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Abstract We discuss equivalent representations of gravity
in the framework of metric-affine geometries pointing out
basic concepts from where these theories stem out. In par-
ticular, we take into account tetrads and spin connection to
describe the so called Geometric Trinity of Gravity. Specif-
ically, we consider General Relativity, constructed upon the
metric tensor and based on the curvature R; Teleparallel
Equivalent of General Relativity, formulated in terms of tor-
sion T and relying on tetrads and spin connection; Symmet-
ric Teleparallel Equivalent of General Relativity, built up on
non-metricity Q, constructed from metric tensor and affine
connection. General Relativity is formulated as a geomet-
ric theory of gravity based on metric, whereas teleparallel
approaches configure as gauge theories, where gauge choices
permit not only to simplify calculations, but also to give deep
insight into the basic concepts of gravitational field. In par-
ticular, we point out how foundation principles of General
Relativity (i.e. the Equivalence Principle and the General
Covariance) can be seen from the teleparallel point of view.
These theories are dynamically equivalent and this feature
can be demonstrated under three different standards: (1) the
variational method; (2) the field equations; (3) the solutions.
Regarding the second point, we provide a procedure start-
ing from the (generalised) second Bianchi identity and then
deriving the field equations. Referring to the third point, we
compare spherically symmetric solutions in vacuum recov-
ering the Schwarzschild metric and the Birkhoff theorem in
all the approaches. It is worth stressing that, in extending the
approaches to f (R), f (T ), and f (Q) gravities respectively,
the dynamical equivalence is lost opening the discussion on
the different number of degrees of freedom intervening in the
various representations of gravitational theories.
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1 Introduction

In the nineteenth century, Newtonian mechanics was consid-
ered as the best theory to describe gravity, since it was suc-
cessfully exploited in everyday life and capable of describ-
ing the motion of planets and stars. However, in this period,
there was a great cultural ferment around non-Euclidean
geometries starting from fundamental works by Gauss,
Lobachevsky, Bolyai, Riemann, Bianchi, Ricci-Curbastro
and several others [1]. The Euclidean framework, the arena
for classical Physics, was overtaken by the formulation of
elliptical and hyperbolic geometries, stemming out from a
rigorous axiomatic reformulation of the geometry founda-
tions. Indeed, two approaches were more and more emerg-
ing from these studies: (i) affine geometry, introduced by
Euler in 1748, deriving from the Latin word affinis, meaning
“related”, and after promoted by Möbius, Klein, and Weyl.
It essentially focuses on the study of parallel lines, based
on the validity or redefinition of the fifth Euclid postulate,
and on the affine transformations [2]; (ii) metric geometry,
introduced by Fréchet and Hausdorff, relies on ametric func-
tion defining the concept of distance between any two points,
members of a non-empty set [3].

Einstein, inspired by this line of nonconformist ideas,
arrived, in 1915, to the formulation of General Relativity
(GR) [4]. This new vision of gravitational interaction, ruled
by the spacetime curvature, took time to be comprehended
and accepted by the scientific community owed to the out-
coming effects, retained to be too small to be measured and
observed at that time. The well-known subsequent astronom-
ical confirmations constituted the success of GR [5].

Although GR was not yet validated, some authors were
however eager to advance proposals to extend it with the
aim to fulfill more general purposes. In 1918, Weyl started
to study the question on how to connect gravity and elec-
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tromagnetism in a single and coherent geometric theory. To
achieve this objective, he took into account an additional
gauge field, which singles out a unique length connection,
whose four additional degrees of freedom (DoFs) are associ-
ated to the electromagnetic potentials. In the Weyl geometry,
besides the GR connection, there is also an additional length
connection, which is symmetric, metric incompatible, and
gauge invariant. The consequence is that, during a parallel
transport, both direction and length of vectors vary [6,7].
However, Weyl’s theory revealed to be in conflict not only
with some experiences (for example, the frequency of spec-
tral lines of atomic clocks depends on the location and past
histories of the atoms), but even in a more fundamental way
with Quantum Mechanics (e.g., masses of particles rest on
their past histories).

In 1930, along the same line of thinking, Einstein him-
self proposed some modifications to his theory. Fascinated
by teleparallelism and tetrad formalism, he initiated a prolific
and extensive correspondence mainly with Cartan, Weitzen-
böck, and Lanczos [8–10]. Indeed, since the tetrad fields
posses sixteen independent components, he associated ten
of them to the metric tensor, whereas the other six were
believed to be linked to a separate connection, entrusted to
model electromagnetic potentials. Unfortunately, he failed in
his attempt, but his studies shed new light on the importance
of additional DoFs, which theoretically belong to the Lorentz
group and physically are a consequence of the local Lorentz
invariance.

In 1922, Cartan concentrated on a different direction, since
he considered a natural extension of GR constituted not only
by the Levi-Civita connection, but also by the torsion tensor
(essentially the antisymmetric part of a metric compatible
affine connection). Given these premises, he developed all the
ensuing geometric formulation [11], where he suggested that
the torsion can be physically related to the intrinsic (quan-
tum) angular momentum of matter and it vanishes as soon as
vacuum regions are considered [12,13].

Around 1960, Kibble and Sciama revisited the theory for-
mulating it within the gauge theory of the Poincaré group
[14–16]. This approach can be extended to the more general
affine group, leading thus to the metric-affine gauge gravity
[17].

There have been other proposals and experiments to probe
the fundamental nature of gravitation, in particular, to estab-
lish its geometric structure. In this vein, it was growing
the awareness that affinity and metricity could be consid-
ered as two different and independent concepts, where the
affine connection could not respect a priori the metric postu-
late. This perspective is considered into the so-called Pala-
tini approach, where GR is constituted by a metric tensor
and an affine connection, considered as two different geo-
metric structures. Varying the Einstein-Hilbert action with
respect to the metric, the Einstein field equations are recov-

ered; whereas, varying it with respect to the affine connection,
the metric compatibility condition is naturally obtained and
the Levi-Civita connection is restored [18]. This shows that
GR structure entails metric compatibility, and the affine con-
nection can be considered as a true dynamical field. As it is
well-known, this coincidence does not work for extensions
of GR as f (R) [19].

These considerations led to the development of theories
of gravity beyond the Einstein picture, where the field equa-
tions, besides the scalar curvature, can be formulated in terms
of other geometric invariants. Furthermore, the affine connec-
tions were not considered anymore with an ancillary role with
respect to the metric tensor, but, contrarily, they assumed a
dynamical fundamental role. These approaches gave rise to
the current variegated realm of the Extended and Alternative
Theories of Gravity (see e.g., [20–28]).

In any case, GR revealed to be extraordinarily success-
ful because passed several astrophysical and cosmological
observational tests like the Solar System tests [5,29,30], the
direct detection of gravitational waves [31–35], the recent
black hole imaging [36–43], and other robust confirmations
[44–47].

Despite these achievements, the theory exhibits various
pathological issues, still matter of debate, suggesting that
approaches beyond Einstein gravity should be pursued [26].
For example, from galaxies to cosmic evolution, the infrared
behavior of gravitational field presents several shortcom-
ings mainly related to the Dark Matter [48–52] and Dark
Energy problems [21,53,54], and the tensions in cosmologi-
cal parameters like H0 [55,56]. At ultraviolet scales, the lack
of renormalizability and unitarity of gravitational field points
out that a final, self-consistent theory of Quantum Gravity is
not at hand [57–63].

In general, the formulation of a new theory of gravity
to solve the above issues is not a simple task. There are
principles, constraints, mathematical consistencies, and the
agreement with observations that any novel approach must
necessarily fulfill before being accepted as a self-consistent
picture. This is one of the thorny theoretical challenges of
modern physics.

In this perspective, we want to focus our attention on GR
and its dynamically equivalent formulations, in view to put in
evidence similarities and differences towards a unified view
of gravitational interaction.

This paper is organized as follows: in Sect. 2, we describe
the general framework, represented by the metric affine-
theories of gravity, in which the so-called Geometric Trinity
of Gravity [64] can be formulated (Sect. 3). In Sect. 4, we
provide the mathematical tools necessary for the formulation
of any theory of gravity. In Sect. 5, we discuss the Geometric
Trinity of Gravity in terms of their Lagrangian equivalence.
Section 6 is devoted to the field equations derived from the
second Bianchi identity. In Sect. 7, we analyse the spheri-
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cally symmetric solutions in the three equivalent formula-
tions, recovering, in all of them, the Schwarzschild metric
and the Birkhoff theorem. Finally, Sect. 8 is devoted to the
conclusions and to the discussion of some crucial issues nec-
essary for any self-consistent formulation of gravity.

Notations. We adopt the metric signature (−,+,+,+).
Greek indices take values 0, 1, 2, 3, while the lowercase Latin
ones 1, 2, 3. Capital Latin letters indicate tetrad indices The
flat metric is indicated by ηαβ = ηαβ = diag(−1, 1, 1, 1).
The determinant of the metric gμν is denoted by g. Round
(square) brackets around a pair of indices stands for sym-
metrization (antisymmetrization) procedure, i.e., A(i j) =
Ai j + A ji (A[i j] = Ai j − A ji ).

2 Metric-affine theories of gravity

A first extension of Einstein gravity starts by generalizing
the affine connections which cannot be strictly Levi-Civita.
A metric-affine theory is defined by the following triplet
{M, gμν, Γ

ρ
μν}, where M is a four-dimensional spacetime

manifold, gμν is a rank-two symmetric tensor (with 10 inde-
pendent components), and Γ

ρ
μν is the affine connection

(endowed with 64 independent components). A-priori there
is no relation between the metric and the affine connection,
where the former is responsible to describe the casual struc-
ture, whereas the latter deals with the geodesic structure. As
it is well-known, the structures coincide if the Equivalence
Principle is the basic foundation of the theory [5,26].

Let us consider now a system of coordinates {x0, x1, x2, x3}
defined on M, where x0 labels the time and {x1, x2, x3}
the space. The metric gμν defines the line element ds2 =
gμνdxμdxν . The notion of covariant derivative ∇ acts on a
generic (1, 1) tensor in the following way [65]

∇μA
α
β := ∂μA

α
β − Γ

ρ
βμA

α
ρ + Γ α

ρμA
ρ
β. (1)

The components of the general affine connection Γ
ρ
μν can

be uniquely decomposed as follows [66,67]:

Γ ρ
μν :=

{
ρ

μν

}
+ K ρ

μν + Lρ
μν, (2)

where

{
ρ

μν

}
is the Levi-Civita connection, K ρ

μν is the con-

tortion tensor, and Lρ
μν is the disformation tensor, whose

explicit expressions are [67]

{
ρ

μν

}
:= 1

2
gρλ(∂μgλν + ∂νgμλ − ∂λgμν), (3a)

K ρ
μν := 1

2
(T ρ

μ ν + T ρ
ν μ − T ρ

μν), (3b)

Lρ
μν := 1

2
(Qρ

μν − Q ρ
μ ν − Q ρ

ν μ). (3c)

Notice that, while the Levi-Civita part is non-tensorial, the
contortion and disformation terms are tensors under changes
of coordinates. The three main geometric objects (related
to the dynamics) are: the curvature tensor Rμ

ναβ , the tor-

sion tensor T ρ
μν , and the non-metricity tensor Qρμν . Their

explicit expressions in terms of metric and connections are
[67]:

Rμ
νρσ := ∂ρΓ μ

νσ − ∂σ Γ μ
νρ + Γ μ

τρΓ τ
νσ − Γ μ

τσ Γ τ
νρ, (4a)

Tμ
νρ := 2Γ

μ
[ρν] ≡ Γ μ

ρν − Γ μ
νρ, (4b)

Qμνρ := ∇μgνρ ≡ ∂μgνρ − 2Γ λ
(ν|μgρ)λ �= 0. (4c)

These tensors show the following symmetries

Rμ
νρσ = −Rμ

νσρ, (5a)

Tμ
νρ = −Tμ

ρν, (5b)

Qμνρ = Qμρν. (5c)

The above geometric quantities, differently affect the parallel
transport of a vector on a manifold. We have that:

– Curvaturemanifests its presence when a vector is parallel
transported along a closed curve on a non-flat background
and come back to its starting point forming a non-null
angle with its initial position;

– Torsion entails a rotational geometry, where the parallel
transport of two vectors is antisymmetric by exchanging
the transported vectors and the direction of transport. This
property results in the non-closure of parallelograms;

– Non-metricity is responsible to alter the length of the
vectors along the transport.

In a generic metric-affine theory, all these effects can work
together, and could have also further meanings corresponding
to physical quantities (e.g., the torsion tensor is linked to the
spin in the Einstein–Cartan theory [16]).

In general, the following Bianchi identities hold [67]:

Rμ
[νρσ ] = ∇[νTμ

ρσ ] + Tμ
α[νT

α
ρσ ], (6a)

∇[αRμ
|ν|ρσ ] = −Rμ

ντ [αT
τ
ρσ ], (6b)

which involve only curvature and torsion tensors.
Metric-affine theories are a broad class of theories whose

dynamics can be related to the tensors Rμ
νρσ , Tμ

νρ , and Qμνρ

which can be grossly classified as in Fig. 1.

(1) The Riemann–Cartan geometry is expressed in terms of
metric compatible curvature and torsion tensors. It is
also known in the literature as U4 or Einstein–Cartan–
Sciama–Kibble theory, where the role of the torsion is
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Fig. 1 A possible classification of theories emerging from metric-
affine gravity

deputed to model the quantum spin effects present in the
matter [16,68–70].

(2) The Weyl geometry is constructed by vanishing the tor-
sion, where curvature and non-metricity are the only
surviving geometric objects. This theory has interesting
implications and moreover it represents also the origin of
the U (1) gauge theory [71].

(3) Teleparallel geometries are curvature-less and are based
on the concept of Fernparallelismus or parallelism at
distance, because two vectors can be immediately seen
whether they are parallel or not, since the parallel trans-
port of vectors becomes independent of the path [72].
They admit two special subclasses, represented by

(3.1) metric teleparallel theories expressed only in terms
of the torsion tensor;

(3.2) symmetric teleparallel theories described only by the
non-metricity tensor.

(4) The Riemannian geometry represents the first arena
within which Einstein framed his theory, constructed only
upon the curvature tensor [73,74].

(5) TheMinkowski geometry is obtained by setting curvature,
torsion, and non-metricity to zero, where the flat metric
ημν , as well as zero affine connections, are adopted. This
is the arena of Special Relativity [73,74].

3 The geometric trinity of gravity

Among the possible metric-affine gravity theories, Rieman-
nian and teleparallel models are particularly interesting. GR
is an example of Riemannian geometry, whereas the so-called
metric teleparallel equivalent of GR (TEGR) and symmet-
ric teleparallel equivalent of GR (STEGR) are examples of

teleparallel geometries. See Fig. 2. These three theories con-
stitute the so-called Geometric Trinity of Gravity [66].

A fundamental property of TEGR is that torsion replaces
curvature for dynamics and it is able to provide the same
descriptions of the gravitational interaction under a differ-
ent perspective. In GR the geometric curvature is entrusted
to model the gravitational force, whereas geodesics coin-
cide with the free-falling test particle’s trajectories. On the
other hand, in TEGR, the gravitational interaction emerges
through the torsion tensor and acts as a (gauge) force. This
is the reason why, in the teleparallel framework, the concept
of geodesics is replaced by force equations, analogously to
what happens in electrodynamics where the Lorentz force
is present. STEGR shares several similar properties with
TEGR. In this theory, one requires that curvature and tor-
sion are both zero, and gravitational dynamics is attributed
to the non-metricity tensor.

GR is described in terms of the metric gμν ; TEGR in terms
of the tetrads eAμ (accounting for the dynamical description
of gravity) and spin connection ωA

Bμ (flat connection out-
lining inertial effects); STEGR embodies the Palatini idea
where metric gμν and affine connection Γ

μ
αβ are two sepa-

rated dynamical structures. Like other fundamental interac-
tions in Nature, gravitation can be reformulated as a gauge
theory through TEGR and STEGR. The most peculiar prop-
erty of gravitation seems to be its universal character that all
objects, regardless of their internal structure, feel this force,
which is encoded in the Equivalence Principle of GR. In the
teleparallel formulations, the Equivalence Principle is some-
times claimed to be not valid in the literature, instead we
will underline how it can be recovered in such theories, also
if it does not lie at their foundation. This fact is extremely
relevant because, if the Equivalence Principle were shown
to be violated at some fundamental level, the final theory of
gravitation could be non-metric.

In these equivalent pictures, we can define alternative
ways of representing the gravitational field, accounting for
the same DoFs, related to specific geometric invariants: the
Ricci curvature scalar R, the torsion scalar T , and the non-
metricity scalar Q. In this sense, GR, TEGR, and STEGR
give rise to the Geometric Trinity of Gravity.

Similarly to GR where we can extend to f (R) gravity,
f (T ) and f (Q) gravity are the extensions of TEGR and
STEGR, respectively. It is worth noticing that, in general,
the equivalence among the three representations is not valid
anymore among the extensions, because they give rise to
dynamics with different DoFs (see Fig. 3). In particular, in
f (R) gravity to fourth orders field equations, in metric rep-
resentation, whereas f (T ) and f (Q) still remains of second-
order [26,28,75]. In addition, in f (T ) and f (Q), we cannot
choose, in general, a gauge to simplify the calculations, as in
the cases of TEGR and STEGR. On the contrary, we have to
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Fig. 2 The Geometric Trinity of Gravity framework and the dynamical
role of tensor invariants. Curvature rules how the tangent space rolls a
curve on a manifold; torsion how the tangent space twists around a curve

when we parallel transport two vectors along each other; non-metricity
encodes the variation of vectors’ length when they moved along a curve
[67]

Fig. 3 The Geometric Trinity of Gravity and related extensions. The
equivalence holds only for theories linear in the scalar invariants. Exten-
sions can involve further degrees of freedom which lead to the breaking
of equivalence among different representations of gravity. It can be
restored identifying correct boundary terms

consider field equations for the spin connection in f (T ) and
affine field equations for f (Q) [28,75,76]. In the following,
we shall develop these points in detail.

4 Tetrads and spin connection

Before going into details of Trinity Gravity, some consider-
ations on the mathematical structure are in order. To define
a theory of gravity, we need to fix the underlying geome-
try, the transformation properties and the set of observables.
GR is based on the metric tensor from which we can con-
struct the Levi-Civita connection, and finally the curvature,
which encodes the gravitational dynamics. The possibility
to relate the metric and the geodesic structure, which essen-
tially coincide, rely on the validity of the Equivalence Princi-
ple [26]. However, GR can be reformulated also in terms of
tetrad [72,75,77] and spin connection formalisms [72,78],
giving rise to the teleparallel equivalent GR. In Sect. 4.1, we
describe in detail the tetrad formalism, whereas, in Sect. 4.2,
we introduce the spin connection.

4.1 The tetrad formalism

The geometric setting of any theory of gravity occurs in the
tangent bundle, a natural construction always present in any
smooth spacetime. In fact, at each point of the spacetime, it is
possible to construct the tangent space attached to it, which
is a vector (fiber bundle) space. On the respective domains of
definition, any vector or covector can be expressed in terms of
a general linear orthonormal frame called tetrads or vielbeine
(where “viel” =many and “beine” = legs in German, therefore
dreibeine = three legs, vierbeine = four legs, etc.).

A tetrad field is a geometric construction, which permits to
easily carry out the calculations on the tangent space. Phys-
ically, they represent the standard laboratory-apparatus of
the observer for carrying out the measurements in space and
time. Using a tetrad field means to adopt a Lagrangian point
of view, which entails to follow an individual fluid parcel
as it moves through space and time. A tetrad field estab-
lishes a relationship between the manifold and its tangent
spaces. This geometric structure is always present, indepen-
dently of any prior gravity-model assumption. The theoret-
ical framework intervenes to characterize the gravitational
effects occurring in this frame.

We first introduce the definition and properties of the
tetrads (see Sect. 4.1.1), and then we present their anholon-
omy structure (see Sect. 4.1.2) and its importance in the
first Cartan structure equation (see Sect. 4.1.3). Finally we
describe preferred frames represented by the inertial class
and trivial tetrads (see Sect. 4.1.4).

4.1.1 Tetrads: definition and properties

Let us assign a general metric spacetime (M, gμν), being M
a four-dimensional differential manifold of class C∞, whose
tangent spaces TpM, at each point p ∈ M, are Minkowski
spacetimes with metric ηAB , and gμν the symmetric metric
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Fig. 4 Two-dimensional picture to explain the tetrad formalism.
Tetrads eAμ solder the coordinate chart (U, ϕ) on the manifold M to
the orthonormal basis

{
ex , ey

}
in the tangent bundle TpM. They repre-

sent also the coefficients in the natural (holonomic) basis
{
∂x , ∂y

}
. The

coordinate map ϕ assign at each point p ∈ U ⊆ M the coordinates
ϕ(p) = (x, y) ∈ ϕ(U) ⊆ R

4. Passing from TpM to the cotangent
bundle T 


pM through gμν and ηAB , the natural basis {dx, dy} is trans-
formed into the orthonormal basis {ex , ey} through the use of tetrads
e μ
A

tensor. In these hypotheses, there exists a compatible atlas of
chartsA, being an open covering of M. Therefore, for each
p ∈ M there exists a chart (U , ϕ) of domain U , being an
open neighbourhood of p, and a coordinate map ϕ : U →
ϕ(U) ⊆ R

4 (being an homeomorphism). In addition, for all
(U , ϕ), (V, ψ) ∈ A, the mapψ◦ϕ−1 : ϕ(U∩V) → ψ(U∩V)

is a C∞-diffeomorphism called coordinate transformation.
Therefore, to each point p ∈ M, we can associate its coor-
dinates by (x0, x1, x2, x3) := ϕ(p) ∈ R

4 [74]. Defined
the coordinate xμ-axes in R

4, it is possible to construct the
related coordinate curves γxμ on M via the use of the charts.
Therefore, all the parallel curves to coordinate axes in R

4

forms the related grid onM, which permits to uniquely iden-
tify the spacetime location of all points.

A natural differentiable basis or holonomic basis of each
tangent bundle TpM is given by a sets of vectors tangent to
the coordinate lines at each point p, i.e.,

∂μ :=
(

∂

∂xμ

)
p
, (7)

as well as for covector fields defined on the cotangent bundle
T 

pM (set of all linear maps α : TpM → R) we have the

following basis {dxμ} applied to the point p ∈ M, which
satisfies the orthonormality condition

dxμ∂ν = δμ
ν . (8)

The tangent TpM and cotangent T 

pM bundles in p ∈ M

are related through the metrics gμν and ηAB .
Every vector or covector applied to a point p ∈ M can

be expressed in terms of the natural basis. Therefore, we can

define a set of orthonormal vectors and covectors, which can
be related to the natural basis through [72]

eA := e μ
A ∂μ, eA := eAμdxμ, (9)

where the set of coefficients
{
e μ
A

}
are called tetrads and

belong to the linear group of all real 4×4 invertible matrices
GL(4,R). The tetrads act as a soldering agent between the
general manifold (Greek indices) and the Minkowski space-
time (capital Latin indices1) as follows

gμν = ηABe
A
μe

B
ν, ηAB = gμνe

μ
A e ν

B . (10)

Therefore, a tetrad field is a linear frame gluing together the
coordinate charts onM to the preferred orthonormal basis eA
on the tangent space, where calculations can be carried out in
a considerably simplified manner. As gμν varies from point
to point on the manifold M, the vierbeine e μ

A do the same.
Calculating the determinant of (10), we obtain −g = e2,
where e denotes the determinant of e μ

A and it is negative
owed to the signature of ηAB . Generally speaking, we note
that the vierbeine represent the square root of the metric. In
Fig. 4 the tetrads together with their properties are displayed.

4.1.2 Anholonomy of tetrad frames

Let us now analyse one of the consequences in using of the
tetrad fields. A general tetrad basis {eA} (cf. Eq. (9)) satisfies
the commutation relation [72,78]

[eA, eB] := eAeB − eBeA

= (e μ
A ∂μ)(e ν

B ∂ν) − (e ν
B ∂ν)(e

μ
A ∂μ)

=
[
e μ
A eCν(∂μe

ν
B ) − e ν

B e
C
μ(∂νe

μ
B )
]
eC

= e μ
A e ν

B

[
∂νe

C
μ − ∂μe

C
ν

]
eC

= f CABeC , (11)

where we have set

f CAB := e μ
A e ν

B

[
∂νe

C
μ − ∂μe

C
ν

]
, (12)

which are known as structure constants or coefficients of
anholonomy related to the frame {eA}. They quantify the
failure of the parallelogram closure generated by the vectors
eA and eB . In general, when f CAB �= 0, the tetrad basis is
anholonomic or non-trivial, and the coefficients of anholon-
omy specify how much they depart from being holonomic.
This approach reveals important properties of the underlying
geometric framework on which we are working. In GR, they
have been used in the Bianchi classification, which leads to
eleven possible different spacetimes, useful to develop cos-
mological models [79–81].

1 Sometimes, capital Latin indices, referring to local coordinate indices,
are also indicated by an over hat on the Greek indices, i.e., eAμ = eν̂

μ.
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4.1.3 The first Cartan structure equation

Given a 1-form ω and defined dω as the exterior derivative,
it can be written in components as

dω = ∂μωνdxμ ∧ dxν, (13)

where ∧ is the external product defined as

dxμ ∧ dxν = dxμ ⊗ dxν − dxν ⊗ dxμ, (14)

with ⊗ the tensorial product. Due to the antisymmetry of the
exterior product and the Schwarz theorem, we have d2ω = 0
thanks to the Poincaré lemma [77].

We consider the 2-form dω applied to two vectors u =
uμ∂μ, v = vν∂ν , which can be written as [82]

dω(u, v) = uω(v) − vω(u) − ω([u, v]L), (15)

where

dω(u, v) := ∂μων(u
μvν − uνvμ), (16a)

uω(v) := uμvν∂μων + uμων∂μvν, (16b)

ω([u, v]L) := ων(u
μ∂μvν − vμ∂μu

ν), (16c)

with ω = ωμdxμ and [u, v]L ≡ (Luv) := (uμ∂μvν −
vμ∂μuν)∂ν . It is the Lie bracket or the Lie derivative of the
vector field v with respect to the vector field u. It is important
to note that dω(u, v) produces a scalar.

If we consider the tetrad basis {eA} and take ω = eA, then
we have the following relation [82]

{
deC (eA, eB)

}
eC =

{
eA[eC (eB)] − eB[eC (eA)]

− eC ([eA, eB]L)
}
eC

= −eC ([eA, eB]LLeL)eC

= −[eA, eB]L. (17)

Assigned a general metric-compatible affine connection
Γ λ

αβ , and the associated covariant derivative ∇, we have

∇eAeB = γ C
ABeC , (18)

where γ C
AB are the Ricci rotation coefficients, which mea-

sure the rotation of all frame tetrads when moved in vari-
ous directions, encoding thus gravitational and non-inertial
effects [77,82]. When we use the natural basis, they reduce
to the affine connection Γ C

AB . It is important to note that
such coefficients arise also in a flat spacetime when, gener-
ally, non-liner coordinates are exploited, since they give rise
to non-inertial effects. In particular, in the considered tetrad
basis, they assume the following expression and symmetries
[77]

γλνμ := eAμe
B
λ∇A(eν)B

= −eAμ(eν)B∇Ae
B
λ

= −eAμe
B
ν∇A(eλ)B = −γνλμ, (19)

where we have used the compatibility condition in the last
equality. γ C

AB can be seen as the action of the connection
1-forms ωC

B on the tetrad basis eA, i.e., [82]

γ C
AB = ωC

B(eA) ⇔ ωC
B = γ C

ABe
A. (20)

Since we know that ∇μ∂ν = Γ λ
μν∂λ, if we consider the

commutator of ∇μ and ∂ν we obtain

[∇μ, ∂ν] = ∇μ∂ν − ∇ν∂μ

=
(
Γ λ

μν − Γ λ
νμ

)
∂λ

= Tλ
μν∂λ, (21)

where Tλ
μν is the torsion tensor measuring the antisymme-

try of the affine connections. In a coordinate-independent
approach, the torsion T (associated to the covariant deriva-
tive ∇) is a (1, 2)-type tensor, which acts on pairs of vectors
(v, u) to give another vector according to the following rela-
tion [73,82]

T (v, u) := ∇vu − ∇uv − [v, u]L. (22)

Applying Eq. (22) to {eA}, exploiting Eq. (17), and consid-
ering ωC

B(eA) = (ωC
D ⊗ eD)(eA, eB), we obtain

T (eA, eB) = ∇eAeB − ∇eB eA − [eA, eB]L
=
[
ωC

B(eA) − ωC
A(eB) + deC (eA, eB)

]
eC

=
[
(ωC

D ∧ eD + deC )(eA, eB)
]
eC . (23)

Defined ΩC := ωC
D ∧ eD + deC as the torsion differential

2-form, Eq. (23) can be written as [77,82]

T = ΩC ⊗ eC , (24)

which is the first Cartan structure equation. In the case
of Riemann geometry, namely when the torsion vanishes,
Eq. (24) becomes [72,78]

deC := −ωC
A ∧ eA

= −1

2

(
γ C

AB − γ C
BA

)
eA ∧ eB

= −1

2
e μ
A e ν

B (∂νe
C
μ − ∂μe

C
ν)e

A ∧ eB

= −1

2
f CABe

A ∧ eB, (25)

where the anholonomy coefficients emerge as antisymmet-
ric combination of the Ricci rotation coefficients. They are
also related to the curls of the tetrad vector derivatives,
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Fig. 5 This figure shows how tetrads behave in terms of inertial and
gravitational effects. When no gravity is present, and we consider iner-
tial effects only (i.e., we move along geodesics), we obtain trivial (holo-
nomic) tetrads, whereas when non-inertial contributions take place (i.e.,
following non-geodesic orbits) the tetrads become anholonomic. The
situation is analogue when gravitation is switched on. Along geodesic
we obtain inertial frames, whereas along non-geodesic trajectories we
have the most general anholonomic frames

as occur to the components of a differential 2-form [73,
77].

4.1.4 Inertial frames and trivial tetrads

Among the different frames, a special class is represented
by the inertial frames, which can be denoted by

{
e′
A

}
, whose

coefficients of anholonomy f ′C
AB locally satisfy the condition

f ′C
AB = 0. For Eq. (25) we have de′A = 0, which is locally

exact and can be written as e′A = dx ′A and therefore it is
holonomic. Therefore, all coordinate bases belong to this
family. It is worth noting that this is not a local property, but
it holds everywhere for all frames being part of this inertial
class [72].

In absence of gravitation, the anholonomy is only caused
by inertial forces present in these frames. The metric gμν

reduces to the Minkowski metric ημν . In all coordinate sys-
tems, ημν is a function of the spacetime point, and indepen-
dently of whether {eA} is holonomic (inertial) or not. In this
case, tetrads always relate the tangent Minkowski space to a
Minkowski spacetime

ηAB = ημνe
μ
A e ν

B . (26)

These are the frames appearing in Special Relativity, which
are usually called trivial frames or trivial tetrads. They
are very useful when we deal with spaces involving tor-
sion [78]. Of course, in absence of inertial forces, the class
of inertial frames is, consequently, represented by vanish-
ing structure coefficients. These concepts are sketched in
Fig. 5.

4.2 The spin connection

The spin connection plays a fundamental role when we deal
with tetrads, because it encodes the inertial effects occurring
in the considered frame. Let us briefly recall the fundamental
properties of the Lorentz group (see Sect. 4.2.1), then we
discuss the associated Lorentz algebra as well as its properties
(see Sect. 4.2.2). Lorentz connections will be first introduced
under a mathematical point of view (see Sect. 4.2.3) together
with the fundamental tetrad postulate (see Sect. 4.2.4), and
then the same subject will be considered under a physical
perspective (see Sect. 4.2.5).

4.2.1 The Lorentz group

Electromagnetism is framed under the standard of Special
Relativity by postulating [74]:

(1) The optical isotropy principle: all inertial frames are opti-
cally isotropic, i.e., the light propagates in these frames
with velocity c = 1/

√
ε0μ0 in any direction;

(2) The principle of relativity: the laws of physics assume
the same form in all inertial reference frames.

Given two inertial frames and assuming that one is mov-
ing with respect to the other with uniform velocity v :=
(v1, v2, v3), the Lorentz transformation is a linear (affine)
map relating the temporal and spatial coordinates of the two
inertial observers [74]

Λμ
ν : xμ −→ x ′μ = Λμ

ν(x)x
ν, (27)

which leaves invariant the following quadratic form

ημνx
μxν = −t2 + x2 + y2 + z2. (28)

A general Lorentz transformation is given by [83]

Λα
β = G ·

⎡
⎣ γ −γRi

j
v j

c

−γRi
j
v j

c Ri
j

(
δij + (γ − 1) viv j

v2

)
⎤
⎦ , (29)

where v ≡ |v| := √
(v1)2 + (v2)2 + (v3)2 is the modulus

of the spatial velocity v, γ := (1 − v2

c2 )−1/2 is the Lorentz

factor, Ri
j is a rotation matrix, and G is one of the following

operators {1,P,T,P · T} with

1 := diag(1, 1, 1, 1), (30a)

P := diag(1,−1,−1,−1), (30b)

T := diag(−1, 1, 1, 1), (30c)

being the unitary, parity, and time reversal operators, respec-
tively. The expression of Λα

β shows that a Lorentz transfor-
mation is defined in terms of six parameters: three related to
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the rotation angles and the other three to the components of
the spatial velocity v.

The set of all Lorentz transformations of Minkowski
spacetime forms the (homogeneous) Lorentz orthogonal
group O(1, 3). The requirement (28), together with (27),
entails, in matrix notation, that η = ΛT ηΛ. This gives rise
to det2Λ = 1, namely proper (detΛ = 1) and improper
(detΛ = −1) Lorentz transformations, which can be fur-
ther subdivided (cf. Eq. (29)) in orthochronous (Λ0

0 ≥ 1)
and non-orthochronous (Λ0

0 ≤ −1) [83,84]. The proper
orthochronous Lorentz transformations form the restricted
Lorentz special orthogonal group SO+(1, 3). Therefore,
the Lorentz group is a six-dimensional, non-compact, non-
Abelian, and real Lie group endowed with four connected
components [83,84]. The Lorentz group is closely involved in
all known fundamental laws of Nature describing the related
symmetries of space and time. In particular, in GR, we con-
sider the local Lorentz invariance, because in every small
enough regions of spacetime, thanks to the Equivalence Prin-
ciple, the gravitational effects can be neglected, i.e., this
occurs in the local inertial frame (LIF), which permits to
recover the Special Relativity physics.

At each point of a Riemannian spacetime, the metric gμν

determines a tetrad up to the local Lorentz transformations in
the tangent space. In other words, a tetrad vector (covector)
base {eA} (

{
eA
}
) is not unique, because it is always possi-

ble to find another base {ēA} (
{
ēA
}
) by performing a local

Lorentz transformation, namely

ēAμ = ΛA
Be

B
μ, (31)

such that

gμν = ηABē
A
μē

B
ν ηAB = gμν ē

μ
A ē ν

B . (32)

4.2.2 The Lorentz algebra

Another important feature of the Lorentz group is that it
admits a Lorentz algebra L [83,84]. If we consider an
infinitesimal transformation in SO+(1, 3) we have

Λα
β = δα

β + ωα
β + O[(ωα

β)2]. (33)

Applying η = ΛT ηΛ, at linear order in ωα
β , ωμν = −ωνμ is

an antisymmetric 4 × 4 matrix with six independent indices.
Therefore, we can associate six generators to the Lorentz
algebra labeled by JAB , with JAB = −JBA [84], where each
of them can be expressed in the four-vector representation
by a 4 × 4 matrix as follows

(JAB)CD := 2iη[B|DδCA] = i(ηBDδCA − ηADδCB ). (34)

Each element of the Lorentz group can be written as [84]

Λ = e
i
2 ωAB J AB

. (35)

4.2.3 The derivation of Lorentz connection

Some geometric objects with an established behaviour may
lose the covariant character under point-dependent transfor-
mations, e.g., ordinary derivative of covariant objects. In
order to supply for this defective behaviour, it is fundamental
to introduce connections ωμ fulfilling the following proper-
ties: (i) they behave like vectors in the spacetime indices; (ii)
they act as non-tensor in the algebraic indices to compen-
sate this effect and to reestablish the correct tensorial trend.
The linear connections fulfilling these requirements belong
to the subgroup SO+(1, 3) ofGL(4,R), and they are dubbed
Lorentz connections. It is worth noticing that all Lorentz con-
nections exhibit the presence of torsion (see Ref. [72], and
discussions therein).

A Lorentz connection, also known as spin connection, ωμ

is a 1-form acting in the Lorentz algebra, namely

ωμ : JAB ∈ L −→ ωμ := 1

2
ωAB

μ JAB, (36)

where ωAB
μ are the spin connection coefficients, which are

antisymmetric in the AB indices owed to the antisymmetry
of JAB , i.e., ωAB

μ = −ωBA
μ. This permits to introduce the

Fock–Ivanenko covariant derivative [72,85]

Dμ := ∂μ − ωμ = ∂μ − i

2
ωAB

μ JAB, (37)

where JAB is the generator in the appropriate representation
of the Lorentz group. The right member of Eq. (37) acts only
on tangent (algebraic) space indices. If we apply Eq. (34) to
the field eC we obtain

Dμe
C = ∂μe

C − i

2
ωAB

μ

[
i(ηBDδCA − ηADδCB )

]
eD

= ∂μe
C + 1

2

[
ωA

DμδCA + ωB
DμδCB

]
eD

= ∂μe
C + ωC

Dμe
D . (38)

Considering Eq. (38) and splitting eA by Eq. (9), we obtain
the following expressions

Dμ(eCλdx
λ) = Dμ(eCλ)dxλ + eCλDμ(dxλ)

= Dμ(eCλ)dxλ + eCλ(δλ
μ + e λ

E eDμωE
Dρdxρ)

= Dμ(eCλ)dxλ + eCμ, (39a)

Dμ(eCλdx
λ) = ∂μ(eCλdx

λ) + ωC
Dμe

D
λdxλ

= ∂μ(eCλ)dxλ + eCμ + ωC
Dμe

D
λdxλ. (39b)

Equating Eq. (39a) with (39b) we obtain

Dμ(eCλ) = ∂μ(eCλ) + ωC
Dμe

D
λ. (40)
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4.2.4 The tetrad postulate

In non-coordinate bases {eA}, the covariant derivative ∇̃ of
an algebraic (1,1) tensor X A

B can be written in terms of the
spin connection as

∇̃μX
A
B := ∂μ + ωA

CμX
C
B − ωC

BμX
A
C . (41)

Instead, the covariant derivative of a vector V , considered in
the coordinate bases

{
∂μ

}
, is

∇V = (∇μV
ν)dxμ ⊗ ∂ν

= (∂μV + Γ ν
μλV

λ)dxμ ⊗ ∂ν. (42)

If we consider now the same vector V written in a mixed
basis, tetrad and coordinate basis, gives

∇̃V = (∇̃μV
A)dxμ ⊗ eA

= (∂μV
A + ωA

BμV
B)dxμ ⊗ eA

= [∂μ(eAλV
λ) + ωA

Bμe
B
λV

λ]dxμ ⊗ (e ν
A ∂ν)

= [∂μV
ν + (e ν

A ∂μe
A
λ + ωA

Bμe
ν
A e

B
λ)Vλ]dxμ ⊗ ∂ν

= [∂μV
ν + (e ν

ADμe
A
λ)Vλ]dxμ ⊗ ∂ν. (43)

This is a crucial point, because the operations (42) and (43)
are in principle distinct. However, it is reasonable to assume
∇ ≡ ∇̃, because the same covariant derivative of a vector
cannot change in terms of which type of basis one chooses.
This is the so-called tetrad postulate, which is valid for any
affine connection, defined on a smooth manifold M, and no
metric is involved.

Therefore, it implies (cf. Eqs. (42) and (43))

Γ λ
μν ≡ e λ

A Dμe
A
ν . (44)

This identity entails several significant implications on the
spin connections: (i) since it does not possess a tensorial char-
acter, it acquires a non-homogeneous term under the Fock–
Ivanenko covariant derivative owed to the affine connection
[72]; (ii) a spin connection is naturally induced by the affine
connection; (iii) it can be also regarded as the gauge field
generated by local Lorentz transformations; (iv) inverting
Eq. (44) with respect to the spin connection, we obtain [72]

ωA
Bμ = eAλe

ν
B Γ λ

μν + eAσ ∂μe
σ
B ≡ eAν∇μe

ν
B ; (45)

(v) according to Eq. (45), the connection 1-form ωC
B (cf.

Eqs. (19), (20)) can be written as

ωAB = ωAB
μdxμ, (46)

and the Ricci rotation coefficients are the spacetime indices
of the spin connection components; (vi) the covariant deriva-
tive of the tetrad, expressed in terms of the affine and spin
connections, vanishes identically (cf. Eq. (45)), namely

∇μe
A
ν = ∂μe

A
ν − Γ λ

μνe
A
λ + ωA

Bμe
B
ν = 0; (47)

(vii) we note that ∇μ is the covariant derivative linked to
the connection Γ λ

μν when acts on external indices and can
be defined for tensorial fields, whereas the Fock–Ivanenko
derivative Dμ acts on internal indices and can be defined for
all tensorial and spinorial fields [72]; (viii) from the met-
ric compatibility condition, we obtain a sort of consistency
check given by (cf. Eqs. (40) and (44))

0 = ∇λgμν = ∂λgμν − Γ σ
λμgσν − Γ σ

λνgμσ

= ∂λ(eAμe
B
νηAB) − e σ

A gσνDλe
A
μ − e σ

A gμσDλe
A
ν

= −eAνe
D
μ(ωADλ − ωDAλ), (48)

which implies ωABμ = −ωBAμ, i.e., ωABμ is Lorentzian.
If the metric postulate (48) is not valid, the corresponding
spin connection cannot assume values in the Lorentz algebra,
because it is not a Lorentz connection [72]. Therefore, we
have this equivalence: metric compatibility holds if and only
if we choose a Lorentz connection.

4.2.5 Physical considerations on the Lorentz connection

We have seen how the tetrads transform under local (point-
dependent) Lorentz transformations ΛA

B(x) (cf. Eq. (31)),
and now let us apply the same transformations to the spin
connections. Let us first consider the inertial frames (see
Sect. 4.1.4)

{
e′A

μ

}
, which, in general coordinates

{
x ′μ}, can

be written in the holonomic form e′A
μ = ∂μx ′A, where

x ′A = x ′A(xμ) is a point-dependent vector. Under a local
transformation x A = ΛA

B(x)x ′B , we have eAμ = ΛA
B(x)e′B

μ

by transforming the vectors x A and x ′A in the coordinate base{
∂μ

}
.

Let us evaluate ∂μx ′A, which gives (∂ ′
A ≡ ∂/∂x ′A). It is

∂μx
′A = ∂μ(ΛA

B(x)x B)

= (∂μx
B)ΛA

B(x) + x B(∂μΛA
B(x)), (49)

∂μx
′A = e′C

μ∂ ′
C x

′A = e′A
μ = eCμΛA

C (x). (50)

Therefore, gathering together the above results, we have
(using Eq. (38) and Dμx A = eAμ)

eAμ = ∂μx
A + ω

A
Bμx

B ≡ Dμx
A, (51)

where

ω
A
Bμ := ΛA

C (x)∂μΛC
B(x) (52)

is defined as a purely inertial spin connection, because it
physically manifests the inertial effects occurring in the
Lorentz rotated frame eAμ. From Eq. (52), we learn that
the Lorentz connections physically represent the inertial
effects present in a given frame. In the inertial frames (i.e.,
e′A

μ = ∂μx ′A), these effects are absent since the Lorentz

connections vanish, ω′AB
μ = 0 for Eq. (51) [78].
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Fig. 6 Two-dimensional picture displaying the role of the spin connec-
tion ωA

Bμ. It translates the inertial effects present in the tetrad anholo-

nomic frame
{
ex , ey

}
. When we pass from p ∈ M to p′ ∈ M, the

related tetrads in TpM and Tp′M exhibit a rotation, modeled by the
spin connection. Instead, the inertial holonomic frame

{
∂x , ∂y

}
does

not undergo any rotation, because it admits vanishing spin connection

To better understand these results, let us consider the trans-
formation of the spin connection under local Lorentz trans-
formations, which leads to [72,78]

ωA
Bμ = ΛA

C (x)ω′C
DμΛD

C︸ ︷︷ ︸
non inertial

+ΛA
C∂μΛC

B(x)︸ ︷︷ ︸
inertial

. (53)

When we pass from a frame to another one, there are two
distinct contributions: (1) non-inertial effects connected with
the new frame; (2) inertial contributions due to the rotation
of the new frame with respect to the previous one. Therefore,
starting from inertial frames (ω′AB

μ = 0), it is possible to
obtain a class of non-inertial frames (cf. Eq. (53)) via local
Lorentz transformations. It is important to note that all these
infinite frames are related through global (point-independent)
Lorentz transformations ΛA

B = const [78]. In Fig. 6 we
display the spin connection mechanism.

From Eqs. (45) and (52), the coefficients of anholonomy

(11) can be written as (ω
A
BC = ω

A
Bμe

μ
C ) [72,78]

f CAB = ω
C
BA − ω

C
AB . (54)

From this relation we can define the spin connection in term
of the structure constants as

ω
A
BC = 1

2
( fB

A
C + fC

A
B − f ABC ). (55)

Let us show now other two important implications of the
purely inertial connection. Inserting its expression (52) into
the definitions of curvature and torsion tensors (cf. Eqs. (4a)
and (4b)), we obtain the following relations [72,78]

RA
Bμν = ∂νω

A
Bμ − ∂μω

A
Bν + ω

A
Eνω

E
Bμ

−ω
A
Eμω

E
Bν ≡ 0, (56a)

T A
νμ = ∂νe

A
μ − ∂μe

A
ν + ω

A
Eνe

E
μ − ω

A
Eμe

E
ν . (56b)

To prove that Eq. (56a) is identically vanishing, we have used
the property ΛE

C∂μΛC
E = −ΛC

E∂μΛE
C . This result, phys-

ically tells that inertial effects cannot generate “curvature
effects”, but it is possible to produce only non-null torsional
effects, see Eq. (56b). However, if we consider trivial tetrads

(i.e., eAμ = ∂μxa and ω
A
Bμ = 0), we can further nullify also

the torsion tensor.

5 Equivalent representations of gravity: the Lagrangian
level

Let us consider now the Geometric Trinity of Gravity, tak-
ing into account its mathematical and physical aspects. We
discuss first the formulation of gravity according to GR in
Sect. 5.1. Gravity under the standard of gauge description is
considered in Sect. 5.2. In Sect. 5.3, the basic concepts of
GR, TEGR and STEGR are compared and discussed.

The notations we are going to use are the following: over-
circles refer to quantities built up on the Levi-Civita con-
nection (i.e.,

◦
Aμ

ν), over-hats denote quantities related to the

teleparallel connection (i.e.,
∧
Aμ

ν), and over-diamonds denote

quantities involving non-metricity (i.e.,
�
Aμ

ν).

5.1 Metric formulation of gravity: the case of General
Relativity

The GR is the first geometric formulation of gravity in curved
spacetimes. We first recall its basic principles (Sect. 5.1.1),
and implications related to the geodesic equations (see
Sect. 5.1.2). The fundamental geometric object is the metric
tensor, which allows to define uniquely the Levi-Civita con-
nection, which, in turn, determines the Riemann curvature
tensor (Sect. 5.1.3, for the description of its properties and
symmetries). Then, Lagrangian and field equations of GR
are presented in Sect. 5.1.4. Finally, we discuss the tetrad
formalism in GR (see Sect. 5.1.5).

5.1.1 Principles of General Relativity

The Einstein theory is essentially based on the following
pillar ideas, which can be stated as follows [26,73,74]:

(1) Relativity Principle: there is no preferred inertial frames,
i.e. all frames are good for Physics;

(2) General Covariance Principle: the basic laws of Physics
can be formulated in tensor form in any smooth four-
dimensional manifoldM. This means that field equations
must be “covariant” in form, i.e. they must be invariant
under the action of spacetime diffeomorphisms;

(3) Equivalence Principle: in any smooth four-dimensional
manifold M, it is possible to consider a small space-
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time region W where spatial and temporal gravitational
changes are negligible. Therefore, there always exists
a LIF where gravitational effects can be nullified. In
other words, inertial effects are locally indistinguishable
from gravitational effects (which means the equivalence
between the inertial and the gravitational masses).

(4) Causality Principle: each point of spacetime has to admit
a universally valid notion of past, present and future.

The first two principles are strictly related. They config-
ures the extension of Relativity Principle of Special Relativ-
ity to any reference frame independently of the acceleration
state. In other words, they figure out a sort of democracy
principle for all observers, i.e., all observers have the same
right to describe the physical reality [74,86].

Regarding the third principle, it permits to locally recover
the Physics of Special Relativity. Geometrically, it translates
in determining the tangent plane in every point of a smooth
manifold. Furthermore, gravity is the only interaction that
cannot be switched off in absolute, as instead it occurs for
electromagnetic and other fields. Therefore, the gravitational
field can be defined as what remains when we have deacti-
vated the other interactions in an absolute way and indepen-
dently from the observer. It can be only locally nullified in the
LIFs, physically coinciding with local free-falling frames.
Due to the underlying Riemannian geometric description,
LIF is defined by the Riemann theorem for every p ∈ M in
a local chart (U , ϕ) of p as [74,86]

gμν(ϕ(p)) = ημν, ∂λgμν(ϕ(p)) = 0. (57)

This holds if we assume that inertial and gravitational mass
coincides (see Refs. [74,86], for more details). This is the
(weak) equivalence principle or also known as university of
free fall, stating that the trajectory of a point mass in a gravi-
tational field depends only on its initial position and velocity
and it is independent of its composition and structure. There-
fore, the inertial effects may be globally eliminated by an
appropriate choice of the reference frame (see Sect. 4.2.5),
whereas the gravitational field can be only locally disre-
garded not eliminated [74,86].

The fourth principle is needed to ensure the uniqueness
of the time notion despite of spacetime deformations and
singularities. As it is well known, several issues of modern
physics are questioning the Causality Principle but we will
not go into this discussion again in this paper.

5.1.2 Geodesic equations

Starting from the universality of free fall postulate in LIF via
the coordinates {ξμ}, a test particle will draw a straight line,

whose equation of motion is given by

d2ξα

ds2 = 0, (58)

where ds2 = ηαβdξαdξβ is the line element. Since in such
a frame it is not possible to experience the existence of
gravitational effects, we perform a change of coordinates
ξα = ξα(xμ), with {xμ} the new coordinates. Applying this
transformation to Eq. (58), we obtain

d2xλ

ds2 + ◦
Γ λ

μν

dxμ

ds

dxν

ds
= 0, (59)

where
◦

Γ λ
μν is the affine connection responsible of the

geodesic spacetime structure, which arises from the gravita-
tional force acting on the test particle and being responsible
of the departure from the straight trend. Its expression is now
given by

◦
Γ λ

μν := ∂xλ

∂ξσ

∂2ξσ

∂xμ∂xν
, (60)

which explicitly shows that it is not a tensor. Physically they
are the apparent forces acting on the body due to the curved
geometric background induced by gravity.

Therefore, assigned the metric tensor ds2 = gμνdxμdxν ,
in a generic coordinate system {xμ}, the geodesic equation
is described by Eq. (59). In a metric compatible and torsion-
free spacetime, we have that the unique affine symmetric
connection is the Levi-Civita one via the Levi-Civita theorem

[73,74]. The condition
◦∇λgμν = 0 gives

◦
Γ λ

μν ≡
{

λ

μν

}
(see

Eq. (3a)).

5.1.3 The Riemann curvature tensor

We have seen the effect of geometric curvature in the geodesic
equation, but to quantify it as a field we have to introduce the
Riemann curvature tensor

◦
Rα

βμν (see Eq. (4a) with Γ λ
μν =

◦
Γ λ

μν) arising from the commutation of covariant derivatives
on a generic vector vα ,that is

[ ◦∇μ,
◦∇ν]vα = ◦

Rα
βμνv

β. (61)

The above equation is telling us that the Schwarz theorem,
applied to covariant derivatives, does not hold, otherwise we
have a flat spacetime (i.e.,

◦
Rα

βμν = 0). The gravitational field
is fully encoded in this tensor.

The Riemann tensor maintains the symmetry (5a) in a
generic metric-affine theory. However in GR (due to the sym-
metries of the Levi-Civita connection) it acquires the follow-
ing further symmetries [73]

◦
Rμναβ = − ◦

Rνμαβ, (62a)
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◦
Rμναβ = ◦

Rαβμν. (62b)

The two Bianchi identities (6) have both the right members
equal to zero, since GR is torsion-free. Due to the symmetries
(62a), we can define the symmetric Ricci tensor

◦
Rαβ = ◦

Rμ
αμβ

and the scalar curvature
◦
R = ◦

Rα
α .

Let us consider now a one-parameter family of geodesics
γs(t), where t is the affine parameter along the geodesic,
and s ∈ [a, b] ⊂ R labels the curves. We assume that the
collection of these curves defines a smooth two-dimensional
surface xμ(t, s) embedded in M. Provided that this family
of geodesics forms a congruence, the parameters t and s are
the coordinates on this surface.

A natural vector basis adapted to the coordinate system is
given by {Tμ, Sμ}, whose expressions are [74]

Tμ = ∂xμ

∂t
, Sμ = ∂xμ

∂s
. (63)

Then, we define the relative velocity Vμ and acceleration Aμ

along the geodesics as follows

Vμ = T ν
◦∇νT

μ, (64a)

Aμ = T ν
◦∇νV

μ. (64b)

We then obtain the geodesic deviation equation [74]

Aμ = ◦
Rμ

λαβ
TλT αSβ, (65)

where the relative acceleration between two close geodesics
is proportional to the Riemann curvature tensor, which char-
acterizes the behaviour of a one-parameter family of neigh-
bouring geodesics.

5.1.4 Lagrangian formalism and field equations

The GR dynamics is derived from the Hilbert-Einstein
action, whose expression is given by [87]

SGR := c4

16πG

∫
d4x

√−g (LGR + Lm) , (66)

where LGR := ◦
R(g) is the Einstein–Hilbert Lagrangian,

coinciding with the Ricci curvature scalar, and Lm is the
matter Lagrangian. In this case, the fundamental object is the
metric, as underlined in the curvature scalar

◦
R(g). The total

DoFs are represented by the ten independent components
of the metric tensor, from which we must subtract the four-
parameter diffeomorphisms underlying the invariance (gauge
symmetries’ freedom) and other four by a suitable choice
of the coordinates (gauge fixing) [66,73,88]. Therefore, the
gravitational dynamical DoFs becomes two, corresponding
thus to the graviton, massless spin-2 particle, related to the
X and + polarizations of gravitational waves [26,86].

Applying the principle of least action to Eq. (66), we derive
the GR field equations in presence of matter

◦
Gμν := ◦

Rμν − 1

2
gμν

◦
R = 8πG

c4 Tμν, (67)

where
◦
Gμν is the Einstein tensor and

Tμν = − 1

2
√−g

δLm

δgμν

(68)

is the (second-order) energy–momentum tensor which is
symmetric with respect to the conservation equations

◦∇μTμν =
0, and physically represents the source of gravitational field.

Particular consideration has to be devoted to matter fields
and gravity, because some subtleties can arise. For exam-
ple, (1) ambiguity in the matter coupling; (2) treatment of
bosonic and fermionic fields. In GR, it is clear that a point
particle follows the geodesic equations according to the Levi-
Civita part of the connection. More problematic issues are
linked to bosons (coupling only to the metric) and fermions
(coupling with metric and connection). Therefore, when mat-
ter fields are taken into account, one must either consider
minimally coupled fields or formulate consistent theories in
metric-affine formalism. For example in GR, the presence of
fermions requires the introduction of tetrads and spin con-
nection [66].

5.1.5 Tetrad formalism in General Relativity

GR conceives the gravitational interaction as a change in
the geometry of spacetime itself, where we pass from the
Minkowski ημν to the Riemannian metric gμν , and from par-
tial ∂ to covariant derivatives ∇. The metric plays the role of
the fundamental field, which is defined everywhere. In order
to study how gravitation couples with others fields, we have
to introduce the tetrads to deal with spinors in curved space-
times. In addition, tetrads encode the Equivalence Principle
since they are locally defined, as gravitation is locally equiv-
alent to an accelerated frame. Therefore, to obtain the effects
of gravitation on general sources (particles or fields), we need
to: (i) write all the related equations in the Minkowski space-
time in general coordinates, represented by trivial tetrads; (ii)
replace the holonomic tetrads with the anholonomic tetrads,
keeping the same formulae. The resulting equations hold in
GR. Einstein’s vierbein theory becomes thus a gauge field
theory for gravity.

Once we assign a general (anholonomic) tetrad
{
eAμ
}
, we

can rewrite the Riemann tensor according to the Cartan struc-
ture equations (see Sect. 4.1.3) as [82]

deC + ◦
ωA

B ∧ eB = 0, (69a)
◦
ωAB + ◦

ωBA = dgAB, (69b)

d ◦
ωA

B + ◦
ωA

C ∧ ◦
ωC

B = 1

2
◦
r ABCDe

C ∧ eD, (69c)
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where
◦
r ABCD is the Riemann curvature tensor in the tetrad

frame, with

◦
ωA

Bμ := eAν
◦∇μe

ν
B , (70a)

◦
f ABC := ◦

γ A
BC − ◦

γ A
CB, (70b)

dgAB = ∂C gABe
C , (70c)

◦
γ A

BC = 1

2
(

◦
f ABC − gCLg

AM ◦
f LBM − gBLg

AM ◦
f LCM )

+ ◦
Γ A

BC . (70d)

It is important to note that we can uniquely associate
the Lorentz connection to the Levi-Civita connection via
Eq. (45). In addition, if we consider the natural basis, then we
have ◦

ωA
BC = 0 and therefore ◦

γ A
BC ≡ ◦

Γ A
BC . Using the above

cited equations, it is possible to extract the components of
◦
r ABCD , which are [82]

◦
r ABCD = ∂D

◦
γ A

BC − ∂C
◦
γ A

BD + ◦
γ A
CM

◦
γ M

DB

− ◦
γ A

DM
◦
γ M
CB − ◦

γ A
MB

◦
γ M
CD . (71)

Also in this case, in the natural basis, we re-obtain the stan-
dard definition of the Riemann curvature tensor (61).

5.2 Gauge formulation of gravity: the case of teleparallel
gravity

A gauge formulation of gravity is possible in the teleparallel
gravity theory. We first show that this general theory can be
seen as a translation gauge theory (see Sect. 5.2.1), then we
analyse the concepts of geodesics and autoparallel curves in
this new framework (see Sect. 5.2.2). We finally concentrate
on two important teleparallel subtheories: the metric telepar-
allel gravity, (in Sect. 5.2.3) and the symmetric teleparallel
gravity, (see Sect. 5.2.4). Two important realizations of these
approaches are the Teleparallel Equivalent General Relativity
(TEGR) and the Symmetric Teleparallel Equivalent General
Relativity (STEGR) respectively.

5.2.1 Translation gauge theory

In a modern vision of physics, it is very important to settle
theories in a gauge framework [89]. In Sect. 5.1.5 we have
seen that also GR can be converted in a gauge theory. Let us
now sketch how GR can be formulated as a gauge theory of
translations [72,89].

This picture of GR can be achieved by both invoking
the Nöther theorem and recalling that the source of the
gravitational field is given by the energy and momentum.
Indeed, provided that gravitational Lagrangian is invariant
under spacetime translations, the energy–momentum current

is covariantly conserved. We will see that a metric telepar-
allel theory is more suitable to express gravity in this con-
text, because it entails more benefits, and the introduction of
tetrads reveals to be more natural.

This approach was first proposed by Lasenby, Doran, and
Gull in 1998 [90]. Its geometric setting is the tangent bun-
dle, where the gauge transformations take place. Let us first
introduce {xμ} and

{
x A
}

as the coordinates onM and TpM,
respectively. Now, let us consider the following infinitesimal
local translation

x A −→ x̄ A = x A + εA(xμ), (72)

where εA(xμ) are the infinitesimal parameters of the trans-
formation. The set of translations forms the translation Lie
group O(1, 3), whose generators are

PA := ∂A. (73)

They generate the Abelian translation algebra, because they
satisfy the following trivial commutation rules

[PA, PB] ≡ [∂A, ∂B] = 0. (74)

The infinitesimal transformation, written in terms of the gen-
erators, has the following expression

δ x̄ A = ε(xμ)B∂Bx
A = ε(xμ)A. (75)

A general source field Ψ = Ψ (x̄ A(xμ)) transforms under
the map (72) as follows [72,78]

δεΨ = εA(xμ)∂AΨ. (76)

Let εA = constant be a global translation, then the ordinary
derivative ∂μΨ transforms covariantly, because

∂ε(∂μΨ ) = εA∂A(∂μΨ ). (77)

For a local translational transformation εA(xμ), ∂μΨ does
not transform covariantly, because [72,78]

∂ε(∂μΨ ) = εA(xμ)∂A(∂μΨ )︸ ︷︷ ︸
correct

+ (∂μεA(xμ))∂AΨ︸ ︷︷ ︸
spurious

, (78)

where the spurious term spoil the translational gauge covari-
ance. However, in order to save this gauge covariance, we
follow the praxis exploited in all other gauge theories [84].
Like in the electromagnetic case, where we include the gauge
potential field Aμ to guarantee the covariance of the theory,
also here we have to set forth the translational gauge poten-
tial 1-form Bμ, assuming values in the Lie algebra of the
translation group, to guarantee the covariance of the gravity
theory. Therefore, we introduce the following gauge covari-
ant derivative (see Sect. 4.1.4)

e′
μΨ ≡ ∂μΨ = ∂μ + BA

μ∂AΨ, (79)

which holds in the class of Lorentz inertial frames (see
Sect. 4.1.4). To recover the gauge covariance, we require
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that the gauge potential Bμ transforms according to

δεB
A
μ = −∂μεA(xμ). (80)

Indeed, now eμΨ transforms covariantly

∂ε(e
′
μΨ ) = εA(xμ)∂A(∂μΨ )︸ ︷︷ ︸

correct

, (81)

since the potential (80) equals the spurious term in Eq. (77),
cancelling it out. The above construction is based on trivial
tetrads. However, for a general non-trivial tetrad field, it has
the following expression

eμ = Ψ = eAμ∂AΨ, eAμ = ∂μx
A + BA

μ, (82)

where BA
μ �= −∂μεA(xμ) and e′A

μ �= ∂μx A. Now let us
consider a Lorentz transformation (27), and let us assume
that the gauge potential BA

μ transforms as a Lorentz vector
in the algebraic index, namely it satisfies

BA
μ −→ ΛA

B(x)BB
μ. (83)

Therefore, the generalization of Eq. (79) becomes

eμΨ = ∂μ + ω
A
Bμx

B∂AΨ + BA
μ∂AΨ, (84)

where

eAμ = ∂μx
A + ω

A
Bμx

B + BA
μ = Dμx

A + BA
μ. (85)

For general non-trivial tetrads, we need to upgrade the gauge
potential (80) as follows

δεB
A
μ = −DμεA(xμ). (86)

In the context of teleparallel gravity, we have applied the
following translation coupling prescription

e′A
μ −→ eAμ, (87)

from which, thegravitational couplingprescription, assumed
in GR, naturally emerges

ημν −→ gμν. (88)

It is important to stress that the local Lorentz invariance
is a fundamental symmetry respected by all physical laws
in Nature, therefore, we must impose that our new theory
be locally Lorentz invariant. Such a requirement requires
the additional Lorentz gravitational coupling prescription,
which is a direct consequence of the strong Equivalence Prin-
ciple [72,78]. Indeed, this prescription is based on the Gen-
eral Covariance Principle, which can be seen as an active
version of the strong Equivalence Principle, namely given an
equation valid in presence of gravitation, the corresponding
special relativistic equation is locally recovered (at a point or
along a trajectory), i.e.,

∂μΨ →D′
μΨ = ∂μΨ

+ 1

2
e′A

μ

(
f ′
B
C
A + f ′

A
C
B − f ′C

BA

)
SB
CΨ, (89)

where Ψ is a general field, and SB
C are the generators of

the Lorentz group in the same representation to which Ψ

belongs. However, in presence of gravitation, we obtain

∂μΨ →DμΨ = ∂μΨ

+ 1

2
eAμ
(
fB

C
A + f A

C
B − f CBA

)
SB
CΨ, (90)

which represents the full (Lorentz plus translational) gravita-
tional coupling prescription in teleparallel gravity. We have
therefore the following scheme

{
e′A

μ −→ eAμ
∂μ −→ Dμ

}
︸ ︷︷ ︸

grav. coupling prescription in TG

⇔ ημν −→ gμν︸ ︷︷ ︸
grav. coupling prescription in GR

.(91)

5.2.2 Autoparallels and geodesics

Let us consider the equation of motion of a free test particle
first described in the inertial frames e′A

μ, i.e., [78]

du′A

dσ
= 0, (92)

where u′A is the anholonomic four-velocity of the test particle
and dσ is the Minkowski line element dσ 2 = ημνdxμdxν .
We note that Eq. (92) is written in a particular class of refer-
ence frames, and under a local Lorentz transformation (27),
it is non-covariant since

du′A

dσ
= ΛA

B(x)
duB

dσ︸ ︷︷ ︸
correct

+ dΛA
B(x)

dσ
uB

︸ ︷︷ ︸
spurious

. (93)

This is an apparent failure of the covariance, because if
we consider the anholonomic frame eAμ, associated to e′A

μ

through local Lorentz transformation (cf. Eq. (31)), we
immediately recover the covariance, because

du′A

dσ
= 0 −→ duB

dσ
+ ω

A
Bμu

Buμ = 0. (94)

In Sect. 5.1.2, we have defined the geodesic equation (59)
in GR. This notion must be revised in the parallel framework.
Let us consider a chart (U , ϕ) on the manifold M and let
γ μ(τ) be the parametric equation of a curve γ contained
in U , where τ is the affine parameter along γ . The tangent
vector γ̇ to γ , in the natural basis

{
∂μ

}
along γ , is given by

the following expression [74]

γ̇ (τ ) := dγ μ

dτ
∂μ. (95)
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A vector Yμ(τ) is defined to be parallel transported along
γ if it fulfills the following request

dYμ

dτ
:= ∇γ Y

μ ≡ dYμ

dτ
+ Γ

μ
αβY

α dγ β

dτ
= 0, (96)

where, for the moment, we do not specify Γ
μ
αβ . Equation (96)

represents a system of first order differential equations in
the unknown Yμ(τ), which admits a unique solution once
the initial condition Yμ

0 := Yμ(τ0) has been provided. It
is important to note that Yμ(γ (τ)) depends on the curve γ .
Therefore, a curve γ (τ) is said to beautoparallel if its tangent
vector γ̇ (τ ) satisfies [74]

∇γ γ̇ ≡ d2xμ

dτ 2 + Γ
μ
αβ

dxα

dτ

dxβ

dτ
= 0, (97)

or, in other words, if it remains parallel to itself along γ (τ),
where xμ are the coordinates of γ (τ) in the chart (U , ϕ).
Equation (97) is a system of second order differential equa-
tions, which admit a unique solution once initial position and
velocity have been assigned. It is worth noticing that, in GR,
autoparallels and geodesic equations coincide, whereas, in
teleparallel gravity, they give rise to two different structures,
because the autoparallels are related to the affine connection,
whereas the geodesic to the concept of metric, since it mea-
sures the minimal lengths between two or more points. In the
teleparallel framework, Eq. (97) becomes (cf. Eq. (2))

d2xμ

dτ 2 + ◦
Γ

μ
αβ

dxα

dτ

dxβ

dτ
= −Kμ

αβ

dxα

dτ

dxβ

dτ
, (98a)

d2xμ

dτ 2 + ◦
Γ

μ
αβ

dxα

dτ

dxβ

dτ
= −Lμ

αβ

dxα

dτ

dxβ

dτ
. (98b)

Therefore, Eqs. (98) recover a new aspect of GR, seen not
anymore geometrically as a minimal distance path, but in the
gauge paradigm as a sort of Lorentz force-like interaction
for the contortion tensor and kinetic energy-like interaction
regarding the disformation tensor, acting on the test particle
[67].

Another fundamental implication of autoparallels in telepar-
allel gravity is that they are sensitive to parameter changes,
because it is possible to obtain another curve, although we do
not alter the locus of its points. Therefore, if γ (λ) is autopar-
allel, then μ(τ) ≡ γ (λ(τ )) might be not autoparallel. This
change of parameterization λ = λ(τ ) entails that Eq. (97)
becomes [74]

d2xμ

dτ 2 + Γ
μ
αβ

dxα

dτ

dxβ

dτ
= −

(
dλ

dτ

)2 d2τ

dλ2

dγ μ

dτ
. (99)

We immediately see that the autoparallel character of the
curve γ (λ) is conserved under the parameter change λ =
λ(τ ) if and only if τ = aλ + b, with a, b being real arbitrary
constants. Here λ, μ are called canonical parameters.

5.2.3 Metric teleparallel gravity

Metric (or torsional) teleparallel gravity (TG), known also
as simply teleparallel gravity, is obtained by assuming the
metric compatibility. The theory is geometrically described
only by the torsion tensor. In Sect. 5.2.1, we have already seen
that tetrads eAμ and spin connection ωA

Bμ play a fundamental
role in describing gravity. Indeed, GR can be recast as a
translational gauge theory, where the related gravitational
field strength arises from the commutation relation of the
covariant derivatives, see Eqs. (21) and (84), namely2

[eμ, eν] = ∧
T A

νμ∂A, (100)

where the torsion (antisymmetric in the indices μν)

∧
T A

μν = ∂νB
A
μ − ∂μB

A
ν + ω

A
BνB

B
μ − ω

A
BμB

B
ν (101)

represents the field strength. Adding the vanishing term

Dμ(Dνx
A) − Dν(Dμx

A) ≡ 0 (102)

to Eq. (101), it becomes

∧
T A

μν = ∂νe
A
μ − ∂μe

A
ν + ω

A
Bνe

B
μ − ω

A
Bμe

B
ν . (103)

Exploiting Eqs. (44) and (103), we have that

∧
Tλ

μν = e λ
A

∧
Tλ

μν := Γ λ
νμ − Γ λ

μν. (104)

The spin connection is linked to the inertial effects present in
the tetrad frame, it is covariant under both diffeomorphisms
and local Lorentz transformations (see Sect. 4.2), assuring
the same properties also for the torsion tensor. It is important
to associate at each tetrad the related spin connection, there-

fore in TG we have always to provide the couple {eAμ, ω
A
Bμ}

[78]. There exist frames in TG where the related spin con-
nection vanishes, which are called proper frames {eAμ, 0}.
This definition leads to the Weitzenböck gauge, which pro-

duces the Weitzenböck connection
∧
Γ λ

νμ = e λ
A ∂μeAν , being

the distant parallelism condition from where TG takes its
name.

A natural question spontaneously arises: given a tetrad
frame, how do we operatively associate the related spin con-
nection? The simplest solution is tho choose proper frames,
but, a-priori, we do not know which are the related tetrads.
Therefore, we have to find a strategy to answer this question.
As one can verify, determining them from the field equations
is, in general, not a simple task (see Ref. [78], for details).
The method we propose relies on first determining the iner-
tial effects in the trivial tetrad frame and then associating the
related spin connection (see Ref. [91], for another method).

2 We define the torsion tensor as minus of that defined in Eq. (23), for
having the signs in agreement when compared to those of GR.
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In this approach, let us first introduce the concept of reference
tetrad eA(r)μ, in which gravity is switched off, that it

eA(r)μ := lim
G→0

eAμ. (105)

Through this process we are basically exploiting the Equiv-
alence Principle or the inverse translational coupling pre-
scription (87). This has the effect to consider a trivial tetrad,
where the anholonomy coefficients are zero (see Sect. 4.1.4)
and therefore the torsion tensor vanishes. In formulae, this
can be written as (cf. Eq. (54))

∧
T A

BC (eAμ, ω
A
Bμ) = ω

A
BC − ω

A
BC − f ABC (e(r)) = 0, (106)

from which we have

ω
A
BC = 1

2
eC(r)μ

[
fB

A
C (e(r)) + fC

A
B(e(r)) − f ABC (e(r))

]
.

(107)

Since they differ only by the gravitational content, they rep-
resent the gravitational effects inside the tetrad frame. This
approach can be schematized as follows

general tetrad︷︸︸︷
eAμ

reference tetrad︷︸︸︷
eA(r)μ

e′A
μ︸︷︷︸

trivial tetrad

gravity off
reduce

toω
A
Bμ

(108)

The coefficients of anholonomy (12), in presence of tor-
sion, read as (cf. Eq. (23))

ω
C
AB − ω

C
BA = f CAB + TC

AB . (109)

This expression can be recombined as follows

1

2

(
fB

C
A + f A

C
B − f CBA

)
= ω

C
BA − ∧

KC
BA, (110)

where the contortion tensor

∧
KC

BA = 1

2

( ∧
TB

C
A + ∧

TA
C
B − ∧

TC
BA

)
, (111)

has been introduced. Equation (110) is a further development
of Eq. (90). Using the fundamental identity of the theory of

Lorentz connections, we obtain (cf. Eq. (70a)) [78,92]3

ω
C
Bμ − ∧

KC
Bμ = ◦

ω
C

Bμ, (112)

which joins together GR and TG in a single compact expres-
sion. We remark that this “combined” coupling prescription
has been obtained from the General Covariance Principle,
and it is thus consistent with the strong Equivalence Princi-

ple. In Eq. (112), there is
◦
ω
C

Bμ in GR, enclosing both gravita-
tion and inertial effects in an indistinct form, whereas in TG,
ω
C
Bμ describes the inertial effects and

∧
KC

Bμ represents only
the gravitation. This is a new and elegant perspective to see
the strong Equivalence Principle in TG. Therefore, in a local
frame where the GR spin connection vanishes, we obtain the

identity ωC
Bμ = ∧

KC
Bμ, where inertial effects compensate

gravitation [78], resembling the free-falling cabin’ situation.
Another fundamental ingredient of TG theory is repre-

sented by the superpotential, whose expression is [93]

∧
S μν
A := ∧

Kμν
A − e ν

A

∧
Tμ + e μ

A

∧
T ν, (113)

where
∧
T αμ

α := ∧
Tμ is dubbed torsion vector. This permits

then to introduce the torsion scalar

∧
T := 1

2

∧
S μν
A

∧
T A

μν

= 1

4

∧
T ρ

μν

∧
T μν

ρ + 1

2

∧
T ρ

μν

∧
T νμ

ρ − ∧
Tμ

∧
Tμ, (114)

which is quadratic in the all possible torsion tensor com-
binations. In particular, in the last equality, the first term
resembles that of the usual Lagrangian of internal gauge the-
ories, whereas the other two stem out from the tetrad soldered
character allowing thus to set at the same level internal and
external indices [78].

Since TG is curvatureless we have that

∧
R = ◦

R + ∧
T + 2

e
∂μ

(
e

∧
Tμ
)

= 0, (115)

from which we immediately derive

◦
R = − ∧

T − 2

e
∂μ

(
eTμ

)
︸ ︷︷ ︸
boundary term

. (116)

3 Equation (112) is very important, but its derivation is also not trivial
at all. Here, we provide an intuitive proof, although a more rigorous
demonstration can be found in Sec. II.6 of Ref. [92]. Let us suppose
to have the tetrads

◦
eAμ in GR and

∧
eAμ in TG such that they have the

same coefficients of anholonomy
◦
f ABC = ∧

f ABC , guaranteed by the fact
that there exists an isomorphism assuring this property. This implies
◦Dμ = ∧Dμ, which then gives Eq. (112).
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In Sect. 6, the above calculations will be derived in details.
Therefore, a particular TG Lagrangian is

STEGR = − c4

16πG

∫
d4x eLTEGR︸ ︷︷ ︸

−∧
T

+
∫

d4xe Lm, (117)

up to a boundary term, which gives no contributions, because
at infinity the spacetime is asymptotically flat and therefore
the tetrads reduces to the trivial tetrads and the torsion is null.
Equation (115) is dynamically equivalent to that of GR (cf.
Eq. (66)), namely STEGR = SGR. This specific TG theory is
called TEGR.

The related field equations are [72]

∧
Gμν := 1

e
∂λ(e

∧
Sμν

λ) − 4πG

c4 tμν = 4πG

c4 Tμν, (118)

where
∧
Gμν is the TG Einstein tensor and

tμν = c4

4πG

∧
Sλν

ρΓ λ
ρμ − gμν

c4

16πG

∧
T (119)

is the energy–momentum (pseudo) tensor of the gravitational
field. This equation shows that Eq. (113) is linked to the gauge
representation of the gravitational energy–momentum tensor,
namely [72]

∧
SA

μν = −8πG

c4e

∂LTEGR

∂(∂νeAμ)
. (120)

The field equations (118) can be also equivalently be written
in a more explicit form as [93]

∧
Gμν := 1

e
eAμgνρ∂σ (e

∧
S ρσ
A ) − ∧

S σ
B ν

∧
T B

σμ

+ 1

2

∧
Tgμν − eAμωB

Aσ

∧
SBν

σ = 8πG

c4 Tμν. (121)

In Sect. 6 we will explicitly show that these field equations
coincide with those of GR. An important issue is related to the
matter couplings, because the presence of torsion introduces
some difficulties when dealing with fermions and bosons.
Indeed, they are very sensitive to the appearance of distor-
tions in the connections, and the unique resolution of this
problem consists in resorting to the Weitzenböck gauge (see
Refs. [66,72,94], for more details).

Looking at the torsion scalar expression (114), we see
that it is possible to obtain new theories by considering the
following general definition of torsion scalar

∧
Tgen := −c1

4

∧
Tαμν

∧
T αμν − c2

2

∧
Tαμν

∧
Tμαν + c3

∧
Tα

∧
T α, (122)

where c1, c2, c3 are some free real constants, whose explicit
values characterize the gravity model known under the name
of three-parameter Hayashi–Shirafuji theory [95]. The gen-
eral torsion scalar (122) is invariant under both general coor-
dinates and local Lorentz transformations, independently of

the numerical values of the coefficients, because it relies only
on the properties of the torsion tensor. On the contrary, the
equivalence with GR, and then TEGR, is achieved only for
c1 = c2 = c3 = 1, which is naturally obtained within the TG
gauge paradigm, without resorting to hypotheses related to
GR [72,78]. This crucial aspect makes TG a self-consistent
theory.

The Nöther energy–momentum pseudotensor t ρ
μ entails

∂μt
ρ
μ = 0 [84]. In addition, considering the ∂μ deriva-

tive of Eq. (118), we obtain ∂μTμν = 0, which shows
that the energy–momentum tensor is conserved under ordi-
nary derivative, which implies that the spacetime charges
Qμ := ∫ ed3xT 0μ are conserved. In addition, being the TG
field equations symmetric, it is thus very easy to be compared
with the GR ones [72,78]. Therefore, the antisymmetric part
of the energy–momentum tensor (68) is vanishing, namely
∧
T[μν] = eA[μgν]ρ

∧
T ρ
A = 0. (123)

Another way to see this identity is through the invariance
of the action under local Lorentz transformations [72,78]. In
TEGR, the covariance eliminates 6 of the 16 equations, which
means that we are able to determine the tetrads up to a local
Lorentz transformation, which is equivalent to determine the
metric tensor.

The role of spin connection is not dynamical in TEGR
and we will show that it trivially satisfies the field equa-
tions. The same result is also confirmed by exploiting the
constrained variational principle via the Lagrange multipli-
ers (see Ref. [78] and references therein, for details).

Let us consider the following TG Lagrangians

LTEGR(eAμ, 0), LTEGR(eAμ, ω
A
Bμ), (124)

which are both dynamically equivalent to the Hilbert–
Einstein action. Therefore, the following identity holds

LTEGR(eAμ, ω
A
Bμ) + ∂μ

[
ec4

8πG

∧
Tμ(eAμ, ω

A
Bμ)

]

= LTEGR(eAμ, 0) + ∂μ

[
ec4

8πG

∧
Tμ(eAμ, 0)

]
, (125)

which explicitly reads as [78]
∧
Tμ(eAμ, ω

A
Bμ) = ∧

Tμ(eAμ, 0) − ω
μ
. (126)

Therefore, we arrive to the conclusion that

LTEGR(eAμ, ω
A
Bμ) = LTEGR(eAμ, 0) + ∂μ

[
ec4

8πG
ω

μ
]

.

(127)

This proves that the spin connection enters in the Lagrangian
as a total derivative, justifying also the possibility to reduce
the calculations in TEGR by adopting the Weitzenböck gauge
in any case. In addition, if we vary the Lagrangian in Eq. (127)
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with respect to the spin connection, we obtain an identi-
cally vanishing equation. Therefore, the spin connection does
not contribute to the TG field equations, representing non-
dynamical DoFs. This fact shows also that TEGR can be
considered as a pure tetrad teleparallel gravity [96], which
assumes that for whatever tetrad one chooses, the spin con-
nection is zero, treating these two objects as independent
structures (see Ref. [78], for details and for its implications).

We have understood that the spin connection is not rel-
evant, if we are interested in searching for the solutions
of TEGR field equations. However, formally, its presence
fulfills a paramount role, because: (i) it guarantees the
covariance of the action under local Lorentz transformations
and diffeomorphisms; (ii) it is endowed with a regulariz-
ing power, because it removes the divergent inertial effects
from the Lagrangian, dubbed thus renormalized action (see
Ref. [78], for details); (iii) it permits to obtain a regular
field theory and naturally produces, in its action, a Gibbons-
Hawking-York term, which permits to be coherently related
to the formulation of a quantum gravity theory (see Refs. [97–
99], for details).

Finally, analysing the DoFs of TEGR, we start from the
vierbeine eAμ with 16 components. We have to subtract 6
DoFs related to the inertial effects due to the spin connection
and other 8 non-dynamical DoFs due to diffeomorphisms (the
same as in GR). The result is 2 DoFs as in the case of GR
[66]. Also for this feature, TEGR is dynamically equivalent
to GR.

5.2.4 Symmetric teleparallel gravity

Symmetric teleparallel gravity (STG) is a formulation of
gravitational interaction described only in terms of non-
metricity (4c). While TG theories have been extensively dis-
cussed, STG patterns have only recently received a grow-
ing attention, and there are still some crucial points to
be disclosed and better understood. This theory can be
either formulated in terms of metric tensor or tetrads,
although the former is the most common presentation fol-
lowed in the literature [100]. In STG, the symmetric affine
connection (cf. Eq. (2)) assumes a fundamental dynam-
ical role and represents an independent structure. This
hypothesis is not trivial at all, because it requires con-
siderable efforts in determining all the affine components
already in the simplest cases both at astrophysical and cos-
mological levels (see e.g., Refs. [76,101,102], for more
details).

The presence of non-metricity entails particular geomet-
ric effects, which gives rise to counterintuitive implications
from those analysed in the previous theories. They can be
summarised in the following points:

– raising up or lowering down indices of vectors or tensors

under the covariant derivative
�∇, is not straightforward

like in metric case, namely given a vector vμ, we have

gνλ

�∇μvλ = �∇μvν − vλ
�
Qμνλ; (128)

– non-metricity does not preserve the length of vectors;
indeed given two vectors v = vμ∂μ and w = wμ∂μ par-
allel along a curve γ , their tangent vectors are T = Tμ∂μ

with Tμ ≡ γ̇ μ, namely Tλ
�∇λvμ = 0 and Tλ

�∇λwμ =
0. Let us calculate the evolution of the scalar product of
the vectors

Tλ
�∇λv · w = Tλvμwν

�
Qλμν, (129)

where v · w := gμνv
μwν , which is not conserved, as

well as the norm of a vector |v| := √
v · v, and therefore

it is not possible to normalize it. It follows also that the
angles, between two vectors, do not in general conserve,
namely

Tλ
�∇λ

(
v · w

|v||w|
)

�= 0. (130)

STG is, in general, not a conformal theory, but it is pos-
sible to reduce it to a conformal one (see Ref. [103], for
details). The above results imply also the impossibility
to define a proper time along a curve as in GR;

– Given a four-velocity uμ, we define

aμ := uλ
�∇λu

μ, (131a)

ãμ := uλ
�∇λuμ = aμ + �

Qλνμu
λuν, (131b)

where aμ is the acceleration, whereas ãμ is the anoma-
lous acceleration. In particular, this implies that the
four-velocity is not anymore orthogonal to the four-
acceleration, because

uμa
μ = uμu

λ
�∇λu

μ

= uλ
�∇λ(uμu

μ) − uμuλ
�∇λuμ

= �
Qλμνu

λuμuν + 2uμa
μ − ãμu

μ, (132)

from which we obtain

aμuμ = ãμu
μ − �

Qλμνu
λuμuν . (133)

From Eq. (131b) we get

(
ãμ − aμ

)
uμ = �

Qλμνu
λuμuν . (134)
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Therefore, the non-metricity tensor expresses how much
the anomalous acceleration deviates from the standard
acceleration, and it is also responsible to depart the accel-
eration from the spatial hypersurface orthogonal to the
four-velocity;

– The acceleration of autoparallels (cf. Eq. (96)) in STG
becomes

aμ = 0, ãμ = �
Qλνμu

λuν; (135)

– In order to recover the length conservation (cf. Eq. (129))
and the autoparallel definition (cf. Eq. (135)), we have to
impose

�
Q(λμν) = 0,

�
Q(λμ)ν = 0, (136)

but these two conditions are too strict constraints. These
issues can be solved by resorting to the Weyl conformal
transformations (see Ref. [71], for details).

Let us consider now the STG action, constituted by the
most general quadratic Lagrangian [66,76]:

SSTEGR :=
∫

d4x
√−g

⎡
⎢⎢⎣ c4

16πG
LSTEGR︸ ︷︷ ︸

�
Q

+Lm

⎤
⎥⎥⎦ , (137)

where
�
Q is the so-called non-metricity scalar, whose expres-

sion is given by [76,93]

�
Q := gμν

( �
Lα

βμ

�
Lβ

να − �
Lα

βα

�
Lβ

μν

)

= 1

4

( �
Qα

�
Qα − �

Qαβγ

�
Qαβγ

)

+ 1

2

( �
Qαβγ

�
Qβαγ − �

Qα

�
Q̄α

)
, (138)

where
�
Qα := �

Qαλ
λ and

�
Q̄α := �

Qλ
λα

represent two inde-
pendent and non-vanishing traces of the non-metricity tensor.
This gives rise to the STEGR theory, where it is possible to
show the validity of the following formula (see Sect. 6.3)
[76]

�
Q = ◦

R + ◦∇μ(
�
Qμ −

�
Q̄μ), (139)

and using the following GR identity [73]

◦∇μ(
�
Qμ −

�
Q̄μ) ≡ 1√−g

∂μ

[√−g(
�
Qμ −

�
Q̄μ)

]
, (140)

we see that the STEGR action is dynamically equivalent to
GR up to a boundary term, which is vanishing because at
infinity the metric is flat. Since the STEGR Lagrangian is

quadratic in terms of the non-metricity tensor, the most gen-
eral STG Lagrangian is [104]

�
Qgen := c1

�
Qαβγ

�
Qαβγ + c2

�
Qαβγ

�
Qβαγ + c3

�
Qα

�
Qα

+c4

�
Q̄α

�
Q̄α + c5

�
Qα

�
Q̄α, (141)

where c1, c2, c3, c4, c5 are real free constant parameters,
and this gives rise to the five-parameter family of quadratic
theories or the so-called New GR (see Ref. [105] and refer-
ences therein).

We can introduce a superpotential or the non-metricity
conjugate as [76,93,103]

�
Pα

μν := 1

2
√−g

∂(
√−g

�
Q)

∂
�
Q μν

α

= 1

4

�
Qα

μν − 1

4

�
Q(μ

α
ν) − 1

4
gμν

�
Qαβ

β

+ 1

4

[ �
Q βα

β gμν + 1

2
δα
(μ

�
Qν)

β
β

]
. (142)

Through this definition, we can describe the non-metricity
scalar (138) equivalently as

�
Q := �

Qαμν

�
Pαμν. (143)

We can introduce also the further quantity [93,103]

1√−g
�
qμν := 1√−g

∂(
√−g

�
Q)

∂gμν
− 1

2

�
Qgμν

= 1

4

(
2

�
Qαβμ

�
Qαβ

ν − �
Qμαβ

�
Q αβ

ν

)

− 1

4

(
2

�
Q β

α β

�
Qα

μν − �
Q β

μ β

�
Q β

ν β

)

− 1

2

( �
Qαβμ

�
Qβα

ν − �
Q β

β α

�
Qα

μν

)
. (144)

We have now all the elements to write the STEGR field equa-
tions (obtained varying the STEGR action with respect to the
metric tensor), which reads as [76,93]

�
Gμν := −2∇α

(√−g
�
Pα

μν

)

+ �
qμν −

√−g
�
Q

2
gμν = 8πG

c4 Tμν, (145)

where
�
Gμν is the STEGR Einstein tensor. The variation of

STEGR action with respect to the connection produces the
connection field equations [76,93]

∇μ∇ν

(√−g
�
P μν

α

)
= 0, (146)

representing a set of first order differential equations for the
affine connection.
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Using the general results of Sect. 4.2.3, it is possible to
recast the STEGR connection via the tetrads eα

β ∈ GL(4,R)

and the curvatureless hypothesis in the following form (cf.
Eq. (44))4

Γ α
μν := (e−1)αβ∂μe

β
ν. (147)

Since STEGR is torsionless, we have (cf. Eq. (103))

T α
μν := (e−1)αβ∂[νeβ

μ] = 0, (148)

which implies

∂μe
β
ν = ∂νe

β
μ ⇔ eα

β ≡ e′α
β := ∂βξα, (149)

where the tetrad is holonomic and, in addition, it can
be parameterized by ξα = ξα(xμ). Therefore, Eq. (147)
becomes [76,93]

Γ α
μν = ∂xα

∂ξλ
∂μ∂νξ

λ. (150)

This connection can be set globally to zero, by considering
the following affine (gauge) roto-translational transformation
of coordinates [76]

ξα := Mα
βx

β + ξα
0 , (151)

where Mα
β ∈ O(1, 3) is an orthogonal matrix and ξα

0 is a
constant translational vector, which permits to have Γ α

μν =
0, which is the so-called coincident gauge. Physically, this
means that the origin of the tangent space (expressed by ξα)
is coincident with the spacetime origin (given by xμ). This
gauge is defined up to a linear affine transformation axμ + b
with a, b real constant values.

It is important to note that this residual global symmetry
does not vanish at infinity, ensuing significant properties at
the infrared structure of the theory [66]. In addition, recalling
that the strong Equivalence Principle states that gravitation is
indistinguishable from acceleration, its effects can be locally
neglected via a diffeomorphic change of coordinates (i.e.,
LIFs). In this perspective, we understand that the affine con-
nection is an integrable translation. Therefore, the coincident
gauge embodies and saves the strong Equivalence Principle
of GR [106].

It is worth noticing that the STEGR affine connection is
purely inertial and it does not contain any information about
gravitation. Another important implication of the coincident
gauge is the explicit breaking of diffeomorphism invariance
due to the particular choice of coordinates, which does not
occur in other frames [102]. The use or not of the coincident
gauge affects only the boundary term (139), which has no
influence on the ensuing dynamics and therefore neither on
the evolution of the metric tensor.

4 In Eq. (147), we have used a different notation with respect to those
employed previously. Here it is important to underline the inverse tetrad
matrix for the implication in (150).

This particular gauge form, permits to considerably sim-
plify the calculations. In addition, the affine field equations
(146) are trivially satisfied. In TG the local Lorentz transfor-
mations are gauged through the spin connection and the cal-
culations are simplified via the Weitzenböck choice, whereas,
in STG, the diffeomorphism of coordinates become the new
gauge and the calculations are easily carried out through the
coincident gauge. This concept is summarised in the follow-
ing scheme

loc. Lorentz trans. Weitzenböck

gauge

diff. of coord. coincident

TEGR

STEGR

(152)

There are also other two beneficial effects considering
Eq. (2). It is
�∇μ = ∂μ,

�
Lλ

μν = − ◦
Γ λ

μν. (153)

It is worth noticing that, in generic STG theories, it is not
possible to require that the coincident gauge holds a pri-
ori. More specifically, it is not possible, in general, to use
a coordinate system which simultaneously simplifies met-
ric and connection. When this can be achieved, it holds for a
restricted set of geometries or it reduces the class of solutions
(see Refs. [76,91], for further details).

In STEGR we have that the total DoFs are encoded in the
metric tensor, having 10 components from which we have to
subtract 8 diffeomorphisms as in GR, having therefore again
2 DoFs as in GR. Here we have that the 4 diffeomorphisms
of coordinates become the gauge diffeomorphism symme-
tries. While in TEGR metric and connection are related, in
STEGR the connection becomes essentially a pure gauge and
all the dynamics is enclosed in the metric, which is trivially
connected [66]. It is possible to introduce a close analogy
between the fields ξα , parameterizing the connection, and the
Stückelberg fields, related to the invariance of coordinates’
transformation, and also between the coincident gauge and
the unitary gauge (see Refs. [66,107] for details).

5.3 A discussion on Trinity Gravity at Lagrangian level

GR, TEGR, and STEGR constitute the so-called Geometric
Trinity of Gravity, but, from the above discussion, it is clear
that they are nothing else but particular cases of wide classes
of theories. According to their formulation, they are three
non-communicating theories, because they start from differ-
ent hypotheses and different dynamical-geometric objects.
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GR is usually conceived as the geometric formulation of
gravity, whereas TEGR and STEGR as the gauge approaches
to gravity, albeit also GR can be formulated in a gauge way
via the use of tetrads and spin connection.

Covariance and (strong) Equivalence Principles are at the
foundations of GR. The former postulate has a more general
character, which can be easily recognized also in TEGR and
STEGR, whereas the latter hides some subtleties, which are
sources of confusion in literature. For example, some papers
state that such a principle does not hold in TG. More prop-
erly, it is not strictly required at the foundation of TG but
it must hold to provide mathematical and physical coher-
ence for TEGR and STEGR theories. Basically, Equivalence
Principle guarantees the equivalence among GR, TEGR, and
STEGR. This last point can be summarised as follows

foundation

strong EP ω
C
Bμ − ∧

KC
Bμ = ◦

ω
C

Bμ

coincident gauge

GR

TEGR

STEGR

(154)

Up to now, we underlined only the equivalence among the
three theories at Lagrangian level, pointing out the difference
for a boundary term, namely

◦
R︷︸︸︷

LGR

LTEGR︸ ︷︷ ︸
−∧
T− 2

e ∂μ

(
e

∧
Tμ
)

LSTEGR︸ ︷︷ ︸
�
Q− ◦∇μ(

�
Qμ−

�
Q̄μ)

(155)

As stated above, the equivalence does not for exten-
sions like f (R), f (T ), and f (Q) because, in general, these
extended theories differ for the DoFs (see [108] for a straight-
forward example). However, equivalence can be restored also
in extensions considering appropriate boundary terms. For
example, f (R), f (T, B), and f (Q, B) can be compared as
fourth order theories when an appropriate boundary term B
is defined in each gravity framework. In f (T, B) this equiv-
alence has been explicitly proved considering the boundary
term as in Eq. (116) (see e.g., [109–111]). An analogue pro-
cedure shows that also f (Q, B) theory can be dynamically

reduced to f (R) defining a suitable boundary term as in
Eq. (139).

6 Field equations in Trinity Gravity

In the above discussion, equivalent representations of gravity
have been compared at the level of actions and Lagrangians.
Here we want to develop the same comparison at the level of
field equations.

Let us start from the Bianchi identities, having the piv-
otal role to link the field equations of a theory with the con-
servation laws of the gravity tensor invariants and with the
energy–momentum tensor [73]. We start from the second
Bianchi identity (6), whose more explicit expression is [67]

∇λR
α
βμν + ∇μR

α
βνλ + ∇νR

α
βλμ

= T ρ

μλR
α
βνρ + T ρ

νλR
α
βμρ + T ρ

νμR
α
βλρ,

(154)

and we prove the equivalence among GR (see Sect. 6.1),
TEGR (see Sect. 6.2), and STEGR (see Sect. 6.3) in terms
of their field equations, which we show to be equal to those
already presented in Sect. 5.

6.1 GR field equations

Since in GR we have Rα
βμν = ◦

Rα
βμν and T α

βγ = Qαβγ = 0,
the second Bianchi identity (154) reduces to
◦∇λ

◦
Rα

βμν + ◦∇μ

◦
Rα

βνλ + ◦∇ν

◦
Rα

βλμ = 0. (155)

To simplify the calculations, thanks to the Covariance Princi-
ple, we can exploit the LIF’s coordinates (cf. Eq. (57)), where
second derivatives of the metric are not null. Contracting α

and λ, Eq. (155) becomes

∂λ
◦
Rλ

βμν + ∂μ

◦
Rλ

βνλ + ∂ν

◦
Rλ

βλμ = 0. (156)

Using the antisymmetry in the last two indices of the Riemann
tensor (cf. Eq. (5a)), we obtain

∂λ
◦
Rλ

βμν − ∂μ

◦
Rλ

βλν + ∂ν

◦
Rλ

βλμ = 0. (157)

Applying the metric to first raise up the index β and then
contracting β and μ, we have

− ∂λ
◦
Rλ

ν − ∂β

◦
Rβ

ν + ∂ν

◦
R = 0, (158)

from which we immediately obtain

∂μ

◦
Rμ

ν − 1

2
∂ν

◦
R = 0. (159)

Using again the metric tensor, Eq. (159) becomes

∂μ(
◦
Rμν − 1

2
gμν R̂) = 0 ⇒ ◦∇μ(

◦
Rμν − 1

2
gμν R̂) = 0,

(160)
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where the partial derivative is in general replaced by the
covariant one. This relation leads to the Einstein field equa-
tions in vacuum (cf. Eq. (67)). The Einstein tensor

◦
Gμν is

divergenceless: this fact also implies the conservation of the
energy–momentum tensor [73,86], namely
◦∇μ

◦
Gμν = 0, ⇔ ◦∇μT

μν = 0. (161)

6.2 TEGR field equations

Since in TEGR curvature and non-metricity vanish, Eq. (154)
can be further simplified via the Weitzenböck gauge (see
Sect. 5.2.3) as follows
∧∇λR

α
βμν + ∧∇νR

α
βλμ + ∧∇μR

α
βνλ = 0, (162)

where Rα
βμν ≡ ◦

Rα
βμν + ∧Kα

βμν = 0 with

∧Kα
βμν := ◦∇μ

∧
K α

βν − ◦∇ν

◦
K α

βμ

+ ∧
K α

σμ

∧
K σ

βν − ∧
K α

σν

∧
K σ

βμ, (163)

including all torsion tensor contributions and having also the
following symmetry properties (cf. Eq. (111))

∧Kα
βμν = − ∧Kβ

α
μν,

∧Kα
βμν = − ∧Kα

βνμ. (164)

Contracting α and λ, Eq. (162) becomes

∧∇λ
◦
Rλ

βμν + ∧∇μ

◦
Rλ

βνλ + ∧∇ν

◦
Rλ

βλμ

+ ∧∇λ

∧Kλ
βμν + ∧∇μ

∧Kλ
βνλ + ∧∇ν

∧Kλ
βλμ = 0. (165)

Applying the same strategy of GR (see Sect. 6.1) and using
the metric compatibility of TEGR, we obtain

∧∇μ(
◦
Rμ

ν + ∧Kμ
ν) − 1

2

∧∇ν(
◦
R + ∧K) = 0, (166)

where
∧Kμν := ∧Kλ

μλν
and

∧K := ∧Kν
ν , having a formally

similar definition of Ricci tensor and scalar curvature of GR.
Equation (166) entails twofold implications

◦
Rμν − 1

2
gμν

◦
R = − ∧Kμν + 1

2
gμν

∧K, (167a)

∧Kμν − 1

2
gμν

∧K = 0, (167b)

where the former tells that TEGR field equations are equiv-
alent to those of GR, whereas the latter, derived using the
GR vacuum field equations, gives the TEGR field equations,

which are divergenceless in terms of
∧∇.

Now, we prove that Eq. (167b) reproduces exactly

Eq. (121). To this end, we first analyse
∧Kμν , which gives

∧Kμν = ◦∇α

∧
K α

μν − ◦∇ν

∧
K α

μα + ∧
K σ

μν

∧
K α

σα − ∧
K σ

μα

∧
K α

σν

= ◦∇α

∧
K α

μν + ◦∇ν

∧
Tμ − ∧

Kσμν

∧
T σ − ∧

K σ
μα

∧
K α

σν

= ◦∇α

∧
Sν

α
μ + ◦∇α

∧
T αgμν − ∧

K α
σν

∧
Sα

σ
μ, (168)

where we have used (cf. Eqs. (111) and (113))

∧
K α

μα = − ∧
Tμ, (169a)

∧
K α

αμ = 0, (169b)
∧
Kμ

νλ = ∧
Sλ

μν + δν
λ

∧
Tμ − δ

μ

λ

∧
T ν . (169c)

Now, we can analyse
∧K, which gives (cf. Eq. (116))

∧K = 2
◦∇λ

∧
Tλ + ∧

T = 2

e
∂λ(eT̂

λ
) + T̂ . (170)

Substituting Eqs. (168) and (170) into Eq. (167b), we have

◦∇α

∧
Sνμ

α + ∧
K α

σν

∧
Sα

σ
μ + 1

2
gμν

∧
T = 0, (171)

which can be shown to be equal to Eq. (121) by exploiting
metric compatibility, and tetrad postulate (see Appendix A,
for more details).

6.3 STEGR field equations

Since STEGR is curvatureless and torsionless, Eq. (154)
can be further simplified via the coincident gauge (see
Sect. 5.2.4), leading to the following expression

∂λR
α
βμν + ∂νR

α
βλμ + ∂μR

α
βνλ = 0, (172)

where, in this case, Rα
βμν ≡ ◦

Rα
βμν + �Lα

βμν = 0.
�Lα

βμν is a
function of the disformation tensor, namely

◦Lα
βμν = ◦∇μ

�
Lα

βν − ◦∇ν

�
Lα

βμ + �
Lα

σμ

�
Lσ

βν − �
Lα

σν

�
Lσ

βμ,

(173)

endowed with the following symmetry properties

�Lα
βμν = − �Lβ

αμν,
�Lα

βμν = − �Lα
βνμ, (174a)

where we have used Eqs. (4c) and (5c).
Contracting α and λ and giving the explicit expression of

the Riemann tensor, Eq. (172) becomes

∂λ
◦
Rλ

βμν + ∂μ

◦
Rλ

βνλ + ∂ν

◦
Rλ

βλμ

+ ∂λ

�Lλ
βμν + ∂μ

�Lλ
βνλ + ∂ν

�Lλ
βλμ = 0. (175)

Following the same strategy adopted in GR (see Sect. 6.1),
we finally obtain (cf. Eqs. (167))
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◦
Rμν − 1

2
gμν

◦
R = − �Lμν + 1

2
gμν

�L, (176a)

�Lμν − 1

2
gμν

�L = 0, (176b)

where
�Lμν := �Lα

μαν and
�L := �Lμ

μ, resembling formally the
expression of Ricci tensor and scalar curvature, respectively.

Let us note that, in the coincident gauge,
�
Lα

μν = − ◦
Γ α

μν ,
which soon reveals that Eq. (176b) is equivalent to the
GR field equations. Equation (176a) proves the equivalence
between GR and STEGR field equations, whereas Eq. (176b)
represents the STEGR field equations, which we will demon-

strate to be equal to Eq. (145). Let us first analyse
�Lμν , which

yields

�Lμν = ◦∇α

�
Lα

μν − ◦∇ν

�
Lα

μα + �
Lσ

μν

�
Lα

σα − �
Lσ

μαL
α

σν

= ◦∇α

�
Lα

μν + 1

2

◦∇ν

�
Qμ − 1

2

�
Qα

�
Lα

μν

− 1

4

[ �
Qμ

σ
α

�
Qν

α
σ + 2

�
Qα

σν(
�
Qσ

αμ − �
Qα

σ
μ)
]
,

(177)

where we have used

�
Lα

μα = −1

2

�
Qμ, (178a)

�
Lα

μν = 2
�
Pα

μν + 1

2
gμν(

�
Qα −

�
Q̄α)

− 1

4
(δα

μ

�
Qν + δα

ν

�
Qμ). (178b)

Therefore, the scalar
�L is expressed by

�L = ◦∇α(
�
Qα −

�
Q̄α) + 1

4

�
Qαβγ

�
Qαβγ − 1

2

�
Qαβγ

�
Qγβα

− 1

4

�
Qα

�
Qα + 1

2

�
Qα

�
Q̄α

= ◦∇α(
�
Qα −

�
Q̄α) − �

Q. (179)

Gathering together Eqs. (177) and (179), using the following
identity (cf. Eq. (178a))

∂α

�
Qα = ◦∇α

�
Qα + �

Lα
σα

�
Qσ = ◦∇α

�
Qα − 1

2

�
Qα

�
Qα, (180)

we then obtain

2∂αP
α

μν + 1

2

�
Qαμν(

�
Qα −

�
Q̃α) + 1

2
gμν∂α(

�
Qα −

�
Q̃α)

+ 1

2

�
Lσ

μν

�
Qσ + 1

4

�
Qμ

α
σ

�
Qν

σ
α + 1

2

�
Qα

σμ(
�
Qσ

να − Qα
σ

ν)

− 1

2
gμν

◦∇α(
�
Qα −

�
Q̃α) + 1

2
gμν

�
Q = 0, (181)

which is equal to Eq. (145) in an empty spacetime (see
Appendix B, for more details), i.e.,

2√−g
∂α(

√−g
�
Pα

μν) − 1√−g
�
qμν + 1

2
gμν

�
Q = 0. (182)

An important remark is in order at this point. As already
discussed above in the case of Lagrangians, the equivalence
holds only for the theories stemming out from the scalar
invariants R, T , and Q. In these specific cases, we obtain sec-
ond order equations. This is not true for extensions implying
non-linear functions of these invariants. This fact points out
again that GR, and its equivalent representations, are very
peculiar cases among the theories of gravity.

7 Solutions in Trinity Gravity

Clearly the equivalence of GR, TEGR, and STEGR has to
be proven also at the solution level. In Sect. 6, the same field
equations have been obtained, and then the same exact solu-
tions, under the same symmetries and boundary conditions,
have to be achieved.

In this perspective, performing the calculations to settle
the solutions in the three gravity scenarios is useful also in
view of extensions of the theories. Recently, it has been pro-
posed a 3+1 splitting formalism in the geometric trinity of
gravity [93] entailing the following advantages: (1) simplic-
ity in carrying out numerical analyses; (2) solving some the-
oretical issues existing in the various formulations of GR
at the fundamental level (e.g., canonical quantization); (3)
broadening this methodology also in extended and alterna-
tive gravity frameworks.

Here, we focus the attention on one of the simplest GR
solutions, represented by the Schwarzschild spacetime. Soon
after the publication of GR theory by Einstein, Schwarzschild
determined the solution, describing the spacetime metric out-
side a spherically symmetric mass-energy distribution. This
result is perfect agreement with the weak field approximation
[112].

Jebsen, in 1921, and Birkhoff, in 1923, independently
proved that the Schwarzschild solution holds outside a spher-
ically symmetric mass distribution, even if this varies over
time. This is now known as the (Jebsen) Birkhoff theorem,
and it can be stated as follows [113,114]:
any spherically symmetric solution of the GR field equations
in vacuumhas to be static andasymptotically flat. In addition,
the Schwarzschild solution is the unique solution satisfying
these hypotheses.

This claim entails several significant implications: (1) the
uniqueness of the Schwarzschild solution in GR by imposing
the spherical symmetry as starting hypothesis; (2) no emis-
sion of gravitational waves, which can be interpreted, simi-
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larly as in electromagnetism, that there exists no monopole
(spherically symmetric) radiation; (3) the outcome of the
Birkhoff theorem in GR gravity theory can be compared with
the Gauss theorem implications in electromagnetism and in
classical Newtonian gravity.

Let us start our considerations taking into account a
generic spherically symmetric metric, whose line element,
written in spherical coordinates {t, r, θ, ϕ}, in the equatorial
plane θ = π/2, and in geometric units (G = c = 1), reads
as [73,74,86]

ds2 = −eν(t,r)dt2 + eλ(t,r)dr2 + r2dϕ2, (183)

where ν(t, r), λ(t, r) are the two unknown functions to be
determined. We supplement this general metric with the well-
known weak field limit on the metric time component

− eν(t,r) ≈ −1 + 2M

r
, (184)

where M is the compact object mass, being the origin of the
gravitational field, and 2M

r is the Newtonian gravitational
potential.

We want now to solve the field equations in vacuum
(Tμν = 0, namely outside the gravitational source) in GR
(Sect. 7.1), TEGR (Sect. 7.2), and STEGR (Sect. 7.3). We
will observe how the Birkhoff theorem emerges also in TEGR
and STEGR. Finally, we will recover the Schwarzschild met-
ric in all three gravity theories, namely [73,74]

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2dϕ2, (185)

admitting rS := 2M as event horizon (coordinate singularity)
and r = 0 as essential (physical) singularity.

Given a function f (t, r), we use the following notations

ḟ (t, r) := d f (t, r)

dt
, f ′(t, r) := d f (t, r)

dr
. (186)

7.1 Spherically symmetric solutions in GR

The vacuum field Eqs. (67) can be recast also as
◦
Gμν ≡ ◦

Rμν = 0, (187)

where
◦
R = 0. Analysing

◦
Gtr we obtain

◦
Gtr ≡ λ̇(t, r)

r
= 0, ⇒ λ = λ(r). (188)

The other independent field equations are

◦
Grr ≡ −eλ(r) + rν′(t, r) + 1 = 0, (189a)

◦
Gtt ≡ e−λ(r) (rλ′(r) − 1

)+ 1 = 0. (189b)

From Eq. (189a), we conclude that ν = ν(r). All the metric
components are independent of the coordinate time t , and
this proves that the metric is static.

From Eq. (189b) we obtain
[
e−λ(r)r

]′ = 1 ⇒ e−λ(r) = 1 − C1

r
, (190)

where C1 is an integration constant. Multiplying Eq. (189b)
by eλ(r) and summing it to Eq. (189a), we obtain

λ′(r) + ν′(r) = 0, ⇒ λ(r) + ν(r) = C2, (191)

where the integration constantC2 has to beC2 = 0 to achieve
the asymptotic flatness. From the weak field limit considera-
tion (184), we obtain

− eν(r) = 1 − 2M

r
, eλ(r) = 1

1 − 2M
r

. (192)

7.2 Spherically symmetric solutions in TEGR

For solving the TEGR field equations, we adopt the tetrad for-
malism. We know that each tetrad field must be associated
to the related spin connection (see, for example, Ref. [78]).
However, in TEGR, we can drastically simplify the calcula-
tions resorting to the Weitzenböck gauge. Therefore, we can
choose the diagonal tetrad

eAμ =

⎛
⎜⎜⎝

√−eν(r) 0 0 0
0

√
eλ(r) 0 0

0 0 r 0
0 0 0 r sin θ

⎞
⎟⎟⎠ . (193)

Let us recall that this tetrad is related to the off-diagonal
tetrad (where the spin connection is naturally vanishing [78])
through a local Lorentz transformation ΛA

B(x). However,
they both describe the same metric.

The non-zero torsion tensor components are

∧
T t

tr = −1

2
ν′(r) = −M

r2

(
1 − 2M

r

)−1

, (194a)

∧
T ϕ
rϕ = 1

r
. (194b)

It is worth noticing that, physically,
∧
T t

tr represents the red-
shifted radial gravitational force, because it is calculated with

respect to the coordinate time t ; whereas
∧
T ϕ
rϕ is the classical

centrifugal force occurring in the tetrad frame.
Another important object is the contortion tensor, whose

non-zero components read as

∧
Kttr = 1

2
eν(r)ν′(r) = M

r2 , (195a)

∧
Kϕrϕ = r, (195b)

whose interpretation is closely related to that already pro-
vided for the torsion tensor (cf. Eq. (98a)).
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The superpotential components read as

∧
S tr
t̂

= 2e−λ(r)
√
e−ν(r)

r
= 2

r

√
1 − 2M

r
, (196a)

∧
S rϕ
ϕ̂

= −e−λ(r)
(
rν′(r) + 2

)
2r2 = M − r

r3 . (196b)

Finally the torsion scalar is

∧
T = −2e−λ(r)

(
rν′(r) + 1

)
r2 = − 2

r2 , (197)

which represents the “dynamically active part” of the scalar
curvature, whereas the remaining part is included in the
“dynamically passive boundary term”.

Combining these elements, it is easy to prove that
∧
Gμν ≡

◦
Gμν (cf. Eq. (171)). Then applying the same procedure of GR
(see Sect. 7.1), the Birkhoff theorem holds also in TEGR.

7.3 Spherically symmetric solutions in STEGR

Regarding the STEGR field equations, we adopt the coin-

cident gauge to ease the calculations, where
�∇ = ∂μ and

◦
Γ

μ
αβ = − �

Lμ
αβ . In this case, it is immediate to get

◦
Gμν ≡

�
Gμν . However let us calculate the fundamental terms occur-
ring in Eq. (176b) for extracting the physical information.

The non-metricity tensor has the following expression

�
Qrμν =

⎛
⎝−eν(r)ν′(r) 0 0

0 eλ(r)λ′(r) 0
0 0 2r

⎞
⎠

=

⎛
⎜⎜⎝

− 2M
r2 0 0

0 − 2M

r2
(

1− 2M
r

)2 0

0 0 2r

⎞
⎟⎟⎠ , (198)

where the derivative of gravitational potential represents the
gravitational force acting on the observer and producing the
disformations. For a comparison, we have that TEGR gravi-
tational force makes the tetrad frame rotating (see Sect. 7.2),
whereas STEGR gravitational force causes expansions and
contractions of the observer laboratory. Instead, the conju-
gate potential reads as

�
Pt

tr = rλ′(r) − rν′(r) + 4

8r
= 1

8

(
λ′(r) + ν′(r)

)
, (199a)

�
Pr

rr = eν(r)−λ(r)

r
= 1

r

(
1 − 2M

r

)2

, (199b)

�
Pr

ϕϕ = −1

4
re−λ(r) (rν′(r) + 2

) = M − r

2
, (199c)

�
Pϕ

rϕ = 1

8

(
λ′(r) + ν′(r)

) = 0, (199d)

while the other components are null. The last quantity, rep-
resented by the above qμν , reads as

�
qμν√−g

=
⎛
⎜⎝

2eν(r)−λ(r)ν′(r)
r 0 0

0 2rν′(r)+2
r2 0

0 0 − rν′(r)+2
eλ(r)

⎞
⎟⎠

=

⎛
⎜⎜⎝

4M
r3

(
1 − 2M

r

)
0 0

0 2

r2
(

1− 2M
r

) 0

0 0 2M
r − 2

⎞
⎟⎟⎠ . (200)

Substituting the above expressions in Eq. (176b), we recover
the same differential equations of GR (cf. Eq. (189)). Also
in this case, we obtain the Schwarzschild solution and the
validity of the Birkhoff theorem.

It is worth stressing that, also at this level, we cannot expect
the same solutions for f (R), f (T ), and f (Q) extensions.

8 Conclusions and perspectives

We have gathered together basic concepts of Geometric Trin-
ity of Gravity and derived the related dynamics pointing out
analogies and differences of metric, affine, and non-metric
approaches. We tried to give a self-consistent picture of the
three representations of gravitational field. The main state-
ment is that equivalence is strictly achieved for GR, TEGR,
and STEGR and not for any extension of these theories.

Firstly, we introduced the geometric arena of metric-
affine gravity, where metric tensor and affine connection
are two separate and independent structures. After, we pro-
vided the fundamental geometric objects, that is tetrads and
spin connection. The former represents the observer labora-
tory, which solders the tangent space to the spacetime mani-
fold. This procedure gives rise to anholonomic frames. These
frames become holonomic when we are dealing with inertial
frames, where a particular role is fulfilled by trivial tetrads
of Special Relativity (see Sect. 4.1). The latter are intimately
related with general tetrads, because they represent the iner-
tial effects and they are generated by local Lorentz transfor-
mations. They form the Lorentz group, which, in turn, can
be proved to give rise to a Lorentz algebra. This is a crucial
aspect for defining the Fock–Ivanenko covariant derivative,
useful to characterize the spin connection in terms of tetrads
and to introduce the tetrad postulate (i.e., ∇μeAν = 0). This
theoretical treatment can be interpreted from a physical point
of view as discussed in Sect. 4.2.

These mathematical tools allow to describe the Geo-
metric Trinity of Gravity. Specifically, a metric formula-
tion (encoded in the Riemannian geometry), and a gauge
approach (encoded in teleparallel gravity) are possible. GR,
TEGR, and STEGR are dynamically equivalent from the
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variation of their Lagrangians up to a boundary term. Fur-
thermore, starting from the second Bianchi identity, it is
possible to infer the field equations, which are identical
in the three representations. Finally, we analysed spheri-
cally symmetric solutions in the three theories deriving the
Schwarzschild spacetime and the Birkhoff theorem also in
TEGR and STEGR. The approaches can be summarized as
follows

Lagrangian

EQUIVALENCE Field equations

Solutions

variation

Bianchi Ids.

symmetries

(203)

However, as pointed out above, also if mathematical
results are equivalent, the physical interpretation can be dif-
ferent depending on the considered variables and observ-
ables. This fact opens several questions. Some of them can
be listed as follows.

– Are there other equivalent formulations of gravity, out-
side of the Geometric Trinity? In other words, we can
ask for the existence of other representations of gravity
equivalent to GR within the metric-affine arena or, more
in general, identifying other fundamental variables. The
question implies also considering extended theories of
gravity which can be “reduced” to GR (see, for example,
[27,115] for a discussion).

– From an observational point of view, what does it mean
that these three theories are dynamically equivalent? This
issue translates in extracting observables from each grav-
ity theory and then interpreting them, from a physi-
cal viewpoint, finding out suitable transformation laws
which make equivalent the set of variables of each the-
ory.

– How can we construct observational apparatuses to test
different theories dynamically equivalent to GR? This
point is a direct consequence of the previous one. The
question can be posed also in another way: Is it possible,
if any, to discriminate different sets of observables for
equivalent descriptions of gravity from an experimental
point of view?

– STG theories are the less analysed among the three
approaches. A general tetrad formulation is necessary in
view of physical implications. In particular, the interpre-

tation of gravity as a gauge theory could be particularly
relevant to consider gravity under the same standard of
other fundamental theories.

– The Equivalence Principle (in its strong and weak for-
mulations) is a fundamental aspect of GR [116]. It can
be recovered in TEGR and STEGR also if it is not at the
foundation of these theories. If it were violated at some
level (e.g. at quantum level), would it be possible to state
that TEGR and STEGR are more fundamental theories
than GR because they do not require it as a basic princi-
ple?

The above ones are some of the open issues related to equiv-
alent representations of gravity and, in particular, to Gravity
Trinity. Besides the mathematical aspects, it emerges that sys-
tematic experimental and observational protocols are neces-
sary to establish the set of fundamental variables. For exam-
ple, questions if metric or connection are the “true” grav-
itational variables are still open. Non-metricity could have
a main role in this discussion due to the fact that the strin-
gent requirement of asking for Equivalence Principle could
be relaxed. Forthcoming precision experiments [117], grav-
itational wave astronomy [118], and precision cosmology
observations [28] could be the tools to answer these ques-
tions.
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Appendix A: Derivation of TEGR field equations

Let us derive Eq. (171), from Eq. (121), in empty spacetime.
Expanding the first terms on which the partial derivative acts,
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we obtain

eAμgνρ∂σ

∧
SA

ρσ + e−1eAμgνρ∂σ e

− ∧
SB

σ
νT

B
σμ + 1

2
gμν

∧
T = 0. (A.1)

Exploiting the identity e−1∂σ e ≡ ∂σ ln(
√−g) = ◦

Γ α
ασ , the

metric compatibility (48), and the tetrad postulate (47) in
Eq. (A.1), we have

∂σ

∧
Sμν

σ − ∧
Sαν

σ Γ α
νσ − ∧

Sαμ
σ Γ α

νσ − ∧
Sμ

ρσ Γ α
ρσ gνα

− ∧
Sα

σ
ν

∧
T α

σμ + Γ α
ασ

∧
Sμν

σ + 1

2

∧
Tgμν = 0. (A.2)

In the above equation, we can substitute the first terms with
the covariant derivative with respect to the general affine
connection (2), splitting it in GR covariant derivative (with
respect to the Levi-Civita connection) and terms involving
the contorsion tensor, namely

◦∇σ

∧
Sμν

σ − ∧
K α

μσ

∧
Sαν

σ − ∧
K α

νσ

∧
Sμα

σ

+ ∧
K σ

ασ

∧
Sμν

α − ∧
Kνρσ

∧
Sμ

ρσ + ∧
Tσ

∧
Sμν

σ

− ∧
Sα

σ
ν

∧
T α

σμ + 1

2
gμν

∧
T = 0. (A.3)

Considering the antisymmetry of S μν
α and K α

μν , we have

− ∧
K α

νσ

∧
Sμα

σ − ∧
Kνρσ

∧
Sμ

ρσ = 0,
∧
K σ

ασ

∧
Sμν

α + ∧
Tσ

∧
Sμν

σ = 0. (A.4a)

Therefore, Eq. (A.3) can be further simplified as

◦∇ ∧
Sμν

σ + ∧
K α

μσ

∧
Sα

σ
ν − ∧

T α
σμ

∧
Sα

σ
ν + 1

2

∧
Tgμν

= ◦∇σ

∧
Sμν

σ + ∧
K α

σμ

∧
Sα

σ
ν + 1

2
gμν

∧
T = 0, (A.5)

where, in the last equation, we have exploited the definition
of the contortion tensor (cf. Eq. (111)).

Appendix B: Derivation of STEGR field equations

We want to derive now Eq. (182) from Eq. (145) in an empty
spacetime. Starting from the coincident gauge, we use the
following identity (cf. Eq. (178a))

∂α
√−g√−g

= ◦
Γ σ

ασ = − �
Lσ

ασ = 1

2

�
Qα. (B.6)

After expanding ∂α(
√−g

�
Pα

μν) = ∂α(
√−g)

�
Pα

μν +
∂α(

�
Pα

μν)
√−g, we use Eqs. (B.6), (142), and (144). With

some algebra, Eq. (145) finally becomes (cf. Eq. (181))
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α
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2

�
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2
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+ 1

2

�
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�
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4

�
Qμ

α
σ

�
Qν

σ
α + 1

2

�
Qα

σμ(
�
Qσ

να − Qα
σ

ν)

− 1

2
gμν

◦∇α(
�
Qα −

�
Q̃α) + 1

2
gμν

�
Q = 0. (B.7)
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