)
,

⎧⎨
⎩
R+,[1]

1,gg (y, κ) = 8CA
κ2 y(1−y)
(1−κ2y2)2 ,

R+,[1]
2,gg (y, κ) = CA

(1−κ)(1+κ−(1−7κ)κ2y2)

κ(1−κ2 y2)2 .
(58)

All the expressions for R1 and R2 above are singular at
y = 1/κ . It turns out that this singularity cancels out in
the combination in Eq. (56) for R−,[1], R+,[1]

qq , and R+,[1]
gq .

Unfortunately, this does not happen for R+,[1]
qg and R+,[1]

gg .
Specifically, for κ > 1 and y < 1, one is left with undefined
integrals of the following kind:

J =
∫ 1

x

dy

1 − κy
f (y). (59)

Nevertheless, appropriately interpreting these integrals as
principal values, one can use a trick presented in Ref. [57] to
obtain a numerically amenable representation that reads

J =
∫ 1

x

dy

1 − κy

[
f (y) − f

(
1

κ

)(
1 + θ (κy − 1)

1 − κy

κy

)]

+ f

(
1

κ

)
1

κ
ln

[
κ(1 − κx)

κ − 1

]
. (60)

However, these integrals are clearly divergent for κ → 1+
because in this limit, the pole of the integrand becomes an
end-point singularity. As a consequence, as we will explicitly
see in Sect. 3, the GTMD correlator will manifest a divergent
behaviour around x = ξ . We also notice that these diver-
gences, being limited to R+,[1]

qg and R+,[1]
gg , emerge from the

convolution of the matching functions with the gluon GPD.
Therefore, one may argue that a vanishing gluon GPD at
x = ξ would guarantee the finiteness of the GTMD corre-
lator at x = ξ . However, this constraint seems to be hard to
fulfil in full generality in that it should hold at all scales.

In this respect, I can foresee two possible scenarios. In
the first scenario, the gluon GPD obeys a specific functional
constraint such that it remains null at x = ξ at all scales.
Incidentally, this constraint seems to be possible to realise
by means of the so-called “shadow” GPDs recently intro-
duced in Ref. [80]. In the second scenario, the gluon GPD is
different from zero at x = ξ , causing the GTMD correlator to
diverge in this point. To the best of my knowledge, while even
a discontinuity at x = ξ at the level of GPDs would cause
the breaking of leading-twist collinear factorisation in deeply
virtual Compton scattering (DVCS) [81], a divergent GTMD
correlator at x = ξ is not in principle forbidden. It is interest-
ing to observe that, beyond the leading twist, discontinuities
at x = ξ in DVCS partonic amplitudes do appear even in the
collinear case; see for example Refs. [82–84]. However, in
those papers, it has been shown that these discontinuities are
such that they do not break factorisation within the relevant
accuracy.9

9 I thank B. Pasquini for having drawn my attention to these works.
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As discussed in Ref. [85] in the context of DVCS, it can
also be argued that the singularity at x = ξ is a consequence
of a kinematic enhancement due to the emission of soft-
collinear gluons that spoil the perturbative convergence in
this region. Analogously to the case of soft gluons in the
threshold region x → 1 in deep-inelastic scattering [86,87],
their emission can be resummed to all orders in the strong
coupling αs producing better-behaved results around x = ξ

[85].10 In any event, this point deserves further investigations.

2.6 Forward limit of the matching functions

To the best of my knowledge, this is the first calculation of
GTMD matching functions to one-loop accuracy ever per-
formed. As such, there are no previous calculations that can
be used to compare these results to. However, these matching
functions need to tend to their well-known forward counter-
part used to match TMDs onto collinear PDFs.

To perform this check, we first observe that the structure
of Eq. (50) is the same as that found in the TMD case: see for
instance Eq. (4.8) of Ref. [58]. The forward limit is realised
by taking the limit ξ → 0 that is equivalent to κ → 0. In this
limit, we have already verified in Ref. [57] that the GPD split-
ting functions P [0]

i/k tend to the Altarelli–Parisi splitting func-
tions. We can therefore safely simplify Eq. (50) by setting
μ = μb in such a way that all logarithms vanish. Expressing
the matching functions in the basis defined in Eq. (54), we
find

C[1],−(y, κ,bT , μb, ζ ) = R[1],−(y, κ) − Cq
π2

6
δ(1 − y),

C[1],+
ik (y, κ,bT , μb, ζ ) = R[1],+

ik (y, κ) − Ci
π2

6
δikδ(1 − y).

(61)

When taking the limit κ → 0, the term proportional to θ(κ −
1) in the decomposition of R[1],± in Eq. (56) drops. This
leaves only the term proportional to θ(1− y) that, introduced
in the convolution integral as defined in Eq. (17), turns it into
a standard Mellin convolution. Therefore, all we need to do
is to take the limit κ → 0 of the functions R[1],±

1 . This is
easily done using Eqs. (57) and (58), and the result is

lim
κ→0

C[1],−(y, κ,bT , μb, ζ ) = lim
κ→0

C[1],+
qq (y, κ,bT , μb, ζ )

= 2CF (1 − y) − CF
π2

6
δ(1 − y),

lim
κ→0

C[1],+
qg (y, κ,bT , μb, ζ ) = 4n f TR y(1 − y),

lim
κ→0

C[1],+
gq (y, κ,bT , μb, ζ ) = 2CF y,

lim
κ→0

C[1],+
gg (y, κ,bT , μb, ζ ) = −CA

π2

6
δ(1 − y), (62)

10 I am grateful to C. Mezrag for pointing me to Ref. [85].

that indeed coincides with the TMD results (see, e.g.,
Ref. [60]).

2.7 Anomalous dimensions

As discussed in Sect. 2.2, the knowledge of the renormalisa-
tion constants of soft function and unsubtracted GTMD cor-
relators allows us to extract the anomalous dimensions that
govern the evolution of the normalised GTMD correlators
(see Eq. (8)). Using Eq. (9) with the normalisation constants
ZS,i and Z�,i respectively given in Eqs. (48) and (53), such
that

Z1/2
S,i Z

−1
�,i = 1 − as2Ci[

S2
ε

ε2 + Sε

ε

(
Ki + ln

(
μ2

(1 − ξ2)Q2

))

+ ln

(
μ2

μ2
b

)
ln

(
ζ

Q2

)]
+ O(a2

s ), (63)

one immediately finds

Ki (bT , μ) = −as4Ci ln

(
μ2

μ2
b

)
+ O(a2

s ),

γi (μ, ζ ) = as4Ci

(
Ki + ln

(
μ2

(1 − ξ2)ζ

))
+ O(a2

s ).

(64)

Notice that for computing the total derivative of Z1/2
S,i Z

−1
�,i

w.r.t. μ as prescribed by the second equation in Eq. (9), we
have used the identity

d ln[Z1/2
S,i Z

−1
�,i ]

d ln μ
= ∂ ln[Z1/2

S,i Z
−1
�,i ]

∂ ln μ

+ 2(−εas + β(as))
∂ ln[Z1/2

S,i Z
−1
�,i ]

∂as
, (65)

where β(as) = O(a2
s ) is the four-dimensional QCD β func-

tion that governs the running of the strong coupling:

das
d ln μ2 = β(as(μ)). (66)

The cusp anomalous dimension is extracted using Eq. (10)
and equals11

γK ,i (as) = as8Ci + O(a2
s ). (67)

11 Notice that deriving either Ki w.r.t. μ or γi w.r.t. ζ consistently gives
the same result.
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Finally, Eqs. (64) and (67) allow us to extract the leading-
order coefficients:

K [0]
i = 0,

γ
[0]
F,i = 4Ci Ki ,

γ
[0]
K ,i = 8Ci .

(68)

These results coincide with those obtained in the TMD frame-
work (see, e.g., Ref. [88] and references therein for a recent
overview). It is therefore legitimate to expect that the same
holds true to all orders such that we can use the known higher-
order corrections to these quantities to evolve GTMDs to
higher accuracies. We will do so in the next section.

3 Numerical setup

In this section, we present numerical results showing how the
matching functions computed above can be used to recon-
struct realistic GTMDs by combining: a sensible model for
GPDs along with collinear off-forward evolution, perturba-
tive TMD evolution, and a model for the non-perturbative
transverse effects as determined by recent TMD extractions.

The limitation of this procedure is that it can only be
applied to GTMDs that have, at the same time, a projec-
tion on a GPD and on a TMD.12 This largely restricts the
range of possibilities. In addition, to give an estimate of such
GTMDs, it is highly desirable that the GPDs and TMDs on
which they project are, to some extent, phenomenologically
known.

Using the results of Refs. [35,38], the renormalised
GTMD correlator, Eq. (7), has the following tensorial decom-
position:

Fi/H = 1

2M
u(Pout)

[
Fi

1,1 + iσ kT n

n · P Fi
1,2 + iσ�T n

n · P Fi
1,3

+ iσ kT �T

M2 Fi
1,4

]
u(Pin), (69)

with u and u being, respectively, the spinors of the incoming
and outgoing hadron H having mass M , and where we have
used the shorthand notation aμbνσ

μν ≡ σ ab. The scalar
coefficients F1,l , with l = 1, . . . , 4, are the actual GTMD
distributions (GTMDs for short). Each of them can be split

12 By projection of a GTMD on a GPD, it is meant the integral of the
former over the partonic transverse momentum kT or, alternatively (and
perhaps more correctly), the GPD on which the GTMD matches at large
kT . While the projection of a GTMD on a TMD is its forward limit,
� → 0. It is well known that several GTMDs do not have projections
either on GPDs or on TMDs, in the sense that their contribution to the
correlator vanishes by kinematics [35,38].

into a T-even and a T-odd part, both real, as follows:

Fi
1,l = Fi,e

1,l + i Fi,o
1,l . (70)

The peculiarity of Fi,e
1,l (F

i,o
1,l ) is that it conserves (flips) the

sign upon swapping of the Wilson line from past to future
pointing and vice versa.

The one GTMD that fulfils all the requirements stated
above is Fi,e

1,1. As a matter of fact, in bT space and at small

bT , Fi,e
1,1 matches on the following combination of GPDs:

Fi,e
1,1(x, ξ, bT , t, μ, ζ ) = Ci/j (x, κ, bT , μ, ζ )

⊗
x

[
(1 − ξ2)Hj (x, ξ, t, μ) − ξ2E j (x, ξ, t, μ)

]
, (71)

where we have replaced bT with bT everywhere because Fi,e
1,1

does not depend of the direction on bT . Currently, different
models for Hj and E j exist. In addition, the forward limit of
Fi,e

1,1 is the fully unpolarised TMD f1,i , that is

lim
ξ,t→0

Fi,e
1,1(x, ξ, bT , t, μ, ζ ) = f1,i (x, bT , μ, ζ ). (72)

Accurate phenomenological determinations from data of
f1,i , with i = q, have recently been presented.

In order to compute Fi,e
1,1 numerically, we employ a

standard procedure used in TMD factorisation (see, e.g.,
Ref. [15]). Let us first state the complete formula and then
comment on it:

Fi,e
1,1(x, ξ, bT , t, μ, ζ )

= Ci/j (x, κ, b∗, μb∗ , μ
2
b∗)

⊗
x

[
(1 − ξ2)Hj (x, ξ, t, μb∗) − ξ2E j (x, ξ, t, μb∗)

]

×Ri

[
(μ, ζ ) ← (μb∗ , μ

2
b∗)
]

× fNP(x, bT , (1 − ξ2)ζ ). (73)

First, we have introduced the so-called b∗ prescription with
the following particular functional form [14,15,17]:

b∗ ≡ b∗(bT ) = b0

Q

⎛
⎜⎜⎝

1 − exp

(
− b4

T Q
4

b4
0

)

1 − exp

(
− b4

T
b4

0

)
⎞
⎟⎟⎠

1
4

, (74)

and the associated scale μb∗ = b0/b∗(bT ). The scale Q
is usually identified with the physical hard scale of the
process under consideration. In all cases, one must have
Q � μ � √

ζ . Since the kT -space GTMD is obtained
through a Fourier transform of the bT -space expression, the
scope of the b∗ prescription is to prevent the scale μb∗ from
becoming too low to enter the non-perturbative regime when
bT → ∞. Indeed, if μb∗ became of the order of �QCD or
smaller, any perturbative calculation would be invalidated.
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To this purpose, Eq. (74) is engineered in a way that

lim
bT →∞ μb∗(bT ) = 1 GeV. (75)

In addition, Eq. (74) is also such that

lim
bT →0

μb∗(bT ) = Q. (76)

This last property is not strictly needed, but it helps keep
under better control the large-kT region [89,90].

While the b∗ prescription ensures the applicability of per-
turbation theory, it remains necessary to keep into account
non-perturbative transverse effects. This is done through
the function fNP in the third line of Eq. (73) that parame-
terises non-perturbative large-bT effects. See Refs. [15–17]
for recent global determinations of fNP from experimental
data in the TMD framework. For our numerical estimates,
we will use the determination of fNP from Ref. [15], hence-
forth referred to as PV19 (for Pavia 2019), for both quark
and gluon distributions.13 fNP in Eq. (73) only depends on
x , bT , and the combination (1−ξ2)ζ (the latter related to the
evolution pattern). However, in the GTMD case, this function
should in principle also depend on ξ and t . Since fNP from
PV19 is obtained from a fit of TMDs where ξ and t are iden-
tically zero, we do not have access to the non-perturbative
transverse dependence on these variables. Nonetheless, this
dependence is expected to be mild in that most of the effect
is accounted for by the collinear GPDs.14

The first line of Eq. (73) corresponds to the match-
ing onto the collinear GPDs as in Eq. (71). However, the
scales at which the matching is performed are chosen to be
μ = √

ζ = μb∗ so that the matching functions are free of
potentially large logarithms. The GPDs Hi and Ei are com-
puted using the Goloskokov–Kroll (GK) model [91–93] at
the initial scale μ0 = 2 GeV and appropriately evolved to
μb∗ through collinear evolution.

The evolution to the hard scales μ and ζ is provided by
the factor Ri in the second line of Eq. (73), often referred to
as Sudakov form factor. This factor results from the solution
of the evolution equations in Eq. (16) and reads

Ri

[
(μ, ζ ) ← (μb∗ , μ

2
b∗)
]

= exp

{
Ki (b∗, μb∗) ln

√
(1 − ξ2)ζ

μb∗
+
∫ μ

μb∗

13 Notice that the fNP extracted in Ref. [15] strictly applies to quark
distributions. Since, to the best of my knowledge, there is no comparably
reliable analogue for the gluon, we will use the same fNP also for this
distribution.
14 The argument behind this statement is the fact that fNP is effectively
obtained as a ratio of GTMDs computed a different values of bT ; see
for example Ref. [15] for a discussion in the TMD framework. As a
consequence, any dependence on kinematic variables is expected to
be relatively mild. This turns out to be the case for the longitudinal
momentum fraction x [15].

dμ′

μ′

[
γF,i (αs(μ

′)) − γK ,i (αs(μ
′)) ln

√
(1 − ξ2)ζ

μ′

]}
.

(77)

As discussed in Sect. 2.2, the anomalous dimensions Ki (b∗, μb∗),
γF,i , and γK ,i are computable in perturbation theory, and they
(are expected to) coincide with their TMD counterparts.

Finally, we can obtain the Fi,e
1,1 in kT space by taking a

2D Fourier transform of Eq. (73) w.r.t. bT that, with abuse
of notation, gives

Fi,e
1,1(x, ξ, kT , t, μ, ζ )

= 1

2π

∫ ∞

0
dbT bT J0(kT bT )Fi,e

1,1(x, ξ, bT , t, μ, ζ ), (78)

where J0 is a Bessel function of the first kind.
The theoretical precision of the formula in Eq. (73) is usu-

ally expressed in terms of logarithmic accuracy. Table 1 of
Ref. [15] tells us that the knowledge of the matching func-
tions Ci/j up to O(αs) would in principle allow us to reach
next-to-next-to-leading logarithmic (NNLL) accuracy. In the
case of GTMDs, the only obstacle to reaching this accuracy
is the evolution of collinear GPDs that, as of today, is pub-
licly available only up to leading order [57]. However, in the
following, we will use a NNLL-accurate setup, except for the
GPD evolution for which theO(αs) (i.e. leading-order) split-
ting functions are used. This practically means that Ki and
γF,i are computed at O(α2

s ), γK ,i at O(α3
s ), Ci/j at O(αs),

and the evolution of the strong coupling αs is computed using
a β function truncated at O(α3

s ). In the following, in order to
simplify the presentation, we will set μ = √

ζ = Q.
The numerical implementation of the GTMD in Eq. (73)

and its Fourier transform Eq. (78) makes use of a compound
of publicly available tools. Specifically, the GK model for
the GPDs Hi and Ei at the initial scale μ0 is provided by
PARTONS [94]15; their collinear evolution and the pertur-
bative ingredients relevant to the matching and the Sudakov
form factor are provided by APFEL++ [95,96]16; the non-
perturbative function fNP and the Fourier transform are
instead provided by NangaParbat [15].17 The resulting
code is public18 and can be used to reproduce the results
shown below.

We can finally present a selection of quantitative results.
We start with Fig. 4 that shows the behaviour w.r.t. kT of
the up-quark GTMD Fu,e

1,1 at fixed values of x , ξ , and t for
different values of the hard scale Q = μ = √

ζ . The curve
at the GPD initial scale Q = μ0 is also shown. The typical
broadening of the kT distribution caused by the Sudakov

15 https://partons.cea.fr/partons/doc/html/index.html.
16 https://github.com/vbertone/apfelxx.
17 https://github.com/MapCollaboration/NangaParbat.
18 https://github.com/vbertone/GTMDMatchingFunctions.
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Fig. 4 x Fu,e
1,1 (up quark) vs kT at x = 0.2, ξ = 0.1, and t = −0.1 GeV2

for four different values of the hard scale Q = μ = √
ζ : Q = 2 GeV

(blacked dashed curve, GPD model at the initial scale μ0), Q = 5 GeV
(solid red curve), Q = 10 GeV (solid blue curve), and Q = 100 GeV
(solid green curve). Fu,e

1,1 is computed at NNLL accuracy (see text)
using the GK model for the GPDs and the PV19 determination for the
non-perturbative transverse component

Fig. 5 x Fu,e
1,1 (up quark) vs kT at x = 0.2, t = −0.1 GeV2, and

Q = μ = √
ζ = 10 GeV for five different values of the skewness:

ξ = 0 (blacked dashed curve), ξ = 0.1 (solid red curve), ξ = 0.3
(solid blue curve), ξ = 0.5 (solid green curve), and ξ = 0.7 (solid
orange curve). Fu,e

1,1 is computed at NNLL accuracy (see text) using
the GK model for the GPDs and the PV19 determination for the non-
perturbative transverse component

form factor as Q increases is clearly observed [56,97]. We
also note that the curve at μ0 becomes negative at large kT as
a consequence of the specific functional form fNP used here.
The gluon distribution behaves very similarly; therefore, we
do not show the corresponding plot.

It is also interesting to look at how the kT dependence of
Fi,e

1,1 changes with ξ . To this purpose, Fig. 5 shows curves
for the up-quark distribution at fixed values of x , t , and Q
for different values of ξ . The black dashed line corresponds
to ξ = 0 that is, up to a fully non-perturbative t depen-

Fig. 6 x2Fg,e
1,1 (gluon) vs x at kT = 1 GeV, t = −0.1 GeV2, and

Q = μ = √
ζ = 10 GeV for four different values of the skewness:

ξ = 0.1 (red curve), ξ = 0.3 (blue curve), ξ = 0.5 (green curve), and
ξ = 0.7 (orange curve). Fg,e

1,1 is computed at NNLL accuracy (see text)
using the GK model for the GPDs and the PV19 determination for the
non-perturbative transverse component

dence of the underlying GPDs, the “partonic” forward limit.
The behaviour in ξ is clearly non-monotonic but exhibits a
strong suppression as the value of ξ approaches one. Again,
the gluon distribution does not present any further salient
features and thus is not shown.

Finally, we consider the behaviour of Fi,e
1,1 as a function

of the longitudinal momentum fraction x . As pointed out in
Sect. 2.5, R+,[1]

qg and R+,[1]
gg cause a divergence at x = ξ in

both quark and gluon GTMD correlators. To study this effect,
we concentrate on the gluon GTMD Fg,e

1,1 , and in Fig. 6, we
show this distribution (weighted by x2 to improve the read-
ability of the plot) as a function of x at fixed values of kT ,
t , and Q for different values of ξ . It is evident that indeed
the curves exhibit a divergence at x = ξ that is a mani-
festation of the divergence of the principal-valued integral
in Eq. (60) for κ → 1+. The conclusion is that GTMDs
obtained through perturbative matching onto GPDs beyond
tree level are undefined at x = ξ . Whether this is an accept-
able feature of GTMDs remains an open question. As already
mentioned in Sect. 2.5, a possibility to remove the divergence
is to require the gluon GPDs to vanish at x = ξ at all scales.

4 Conclusions

The main result of this paper is the calculation of the com-
plete set of one-loop unpolarised GTMD matching functions.
These perturbative functions allow one to express GTMDs
at large partonic transverse momentum kT (or equivalently
at low bT ) in terms of GPDs. They are obtained employ-
ing a rapidity-divergence-free definition of the GTMD cor-
relator [56] that combines the soft function with the unsub-

123



941 Page 16 of 18 Eur. Phys. J. C (2022) 82 :941

tracted GTMD correlator. In order to carry out the calcula-
tion, the principal-value regulator for rapidity divergences
has been used, allowing us to obtain one-loop results for the
soft function, confirming previous results, and the unsub-
tracted GTMD correlator, that are instead original. By renor-
malising the UV divergences of these objects, we have also
extracted the one-loop anomalous dimensions, again con-
firming known results. In addition, as a consistency check,
we have verified that in the limit ξ → 0, the one-loop GTMD
matching functions thus obtained reproduce the well-know
TMD results.

In the last part of the paper, we have presented a quan-
titative study by implementing the matching functions and
combining them with other perturbative and non-perturbative
ingredients necessary to fully reconstruct the GTMDs Fi,e

1,1,
with i = q, g, at NNLL accuracy. We have studied their kT
dependence along with the scale evolution and the depen-
dence on the skewness ξ . An interesting consequence of our
calculation is that, beyond tree level, GTMD matching func-
tions yield GTMDs that exhibit a pole at x = ξ . The origin
of this singularity is unclear and may signal the need of addi-
tional theoretical constraints on the underlying gluon GPDs.
A more extensive investigation on this point is left for a future
study. Finally, we stress that the numerical results presented
here are readily accessible in that all of the relevant ingredi-
ents are available in public codes. A code that consistently
combines them to reproduce the plots of this paper is also
released with the paper.

The calculation presented here is limited to the unpo-
larised twist-2 Lorentz structure (see Eq. (2)). The extension
of this study to the remaining twist-2 structures is planned
for the future. This will require computing the corresponding
splitting functions along the lines of Ref. [57] and the one-
loop corrections to the unsubtracted GTMD correlators. A
different approach based on the background-field technique
and working in position space at the level of operators (and
not matrix elements) was proposed in Ref. [98]. Originally
used to compute the operator product expansion of TMDs,
this method can potentially be used also to extract the GTMD
matching functions. Once this calculation will be done, it will
be interesting to compare the ensuing expressions against the
results obtained in this paper.

Phenomenological applications of the GTMDs presented
here are also envisaged. Specifically, the computation of mea-
surable (and possibly measured) cross sections using the
GTMDs presented in this paper would allow us to gauge the
accuracy of the calculation and the reliability of the underly-
ing non-perturbative ingredients, such as the GPDs and the
TMDs.
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