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Abstract We investigate two different kinds of modified
Schwarzschild black holes: A regularized Schwarzschild
black hole and a quantum deformed Schwarzschild black
hole. We study the geodesics and geodesic congruences in
these two modified Schwarzschild black holes. In particu-
lar, we calculate the expansion of radial timelike and null
geodesic congruences. Based on these results, we discuss
some similarities and differences between these two kinds of
modified Schwarzschild black holes.

1 Introduction

Black holes are of great interest as being elegant solutions
of Einstein’s gravitational field equation. The simplest black
hole can be described by the Schwarzschild solution [1] with
gravitational mass M . The Schwarzschild solution has been
well tested by many experimental tests, such as the deflec-
tion of light and the gravitational redshift [2]. However, this
solution has a spacetime singularity at r = 0 [3] with diver-
gent curvature scalar. Also, it possesses incomplete geodesics
according to the Penrose and Hawking-Penrose singularity
theorems [4,5].

Among many attempts to avoid the black hole singularity,
regular black holes [6,7] without introducing dramatic devi-
ations from standard physics are of great interests. In 1993,
based on spherically symmetric quantum fluctuations of the
metric, Kazakov and Solodukhin [8] proposed a deforma-
tion of the Schwarzschild solution in general relativity. This
quantum deformed Schwarzschild (QDS) metric was orig-
inally derived in a reduction of the four-dimensional Ein-
stein action, namely the two-dimensional dilaton theory of
gravity. Even though the metric components are regular, the
curvature scalars are still singular for the original QDS space-
time. Recently, the author of Ref. [9] proposed a generalized
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two-parameter class of QDS black holes which have better
regularities.

On the other hand, Klinkhamer [10] found an exact
solution of the Einstein field equations over a nonsimply-
connected manifold [11], which can be viewed as a regu-
larized version of the singular Schwarzschild solution. This
particular regularization removes the Schwarzschild curva-
ture singularity at the price of introducing a spacetime defect
with a vanishing determinant of the metric. Recently, this reg-
ularization has been applied to the singular Friedmann solu-
tion in cosmology [12]. The resulting nonsingular bouncing
cosmology is studied by Klinkhamer and the present author
[13,14]. The expansions of geodesic congruences in the non-
singular bouncing cosmology are found to be finite at the
cosmic time t = 0 [15].

The aim of the present paper is to study the geodesic
congruences in the backgrounds of the above two modified
Schwarzschild spacetime: The Schwarzschild–Klinkhamer
(SK) solution and the quantum deformed Schwarzschild
solution. In particular, we focus on the expansion of geodesic
congruence, which is divergent at the Schwarzschild singu-
larity. We will see that there are actually some similarities
between these two modified Schwarzschild black holes.

The outline of this paper is as follows. In Sect. 2, by
introducing a non-simply connected manifold, we review the
Schwarzschild–Klinkhamer solution of the Einstein equa-
tion. In Sect. 3, we study the geodesic congruences of
the Schwarzschild–Klinkhamer black hole. Subsequently,
in Sect. 4, we first briefly review the original quantum
deformed black hole and then study the geodesic congru-
ences of this black hole. A brief summary is given in Sect. 5.
In Appendix A, we study the geodesics of the modified
Schwarzschild black holes systematically. The Eddington–
Frinkelstein coordinates of the modified Schwarzschild black
holes are presented in Appendix B. In Appendix C, we
study the geodesic congruences of the generalized QDS black
holes.
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Fig. 1 The sketch of the three-dimensional space manifold M3 (as
indicated by the shaded area), which is obtained by the following surgery
on R

3: the interior of the ball with radius b is removed and antipodal
points on the boundary of the ball are identified (as indicated by open
and filled circles)

2 The Schwarzschild–Klinkhamer black-hole solution

In this section, we will introduce a new type of vacuum solu-
tion to the Einstein equation over nonsimply-connected man-
ifold, which could be regarded as a possible regularization
of the Schwarzschild solution [10,11].

Instead of the manifold R
4, we will consider a non-

compact, orientable, non-simply connected manifold M =
R×M3 in this section. To construct M3, we consider first a
three-dimensional Euclidean space, remove the interior of a
ball with radius b, then identify antipodal points on the defect
surface (two-dimensional sphere with radius b) of the ball.
The first step is to remove the potential singular point in the
final manifold, and the second step is to remove the boundary
(Fig. 1).

Actually, M3 has the topology:

M3 � RP3 − point, (1)

withRP3 the three-dimensional real projective plane.1 Also,
the defect surface has the topology S2/Z ∼ RP2.

Because of the nontrivial spatial topology, it is impossible
to cover the manifold by using only one chart. As suggested
in Refs. [10,11], a relatively simple coordinate system is to
use three overlapping charts. In this paper, we will focus on
the chart-2 coordinates. The results and discussions based on
the chart-2 coordinates are general and also hold in the other
two coordinate systems. Next, we will show a solution to the
Einstein equation over the manifold M.

The general spherically symmetric Ansatz for the metric
over manifold M is given by the following line element [10,
11,16]:

1 Note that RP3 is topologically equivalent to a three-sphere with
antipodal points identified.

ds2
∣
∣
∣
chart-2

= −M(W ) dt2 + N (W ) dY 2

+ W
(

dZ2 + sin2 Z dX2
)

, (2a)

W ≡ b2 + Y 2, (2b)

M(W ) ≡ [

μ(W )
]2

, (2c)

N (W ) ≡ (1 − b2/W )
[

σ(W )
]2

, (2d)

where b > 0 corresponds to the defect length scale and
Y = 0 gives the position of the defect surface. The func-
tions μ(M) and σ(W ) are determined by the field equations
and the boundary conditions. Note that we only show the
chart-2 coordinates. The chart-2 spatial coordinates have the
following ranges:

X ∈ (0, π), (3a)

Y ∈ (−∞,∞), (3b)

Z ∈ (0, π), (3c)

where X and Z are angular coordinates andY is a quasi-radial
coordinate. Note that the coordinates Eq. (2) automatically
implements the antipodal identification on the boundary of
the defect. In other words, the nontrivial manifold M3 is
completely determined by the spatial part of the metric Eq. (2)
without further need of introducing additional boundary con-
ditions.

The coordinates (X,Y, Z) is related to the standard spher-
ical coordinates (r, ϑ, ϕ) via the following transformation
⎧

⎪⎨

⎪⎩

r = √
Y 2 + b2

ϑ = Z

ϕ = X

for Y > 0,

⎧

⎪⎨

⎪⎩

r = √
Y 2 + b2

ϑ = π − Z

ϕ = X + π

for Y < 0. (4)

Considering the vacuum Einstein equation and the metric
Ansatz (2), the regular black hole solution has been obtained
in Ref. [10] and can be written as follows:

ds2
∣
∣
∣

SK

chart-2
= −

(

1 − 2M√
b2 + Y 2

)

dt2

+
(

1 − 2M√
b2 + Y 2

)−1 Y 2

b2 + Y 2 dY
2

+ (b2 + Y 2)
(

dZ2 + sin2 ZdX2
)

,

(5)

with parameters

2M > b > 0. (6)

Several remarks are in order. First, by using relation
Eq. (4), we can write the metric Eq. (5) as the following
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standard Schwarzschild metric form:

ds2
∣
∣
∣

Schwarzschild = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2

+ r2
(

dϑ2 + sin2 ϑdϕ2
)

, (7)

r ∈ [b,∞). (8)

However, note that the transformation Eq. (4) is not a one-
to-one map at the defect surface, for example, (b, π/2, π/2)

and (b, π/2, 3π/2) in (r, ϑ, ϕ) coordinates correspond to the
same point, i.e., (0, π/2, π/2) in (Y, X, Z) coordinates. This
observation reflects that the differential structure of the metric
(5) is different from the one of the metric (7). (This is not a
surprise since these two manifolds have different topology.)

Second, note that g ≡ det gμν = 0 at Y = 0, hence the
metric from Eq. (5) is degenerate at the defect surface, which
corresponds to an RP2 submanifold. A possible understand-
ing of the degeneracy could be as follows [17]: The projective
plane RP2 cannot be embedded in R

3 without intersections
(see, for example, page 40 in Ref. [18]). This observation then
suggests that the third extra dimension (coordinate Y ) emerg-
ing from the two-dimensional defect surface (with local coor-
dinates X and Z ) must have a vanishing metric component
gYY at Y = 0, which is precisely the structure of the metric
Ansatz (2). See Refs. [10,13,15,17] for further discussion on
spacetime defects and Ref. [19] for a discussion on mathe-
matical aspects of degenerate metrics.

Third, the metric (5) is singular at the event horizon
YH = ±√

4M2 − b2 (For the light cones of the regular-
ized black hole Eq. (5), see Appendix B2. In a similar way
as for the Schwarzschild solution, this coordinate singular-
ity can be removed by introducing Eddington–Frinkelstein-
type or Kruskal–Szekeres-type coordinates [10]. In the main
text of this paper, we will be interested in the expansion θ

of a geodesic congruence, which is a scalar field and does
not depend on coordinates choices. Hence, the coordinate
(t, X,Y, Z) is enough for our purposes. Still, for complete-
ness, a discussion on Eddington–Frinkelstein-type coordi-
nates for the metric (5) will be given in Appendix B2.

Fourth, in the calculation of this paper, we will only con-
sider the case Y > 0 (Originally, Y ∈ R.) This simplifi-
cation is viable for two reasons. First, we will restrict our
study on radial geodesics in this paper. These geodesics can-
not go from Y > 0 region to Y < 0 region, and vice versa.
(In fact, based on the light cones of SK spacetime given in
Appendix B2, all ingoing radial geodesics will terminate at
the defect surface at Y = 0.) Second, the metric (5) is spher-
ically symmetric and conclusions obtained in the case Y > 0
can be straightforwardly generalized to the case Y < 0.

Fifth, as already mentioned in Ref. [10], the coordinate Y
of metric (5) becomes timelike inside the event horizon and
ranges from −√

4M2 − b2 < Y <
√

4M2 − b2. This might

give rise to the presence of “closed time-like curves” (CTCs).
These CTCs could be avoided if one consider the regularized
Reissner–Nordström solution [10]. For the present work, we
don’t need to worry about the potential CTCs problem as
we will consider only radial geodesics (there is no CTC for
radial curves).

Sixth, the Kretschmann scalar for the metric(5) is given
by2

K ≡ Rμνρσ R
μνρσ = 48

M2

(b2 + Y 2)3 . (9)

For a nonvanishing b, it is clear that the Kretschmann scalar
remains finite at Y = 0. The black hole curvature singularity
that appears in the Schwarzschild metric no longer exists in
the metric (5). The degenerate metric with nontrivial topol-
ogy is the key to evade the curvature singularity.

3 Geodesic congruences of the
Schwarzschild–Klinkhamer black hole

In this section, congruences of timelike and null geodesics
of the SK spacetime will be studied. We first start with some
definition.

For a spacetime manifold (M, gμν ) and an open subset
O ∈ M, a geodesic congruence in the subset O is a family
of curves such that through each point in O there lies on one
and only one geodesic from this family [2]. The evolution
of the congruence can be described by the expansion θ , the
shear σμν and the twist ωμν .

Now, consider a timelike geodesic congruence with its
tangent vector field ξμ. Then, the expansion θ , the shear σμν

and the twist ωμν of the timelike geodesic congruence are
given by [2]

θ ≡ Bμνhμν, (10a)

σμν ≡ 1

2
(Bμν + Bνμ) − 1

3
θ hμν, (10b)

ωμν ≡ 1

2
(Bμν − Bνμ), (10c)

where

Bμν ≡ ∇νξμ, (11a)

hμν ≡ gμν + ξμξν. (11b)

Since Bμν is “spatial”, i.e.,

Bμνξ
μ = Bμνξ

ν = 0, (12)

we have

θ = Bμνgμν = ∇μξμ. (13)

2 The Ricci tensor and Ricci scalar vanish identically.
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In a geodesic congruence, θ measures the expansion of
nearby geodesics, i.e., θ > 0 means that the geodesics are
diverging and θ < 0 means the geodesics are converging.
σμν measures the shear and ωμν measures the rotation of
nearby geodesics. We will focus on the expansion θ as it is
of great importance in discussing the black hole singularity.
Moreover, the black hole singularity is related to the future-
directed geodesic congruences (Notice that the past-directed
geodesic congruences are relevant for the big bang singular-
ity.)

For a future-directed geodesic congruence, ξμ is actually
a four-velocity vector (field), which satisfies the geodesic
equation

dξρ

dλ
− 1

2

∂gνβ

∂xρ
ξνξβ = 0, (14)

with λ being the proper time for massive particle or the affine
parameter for massless particle.

3.1 Congruence of radial timelike geodesics

We consider a congruence of radial timelike geodesics of the
nonsingular black-hole spacetime (5). In this case, we have
ξ Z = ξ X = 0. Since the metric (5) is time independent, we
obtain from Eq. (14) that

dξt

dλ
= 0 (15)

along geodesics. From (15), we have

E ≡ −ξt , (16)

ξ t = E

(

1 − 2M√
b2 + Y 2

)−1

, (17)

where E is a real constant along the geodesic.
Then, by the normalization condition gμνξ

μξν = −1, we
get

ξY =

⎧

⎪⎪⎨

⎪⎪⎩

±
√

(

E2 − 1 + 2M√
b2+Y 2

)
b2+Y 2

Y 2 , Y > YH

−
√

(

E2 − 1 + 2M√
b2+Y 2

)
b2+Y 2

Y 2 , 0 < Y < YH .

(18)

For geodesics outside the black hole (Y > YH ), the upper
sign in the first line of Eq. (18) applies to the outgoing radial
geodesic and the lower sign applies to the ingoing radial
geodesic. Meanwhile, inside the black hole (Y < YH ), we
only have minus sign in the second line of Eq. (18) since
Y decreases for both ingoing and “outgoing” geodesics. A
systematic study on the geodesics of the SK spacetime will
be given in Appendix A.

In the main text of this paper, we will focus on the ingoing
geodesics since they are relevant for discussing the black hole
singularity.

The expansion for the congruence of ingoing radial time-
like geodesics is calculated as

θ(Y ) = 1√−g
∂μ(

√−gξμ)

= θ1(Y ) + θ2(Y ), (19a)

where

θ1(Y ) = − 2
(

E2 − 1
)

√
b2 + Y 2

√
2M√
b2+Y 2 + E2 − 1

, (19b)

θ2(Y ) = − 3M

(b2 + Y 2)
√

2M√
b2+Y 2 + E2 − 1

. (19c)

To understand how the regular black hole solution Eq. (5)
removes the singularity in the expansion scalar θ , we shall
discuss Eq. (19) in the following cases.

Case one. M = 0 and b = 0

In this case, Eq. (5) represents the Minkowski spacetime,
and the expansion of the congruence for the ingoing radial
geodesics is given by

θ(Y ) = θ1(Y ) = −2
√
E2 − 1

Y
, (20)

where E ≥ 1 is the total energy per unit (rest) mass of a par-
ticle. If E > 1, the expansion scalar is divergent at the origin
of the spherical coordinates (Y = 0). This singularity of the
congruence is, of course, not a singularity of the spacetime
but an intrinsic nature of the congruence for ingoing radial
geodesics.

Note that we have a vanishing expansion scalar if E = 1.
This is easy to understand since the particles are at rest (Y =
constant) for E = 1 and the geodesics of these particles will
not have any intersection.

Case two. M 
= 0 and b = 0

In this case, Eq. (5) represents the standard Schwarzschild
spacetime, and the expansion of the congruence for the ingo-
ing radial geodesics is given by

θ(Y ) = θ1(Y ) + θ2(Y ), (21a)
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with

θ1(Y ) = − 2
(

E2 − 1
)

Y
√

2M
Y + E2 − 1

, (21b)

θ2(Y ) = − 3M

(Y 2)

√

2M
Y + E2 − 1

. (21c)

For E > 1, both θ1 and θ2 are singular at the origin of the
spherical coordinates (Y = 0). However, they have different
divergent behavior at Y = 0: θ1 ∝ Y−1/2 and θ2 ∝ Y−3/2.

Note that θ1 vanishes for E = 1, which is similar to
Case one. θ2(Y ) for E = 1 is given by

θ(Y ) = −3

2

√

2M

Y 3 , (22)

which agrees with result in Ref. [20]. The divergence in θ2

depends only on the mass M and this divergence always exists
provided M 
= 0. This observation strongly suggests that the
divergence in θ2 indicates the existence of the spacetime sin-
gularity. It is well-known that the Schwarzschild spacetime
indeed has a physical singularity at Y = 0 [for example, the
Kretschmann scalar is divergent at Y = 0 for Schwarzschild
metric, see Eq. (9) with b = 0.]

Case three. M = 0 and b 
= 0

In this case, Eq. (5) represents a flat spacetime with a nontriv-
ial topology R × M3 (by “flat”, we mean the Riemann cur-
vature tensor R σ

μνρ = 0 outside the defect surface), and the
expansion of the congruence for the ingoing radial geodesics
is given by

θ(Y ) = θ1(Y ) = −2
√
E2 − 1√

b2 + Y 2
, (23)

where E ≥ 1 is the total energy per unit (rest) mass of a
particle. If E = 1, the expansion scalar vanishes since the
particles are at rest. Note that the expansion scalar is no longer
singular at Y = 0, which is different from that in Case one.
The nontrivial topology, i.e., R× (RP3 −point), is responsi-
ble for the nonsingular behavior of the geodesic congruence
at Y = 0. We emphasize that the corresponding spacetime
is geodesic complete, particles can safely cross the defect
surface (see Ref. [21] for a detailed discussion.)

Case four. M 
= 0 and b 
= 0

In this case, we return to the regular black hole solution. The
expansion of the congruence for the ingoing radial geodesics
is given by Eq. (19)

θ(Y ) = θ1(Y ) + θ2(Y ), (24a)

with

θ1(Y ) = − 2
(

E2 − 1
)

√
b2 + Y 2

√
2M√
b2+Y 2 + E2 − 1

, (24b)

θ2(Y ) = − 3M

(b2 + Y 2)
√

2M√
b2+Y 2 + E2 − 1

. (24c)

Both θ1 and θ2 are regular at Y → 0.
In particular, we have

lim
Y=0+ θ(Y ) = − 2

(

E2 − 1
)

√

2Mb + (E2 − 1)b2

− 3M

b
√

2Mb + (E2 − 1)b2
. (25)

Again, θ1(Y ) vanishes for E = 1. The divergence of θ2(Y )

in Case two has now been removed by a nonvanishing regu-
lator b. The physical singularity in Schwarzschild spacetime
is replaced by a spacetime defect with topology RP2.

The rate of change of the expansion θ along the geodesic
congruence is also well-behaved at Y = 0. For example, we
have for E = 1

dθ

dλ
= dθ

dY
ξY = − 9M

2
(

b2 + Y 2
)3/2 . (26)

3.2 Congruence of radial null geodesics

For a timelike geodesic congruence, hμν is unique once
the tangent vector is determined. However, for a given null
geodesic congruence, hμν is not unique. See Chapter 2.4 of
Ref. [20] for more discussion on null geodesic congruence.
Still, it can be proved that the expansion scalar is still unique
and given by [20]:

θ = ∇μk
μ, (27)

where kμ is the tangent null vector field.
Focusing on the ingoing radial geodesic, we have

E ≡ −kt , (28)

kY = −
√

E2
(

b2 + Y 2
)

Y 2 , (29)

where E is a real positive constant along the geodesic.
The expansion for the congruence of ingoing radial null

geodesics is easily calculated:

θ(Y ) = − 2E√
b2 + Y 2

, (30)
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which is independent of M . The singularity in the congru-
ence of ingoing radial null geodesics may not imply the exis-
tence of spacetime singularity (even though the expansion
is regular at Y = 0 for a nonvanishing regulator b.) For the
congruence of ingoing radial null geodesics in Minkowski
spacetime, the expansion scalar is given by Eq. (30) with
b = 0, which is singular at Y = 0. As we mentioned before,
this singularity of the congruence is not a singularity of the
spacetime but an intrinsic nature of the congruence for ingo-
ing radial geodesics. The absence of the singularity in the
ingoing radial geodesics of the SK spacetime actually reflects
the nontrivial topology of the manifold.

Note that the rate of change of the expansion θ along the
geodesic congruence is given by

dθ

dλ
= dθ

dY
kY = − 2E2

b2 + Y 2 , (31)

which is well-behaved at Y = 0.

4 Geodesic congruences in a quantum deformed black
hole

The original quantum deformed Schwarzschild black hole
proposed by Kazakov and Solodukhin [8] has the following
line element

ds2
∣
∣
∣

QDS = −
(

−2M

r
+

√
r2 − a2

r

)

dt2 + dr2

− 2M
r +

√
r2−a2

r

+ r2 (

dϑ2 + sin2 ϑdϕ2) , (32)

r ∈ [a,∞). (33)

Even though Eqs. (33) and (8) take the same form, i.e., the
radial coordinate r can not take all value from R

+, they have
different origin. For the QDS metric, Eq. (33) is required to
keep components of the metric (32) real. While for the KS
metric, Eq. (8) is a manifestation of the nontrivial topology.

The QDS metric (32) returns to the standard Schwarzschild
metric if a = 0. The original Schwarzschild singularity at
r = 0 is now been “smeared out” to finite r [9]. Note that
all components of the metric (32) are regular at r = a. The
event horizon for the QDS black hole (32) is located at

rH =
√

4M2 + a2. (34)

The coordinate singularity at r = rH could be removed
by introducing Eddington–Frinkelstein-type coordinates (see
Appendix B1.) However, the singularity in the curvature ten-

sor still remains. For example, the Ricci scalar is given by

R =
a2

(

3r − 2
√
r2 − a2

)

+ 2r2
(√

r2 − a2 − r
)

r2
(

r2 − a2
)3/2 , (35)

which is divergent at r = a. For completeness, we also have
the result for the Kretschmann scalar at r → a3:

K
∣
∣
∣
r→a

= 1

8a(r − a)3 + 9

16a2(r − a)2

+ 2
√

2M

a7/2(r − a)3/2 + O
(

1

r − a

)

, (36)

which is also divergent at r = a. This curvature singular-
ity can be removed if one consider more general QDS black
holes [9]. In Appendix C, we will briefly discuss this general
class of QDS black holes and study their geodesic congru-
ences.

At large r , we have

−2M

r
+

√
r2 − a2

r
= 1 − 2M

r
− a2

2r2 + O
(
a4

r4

)

, (37)

which indicates that the QDS metric is asymptotically flat.

4.1 Congruence of radial timelike geodesics

For ingoing radial geodesic congruence of the QDS space-
time (32), we have

ξt = −E, (38)

ξ r = −
√

E2 + 2M

r
−

√
r2 − a2

r
, (39)

from which we obtain

θ(r) = ∇μξμ = θ1(r) + θ2(r) (40a)

with

θ1(r) =
4r

(

r − E2
√
r2 − a2

)

− 3a2

2

√

r3
(

r2 − a2
) (

−√
r2 − a2 + E2r + 2M

)
,

(40b)

θ2(r) = − 3M
√

r3
(

−√
r2 − a2 + E2r + 2M

)
. (40c)

3 We thank the referee for the suggestion of computing Kretschmann
scalar in this case.
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For a = 0 and r = Y , Eqs. (40b) and (40c) reduce to
Eqs. (21b) and (21c), respectively. A plot of the expansion
scalar as the function of r is shown in Fig. 2. Notice that θ2

vanishes for M = 0. In the limit r → a and for a 
= 0, we
have

θ1(r) = 1

2
√

2
√
aE2 + 2M

1√
r − a

+ O
(

1

a

)

, (41)

θ2(a) = − 3M
√

a3
(

E2a + 2M
)
. (42)

We see explicitly that θ1(r) is divergent at r = a (this diver-
gence no longer exists for a more general QDS black hole,
see Appendix C). The rate of change of the expansion θ along
the geodesic congruence is calculated

dθ

dλ
= 1

4r3
(

r2 − a2
)2

(

−√
r2 − a2 + E2r + 2M

) ·

×
{

9a6 + 2a2r2
[

36M2

− 32M
(√

r2 − a2 − E2r
)

+ r
(

−15E2
√

r2 − a2 + 8E4r + 11r
) ]

− 4r4
[

−8M
(√

r2 − a2 − E2r
)

+2r
(

−2E2
√

r2 − a2 + E4r + r
)

+ 9M2
]

+ a4
[

4M
(

9
√

r2 − a2 − 8E2r
)

+r
(

16E2
√

r2 − a2 − 8E4r − 23r
)

− 36M2
] }

.

(43)

In the limit r → a, we have

dθ

dλ
= a

2(r2 − a2)3/2 + O
(

1

r2 − a2

)

. (44)

To understand why θ1(r) → +∞ for r → a, we could
use the following Raychaudhuri’s equation for a congruence
of timelike geodesics:

dθ

dλ
= −1

3
θ2 − σμνσ

μν + ωμνω
μν − Rμνξ

μξν. (45)

For the congruence of radial timelike geodesics considered
in this paper, we have4

ωμν = 0. (46)

4 The congruence of radial timelike geodesic is hypersurface orthogo-
nal.

Meanwhile, the shear tensor σμν is purely spatial, σμνσ
μν ≥

0.
By using the Christoffel symbols in Appendix A and

Eq. (38), we could obtain

−Rμνξ
μξν = a2

2r
(

r2 − a2
)3/2 , (47)

which is independent of M and E . We find that Rμνξ
μξν is

always negative (for a nonvanishing a) along radial geodesics
of the QDS black hole (32). Moreover, it goes to −∞ when
r → a.

If we remain within the domain of general relativity, we
have

Rμνξ
μξν = 8π

(

Tμνξ
μξν + 1

2
T

)

, (48)

where Tμν is the energy-momentum tensor and T = gμνTμν .
Then, a negative Rμνξ

μξν implies the violation of the strong
energy condition5 (SEC) along the radial timelike geodesic.
The closer the geodesics approach to the two-sphere at r = a
the stronger the SEC is violated.

In the limit r → a, the right-hand side (RHS) of Eq (47)
is coincident with the first term on the RHS of Eq. (44).
This observation indicates that, for r → a, the rate of the
change of the expansion scalar is dominated by the quantity
Rμνξ

μξν .

4.2 Congruence of radial null geodesics

For the ingoing radial geodesic of the QDS spacetime (32),
we have

E ≡ −kt , (50)

kr = −E, (51)

where E is a real positive constant along the geodesic.
Equation (51) implies that we could take −r as an affine

parameter for ingoing radial null geodesic. Then, the expan-
sion for the congruence of ingoing radial null geodesics is as
follows:

θ(r) = −2

r
, (52)

which is regular for r → a provided a 
= 0.

5 The strong energy condition states that

TμνV
μV ν ≥ −1

2
T, (49)

for all timelike vectors Vμ.
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Fig. 2 The expansion scalar of the ingoing radial geodesic congruence
in the quantum deformed black hole (32). The dashed curve is given
by Eq. (40) with M = 0 and E = 1, while the solid curve is given by
Eq. (40) with M = a 
= 0 and E = 1

The rate of change of the expansion θ along the geodesic
congruence is given by

dθ

dλ
= − 2

r2 , (53)

which is also well-behaved at r = a for a 
= 0.
The quantity Rμνkμkν vanishes identically for ingoing

radial null geodesics, which is quite different from that for
ingoing radial timelike geodesics [see Eq. (47).]

5 Conclusions and discussion

In this paper, we investigated two different kinds of modi-
fied Schwarzschild black holes, namely the Schwarzschild–
Klinkhamer black hole [10] and the quantum deformed
Schwarzschild black hole [8,9]. These two kinds of black
holes could return to the standard Schwarzschild black
hole by setting a vanishing regulator: b = 0 for the
Schwarzschild–Klinkhamer black hole and a = 0 for the
quantum deformed Schwarzschild black hole. We studied
radial geodesics of these black holes in the main text while
nonradial geodesics were briefly discussed in Appendix A.

Far way from the origin of the spherical coordinates, i.e.,
Y  b for the SK black hole and r  a for the QDS black
hole, the evolution for the geodesic congruence of modi-
fied Schwarzschild black holes are identical to that of the
Schwarzschild black hole. However, the situation is different
for a small r or Y . For the original QDS black hole [8], as
r → a the expansion scalar for a radial timelike geodesic
congruence goes to +∞ (the expansion scalar goes to −∞

as r → 0 in the Schwarzschild case.) The violation of strong
energy condition along radial timelike geodesic is responsi-
ble for this divergent behavior. For a more general QDS black
hole [9], the strong energy condition is not globally violated
and the expansion scalar for a radial geodesic congruence
could remain finite at r = a (see Appendix C for the calcu-
lation details.) For the SK black hole, the expansion scalar
for a radial timelike geodesic congruence remains finite as
Y → 0 due to the nontrivial topology of the manifold and
there is no violation of the strong energy condition.

There is another issue we would like to address here.
The procedure of the spacetime-defect regularization of the
Schwarzschild solution can actually be applied to the singular
Friedmann solution in cosmology [12,13,22]. The expansion
of geodesic congruence could remain finite at cosmic time
t = 0 for this regularized FLRW universe [15], while it is
divergent at the big bang singularity for the standard FLRW
universe. This conclusion, together with the result obtained in
the present paper, strongly suggests that finite expansions of
geodesic congruences (without violation of the strong energy
condition) are key manifestations of the spacetime defects.

Even though the conjugate points6 appearing in the
Schwarzschild black hole no longer exists in the modified
Schwarzschild black holes, ingoing radial geodesics still
seem to be incomplete [at least for the spacetime from metric
(5) or (32)]. All particles inside the event horizon will eventu-
ally reach a surface with finite area (see Fig. 3 in Appendix B
for light cones of the modified Schwarzschild black holes).
For the SK black hole, the surface is S2/Z ∼ RP2. While
for the QDS black hole, the surface is a two-sphere with
area 4πa2. One interesting point is that, if the conformal
anomaly is taken into account [8], the extended QDS space-
time appears to be geodesically complete. Whether the SK
spacetime can be extended to be geodesically complete by a
similar procedure remains an open question.

The other open question is physical origin of the regula-
tor in the modified Schwarzschild black holes. For the QDS
spacetime, the parameter a comes from the effective poten-
tial of the two-dimensional dilaton gravity. Then, a deep
understanding and the physical explanation of this poten-
tial is required to reveal the nature of the length scale a.
For SK spacetime, the parameter b is the length scale of the
spacetime defect, which may trace back to the underlying
(unknown) theory of quantum spacetime [23].

6 In general, the existence of conjugate points reveals the existence of
extreme length curves. Consider a spacelike hypersurface  and a time-
like geodesic congruence orthogonal to , a point p on this geodesic
congruence will be conjugate to  if and only if the expansion of the
congruence approaches −∞ at p. Conjugate points exist on the ingoing
radial timelike geodesics of the Schwarzschild spacetime as θ → −∞
at r → 0, which leads to fact that the lengths of these ingoing geodesics
have upper bounds in the future direction.
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Appendix A: Geodesics of modified Schwarzschild black
holes

In general, a static spherically symmetric metric can be writ-
ten as the following diagonal form:

ds2 =−B(r)dt2+A(r)dr2+w(r)(dϑ2+sin2 ϑdϕ2). (A1)

Then, the nonvanishing Christoffel symbols are as follows:

�t
tr = �t

r t = B ′

2B
, (A2a)

�r
tt = B ′

2A
, (A2b)

�r
rr = A′

2A
, (A2c)

�r
ϑϑ = − w′

2A
, (A2d)

�r
ϕϕ = − sin2 ϑ w′

2A
, (A2e)

�ϑ
rϑ = �ϑ

ϑr = w′

2w
, (A2f)

�ϑ
ϕϕ = − sin ϑ cos ϑ, (A2g)

�ϕ
rϕ = �ϕ

ϕr = w′

2w
, (A2h)

�
ϕ
ϕϑ = �

ϕ
ϑϕ = cot ϑ, (A2i)

where the prime denotes d/dr . Using the nonvanishing
Christoffel symbols given by (A2), we find from the geodesic

equation that

0 = d2t

dλ2 + B ′

B

dt

dλ

dr

dλ
, (A3a)

0 = d2r

dλ2 + B ′

2A

(
dt

dλ

)2

+ A′

2A

(
dr

dλ

)2

− w′

2A

(
dϑ

dλ

)2

− w′ sin2 ϑ

2A

(
dϕ

dλ

)2

, (A3b)

0 = d2ϑ

dλ2 + w′

w

dϑ

dλ

dr

dλ
− sin ϑ cos ϑ

(
dϕ

dλ

)2

, (A3c)

0 = d2ϕ

dλ2 + w′

w

dr

dλ

dϕ

dλ
+ 2 cot ϑ

dϕ

dλ

dϑ

dλ
. (A3d)

where λ is the proper time for massive particle or the affine
parameter for massless particle. We now solve above equa-
tions by looking for constants of the motion. First, dividing
(A3a) by dt/dλ, we have

0 = d

dλ

(

ln
dt

dλ
+ ln B

)

, (A4)

which leads to a constant of motion

E ≡ B
dt

dλ
. (A5)

Since the metric is spherically symmetric, we need only con-
sider the case ϑ = π/2, i.e., particles are confined to the
equatorial plane. In this case. we can forget about ϑ as a
dynamical variable. Now, dividing (A3d) by dϕ/dλ, we can
find a constant of motion

J = w
dϕ

dλ
, (A6)

which is actually the angular momentum parameter. With
(A5), (A6), and multiplying (A3b) by 2Adr/dλ, we find

0 = d

dλ

[

A

(
dr

dλ

)2

+ J 2

w
− E2

B

]

, (A7)

which leads to the following constant of motion

− N ≡ A

(
dr

dλ

)2

+ J 2

w
− E2

B
. (A8)

Now, the metric (A1) along the geodesic can be written as

ds2 = −N dλ2. (A9)

From (A8), we observe that

N = 0, for a massless particle, (A10)

N = 1, for a massive particle. (A11)

Also remark from (A9) that, a free particle can reach radius
r only if

1

A(r)

(
E2

B(r)
− J 2

w(r)
− N

)

≥ 0. (A12)
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We emphasize that the inequality (A12) holds not only out-
side a black hole but also inside a black hole.

Moreover, (A8) can be written as

1

2
(AB)

(
dr

dλ

)2

+ J 2 B

w
+ N B

2
= E2

2
, (A13)

which has the same form of the equation for a particle with
effective mass AB and energy E2/(2) moving in a one-
dimensional effective potential7

V (r) = J 2 B

2w
+ N B

2
. (A14)

Consider first the Schwarzschild black hole (SBH)

B(r) = 1

A(r)
= 1 − 2M

r
, w = r2, (A15)

the effective potential is given by

VSBH(r) = J 2

2r2

(

1 − 2M

r

)

+ N

2

(

1 − 2M

r

)

. (A16)

Observe that the effective potential goes to −∞ as r → 0
for Schwarzschild spacetime (except for massless particles
with vanishing angular momentum).

For the SK black hole from metric (5), we have

B(Y ) = 1 − 2M√
b2 + Y 2

, (A17a)

A(Y ) =
(

1 − 2M√
b2 + Y 2

)−1 Y 2

b2 + Y 2 , (A17b)

w = b2 + Y 2, (A17c)

the effective potential is calculated8

VSKBH(Y ) = J 2

2(Y 2 + b2)
(

1 − 2M√
b2 + Y 2

)

+ N

2

(

1 − 2M√
b2 + Y 2

)

, (A18)

which remains finite at Y = 0.
For a QDS black hole, we have

B(r) = 1

A(r)
= −2M

r
+

√
r2 − a2

r
, w = r2, (A19)

the effective potential is given by

VQDSBH(r) = J 2

2r3

(√

r2 − a2 − 2M
)

+ N

2r

(√

r2 − a2 − 2M
)

, (A20)

7 This observation can be found in Chapter 6.3 of [2].
8 The effective mass from Eq. (A13) for SK black hole vanishes at
Y = 0, which arises from the degenerate metric over the spacetime
defect.

which remains finite at r = a.
We conclude that the divergent behavior for the effective

potential of the Schwarzschild has been removed in the mod-
ified Schwarzschild spacetime.

Appendix B: Eddington–Frinkelstein coordinates

In this appendix, we derive the Eddington–Frinkelstein coor-
dinates for the modified Schwarzschild black holes. We con-
sider first the quantum deformed Schwarzschild spacetime.

1. Eddington–Frinkelstein coordinates for the quantum
deformed Schwarzschild spacetime.

To remove the coordinate singularity at r = rH , we could first
define the following “Regge–Wheeler tortoise coordinate”
r∗9:

r∗ =
√

r2 − a2 + 2M ln
∣
∣
∣

√
r2 − a2

2M
− 1

∣
∣
∣. (B2)

Then, by defining Eddington–Frinkelstein coordinate

v = t + r∗, (B3)

the QDS metric could be written as

ds2
∣
∣
∣

QDS = −
(

−2M

r
+

√
r2 − a2

r

)

dv2 + 2dvdr

+ r2
(

dϑ2 + sin2 ϑdϕ2
)

. (B4)

Even though the metric gvv vanishes at the event horizon, the
determinant of the metric is

g = −r4 sin2 ϑ, (B5)

which is nonvanishing at r = rH . Therefore, the metric (B4)
is well-behaved at the event horizon and the coordinate sin-
gularity in the QDS metric is removed.

In the Eddington–Frinkelstein coordinates, the condition
for radial null geodesics is given by

dv

dr
=

⎧

⎨

⎩

0

2
(

− 2M
r +

√
r2−a2

r

)−1
,

(B6)

9 The coordinate r∗ is defined in such a way that

dr∗
dr

=
(

−2M

r
+ 2M

√
r2 − a2

r

)−1

. (B1)
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Fig. 3 Light cones of the
quantum deformed
Schwarzschild spacetime in the
Eddington–Frinkelstein
coordinates (v, r ). Ingoing
radial null geodesics are
characterized by v = const.
(indicated by full curves).
Outgoing radial null geodesics
are indicated by dashed curves.
The event horizon is located at
rH = √

4M2 + a2. For r < rH
all (future-directed) radial
geodesics are in the direction of
decreasing r and finally reach a
two-sphere of area 4πa2. The
light cones for the SK spacetime
are also given by this figure if r
is replaced by

√
b2 + Y 2 and a

is replaced by b

where the first line on the RHS corresponds to the ingoing
radial null geodesic and the the second line on the RHS cor-
responds to the outgoing radial null geodesic.

The light cones of the QDS black hole in the Eddington–
Frinkelstein coordinates (v, r ) are plotted in Fig. 3. Note that
all radial geodesic inside the QDS black hole will finally
reach a two-sphere of area 4πa2.

2. Eddington–Frinkelstein coordinates for
Schwarzschild–Klinkhamer spacetime.

First, we could define the following Regge–Wheeler-type
tortoise coordinate Y∗:

Y∗ = sgn(Y )

(
√

Y 2 + b2 + 2M ln
∣
∣
∣

√
Y 2 + b2

2M
− 1

∣
∣
∣

)

.

(B7)

Then, by defining Eddington–Frinkelstein coordinate

v = t + Y∗, (B8)

the SK metric could be written as

ds2
∣
∣
∣

SK = −
(

1 − 2M√
b2 + Y 2

)

dv2 + 2

√

Y 2

Y 2 + b2 dvdY

+ (b2 + Y 2)
(

dϑ2 + sin2 ϑdϕ2
)

. (B9)

The metric (B9) is well-behaved at the event horizonY = YH

and the coordinate singularity in the SK metric is removed.
With replacements r → √

b2 + Y 2 and a → b, the light
cones for the SK spacetime is coincident with Fig. 3.

Appendix C: Radial geodesic congruences in a general
class of QDS black holes

Recently, a general class of quantum deformed spacetimes is
proposed in Ref. [9] and the metrics are given by

ds2
∣
∣
∣

general QDS

n
= −

[

−2M

r
+

(

1 − a2

r2

) n
2
]

dt2

+
[

−2M

r
+

(

1 − a2

r2

) n
2
]−1

dr2

+ r2
(

dϑ2 + sin2 ϑdϕ2
)

, (C1)

r ∈ [a,∞), (C2)

where

n ∈ {0} ∪ {1, 3, 5 . . .}. (C3)

The general QDS metric (C1) reduces to the standard
Schwarzschild metric and the original QDS metric with
n = 0 and n = 1, respectively. As stated in Ref. [9], the met-
rics (C1) are metric-regular for n ≥ 1, Christoffel-symbol-
regular for n ≥ 3 and curvature-regular for n ≥ 5. For exam-
ple, the Ricci scalar for n = 5 is given by

R = −a2r2
√
r2 − a2 + 2r4

√
r2 − a2 + 12a4

√
r2 − a2 − 2r5

r7 ,

(C4)

which is finite at r = a. For completeness, we also have the
result for the Kretschmann scalar at r = a:
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Fig. 4 The expansion scalar of the ingoing radial timelike geodesic
congruences in a general class of quantum deformed black hole (C1).
The black curve is given by Eq. (C6) with n = 1, the dashed curve is
given by Eq. (C6) with n = 3 and the gray curve is given by Eq. (C6)
with n = 5. We have specified M = a and E = 1 in all curves

K
∣
∣
∣
r=a

= 4
(

a2 + 4aM + 12M2
)

a6 , (C5)

which is also finite.10

The expansion scalar for ingoing radial timelike geodesic
congruences of the general QDS black holes are given by

θ = θ1 + θ2, (C6)

with

θ1(r) =

(

1 − a2

r2

)n/2
(

n a2

1− a2

r2

+ 4r2

)

− 4E2r2

2r3

√

−
(

1 − a2

r2

)n/2 + E2 + 2M
r

, (C7)

θ2(r) = − 3M

r2

√

−
(

1 − a2

r2

)n/2 + E2 + 2M
r

, (C8)

where E is a real positive constant along the geodesics. A
plot of the expansion scalar as the function of r is shown in
Fig. 4. For n ≥ 3, we have

θ1(a) = − 2E2

√
a2E2 + 2Ma

, (C9)

θ2(a) = − 3M
√

a3
(

E2a + 2M
)
, (C10)

10 This result was first derived in Ref. [9].

from which we see explicitly that the divergence in θ1 at
r = a no longer exists for n ≥ 3.

The quantity Rμνξ
μξν is calculated

− Rμνξ
μξν =

⎧

⎨

⎩

3a2
(

r2−2a2
)

2r5
√
r2−a2 for n = 3,

5a2
(

r2−4a2
)√

r2−a2

2r7 for n = 5.

(C11)

We find that Rμνξ
μξν is not always negative (for a nonvan-

ishing a) along radial timelike geodesics of a general QDS
black hole with n ≥ 3. More precisely, it can be found that
Rμνξ

μξν is negative only in the region r > a
√
n − 1 along

radial geodesics.
The expansion scalar for ingoing radial null geodesic con-

gruence of a general QDS black hole is independent of n and
given exactly by Eq. (52).

References

1. K. Schwarzschild, Über das gravitationsfeld eines massenpunk-
tes nach der einsteinschen theorie, Sitzungsberichte der Deutschen
Akademie der Wissenschaften zu Berlin, Klasse für Mathematik,
Physik, und Technik, 189 (1916)

2. R.M. Wald, General Relativity (Chicago Univ. Press, Chicago,
1984). https://doi.org/10.7208/chicago/9780226870373.001.0001

3. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-
time, Cambridge Monographs on Mathematical Physics (Cam-
bridge Univ. Press, Cambridge, 2011). https://doi.org/10.1017/
CBO9780511524646

4. R. Penrose, Gravitational collapse and space-time singulari-
ties. Phys. Rev. Lett. 14, 57 (1965). https://doi.org/10.1103/
PhysRevLett.14.57

5. S.W. Hawking, R. Penrose, The singularities of gravitational col-
lapse and cosmology. Proc. R. Soc. Lond. A A314, 529 (1970).
https://doi.org/10.1098/rspa.1970.0021

6. A. Borde, Regular black holes and topology change. Phys. Rev.
D 55, 7615 (1997). https://doi.org/10.1103/PhysRevD.55.7615.
arXiv:gr-qc/9612057

7. E. Ayon-Beato, A. Garcia, The Bardeen model as a nonlinear mag-
netic monopole. Phys. Lett. B 493, 149 (2000). https://doi.org/10.
1016/S0370-2693(00)01125-4. arXiv:gr-qc/0009077

8. D.I. Kazakov, S.N. Solodukhin, On quantum deformation of the
Schwarzschild solution. Nucl. Phys. B 429, 153 (1994). https://
doi.org/10.1016/S0550-3213(94)80045-6. arXiv:hep-th/9310150

9. T. Berry, A. Simpson, M. Visser, General class of “quantum
deformed” regular black holes. Universe 7, 165 (2021). https://
doi.org/10.3390/universe7060165. arXiv:2102.02471

10. F.R. Klinkhamer, A new type of nonsingular black-hole solution in
general relativity. Mod. Phys. Lett. A 29, 1430018 (2014). https://
doi.org/10.1142/S0217732314300183. arXiv:1309.7011

11. F.R. Klinkhamer, C. Rahmede, A nonsingular spacetime defect.
Phys. Rev. D 89, 084064 (2014). https://doi.org/10.1103/
PhysRevD.89.084064. arXiv:1303.7219

12. F.R. Klinkhamer, Regularized big bang singularity. Phys. Rev.
D 100, 023536 (2019). https://doi.org/10.1103/PhysRevD.100.
023536. arXiv:1903.10450

13. F.R. Klinkhamer, Z.L. Wang, Nonsingular bouncing cosmology
from general relativity. Phys. Rev. D 100, 083534 (2019). https://
doi.org/10.1103/PhysRevD.100.083534. arXiv:1904.09961

14. F.R. Klinkhamer, Z.L. Wang, Nonsingular bouncing cosmology
from general relativity: scalar metric perturbations. Phys. Rev.

123

https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1017/CBO9780511524646
https://doi.org/10.1017/CBO9780511524646
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRevD.55.7615
http://arxiv.org/abs/gr-qc/9612057
https://doi.org/10.1016/S0370-2693(00)01125-4
https://doi.org/10.1016/S0370-2693(00)01125-4
http://arxiv.org/abs/gr-qc/0009077
https://doi.org/10.1016/S0550-3213(94)80045-6
https://doi.org/10.1016/S0550-3213(94)80045-6
http://arxiv.org/abs/hep-th/9310150
https://doi.org/10.3390/universe7060165
https://doi.org/10.3390/universe7060165
http://arxiv.org/abs/2102.02471
https://doi.org/10.1142/S0217732314300183
https://doi.org/10.1142/S0217732314300183
http://arxiv.org/abs/1309.7011
https://doi.org/10.1103/PhysRevD.89.084064
https://doi.org/10.1103/PhysRevD.89.084064
http://arxiv.org/abs/1303.7219
https://doi.org/10.1103/PhysRevD.100.023536
https://doi.org/10.1103/PhysRevD.100.023536
http://arxiv.org/abs/1903.10450
https://doi.org/10.1103/PhysRevD.100.083534
https://doi.org/10.1103/PhysRevD.100.083534
http://arxiv.org/abs/1904.09961


Eur. Phys. J. C (2022) 82 :901 Page 13 of 13 901

D 101, 064061 (2020). https://doi.org/10.1103/PhysRevD.101.
064061. arXiv:1911.06173

15. Z.L. Wang, Regularized big bang singularity: geodesic congru-
ences. Phys. Rev. D 104, 084093 (2021). https://doi.org/10.1103/
PhysRevD.104.084093. arXiv:2109.04229

16. F.R. Klinkhamer, Skyrmion spacetime defect. Phys. Rev. D
90, 024007 (2014). https://doi.org/10.1103/PhysRevD.90.024007.
arXiv:1402.7048

17. F.R. Klinkhamer, J.M. Queiruga, Antigravity from a spacetime
defect. Phys. Rev. D 97, 124047 (2018). https://doi.org/10.1103/
PhysRevD.97.124047. arXiv:1803.09736

18. M. Nakahara, Geometry, Topology and Physics (IOP Publishing,
Bristol, 1990)

19. G.T. Horowitz, Topology change in classical and quantum gravity.
Class. Quantum Gravity 8, 587 (1991). https://doi.org/10.1088/
0264-9381/8/4/007

20. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-hole
Mechanics (Cambridge Univ. Press, Cambridge, 2009). https://doi.
org/10.1017/CBO9780511606601

21. F.R. Klinkhamer, Z.L. Wang, Lensing and imaging by a stealth
defect of spacetime. Mod. Phys. Lett. A 34, 1950026 (2019).
https://doi.org/10.1142/S0217732319500263. arXiv:1808.02465

22. E. Battista, Nonsingular bouncing cosmology in general relativity:
physical analysis of the spacetime defect. Class. Quantum Grav-
ity 38, 195007 (2021). https://doi.org/10.1088/1361-6382/ac1900.
arXiv:2011.09818

23. F.R. Klinkhamer, On a soliton-type spacetime defect. J. Phys. Conf.
Ser. 1275, 012012 (2019). https://doi.org/10.1088/1742-6596/
1275/1/012012. arXiv:1811.01078

123

https://doi.org/10.1103/PhysRevD.101.064061
https://doi.org/10.1103/PhysRevD.101.064061
http://arxiv.org/abs/1911.06173
https://doi.org/10.1103/PhysRevD.104.084093
https://doi.org/10.1103/PhysRevD.104.084093
http://arxiv.org/abs/2109.04229
https://doi.org/10.1103/PhysRevD.90.024007
http://arxiv.org/abs/1402.7048
https://doi.org/10.1103/PhysRevD.97.124047
https://doi.org/10.1103/PhysRevD.97.124047
http://arxiv.org/abs/1803.09736
https://doi.org/10.1088/0264-9381/8/4/007
https://doi.org/10.1088/0264-9381/8/4/007
https://doi.org/10.1017/CBO9780511606601
https://doi.org/10.1017/CBO9780511606601
https://doi.org/10.1142/S0217732319500263
http://arxiv.org/abs/1808.02465
https://doi.org/10.1088/1361-6382/ac1900
http://arxiv.org/abs/2011.09818
https://doi.org/10.1088/1742-6596/1275/1/012012
https://doi.org/10.1088/1742-6596/1275/1/012012
http://arxiv.org/abs/1811.01078

	Geodesic congruences in modified Schwarzschild black holes
	Abstract 
	1 Introduction
	2 The Schwarzschild–Klinkhamer black-hole solution
	3 Geodesic congruences of the Schwarzschild–Klinkhamer black hole
	3.1 Congruence of radial timelike geodesics
	Case one. M=0 and b=0
	Case two. Mneq0  and b = 0
	Case three. M= 0  and b neq0
	Case four. Mneq0  and b neq0

	3.2 Congruence of radial null geodesics

	4 Geodesic congruences in a quantum deformed black hole
	4.1 Congruence of radial timelike geodesics
	4.2 Congruence of radial null geodesics

	5 Conclusions and discussion
	Acknowledgements
	Appendix A: Geodesics of modified Schwarzschild black holes
	Appendix B: Eddington–Frinkelstein coordinates
	1. Eddington–Frinkelstein coordinates for the quantum deformed Schwarzschild spacetime.
	2. Eddington–Frinkelstein coordinates for Schwarzschild–Klinkhamer spacetime.

	Appendix C: Radial geodesic congruences in a general class of QDS black holes
	References




