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Abstract The presence of extra dimensions generically
modify the spacetime geometry of a rotating black hole, by
adding an additional hair, besides the mass M and the angu-
lar momentum J , known as the ‘tidal charge’ parameter, β.
In a braneworld scenario with one extra spatial dimension,
the extra dimension is expected to manifest itself through –
(a) negative values of β, and (b) modified gravitational per-
turbations. This in turn would affect the quasi-normal modes
of rotating black holes. We numerically solve the perturbed
gravitational field equations using the continued fractions
method and determine the quasi-normal mode spectra for
the braneworld black hole. We find that increasingly nega-
tive values of β correspond to a diminishing imaginary part of
the quasi-normal mode, or equivalently, an increasing damp-
ing time. Using the publicly available data of the properties
of the remnant black hole in the gravitational wave signal
GW150914, we check for consistency between the predicted
values (for a given β) of the frequency and damping time
of the least-damped � = 2,m = 2 quasi-normal mode and
measurements of these quantities using other independent
techniques. We find that it is highly unlikely for the tidal
charge, β � −0.05, providing a conservative limit on the
tidal charge parameter. Implications and future directions are
discussed.

1 Introduction

Our present understanding of gravitational interaction is best
described by Einstein’s theory of general relativity (GR) [1–
4]. The results derived from GR are in excellent agreement
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with observations across a large range of length scales [5–8];
from weak field tests of gravity, like perihelion precession
and lensing, to the strong field, such as gravitational waves
(GWs) from merging compact objects [9–11] or observations
of black hole (BH) shadows [12]. However despite its suc-
cess, GR faces severe theoretical challenges and there are
reasons to believe that it should (possibly) be modified in
the very short and very long length scales. These challenges
include the incompatibility between GR and quantum theory
[13], presence of spacetime singularities [14,15], the viola-
tion of strong cosmic censorship conjecture leading to a loss
of determinism [16,17] and, of course, the late time acceler-
ation of the universe and the cosmological constant problem
[18–20], to name a few. Though it is expected that a fully
consistent quantum theory of gravity would ultimately over-
come these problems, in the absence of such a theory, an
effective approach is to look for possible alternatives to GR,
which may address some of the issues listed above. This has
led to the development of several classes of modified theo-
ries of gravity and exploring them in detail has been one of
the central themes of research in gravitational physics (for a
small sample of works, see [21–24]).

In general, any correction term to GR, which is consistent
with diffeomorphism symmetry, may contribute to the clas-
sical gravitational action. As a result, there is no unique way
to modify GR. However, if diffeomorphism invariance is the
only criteria to add new terms to the gravitational action,
there would have been an infinite number of such modi-
fied theories of gravity and hence the task of identifying the
correct Lagrangian through a finite number of observations
would appear impossible. In this apparently grim situation,
the Ostrogradsky instability helps to eliminate all modified
theories of gravity yielding higher order field equations [25],
and restricts the form of the correction terms one may add
over and above the Einstein–Hilbert term in GR. Further con-
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straints on these restricted class of theories, with second order
field equations, can be derived by checking their consistency
with the observations in the weak as well as in the strong
field regime. In particular, since these corrections over GR
are expected to be dominant in the high energy/small length
scale regime, it is necessary to compare various predictions
of such modified theories with some strong gravity obser-
vations, as and when they become available. The detections
of GWs from coalescences of compact binary sources like
neutron stars and/or BHs [26,27] by the LIGO-Virgo detec-
tors [28,29] provide an excellent opportunity to test, at an
unprecedented level, predictions of GR in the highly dynam-
ical strong-field regimes of gravity [9–11]. In particular, GWs
from these merger events allow us to not only test GR in
regimes of extreme gravity, but also constrain parameters of
alternative theories. These studies often lead to several inter-
esting bounds on the magnitudes of possible deviation from
GR (for a small sample of references, see [30–39] and refer-
ences therein). As an aside, note that, besides GWs, the recent
observation involving BH shadow is also a strong field test of
gravitational interaction, which can also provide constraints
on deviations from GR [40–42].

In this work, we concentrate on the modifications of GR
due to the presence of an extra spatial dimension [43–46]
and try to constrain the same using GW observations. Inclu-
sion of an extra spatial dimension in our usual four dimen-
sional spacetime has a long history, starting from the attempt
of Kaluza and Klein to unify gravity and electromagnetism
(for a review, see [47]). Extra dimensional scenarios came
to the limelight again when it was realized that these mod-
els can address the long standing gauge hierarchy problem
in high energy physics. The huge gap ∼ O(1017), between
the electroweak scale and the Planck scale – leading to
extreme fine-tuning – is known as the gauge hierarchy prob-
lem [48,49]. This fine-tuning is essential in order to keep
the mass of the Higg’s Boson in the electroweak scale and
achieving consistency with the LHC results [50,51]. Pres-
ence of extra spatial dimensions, either through large vol-
ume [48,52] or through exponential warping [49,53], can
reduce the four dimensional Planck scale to electroweak scale
and hence the fine tuning/gauge hierarchy problem can be
avoided. Latter studies have shown several other contexts
having interesting applications of the higher dimensional sce-
nario, which includes – BHs [54–63], cosmology [64,65],
GWs [17,35,66–73] among others. In most of these higher
dimensional scenario, the effective gravitational dynamics in
four dimensions, which is a hypersurface in the full higher
dimensional spacetime will be different from that of Ein-
stein gravity. The fact that we are actually living in a higher
dimensional spacetime must appear somehow in our effective
four dimensional gravitational dynamics. It is worth mention-
ing that except gravity, other fields are taken to be confined
to the four dimensional spacetime, while gravity alone can

probe the extra dimensions. For our purpose it will suffice
to consider a five dimensional spacetime with a single extra
spatial dimension, referred to as the bulk spacetime, while
our four dimensional universe is known as the brane. It is
important to emphasize that the braneworld scenario con-
sidered here is general enough to encompass the situation
in which the extra spatial dimension need not be compact.
For simplicity we assume Einstein gravity in the bulk space-
time, in which case the gravitational dynamics on the brane is
governed by an appropriate projection of the bulk Einstein’s
equations on the brane, which will have corrections over
and above the Einstein term. These corrections are precisely
what we wish to explore. Interestingly, the effective gravi-
tational field equations on the brane exhibits localized BH
solutions, which resemble the Reissner–Nordström and the
Kerr–Newman solutions of GR, with the crucial difference
being the charge term (often referred to as tidal charge) tak-
ing negative values [55,58,74,75]. Note that the tidal charge
parameter is sourced by the extra spatial dimension, such
that in the GR limit it identically vanishes. Previous works
have also reported interesting constraints on the tidal charge
parameter and consequently on the extra spatial dimension
[35,42,76–80]. However as we will see none of these con-
straints are as robust as we will derive in the present work.
In what follows, we will develop the formalism to constrain
the tidal charge parameter of a rotating braneworld BH using
publicly available measurements of GW observations. In par-
ticular, by using the measurements of the remnant properties
and (complex) quasi-normal mode (QNM) frequencies of
the ringdown signal in the first-ever gravitational wave event
GW150914 [81,82], we obtain a novel upper bound on the
magnitude of the tidal charge.

The rest of the article is arranged as follows: in Sect. 2 we
briefly review the effective field equations on the brane and
the associated rotating BH solution. The computation of the
QNMs associated with a rotating braneworld BH, using the
continued fractions method has been presented in Sect. 3.
Finally the comparison with the GW150914 event and the
resulting constraint has been presented in Sect. 4. We con-
clude with a discussion on our results and possible future
directions.

Notations and conventions In this work we will follow
the mostly positive signature convention, i.e., the flat space-
time Minkowski metric in four dimensions takes the form,
diag(−1, 1, 1, 1). Indices referring to higher dimensional
spacetime are denoted by uppercase Roman letters and the
indices for the four dimensional spacetime are represented
by Greek letters. We also set the fundamental constants to
unity, i.e., c = 1 = G.
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2 Brief review of rotating braneworld black hole

In this section we will briefly review the effective gravi-
tational field equations on the four dimensional brane and
the geometry of rotating BH solutions arising from the field
equations. As emphasized earlier, we consider the gravita-
tional interaction in the five dimensional bulk spacetime to
be described by Einstein gravity. However, the effective four
dimensional description of the gravitational interaction will
not be governed by Einstein’s equations, rather there will
be corrections over and above the same. These corrections
arise as we project the five dimensional Einstein’s equations
on the four dimensional brane hypersurface using an appro-
priate projector hA

B = δAB − nAnB , where nA is the unit
normal to the brane hypersurface, satisfying nAnA = 1. The
projection of the five dimensional Einstein tensor GAB on
the four dimensional brane uses the Gauss–Codazzi and the
Mainardi relations, connecting geometrical quantities in the
full spacetime to geometrical quantities in a lower dimen-
sional hypersurface. This results into the following effective
gravitational field equations on the brane [74],

(4)Gμν + Eμν = 8πGTμν + �μν . (1)

Here, Eμν = WABCDnAeBμn
CeDν is the electric part of the

bulk Weyl tensor WABCD , with Tμν being the matter energy–
momentum tensor on the brane. Additionally, the tensor �μν

appearing in the effective gravitational field equations pre-
sented above, is a quadratic combination of Tμν , e.g., it
involves terms like, TμαT α

ν , T Tμν etc. Since we will be
interested in vacuum four dimensional spacetime, the matter
energy–momentum tensor on the brane would vanish identi-
cally and hence the�μν term will not contribute in the present
context. Thus for vacuum brane, the gravitational dynamics
is governed by the following effective equations,

(4)Gμν + Eμν = 0 . (2)

Thus for our purpose the bulk Weyl tensor plays the most
important role and is the factor responsible for modifications
to the Einstein’s equations. Note that due to symmetry prop-
erties of the Weyl tensor, Eμν is traceless and due to Bianchi
identity it is also divergence free. Both of these properties
hold true for electromagnetic stress–tensor as well and hence
the BH solutions arising out of the above effective gravita-
tional field equations very much resemble the Kerr–Newman
family of BHs. With one crucial sign difference – the elec-
tromagnetic stress–energy tensor appears on the right hand
side of the field equations – while here Eμν appears on the
left hand side, as evident from (2). In particular, the rotating
BH solution arising out of the effective field equations on the

brane takes the following form [55,58,75],

ds2 = −	



(dt − a sin2 θ dφ)2 + 


[
dr2

	
+ dθ2

]

+ sin2 θ




[
a dt − (r2 + a2)dφ

]2
, (3)

where, a and M are the spin and mass of the BH respectively,
and 	 ≡ r2 + a2 − 2Mr + q and 
 ≡ r2 + a2 cos2 θ . Note
that, for the case of Kerr–Newman BH, the parameterq can be
identified with the square of the BH charge, i.e., q|KN = Q2.
However, in the braneworld scenario, q represents the tidal
charge parameter and hence it can take negative values as
well. This is the key feature for the braneworld BHs, which
we wish to explore in detail in this work from the perspective
of QNMs.

In addition, we briefly discuss about some other interest-
ing properties of this solution. Since the horizons of the above
solution are located at, r± = M±√

M2 − a2 − q , in the non-
rotating case with q < 0, there is only one horizon, in sharp
contrast with the case of Reissner–Nordström BH. Similarly,
in the rotating case, for the existence of horizons, the rota-
tion parameter must be bounded by (a/M)2 ≤ 1 − (q/M2),
which can be larger than unity for negative values of q. This
is again in striking contrast to the case of a Kerr–Newman
BH, for which the value of the dimensionless rotation param-
eter (a/M) is strictly less than unity. Furthermore, negative
value of the tidal charge has implications in various other
astrophysical scenarios, e.g., – (a) the tidal love number of a
braneworld BH is non-zero [69], (b) braneworld BHs cast
a bigger shadow and is consistent with the shadow mea-
surement of the supermassive BH M87* [42], (c) continuum
spectrum as well as quasi-periodic oscillations from accre-
tion disks favours the presence of extra dimensions [78,83].
Motivated by these results, we concentrate, in this work, on
the implications of a negative tidal charge parameter on the
QNMs. We present the computation of the QNMs for rotating
braneworld BH in the next section.

3 Quasi-normal modes of a rotating braneworld black
hole

The spacetime metric of a rotating BH on the vacuum brane
embedded in a higher dimensional spacetime, along with its
physical characteristics have been elaborated in the previous
section. In this section, we will outline the method for the
determination of the BH QNMs. Unlike the previous section,
here we will assume 2M = 1 for simplicity of the analysis,
however all the factors involving the mass of the BH will be
restored, while comparing with the GW observations in the
next section.
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We focus on the case of linear gravitational perturbations
in the background of a rotating braneworld BH, which, unlike
the case of a Kerr BH [84], is generically non-separable
[85]. In the context of Kerr–Newman BH, the separability is
achieved under the Dudley–Finnley approximation [86,87],
where the electromagnetic charge was assumed to be small.
However, this approximation is not a good one, as demon-
strated in [88] and further corroborated by the results of [89].
However, in the present context, we assume that the gravita-
tional perturbations on the brane, keep the contribution from
the bulk geometry, i.e., Eμν unchanged. This is because, fol-
lowing [90,91] one can argue that the perturbation of the bulk
Weyl tensor has the form δEμν = (�/L)Eμν , where � is a
characteristic length scale of the bulk geometry, while L is
a characteristic length scale of the black hole on the brane.
It is obvious that (�/L) � 1. Thus we are assuming that
the bulk curvature scale is much larger than the curvature on
the brane, which is a much more robust approximation than
that of small electromagnetic charge due to Dudley and Finn-
ley. Under this assumption, for reasonable values of the tidal
charge parameter q, the radial and the angular part of the
gravitational perturbation also separates, identical but very
different in spirit to the Kerr–Newman spacetime [85]. This
allows us to determine the QNMs of the background BH
spacetime under perturbations. It is worth mentioning that
this also ensures the separability of generic spin ‘s’ pertur-
bation.

Given the separability of a generic spin ‘s’ perturbation
s(t, r, θ, φ), it follows that the perturbation can be decom-
posed into temporal, radial, angular and azimuthal part as,

s(t, r, θ, φ) =
∑
�,m

e−iωt R�m(r)S�m(θ)eimφ , (4)

where, � is the angular momentum and m is its z-component,
such that m ∈ (−�,−� + 1, . . . , � − 1, �), and ω is the
QNM frequency. Substituting the above spin ‘s’ perturba-
tion into the linearized gravitational field equations, the sepa-
rated radial perturbation R�m(r) and the angular perturbation
S�m(θ) satisfies the following equations on the braneworld
BH spacetime,

d

du

[(
1 − u2

) dS�m

du

]
+

[
(aωu)2 − 2aωsu + s + A�m

− (m + su)2

1 − u2

]
S�m = 0 , (5)

	

(
d2R�m

dr2

)
+ (s + 1)(2r − 1)

(dR�m

dr

)

+
[
−

{
a2 + q + (r − 1) r

} {
A�m + ω

(
a2ω − 2am − 4irs

)}

− i (2r − 1) s
{
ω

(
a2 + r2

)
− am

}

+
{
am − ω

(
a2 + r2

)}2
]
R�m = 0 . (6)

Here the spin parameter s takes values (0,−1,−2) for scalar,
electromagnetic and gravitational perturbations respectively
and u ≡ cos θ . The separation constant A�m appearing in
both the radial and angular equation reduces to �(� + 1) −
s(s + 1) in the limit of vanishing rotation parameter a. The
above pair of differential equations can be solved to obtain
(ω, A�m) by setting appropriate regularity and boundary con-
ditions.

The relevant boundary condition for the angular equation
is the finite behaviour of S�m at the regular singular points
of the angular equation presented in (5), which are located at
(u = 1,−1). Therefore we will employ the Leaver’s method
[92] for solving these differential equations, which effec-
tively is equivalent to finding a series solution to the angular
differential equation, given by (5). Given the regular singu-
lar points, the series solution to the angular equation can be
expressed as,

S�m(u) = eaωu(1 + u)k1(1 − u)k2

∞∑
n=0

cn(1 + u)n , (7)

where, k1 = 1
2 |m−s| and k2 = 1

2 |m+s|. The expansion coef-
ficients cn , appearing in the above series solution, are related
to each other by a three term recurrence relation, which takes
the following form,

α(θ)
n cn+1 + γ (θ)

n cn + δ(θ)
n cn−1 = 0 , (n = 1, 2, 3, . . .) .

(8)

The coefficients α
(θ)
n , γ

(θ)
n and δ

(θ)
n , appearing in the above

recurrence relation for the angular equation are of the fol-
lowing form,

α(θ)
n = −2(n + 1)(2k1 + n + 1) , (9)

γ (θ)
n = −

[
a2ω2 + (s + 1) s + A�m

]

+ 2n (−2aω + k1 + k2 + 1)

− [2aω (2k1 + s + 1)

− (k1 + k1) (k1 + k1 + 1)] + (n − 1)n , (10)

δ(θ)
n = 2aω (k1 + k2 + n + s) . (11)

It is to be noted that the above expressions are identical to
those in [92]. Alike the series solution to the angular equation,
one can obtain a series solution to the radial equation by
setting similar boundary conditions – (a) perturbations are
purely ingoing at the BH horizon and (b) perturbations are
purely outgoing at infinity. Thus the series solution, with
regular singular points at r = r±, takes the following form,

R�m(r) = eiωr (r − r+)−s−iσ+ (r − r−)−1−s+iω+iσ+
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∞∑
n=0

dn

(
r − r+
r − r−

)n

, (12)

where, r± = (1/2)(1 ± b) are the horizon locations. Here,
b ≡ √

1 − 4(a2 + q) and σ+ ≡ (1/b)[ω(r+ − q) − am].
The coefficients dn also satisfies a three term recurrence rela-
tion, which can be obtained by substituting the above series
solution for the radial perturbation R�m(r) in the radial per-
turbation equation, given by 6, which yields,

α(r)
n dn+1 + γ (r)

n dn + δ(r)
n dn−1 = 0 , (n = 1, 2, 3, . . .) .

(13)

with the coefficients α
(r)
n , γ

(r)
n and δ

(r)
n are given by,

α(r)
n = (n + 1)

[
− 2iqω

√
−4a2 − 4q + 1

+ iω
√

−4a2 − 4q + 1 − 2iam
√

−4a2 − 4q + 1

+ (n + 1)
(

4a2 + 4q − 1
) ]

− (n + 1)
(

4a2 + 4q − 1
)

(s + iω) , (14)

γ (r)
n = −4a4ω2 − 8a3mω − 4ω2

√
−4a2 − 4q + 1

+ 12qω2
√

−4a2 − 4q + 1

− 2iω
√

−4a2 − 4q + 1 + 6iqω

√
−4a2 − 4q + 1

− 4inω

√
−4a2 − 4q + 1

+ 2am

[
i
√

−4a2 − 4q + 1 + 2
√

−4a2 − 4q + 1 (ω + in)

−4qω + ω]

+ 12iqnω

√
−4a2 − 4q + 1 + (1 − 4q)

[A�m + 2n (n + 1) + s + 1]

− 4
(

4q2 − 5q + 1
)

ω2 + 2i(4q − 1)(2n + 1)ω

+ a2
[
ω

{
ω

(
8
√

−4a2 − 4q + 1 − 20q + 17

)

+4i

(√
−4a2 − 4q + 1 + 2

)}

+ 8in

{
ω

(√
−4a2 − 4q + 1 + 2

)
+ i

} ]

−
(

4A�m + 8n2 + 4s + 4
)
a2 , (15)

δ(r)
n = (n − 2iω)

[
− 2iqω

√
−4a2 − 4q + 1

+ iω
√

−4a2 − 4q + 1 − 2iam
√

−4a2 − 4q + 1

+ 4a2 (n + s − iω)
]

+ (n − 2iω) (4q − 1) (n + s − iω) . (16)

Having derived the recurrence relations for the angular
and the radial perturbation equations, let us now proceed to

(numerically) solve simultaneously these three-term recur-
rence relations using the continued fraction method, and
obtain the (complex) QNM frequencies, ωn�m := 2π fn�m −
iτ−1

n�m , where ( fn�m, τn�m) represent the frequency and damp-
ing time of the n�m-th QNM respectively. Note that each
QNM frequency is characterized by the overtone number n,
the angular momentum � and its z-component m. It is worth
mentioning that the n in the QNM frequency refers to the
QNM overtone; not to be confused with the dummy variable
used in the series expansions of the perturbations, appearing
previously in this section.

The recurrence relations for the angular and radial pertur-
bation, depends on the mass M , the spin a and the tidal charge
parameter q. Hence the QNM frequencies also depend on
these hairs. However it is convenient to introduce the dimen-
sionless parameters χ ≡ (a/M) and β ≡ (q/4M2) and
hence the real and imaginary parts of the QNM frequencies
can be expressed as,

fn�m = fn�m(M, χ, β) , (17)

τn�m = τn�m(M, χ, β) . (18)

Therefore, given the mass M and spin χ of BH, perhaps the
remnant from the merger of two BHs, one can predict the
oscillation frequency and damping time for different values
of the tidal charge β. We calculate the predictions of the
frequencies and damping times for the least-damped (n = 0)
� = 2,m = 2 and � = 3,m = 3 QNMs of a BH of mass
M = 62M� and spin χ = 0.67 in Table 1. These values for
the mass and spin are chosen to be close to the median values
of these quantities for the remnant BH of GW150914 [81],
the first GW signal observed from the merger of two (non-
spinning) BHs of ∼ 30M� each. We perform a more detailed
consistency check between the QNM predictions and their
observed estimates for GW150914 in the next section.

We also plot the real and imaginary parts of the QNM fre-
quencies for different values of the tidal charge β and spin
χ for the fundamental � = 2 = m case and the excited
� = 3 = m case in Fig. 1. As evident, for a given β with
an increase of the spin χ , the imaginary part of the QNM
frequency decreases much slowly compared to the real part.
On the other hand, for a fixed χ , with an increase in the tidal
charge |β|, both the imaginary and the real part decreases,
but the decrease in the real part is smaller compared to the
decrease in the imaginary part. As a consequence the change
in the damping time τn�m is much smaller than in the oscil-
lation frequency fn�m . This behaviour of the oscillation fre-
quency and damping time will be the key to constrain the
tidal charge parameter β, as we will see in the next section.
It is also interesting to note that in the presence of extra
dimensions the imaginary part decreases and hence the per-
turbations of braneworld BHs are longer lived compared to
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Table 1 Numerical values of the real and imaginary parts of the excited
QNM (n = 0, � = 3 = m) frequencies, along with the oscilla-
tion frequency and damping time, corresponding to the gravitational
perturbation (s = −2), for various values of tidal charge parameter
β have been presented, for a BH of mass M = 62M� and dimen-

sionless spin parameter χ = 0.67. The real and imaginary parts of
the QNM frequencies in natural units have been converted to oscil-
lation frequency in Hz and damping time in ms through the follow-
ing relations: fn�m (Hz) = (1/2π)(c3/2GM)(1 + z)−1(Re ωn�m) and
τn�m (ms) = 103(2GM/c3)(1 + z)(Im ωn�m)−1

�,m −β ωr −ωi Damping time (ms) Frequency (Hz)

� = 2,m = 2 0 1.039711 0.163690 4.069 248.395

0.05 0.963809 0.163932 4.063 230.261

0.1 0.905704 0.162635 4.096 216.380

0.15 0.858954 0.160679 4.146 205.211

0.2 0.820065 0.158443 4.204 195.920

0.25 0.786925 0.156107 4.267 188.002

0.3 0.758165 0.153765 4.332 181.131

0.35 0.732845 0.151463 4.398 175.082

0.4 0.710292 0.149226 4.464 169.694

0.45 0.690011 0.147066 4.529 164.849

0.5 0.671623 0.144988 4.594 160.456

0.55 0.654837 0.142992 4.658 156.446

0.6 0.639422 0.141076 4.722 152.763

0.65 0.625192 0.139238 4.784 149.363

0.7 0.611995 0.137475 4.845 146.210

0.75 0.599706 0.135782 4.906 143.274

0.8 0.58822 0.134157 4.965 140.530

� = 3,m = 3 0 1.64959 0.168181 3.92107 394.109

0.05 1.54121 0.16998 3.91915 348.185

0.1 1.45737 0.169987 3.91899 348.185

0.15 1.38932 0.169127 3.93892 331.927

0.2 1.33226 0.167821 3.96959 318.295

0.25 1.283312 0.166279 4.00638 306.003

0.3 1.240552 0.164621 4.04673 296.384

0.35 1.20269 0.162912 4.08919 287.339

0.4 1.168812 0.161192 4.13282 279.244

0.45 1.138176 0.159484 4.17708 271.924

0.5 1.11029 0.157804 4.22155 265.263

0.55 1.08473 0.156166 4.26599 259.071

0.6 1.061172 0.154556 4.31027 253.528

0.65 1.035172 0.152688 4.36321 247.316

0.7 1.01904 0.151478 4.39785 243.462

0.75 1.000172 0.150121 4.43941 238.930

0.8 0.982296 0.148577 4.48372 234.684

their four dimensional counterpart. This is consistent with
earlier findings, see e.g. [68,93,94].

4 Bound on the tidal charge from GW150914

In the previous section, we (numerically) solved the per-
turbed gravitational field equations using the continued frac-
tion method and determined the QNM frequencies for a fixed

value of the mass and spin of a rotating braneworld BH.
LIGO-Virgo GW parameter inference, on the other hand, is
usually performed within a Bayesian framework. Hence, we
end up with a posterior probability distribution on the mass
and spin of the remnant BH. In this section, we use these pub-
licly available LVK measurements of the mass and spin of the
remnant object of GW150914 [95] to provide a preliminary
bound on the tidal charge parameter, β.
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Fig. 1 In this figure we have plotted the real and imaginary parts of
the QNM frequency ωn�m for different choices of the tidal charge β.
The circled points are for the fundamental � = 2 = m mode, while
the triangle-like points are for the excited � = 3 = m mode. For each
value of β, the points refer to the spin parameter having values, χ =
0.1, 0.2, 0.3, . . . 0.9 (left to right). As evident, with the increase of |β|,
the decrease in (Re ωn�m) is smaller than the decrease in (Im ωn�m).
See text for more discussions

The LIGO-Virgo collaborations outlined two complemen-
tary Bayesian techniques to measure the remnant BH proper-
ties in [10]. The first approach, called PyRing (see [96,97]
and Section VII A.1 in [10]) infers the remnant properties
by fitting a numerical relativity (NR)-inspired or a theory-
agnostic damped-sinusoid ringdown template to just the post-
merger signal. The outcome is a measurement of final mass
and spin (or the the complex frequencies) along with addi-
tional phenomenological degrees of freedom to capture devi-
ations from GR predictions. The final mass and spin mea-
surements are then converted to the QNM frequencies using
appropriate fitting formalae [98,99]. Specifically, we use the
measurements from the Kerr220 model in [10]. The second
approach, called the pSEOBNRv4HM analysis (see [100] and
Section VII A.2 in [10]) attempts to make full use of the GW
modelling by simultaneously measuring the inspiral and ring-
down properties. Instead of using NR-inspired fitting formu-
lae to predict the ringdown frequencies, the method leaves
them as free parameters in the model and estimates them
directly from the data. Both these methods are null tests of
GR looking for an inconsistency with the predictions of the
theory, and between them, have reported the tightest con-
straints on the remnant properties to date [10,96,100,101].
There is also a third reported measurement of the final mass
and spin which indeed uses NR-inspired fitting formulae to
predict the final mass and spin, starting from the masses and
spins of the initial binary. These ‘IMR’ estimates use the
power in the entire signal without additional free parameters
built into the model, and thus yield the tightest constraints
on the measurement of {M f .a f }. In this paper, we treat these
three methods as three independent measurements of the rem-
nant BH properties, and check for consistency between them
to obtain a preliminary bound on possible values of β for

the gravitational wave signal GW150914. We also restrict
ourselves to just the least damped � = 2 = m mode.

Given a value for β, one can use the measured distribu-
tions of final mass and spin from the PyRing analysis to
predict a distribution on the frequency and damping time,
( f220, τ220) (using 17 and 18), and then check for their con-
sistency with the pSEOBNRv4HM and IMR measurements
of ( f220, τ220) as was reported in [10,100] respectively. For
the case of β = 0, one gets back the predictions of GR
and the three distributions are consistent with each other,
as shown in Fig. 2 and as indeed reported in previous pub-
lications [10,100]. However, for non-zero values of β one
begins to find inconsistencies between the predicted and
observed posteriors (Fig. 2). The inconsistencies increase
as we increase the magnitude of β. For β = −0.01 and
β = −0.025, we find that the predictions of the QNM fre-
quencies are still consistent, at the 90% credible interval
with both the pSEOBNRv4HM and IMR measurements. But
already for β = −0.05, we start seeing disagreement with
the pSEOBNRv4HM and IMR measurements. Hence, at cur-
rent measurement uncertainties, values of the tidal parameter
β < −0.05 appear to be unlikely.

A major caveat in the above analysis is the use of mass
and spin measurements that were made assuming GR as the
null hypothesis. The appropriate implementation would have
been to build a complete inspiral-merger-ringdown model of
GWs in the braneworld scenario, including the parameter β,
and use this model to infer (M, χ, β) simultaneously within
a Bayesian framework. Unfortunately, such a model is still
some way into the future and hence, we restrict ourselves to
measurements assuming GR. The uncertainties in the mea-
surement of ( f220, τ220) in [10,96,100] seem to also suggest
that even if the GR predictions are not correct, the actual val-
ues might only vary perturbatively from them. Hence, using
the GR measurements as a starting point for our analysis may
be considered a safe assumption for the order-of-magnitude
bounds we report on β. This also allows us to assume that β

is not correlated with the (M, χ) measurements, and hence
for a given value of β, we can use the PyRing samples of
(M, χ) to predict an ( f220, τ220) distribution. A more com-
prehensive study of the correlations between (M, χ, β) is
left for future work.

5 Discussion and concluding remarks

The presence of an extra spatial dimension has distinctive sig-
natures on the four dimensional brane, which manifest them-
selves in various regimes, starting from BHs to cosmology.
This is because the effective gravitational field equations on
the four dimensional brane gets modified by terms inherited
from the higher dimensional spacetime. As a consequence,
the solutions of the effective gravitational field equations on
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Fig. 2 90% credible levels of
the 2D posterior probability
distributions, and the
marginalised 1D posterior
probability distributions (with
the 90% credible intervals) of
the frequency fn�m and damping
time τn�m of the � = 2 = m
mode. The pSEOBNRv4HM
posterior probability distribution
is from [100] while the IMR
posterior is from [10]. From the
above posteriors, values of
β � −0.05 seem to be
inconsistent with the
pSEOBNRv4HM and IMR
measurements

the brane differs from their GR counterparts. In the present
context, for vacuum four dimensional brane spacetime, the
gravitational field equations differ from the Einstein equa-
tions by an appropriate projection of the higher dimensional
Weyl tensor. As a consequence, it turns out that the effective
gravitational field equations resemble the Einstein-Maxwell
system, with an overall negative sign for the electromagnetic
stress tensor. The axisymmetric solution, arising out of this
field equations looks like the Kerr–Newman spacetime, with
a negative contribution from the charge term. This drastically
changes the spacetime structure, e.g., one can have the spin
of such a rotating braneworld BH to be larger than unity, in
striking contrast to GR.

In this work, we have explored the implications of this
charge term on the spacetime geometry through its effect
on the QNM spectra of BHs. We wrote down the differen-
tial equations satisfied by the radial and angular parts of a
generic spin ‘s’ perturbation around a background rotating
braneworld BH spacetime; and subsequently (numerically)
solved them using the continued fraction method to obtain
the (complex) QNM frequencies. These frequencies depend
on the mass M , the dimensionless spin χ and the dimen-
sionless tidal charge parameter β, which is negative for the
braneworld scenario (while β = Q2/4M2, for the Kerr–
Newman spacetime). The remnant object produced in the
merger of two BHs is expected to ring down into a stable
final state through the emission of GWs in the form of a
QNM spectra. If an extra spatial dimension is indeed present,
the QNM frequencies, ( fn�m, τn�m), would be expected to
depend on the tidal charge β. Hence, we try to provide
a preliminary bound on possible values of β by checking
for consistency between predictions of ( fn�m, τn�m) in the
braneworld scenario and publicly available measurements of
the same from the LIGO-Virgo observations, for the first

gravitational wave event GW150914. We find that it would
be highly unlikely to have values of β < −0.05.

The work in this paper has several possible future direc-
tions. Firstly, the constraint on the tidal charge must trans-
late appropriately to the length of the extra dimension. This
requires extending the brane solution to the bulk spacetime,
which we hope to address in future work. Moreover, in
this work we have used a single GW observation, namely
GW150914 to impose the constraint on β, which can pre-
sumably be improved if we can combine information from
multiple binary BH GW observations. Besides, modelling
both the inspiral and ringdown part within the braneworld
scenario would enable us to perform a full Bayesian analysis
on the mass, spin and tidal charge parameter, without input
from GR. We hope to address some of these questions in
future work.
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