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Abstract We investigate the precessing and periodic orbits
of a test timelike particle around the black-bounce-Reissner–
Nordström spacetime which is characterized by its charge
and bounce parameter. Its marginally bound orbit and inner-
most stable circular orbit are obtained in the exact forms.
We pay closely attention to its precessing orbits and find
the resulting relativistic periastron advance. We also study
its periodic orbits and demonstrate that small variations of
the charge and bounce parameter can make the motion jump
among the periodic and precessing orbits. In these two kinds
of orbits, we find a distinct degeneracy that some specific
combinations of the charge and bounce parameters can gen-
erate exactly the same orbital motion in the black-bounce-
Reissner–Nordström spacetime, which can also mimic those
of the Schwarzschild black hole. In order to break such a
degeneracy, we make use of the precession of S2 star around
Sgr A* detected by GRAVITY together with the shadow
diameter of Sgr A* measured by Event Horizon Telescope
and find preliminary bounds on the charge and bounce param-
eter.

1 Introduction

The detection of gravitational waves [1–6] and the direct
images of the supermassive black holes in the centers of
galaxy M87 [7–12] and of the Galaxy [13–18] reveal that
black holes, predicted by the Einstein’s general relativity
more than one hundred years ago, are very common in the
Universe. As an ideal laboratory for examining and test-
ing the theories of gravity in the strong fields, a black hole
might be poisoned by its event horizon that would cause the
information-loss problem, and by its central singularity that
would break the general relativity down. In order to erase the
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singularity, a number of ways have been proposed, such as
bouncing by quantum pressure [19–21], building a regular
core [22–25], and forming a quasi-black hole [26–29] (see
Ref. [30] for a review).

In the past few years, the family of black-bounce space-
times has been paid much attention (see Ref. [31] for a brief
review). They are built under the general relativity, glob-
ally free from curvature singularities, and smoothly interpo-
late between regular black holes and traversable wormholes.
The simplest black-bounce spacetime is the black-bounce-
Schwarzschild spacetime [32], which can reduce to the Sch-
warzschild spacetime and the Ellis wormhole [33] as its bou-
nce parameter and mass vanish, respectively. Its gravitational
properties and astrophysical features have been intensively
investigated [34–41], and it has been extended to several new
classes [42–44].

In this work, we focus on the black-bounce-Reissner–
Nordström spacetime [45], which is a charged extension
of black-bounce-Schwarzschild spacetime and can be inter-
preted as standard Maxwell electromagnetism with an
anisotropic fluid. It is well accepted that astrophysical objects
must be without electric charges because of quickly neu-
tralizing by environmental plasma. But the sounds that a
black hole might be charged by some mechanisms, such as
accumulating charged matter, induction through the rotation
in the external magnetic field [46] and inheriting from its
charged collapsed progenitor [47], can also be heard. It is
likely that the supermassive black hole Sgr A* in the Galac-
tic center might have transient and small positive charge
[48], implying studies on the charged spacetimes may go
beyond the territory of theoretical interests. Although we
have investigated the gravitational-lensing properties of the
black-bounce-Reissner–Nordström spacetime, it turns out
that current observations might constrain its charge only but
leave its bounce parameter untouched [49]. Therefore, in the
present work, we will consider the bound orbits around the
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black-bounce-Reissner–Nordström spacetime, especially the
precessing and periodic motion, hoping to provide more clues
for testing such a spacetime.

Since the advance of the perihelion of Mercury becomes
one of the earliest evidences of the general relativity [50],
precessing orbits have been a promising tool for testing alter-
native theories of gravity. The precessing motion in various
gravitational fields, such as those of the planets around the
Sun [51–64], of the exoplanets around other stars [65–68], of
the binary pulsars [69–74] and of the stars around Sgr A* [75–
84], have also been investigated intensively. In particular, the
detection of the Schwarzschild precession of S2 around Sgr
A* by GRAVITY [84] lays the observational foundation for
testing the theories of gravitation and detecting new physics
in the surroundings of the supermassive black hole.

As another subclass of the bound orbits, the periodic orbits
will emerge when a timelike particle is in the vicinity of
a black hole, showing zoom-whirl patterns [85–88]. This
strong-field feature can be indicated by the ratio of the aver-
age angular frequency to the radial frequency per radial cycle
[89]. When the ratio is irrational, the particle will depict a
precessing orbit; otherwise, it will go back to the initial loca-
tion exactly in the finite time and trace out a perfectly periodic
orbit. Since the rational numbers are dense on the real num-
ber domain, a generic precessing orbit with an irrational ratio
can be sufficiently approximated by a close-by periodic one.
Though the zoom-whirl pattern of a periodic orbits has yet
been observed, the periodic orbits might be helpful for faster
computation of adiabatic extreme mass-ratio inspirals [90]
and for providing information about strong-field properties of
the spacetime that is unavailable from the precessing orbits.
Therefore, the periodic orbits around a Schwarzschild black
hole [89], a Kerr black hole [90–94] and other black holes
[95–106], as well as those in binary black holes [107,108]
have been intensively examined.

Triggered by these theoretical and observational pro-
gresses and in order to further explore the black-bounce-
Reissner–Nordström spacetime, we will intensively inves-
tigate the precessing and periodic orbits around it in this
work, providing more information about its signatures in the
geodesic motion. The outline of this paper is as follows.
In Sect. 2, we briefly review the black-bounce-Reissner–
Nordström spacetime and investigate the bound orbits,
including the marginally bound orbit and innermost stable
circular orbit of a timelike particle around it. We focus on its
precessing motion and estimate the bounds on the charge and
bounce parameter based on the observations of GRAVITY
and Event Horizon Telescope (EHT) in Sect. 3. In Sect. 4,
we examine the periodic orbits around it and pay close atten-
tion to their transition with respect to small variations of the
charge and the bounce parameter. Conclusions and discus-
sion are presented in Sect. 5.

2 Spacetime and bound orbits

2.1 Metric

The black-bounce-Reissner–Nordström spacetime can be
regarded as the solution to the electrovac Einstein field
equations of the general relativity in the curvature coordi-
nates (t, r, θ, ϕ) with an interpretation as standard Maxwell
electromagnetism with an anisotropic fluid [45]. It can be
obtained with the Reissner–Nordström spacetime by keeping
dr in the metric tensor unchanged and replacing the radial
coordinate r with

√
r2 + α2• , where α• is the bounce param-

eter with the dimension of length. Thus, the metric of the
black-bounce-Reissner–Nordström spacetime with mass m•
and the charge Q• can be written as (G = c = 1) [45]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2), (1)

where

A(r) = [B(r)]−1 = 1 − 2m•√
r2 + α2•

+ Q2•
r2 + α2•

, (2)

C(r) = r2 + α2• . (3)

It is asymptotically flat as |r | → ±∞ and is globally regular
due to the existence of the bounce parameter. The general
relativity is thought to be valid at least sufficiently far away
from its core region [45]. When α• = 0, the black-bounce-
Reissner–Nordström spacetime goes back to the Reissner–
Nordström spacetime. As the charge vanishes, i.e., Q• =
0, one recovers the black-bounce-Schwarzschild spacetime
[32]. When m• = 0 and Q• = 0, the spacetime (1) arrives at
the Ellis wormhole [33]. As Q• = 0 and α• = 0, one returns
to the Schwarzschild black hole.

The radius of the outer and inner event horizons for the
spacetime (1) are [45]

r±
H =

√(
m• ±

√
m2• − Q2•

)2

− α2•, (4)

respectively, which requires

Q2• ≤ m2• and α2• ≤
(
m• ±

√
m2• − Q2•

)2

(5)

for the existence of real r±
H . For later convenience, we define

the following dimensionless quantities as

x = r

m•
, α = α2•

m2•
and q = Q2•

m2•
, (6)
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and the rescaled bounce parameter as

λ = α

(1 + √
1 − q)2

. (7)

The condition for the existence of the outer event horizon (5)
can be rewritten as

DH = {(q, λ) | 0 ≤ q ≤ 1, 0 ≤ λ ≤ 1}, (8)

and the dimensionless radius of the outer event horizon can
be defined as

xH = r+
H

m•
= √

1 − λ
(

1 + √
1 − q

)
. (9)

As our first step in the study of geodesic motions around the
black-bounce-Reissner–Nordström spacetime, we focus on
such a spacetime with its event horizon(s) in this work and
adopt the domain (8) in the following sections. The geodesic
motions around the horizonless one will be left in our next
moves.

2.2 Bound orbits

For a timelike test particle moving freely around the black-
bounce-Reissner–Nordström spacetime, its Lagrangian can
be expressed as

2L = −A(r)ṫ2 + B(r)ṙ2 + C(r)ϕ̇2 = −1, (10)

where the particle is assumed to be confined in the equato-
rial plane θ = π/2 and a dot represents the differentiation
with respect to the proper time. We can obtain two motion
constants as

E = A(r)ṫ, (11)

L = C(r)ϕ̇, (12)

and the equation of radial motion as

ṙ2 = E2 − Veff , (13)

with the effective potential defined as

Veff = A(r)

[
1 + L2

C(r)

]
, (14)

where the relation A(r)B(r) = 1 is used. Based on Eq. (6),
the effective potential can be rewritten as

Veff =
(

1 − 2√
x2 + α

+ q

x2 + α

) (
1 + l2

x2 + α

)
, (15)

with

l = L

m•
. (16)

If a timelike particle falls to the black-bounce-Reissner–
Nordström spacetime freely from r = ∞ and ṙ = 0, it would
be finally captured into an unstable circular orbit around the
black hole with ṙ = r̈ = 0 at r = rmb which is called
marginally bound orbit, also known as zero binding energy
zoom-whirl orbit. Such a marginally bound orbit satisfies that

Veff(r) = 1 and V ′
eff(r) = 0, (17)

where ′ denotes the derivative against r . From Eq. (17), we
can obtain the dimensionless angular momentum and the
dimensionless radius of the marginally bound orbit as (see
Appendix A for details)

lmb = ymb

√
2ymb − q

y2
mb − 2ymb + q

, (18)

xmb =
√

y2
mb − λ

(
1 + √

1 − q
)2

, (19)

where

ymb = 4

3

√
4 − 3q cos θmb + 4

3
, (20)

with

θmb = 1

3
arccos

[
27q2 − 144q + 128

16 (4 − 3q)
3
2

]

. (21)

Due to the sole dependence of ymb on the charge q, lmb is
unaffected by the dimensionless bounce parameter α and it
decreases with the increment of q, as seen in Fig. 1a. Based
on Fig. 1b, we find that xmb decreases with the growth of
q and λ. Thus, for a given (q, λ) ∈ DH, the ranges of the
marginally bound orbit are

Dmb =
{
(lmb, xmb)

∣∣∣∣

√
5 + 1

2

√√
5 + 2 ≤ lmb ≤ 4,

1

2

√
10 + 6

√
5 ≤ xmb ≤ 4

}
. (22)

It also suggests that the marginally bound orbit in the black-
bounce-Reissner–Nordström spacetime could be closer to the
central object than the one of the Schwarzschild spacetime
and than the one of the Reissner–Nordström black hole for
a given q. As the charge of the spacetime (1) vanishes, i.e.,
q = 0, lmb and xmb go back to those of the black-bounce-
Schwarzschild spacetime [37]. When both q and α disappear,
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(a)

(b)

Fig. 1 The dimensionless angular momentum lmb and the dimension-
less radius xmb of the marginally bound orbit for the black-bounce-
Reissner–Nordström spacetime are shown on the domain of DH, where
lmb is independent on λ

they return to those of the Schwarzschild spacetime with
lmb,Sch = 4 and xmb,Sch = 4.

Another special case for the geodesic motion of a time-
like particle is the stable circular motion with a minimal
radius around the black-bounce-Reissner–Nordström space-
time which is known as innermost stable circular orbit. It is
important in astrophysics because it is usually regarded as
the inner edge of an accretion disk around the black hole
and plays as a transition from inspiral to plunge for a binary
merger. The innermost stable circular orbit emerges when
the maximum and minimum points of the effective potential
coincide by demanding that

Veff(r) = E2, V ′
eff(r) = 0 and V ′′

eff(r) = 0. (23)

After some calculations (see Appendix B for details), we
have

Eisco = y2
isco − 2yisco + q

yisco

√
y2

isco − 3yisco + 2q
, (24)

lisco = yisco

√
yisco − q

y2
isco − 3yisco + 2q

, (25)

xisco =
√

y2
isco − λ

(
1 + √

1 − q
)2

, (26)

where

yisco = 2
√

4 − 3q cos θisco + 2, (27)

with

θisco = 1

3
arccos

[
2q2 − 9q + 8

(4 − 3q)
3
2

]

. (28)

Since yisco only depends on the charge q, the bounce param-
eter α does not affect the Eisco and lisco. As seen in Fig. 2a
and b, both of them decrease with the increment of q, while
xisco shrinks with the growth of q and λ, see Fig. 2c. Thus, the
ranges of the innermost stable circular orbit on the domain
DH can be found as

Disco =
{

(Eisco, lisco, xisco)

∣∣∣∣
3
√

6

8
≤ Eisco ≤ 2

3

√
2,

2
√

2 ≤ lisco ≤ 2
√

3,
√

15 ≤ xisco ≤ 6
}

. (29)

It shows that the innermost stable circular orbit in the black-
bounce-Reissner–Nordström spacetime could be closer to the
central object than the one of the Schwarzschild spacetime
and than the one of the Reissner–Nordström black hole for a
given q. The innermost stable circular orbit returns to the one
of the black-bounce-Schwarzschild spacetime as q = 0 [37].
When q = λ = 0, it goes back to the one of the Schwarzsch-
ild spacetime with Eisco,Sch = 2

√
2/3, lisco,Sch = 2

√
3 and

xisco,Sch = 6.
For a timelike test particle with given E and l in the black-

bounce-Reissner–Nordström spacetime, its bound orbit can
be described by a unique number p as [89]

p = �ϕ

2π
− 1. (30)

where �ϕ is the accumulated azimuth between successive
periastron during a radial period and can be expressed as

�ϕ = 2
∫ r+

r−

dϕ

dr
dr = 2

∫ r+

r−

L

C(r)
√
E2 − Veff

dr, (31)

where Eqs. (12) and (13) have been used and r± are two
turning points of the bound orbit, i.e., the roots of ṙ2 = 0.
When p is a rational number, the test particle will move in
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(c)

(b)

(a)

Fig. 2 The energy Eisco, the dimensionless angular momentum lisco
and the dimensionless radius xisco of the innermost stable circular orbit
for the black-bounce-Reissner–Nordström spacetime are shown on the
domain DH where Eisco and lisco are independent on λ

a periodic orbit and go back to its initial location exactly
after a finite time. Otherwise, it runs a precessing orbit with
an irrational number p. The precession per revolution of a

timelike particle can be obtained as

�ω = �ϕ − 2π. (32)

After having these essentials about the bound motion
of a timelike particle around the black-bounce-Reissner–
Nordström spacetime, we will focus on the precessing and
periodic orbits in the following sections.

3 Precessing orbits

When p is an irrational number, the timelike particle will
run a precessing orbit. As a particular subclass of the bound
orbits, precessing orbits are usually used to test the theories
of gravitation. In order to evaluate the periastron advance
of the particle around the black-bounce-Reissner–Nordström
spacetime and given the relation between the standard coor-
dinate rs and the radial coordinate r that r2

s = r2 + α2• , we
parametrize its orbit as1

r(χ) =
√
r2

s − α2•, (33)

where the standard coordinate rs has a well-known parame-
trization as

rs = a(1 − e2)

1 + e cos χ
(34)

with a being the semi-major axis, e being the eccentricity
and χ being the relativistic true anomaly. Then, the periastron
r− and apoastron r+ can be obtained for χ = 0 and π ,
respectively, which are

r± =
√
a2(1 ± e)2 − α2• . (35)

With the fact that the radial velocity at the turning points r±
is zero, i.e. ṙ2± = 0, the energy and angular momentum can
be determined by Eq. (13) as

E2 = A(r+)A(r−)[C(r+) − C(r−)]
A(r−)C(r+) − A(r+)C(r−)

, (36)

L2 = [A(r+) − A(r−)]C(r+)C(r−)

A(r−)C(r+) − A(r+)C(r−)
. (37)

Thus, Eq. (31) can be rewritten as

�ϕ = 2
∫ r+

r−

dϕ

dr
dr = 2

∫ π

0

dϕ

dχ
dχ, (38)

1 We are grateful to our anonymous reviewer for his/her advice on this
parametrization.
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where

dϕ

dχ
= La2e(1 − e2)2 r(χ)− 1

2 R(χ)− 1
2 sin χ

C[r(χ)](1 + e cos χ)3 , (39)

with

R(χ) = E2 − A[r(χ)]
{

1 + L2

C[r(χ)]
}
. (40)

Although the precession of a timelike particle around the
black-bounce-Reissner–Nordström spacetime can be calcu-
lated numerically based on Eq. (38) with the given E and L
(or r±), it would be helpful to obtain it analytic approxima-
tion, which might provide some intuitive information about
how the charge and bounce parameter affect the orbital pre-
cession.

Treating the effects of the charge and the bounce parameter
as perturbation and keeping their leading terms, we can obtain
the precession of a timelike test particle around the black-
bounce-Reissner–Nordström spacetime as

�ω = 6πm•
a(1 − e2)

− Q2•π
m•a(1 − e2)

+ πα2•
(
e2 + 2

)

2a2
(
1 − e2

)2 . (41)

Here, the first term is the well-known post-Newtonian pre-
cession in the Schwarzschild spacetime, and the second and
third ones are caused by the charge and the bounce param-
eter, respectively. When α• = 0, the precession �ω returns
to the one of the Reissner–Nordström spacetime [109–112].
As Q• = 0, it goes back to the one of the black-bounce-
Schwarzschild spacetime [37].

We can clearly see that the contributions of the charge Q•
and the bounce parameter α• in the precession�ω have oppo-
site signs, leading to opposite precessing directions. There-
fore, even though both of them have some quite big values,
they would cancel out in the precession as long as

Q2• = α2•
m•

(
e2 + 2

)

2a
(
1 − e2

) , (42)

making the precession of the black-bounce-Reissner–
Nordström spacetime indistinguishable from the one of the
Schwarzschild spacetime. In general, there is a degeneracy
of Q• and α• in the precession, showing a hyperbola on the
space of parameters. Given the detection of the Schwarz-
schild precession in the orbit of S2 around Sgr A* [84], we
demonstrate the ratio fSP of the precession �ω to the Sch-
warzschild precession �ωSP for S2 on the domain of Q• and
α• in Fig. 3 where

fSP = �ω

�ωSP
, (43)

and

�ωSP = 6πm•
a(1 − e2)

. (44)

For S2 star, we adopt its eccentricity e = 0.885 and semi-
major axis a = 1031 au and mark the inferred values of fSP

provided by GRAVITY’s observations on it as [84]

fSP = 1.10 ± 0.19. (45)

The black, red and blue dashed lines represent the best-fit esti-
mation of, the lower and the upper limits of fSP, respectively,
while the dash-dotted line indicates the line of fSP = 1.
From Fig. 3, the measured S2’s precession might rule out
two regions of the parameter space for the black-bounce-
Reissner–Nordström spacetime: one with α• � 100 m• and
the other with Q• ≈ m•. However, it is unable to separate Q•
and α• by the single measurement of S2 star. It demands mea-
surements on the precession of more S stars or other kinds
of observables to break the degeneracy of Q• and α•.

Recently, directly imaging Sgr A* by EHT [13–18] might
provide such an independent observable. We showed in
Ref. [49] that the size of the photon sphere for the black-
bounce-Reissner–Nordström spacetime is determined by the
charge Q• and it is immune to the bounce parameter α•. The
size of the shadow cast by such a photon sphere also relies
on the mass and distance of Sgr A*, which was adopted from
GRAVITY’s measurement [113] for self-consistently joint
analysis with the precession of S2 measured by GRAVITY
[84]. Following the approach of the Ref. [18], we find the
bound on Q• according to the measured diameter of Sgr
A*’s shadow and then obtain the range of α• based on the
precession of S2. These results are

0 <
Q•
m•

< 0.90 and 49.3 <
α•
m•

< 75.7, (46)

which are consistent with the one of the Reissner–Nordström
spacetime (α• = 0) [112] and the one of the black-bounce-
Schwarzschild spacetime (Q• = 0) [37]. Such a big value of
α• does not suggest that Sgr A* is a traversable wormhole,
but indicates the insufficient precision of current measure-
ments. In estimation of the range of Q•, we did not take
the spin of the black-bounce-Reissner–Nordström spacetime
into account, since it is well known that the shape and size
of the shadow have a very weak dependence on the spin
and its inclination [114]. We expect it is valid at least at the
leading order and we will leave this subtle issue as our next
move. In estimation of α•, we used the best-fit values of a
and e of S2 provided by GRAVITY [84], which were deter-
mined with assuming Sgr A* as a Schwarzschild black hole.
It would make the range of α• be overestimated due to the
lack of the correlations among the orbital parameters and
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Fig. 3 The color-indexed fSP for the black-bounce-Reissner–
Nordström spacetime against the charge Q• and bounce parameter α•
is shown. The black, red and blue dashed lines represent the best-fit
estimation of, the lower and the upper limit of S2 star’s fSP, respec-
tively, while the dash-dotted line marks the line of fSP = 1 for the
Schwarzschild precession

the model parameters in our approach. Given these facts, we
suggest that one should take our results (46) as preliminary
bounds on Q• and α• and they mainly manifest the potential
of multiple kinds of observations to break the degeneracy of
parameters in constraining the properties of a spacetime.

4 Periodic orbits

Another specific subclass of the bound orbits is the periodic
orbit which possesses a rational number p. Since the distri-
bution of the rational numbers are dense on the real num-
ber domain, a generic orbit with an irrational p can be well
approximated by a nearby periodic one. A periodic orbit can
be specified by three integers (z, w, v) as [89]

p = w + v

z
, (47)

where z is the zoom number representing the number of
closed leaf in the orbit, w is the whirl number represent-
ing the number of nearly circular whirls close to periastron
per leaf, and v is the vertex number indicating the order in
which the z leaves are traced out.

Figure 4 shows an example of the variation of p with
respect of q and λ under the energy E = 0.966 and the angu-
lar momentum l = 4. We can see that p increases slowly with
the growth of λ and decreases very fast with q. Moreover,
Fig. 4 clearly demonstrates the degeneracy of p between the
charge q and the bounce parameter λ. It means that given E
and l, two different sets of (q, λ) can generate the same orbit
with the same p. Similar behavior in the orbital precession
was also discussed in Sect. 3.

Fig. 4 The number of p versus q and λ with E = 0.966 and l = 4

In order to reveal the degeneracy for the periodic orbits,
Fig. 5 shows some examples of the bound orbits around the
black-bounce-Reissner–Nordström spacetime with various
E but a fixed l = 3.98 where (X,Y ) are defined as2

(X,Y ) = m−1•
(√

r2 + α2• cos ϕ,

√
r2 + α2• sin ϕ

)
(48)

and it is easy to compare our results with those for other met-
rics in the standard coordinates. In each row, all orbits share
the same E , and both q and λ for each panel increase from
0 to some specific values. The periodic orbits in the first,
third and fifth columns have the same shape with the same
p, although they have very different (q, λ). It means that
the periodic orbits in the third and fifth columns can mimic
those around the Schwarzschild black hole in the first col-
umn (q = λ = 0). For (q, λ) between those of the columns
with the periodic orbits, the orbits might either become pre-
cessing orbits in most cases, or transition to another periodic
orbit with different p, such as the cases in panel Fig. 5(4a)
and (4b) where p jumps from 5/6 to 4/5 after small changes
of q and λ. Figure 6 also shows some examples of the bound
orbits around the black-bounce-Reissner–Nordström space-
time. It is similar to Fig. 5 except that its each row shares
the same l under the fixed energy E = 0.986. Likewise, the
periodic orbits in the first, third and fifth columns have the
same p and shape but with different (q, λ). It also demon-
strates that, small variations of q and λ might not only make
bound motions change from the periodic orbits to the pre-
cessing ones, but also cause them to transition between the
periodic ones with different p, such as those in the panels of
(4a)→(4b)→(4c) and of (5a)→(5b)→(5c) in Fig. 6.

In summary, there is a degeneracy of bound motion
between q and λ, whose small changes can also make the
motion jump among the periodic orbits and precessing ones.
2 We are also grateful to our anonymous reviewer for his/her advice on
this parametrization.

123



854 Page 8 of 14 Eur. Phys. J. C (2022) 82 :854

Fig. 5 Some examples of bound orbits around the black-bounce-
Reissner–Nordström spacetime with l = 3.98, where (X, Y ) is defined
by Eq. (48) and the unique p is denoted in each panel. Each row shares

the same E . The periodic orbits in the first, third and fifth columns have
the same shape with the same p, although they have very different (q, λ)

5 Conclusions and discussion

In this work, we investigate the bound motion of a timelike
test particle around the black-bounce-Reissner–Nordström
spacetime. We obtain its marginally bound orbit and inner-
most stable circular orbit in the exact forms, whose energy
and angular momentum depend on the charge Q• only and

whose radii are affected by both Q• and the bounce parame-
ter α•. Then, we pay closely attention to its precessing orbits
and find the resulting relativistic periastron advance. We also
study its periodic orbits and demonstrate that small varia-
tions of Q• and α• can make the motion jump among the
periodic orbits and precessing ones. In both precessing and
periodic orbits, we find a distinct degeneracy so that orbital
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Fig. 6 Some examples of bound orbits around the black-bounce-
Reissner–Nordström spacetime with E = 0.986, where (X, Y ) is
defined by Eq. (48) and the unique p is denoted in each panel. Each

row shares the same l. The periodic orbits in the first, third and fifth
columns have the same p and shape but with different (q, λ)

motion with non-vanishing Q• and α• can mimic those of the
Schwarzschild black hole. In order to test the black-bounce-
Reissner–Nordström spacetime and constrain its parameters,
it requires other independent measurements to break such a
degeneracy. Therefore, based on the precession of S2 star
around Sgr A* detected by GRAVITY [84] together with the

shadow diameter of Sgr A* measured by EHT [13–18], we
find preliminary bounds on Q• and α•, see Eq. (46).

The black-bounce-Reissner–Nordström spacetime we con-
sidered is without rotation, while celestial objects are rotating
in the real Universe. Although the nonrotational approxima-
tion might be adequate for bound motion sufficiently far from
it or for very slowly rotating cases, one has to take its spin
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into account for those much close to its center, bringing more
complicated and new features. As the spinning version of
a charged black bounce spacetime, the black-bounce-Kerr–
Newman spacetime is known, but such a solution requires
non-trivial matter content [45]. Other effects, such as the
gravitational radiation and its backreaction on the motion of
the particle, will be interesting topics for testing this space-
time with gravitational waves in the future. These sophisti-
cated studies might demand dedicated numerical methods
[115–120] to investigate the dynamics of particles which
would be necessary for extracting meaningful physical infor-
mation from their motion.
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Appendix A: Determination of marginally bound orbit

With the dimensionless quantities x = m−1• r and l =
m−1• L , the conditions for the marginally bound orbit (17)
can be rewritten as

Veff(x) = 1, (A.1)

Veff,x (x) = 0. (A.2)

From Eq. (A.1), we can obtain l2 as

l2 =
[

1

A(x)
− 1

] (
x2 + α

)
. (A.3)

Substituting Eq. (A.3) into Eq. (A.2), we have

2x P(y)

(x2 + α)3A(x)
= 0, (A.4)

where

P(y) = y3 − 4y2 + 4qy − q2, (A.5)

with

y =
√
x2 + α. (A.6)

Considering the timelike geodesics must stay outside the
event horizon, i.e., x > xH and A(x) > 0, we can find

y >

√
x2

H + α = 1 + √
1 − q ≥ 1, (A.7)

where Eqs. (9) and (7) are used, and Eq. (A.4) is equivalent
to

P(y) = 0. (A.8)

Figure 7 shows the curves of P(y) with various q against
y and the shadowed region represents the unallowed range
of y for the marginally bound orbit from the condition
Eq. (A.7). Although P(y) has three roots on the domain DH

(8), two of them fall into the shadowed region and must be
excluded. Thus, the biggest root of P(y) is the solution for
the marginally bound orbit of the black-bounce-Reissner–
Nordström spacetime and it reads

ymb = 4

3

√
4 − 3q cos θmb + 4

3
, (A.9)

Fig. 7 Curves of P(y) with various q against y and the shadowed
region represents the unallowed range of y for the marginally bound
orbit from the condition Eq. (A.7)
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where

θmb = 1

3
arccos

[
27q2 − 144q + 128

16 (4 − 3q)
3
2

]

. (A.10)

It clearly shows that ymb solely depends on the charge q. On
DH, it reaches the smallest and biggest values as q = 1 and
q = 0, respectively, so that

ymb ∈
[

3

2
+

√
5

2
, 4

]

. (A.11)

Substituting Eqs. (A.6) and (A.9) into (A.3), we can
determine the dimensionless angular momentum for the
marginally bound orbit as

lmb = ymb

√
2ymb − q

y2
mb − 2ymb + q

. (A.12)

Due to exclusive dependence of ymb on q, Eq. (A.12) makes
lmb immune to the dimensionless bounce parameter α. As
q = 1 and q = 0 respectively, lmb arrive at its smallest and
biggest values that

lmb ∈
[√

5 + 1

2

√√
5 + 2, 4

]

, (A.13)

where Eq. (A.11) has been used.
Using the Eq. (A.6) and (A.9), we can find the dimension-

less radius of the marginally bound orbit as

xmb =
√

y2
mb − λ

(
1 + √

1 − q
)2

, (A.14)

where α is replaced with the rescaled bounce parameter λ by
Eq. (7). OnDH, xmb reaches its the biggest value at q = 0 and
λ = 0 and its smallest one at q = 1 and λ = 1, respectively,
that

xmb ∈
[

1

2

√
10 + 6

√
5, 4

]
. (A.15)

As q = 0, lmb and xmb return to those of the black-bounce-
Schwarzschild spacetime [37]. When both q and λ disappear,
they go back to those of the Schwarzschild spacetime with
lmb,Sch = 4 and xmb,Sch = 4.

Appendix B: Determination of innermost stable circular
orbit

With the dimensionless quantities x = m−1• r and l =
m−1• L , the conditions for the innermost stable circular orbit

(23) can be rewritten as

Veff(x) = E2, (B.16)

Veff,x = 0, (B.17)

Veff,xx = 0. (B.18)

We can solve l2 from Eq. (B.16) as

l2 =
(
x2 + α

) [
E2

A(x)
− 1

]
, (B.19)

and substitute it into Eq. (B.17) to obtain

2A(x)2x − E2[2A(x)x − A,x (x)(x2 + α)]
A(x)

(
x2 + α

) = 0. (B.20)

Since A(x) is positive for any timelike particles outside the
event horizon, we can find E2 from Eq. (B.20) as

E2 = 2A(x)2x

2A(x)x − A,x (x)
(
x2 + α

) . (B.21)

Substituting Eqs. (B.19) and (B.21) into Eq. (B.18), we can
obtain

2x2E2N (y)
(
x2 + α

)4
A(x)2

= 0, (B.22)

where

N (y) = y3 − 6y2 + 9qy − 4q2, (B.23)

and y is defined in Eq. (A.6). Due to A(x) > 0 for x > xH,
Eq. (B.22) is equivalent to

N (y) = 0. (B.24)

Figure 8 depicts the curves of N (y) with various q against
y and the shadowed region represents the unallowed range of
y for the innermost stable circular orbit based on the condi-
tion (A.7). It indicates that N (y) only has one solution to the
innermost stable circular orbit of the black-bounce-Reissner–
Nordström spacetime for any given q ∈ DH, which is found
as

yisco = 2
√

4 − 3q cos θisco + 2, (B.25)

where

θisco = 1

3
arccos

[
2q2 − 9q + 8

(4 − 3q)
3
2

]

. (B.26)
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Fig. 8 Curves of N (y) with various q against y and the shadowed
region represents the unallowed range of y for the innermost stable
circular orbit from the condition Eq. (A.7)

It clearly shows that yisco is merely determined by the charge
q. As q = 0 and q = 1, yisco arrives at its biggest and smallest
values, respectively, that

yisco ∈ [4, 6] . (B.27)

Substituting Eqs. (A.6) and (B.25) into (B.21), we can
obtain the energy for the innermost stable circular orbit as

Eisco = y2
isco − 2yisco + q

yisco

√
y2

isco − 3yisco + 2q
. (B.28)

Since yisco only depends on q, Eq. (B.28) ensures that Eisco

is unaffected by the dimensionless bounce parameter α. Eisco

reaches its biggest and smallest values as q = 0 and q = 1,
respectively, that

Eisco ∈
[

3
√

6

8
,

2
√

2

3

]

. (B.29)

where Eq. (B.27) has been used.
Making use of Eqs. (A.6), (B.25), (B.28) and (B.19), we

can find the dimensionless angular momentum for the inner-
most stable circular orbit as

lisco = yisco

√
yisco − q

y2
isco − 3yisco + 2q

, (B.30)

which is neither influenced by α. As q = 0 and q = 1, it
arrives at the biggest and smallest values, respectively, that

lisco ∈
[
2
√

2, 2
√

3
]
. (B.31)

Finally, based on Eqs. (B.25) and (A.6), we can have the
dimensionless radius of the innermost stable circular orbit as

xisco =
√

y2
isco − λ

(
1 + √

1 − q
)2

, (B.32)

where Eq. (7) has been used to replace α with the rescaled
bounce parameter λ. On DH, xisco reaches its biggest value
at q = 0 and λ = 0, and its smallest one at q = 1 and λ = 1,
respectively, that

xisco ∈
[√

15, 6
]
. (B.33)

When q = 0, Eisco, lisco and xisco return to those of the
black-bounce-Schwarzschild spacetime [37]. When both q
and λ disappear, they reduce to those of the Schwarzschild
spacetime with Eisco,Sch = 2

√
2/3, lisco,Sch = 2

√
3 and

xisco,Sch = 6.
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