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Abstract In Effective Field Theory, we describe μ ↔ e
flavour changing transitions using an operator basis moti-
vated by experimental observables. This implies that μ →
eLγ , μ → eL ēe and μ → eL conversion on nuclei probe a
six-dimensional subspace, where we derive constraints on the
New Physics scale from past and future experiments, illus-
trating the complementarity of the processes in an intuitive
way.

1 Introduction

Lepton flavor-violating contact interactions – referred to as
LFV or CLFV – are excellent probes of physics beyond the
standard model (see e.g. [1,2] for reviews). The non-zero
neutrino masses and mixing angles imply their existence,
and an observation could shed light on the neutrino mass
mechanism [3], and even on the matter excess of our uni-
verse if generated via leptogenesis [4,5]. The rates could be
just below the current experimental bounds, in many exten-
sions of the Standard Model that introduce additional CLFV
sources [2].

CLFV searches have been conducted in a wide range of
reactions, and a subset of current and anticipated experimen-
tal constraints are given in Table 1. While the multitude of
τ channels could contribute to identifying the nature of New
Physics (NP), the greater sensitivity in muon sector seems
more promising for discovering it. Although the number of
muon processes is limited, the corresponding bounds are
already quite restrictive, and exceptional improvements are
expected in the coming years.

The reach and complementarity of μ → eγ , μ → eēe
and μA → eA transitions have been explored from vari-
ous perspectives. Numerous authors have investigated model
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preferences and predictions for correlations among CLFV
observables [20–30]. An early model-independent analysis
was performed by de Gouvea and Vogel [31], using a sim-
ple effective Lagrangian to describe NP effects. The presen-
tation of our results follows their intuitive plots. However,
their approach was limited to comparing the reach of pairs of
processes (e.g. μ → eγ vs.μA→eA) at tree level. More sys-
tematic Effective Field Theory (EFT) studies, including more
operators and some loop effects, were performed in [32,33];
focused on the sensitivity of the processes to a more com-
plete operator basis, and [33] explored whether the proposed
experimental muon program is necessary and sufficient to
find μ → e flavour change.

The aim of this work is to graphically illustrate the comple-
mentarity and reach of the μ → eγ , μ → eēe and μA→eA
processes. We describe the physics of CLFV in an EFT per-
spective [34–41], where the number of operator coefficients
is reduced by choosing an operator basis motivated by our
observables [33]. We quantify complementarity as the degree
to which observables probe different operator coefficients,
and study the complementarity of observables at the New
Physics scale because the aim is to make observations that
give distinct information at �LFV . The coefficients are trans-
lated to �LFV using Renormalisation Group Equations. This
study extends the analysis described in [33] in several ways:
we provide more informative plots of the current and pro-
jected experimental reaches, and a more rigorous construc-
tion of the basis for the subspace of experimentally accessi-
ble operator coefficients. In addition we draw attention to the
information loss in matching nucleons to quarks using cur-
rent theoretical results. Using this formalism to study whether
μ → e processes can distinguish among models is an inter-
esting question that we leave for a subsequent publication.

This paper is organized as follows: Sect. 2 outlines the pro-
cedure to take the data parametrized in EFT from the experi-
mental scale to beyond the weak scale. Section 3 presents
constraints from various experimental measurements and
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Table 1 Current bounds on the branching ratios for various lepton flavour changing processes, and the expected reach of upcoming experiments

Process Current sensitivity Future

μ → eγ < 4.2 × 10−13 (MEG [6]) ∼ 10−14 (MEG II [7])

μ → eēe < 1.0 × 10−12 (SINDRUM [8]) ∼ 10−16 (Mu3e [9])

μA→ eA < 7 × 10−13 (SINDRUM II [10,11]) ∼ 10−16 (COMET [12,13], Mu2e [14])

∼ 10−(18→20) (PRISM/PRIME [15])

τ → lγ < 3.3 × 10−8 (Babar) [16] ∼ 10−9 (BelleII) [17]

τ → 3l < few×10−8 (Belle) [18] ∼ 10−9 (BelleII) [17]

τ → lπ0 < 8.0 × 10−8 (Belle) [19] ∼ 10−9 (BelleII) [17]

τ → lρ < 1.2 × 10−8 (Belle) [19] ∼ 10−9 (BelleII) [17]

projections for future initiatives. The construction of the
basis used in this work is discussed in Appendices A and C.
An independent issue regarding information loss in relating
μA → eA rates to models is finally discussed in Appendix
B.

2 Theory overview

This section gives the Lagrangian and Branching Ratios at
the experimental scale, and sketches the transformation of
operator coefficients from the experimental scale to �LFV

(which is described in more detail in [33]).
A challenge of the EFT approach lies in the large number

of operators. In the case of μ → e flavour changing pro-
cesses, about 90 operators [33] are required to parametrize
interactions that have ≤ 4 Standard Model legs at low energy
and are otherwise flavour-diagonal. The difficulty to con-
strain and visualize this high-dimensional space is com-
pounded by the fact that there are (only) three processes
with excellent sensitivity in the μ → e sector (see Table 1),
imposing only about a dozen constraints on operator coeffi-
cients [42]. Improved theoretical calculations and additional
μA→eA measurements with different nuclear targets could
increase this number to ∼ 20 independent constraints [42].
Determining all EFT coefficients appears therefore a daunt-
ing task.

This manuscript takes a different perspective, follow-
ing [33]. Since there are three processes with excellent exper-
imental sensitivity, we restrict to the (12-dimensional) sub-
space of operator coefficients probed by μ → eγ, μ → eēe,
and Spin Independent1 μAl → eAl and μAu → eAu. The
dimension of the subspace can be further reduced by half
since the operator coefficients can be labelled by the helic-
ity (or chirality) of the outgoing relativistic electron, and the
results are very similar for either eL or eR , which do not inter-

1 We leave Spin Dependent conversion [42,45,46] and other targets [42]
for future work.

fere. Restricting the analysis to the subspace corresponding
to an outgoing eL in the bilinear with a muon, the three muon
processes can be described at the experimental scale (∼ mμ)
by the following effective Lagrangian [1]:

δL = 1

�2
LFV

[
CD(mμeσ

αβ PRμ)Fαβ + CS(ePRμ)(ePRe)

+CV R(eγ αPLμ)(eγαPRe)

+CV L(eγ αPLμ)(eγαPLe) + CAlightOAlight

+CAheavy⊥OAheavy⊥
]

(2.1)

where �LFV is the New Physics scale, and the dimensionless
coefficients {CZ } are lined up in a vector �C normalised to 1 at
the experimental scale. The first term of this Lagrangian is a
dipole operator mediating μ → eγ and contributing to both
μ → eēe and μA → eA. The next three contact operators
contribute to μ → eēe, while OAlight is a combination of
operators probed by light muon conversion targets such as
Ti or Al, and OAheavy⊥ is an orthogonal combination probed
by heavy targets such as Au. An Approximate expression
for OAlight at the experimental scale is given in Eq (A.2),
and for OAlight and OAheavy⊥ at 2 GeV in Eq. (A.14). We
take Au and Al as prototypical “heavy” and “light” targets
since Au was used by the SINDRUM experiment [10,11],
and Al will be used by the upcoming COMET [12,13] and
Mu2e [14] experiments, in addition to resembling Ti used in
the past [10,10].

The constraint on the dipole operator from μ → eγ is
given by:

BR(μ → eLγ ) = 384π2 v4

�4
LFV

| �C · êDR |2 < Bexpt
μ→eγ

= 4.2 × 10−13 (2.2)

where we introduced unit vectors êA which select coefficients
CA in the six-dimensional subspace. The four-lepton oper-
ators have negligeable interference in μ → eēe since the
electrons are relativistic (≈ chiral), setting the three follow-
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ing constraints:

BR(μ → eLeReL) = v4

�4
LFV

| �C · êS|2
8

≤ Bexpt
μ→eēe = 10−12

BR(μ → eLeLeL) = v4

�4
LFV

[
2| �C · êV L + 4e �C · êD|2

+e2(32 ln
mμ

me
− 68)| �C · êD|2

]

≤ Bexpt
μ→eēe

BR(μ → eLeReR) = v4

�4
LFV

[
| �C · êV R + 4e �C · êD|2

+e2(32 ln
mμ

me
− 68)| �C · êD|2

]

≤ Bexpt
μ→eēe. (2.3)

These can conveniently be summarised as

BR(μ → eL ēe) = v4

�4
LFV

�C†Rμ→eL ēe
�C ≤ Bexpt

μ→eēe (2.4)

where the matrix Rμ→eL ēe is proportional to the inverse
covariance matrix for μ → eēe, given in Eq. (A.4). Sim-
ilarly, the Conversion Ratios for μA→eA can be written

CR(μAl → eL Al) = v4

�4
LFV

�C†RμAl→eLAl �C ≤ Bexpt
μAl→eAl

C R(μAu → eL Au) = v4

�4
LFV

�C†RμAu→eLAu �C

≤ Bexpt
μAu→eAu (2.5)

where the R matrices are given in Eq. (A.10). These expres-
sions justify a posteriori the basis in Eq. (2.1), chosen to be
orthogonal, intuitive, and correspond closely to the coeffi-
cient combinations probed by observables. The eigenvectors
of the covariance matrix could be another basis choice, dis-
cussed briefly in Appendix C3.

From the Lagrangian (2.1), one can easily deduce that
the three processes are complementary at the experimental
scale: four-fermion interactions with leptons only contribute
to μ → eēe, interactions with strongly-interacting particles
only contribute to μA→ eA (the complementarity between
heavy or light targets is discussed at the end of Appendix A),
while the dipole contributes to all processes. The comple-
mentarity of two processes can be interpreted geometrically
as the misalignment between the corresponding vectors in
coefficient space, defined as the angle η between the two vec-
tors. In terms of R matrices, the complementarity between
processes A and B can be expressed as:

cos2 η ∼
Tr
[
RARB

]

Tr
[
RA

]
Tr
[
RB

] , (2.6)

which vanishes for perfectly complementary observables,
and is equal to one when they contain the same information.
The basis in Eq. (2.1) was chosen to be perfectly comple-
mentary, i.e. orthogonal, at the experimental scale.

In the following, we adopt a different approach to illustrate
the complementarity between processes. Instead of using the
geometric measure defined above, we show that each process
gives independent information about the operator coefficients
by plotting the corresponding reach separately. The measured
rates can then be combined to identify a point in parameter
space.

The degree of complementarity can be evaluated at �LFV

by translating the coefficients in Eq. (2.1) from the exper-
imental scale to �LFV . Modifying the scale amounts to
changing the separation between lower energy loop effects
that are explicitly calculated, and higher energy loops that
are implicitly resummed into the coupling constants. At the
experimental scale, all the loops via which a New Physics
model contributes to an observable are in the operator coef-
ficients, and the rate is straightforward to calculate. On the
other hand, the operator coefficients at the heavy LFV scale
are easily derived from a New Physics model, but loops must
be calculated to evaluate experimental quantities. So the low-
energy operator coefficients of Eq. ( 2.1) can be transformed
to the LFV scale �LFV via the Renormalisation Group Equa-
tions (RGEs) [32,43,44], which peel off the SM loops in a
leading log expansion. Solving the RGEs perturbatively, and
modifying the EFT with scale to account for the changing
particle content, allows us to write

�C(mμ) = GT (�LFV ,mμ) �C(�LFV ). (2.7)

The matrix G is similar to that given in [33]. We neglect loop
effects in the EFT of nucleons and pions and match at 2 GeV
onto a QCD-invariant EFT with gluons and five flavours of
quarks (see Appendix A and Table 4). The leading log QED
and QCD effects are included up to mW [32,47], where the
coefficients are matched (at tree level in the lower-energy
EFT) onto dimension six SMEFT operators, augmented by
the dimension eight scalar operator [48,49] corresponding to
êS , which could be relevant [50]. We neglected CKM angles
in matching and some other relevant SMEFT operators of
dimension eight, and stress that the running from mW →
�LFV is not included.

The Branching Ratios in terms of coefficients at �LFV

can be expressed as:

BR(μ → eL X) (2.8)

= �C†(mW )G∗(mW ,mμ)Rμ→eL X (mμ)GT (mW ,mμ)

× �C(mW )

where the matrix G is not unitary, and does not preserve
the orthonormality of the basis since SM loops and match-
ing can change the normalisation and direction of the vec-
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Fig. 1 Reach as a function of
(left) the angle θD , which
parametrizes the relative
magnitude of dipole and
four-fermion coefficients, and
(right) the variable
κD = cotan(θD − π/2). The
scale � is defined in Eq. (2.1)
with the coefficients normalised
according to Table 2. The solid
region is currently excluded
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tors {êA}. This is expected since distinct observations at low
energy can measure the same high-scale NP coefficients. The
changing modulus of the basis vectors is simple to calculate
and include, and affects the reach. The changes in direction
can affect the complementarity of processes if the vectors
become more or less aligned (see Appendix C).

3 Illustrating experimental constraints

In this section, we illustrate the constraints on New Physics
from current and future μ → e searches, and show how these
results can be combined to identify the allowed region of
coefficient space. We parametrize the coefficient space with
spherical coordinates [51] (Table 2) assuming that the vector
of coefficients �C is normalised to unity at the experimental
scale. The reach of the various experiments in �LFV can
be calculated as a function of these angles and the branch-
ing ratios given in Eq. C.3. We stress that we are showing
(projected) exclusion curves, as opposed to “one-at-a-time”
bounds, since our EFT formulation should account for poten-
tial cancellations in the theoretical rate.

In deriving this parametrization, we approximate the oper-
ator coefficients as real numbers. This familiar simplifica-
tion reduces our coefficient space from six complex to six
real dimensions, replacing relative phases between interfer-
ing coefficients with a relative sign. Furthermore, we focus on
a four-dimensional subspace, corresponding approximately
to the four processes we examine, by suppressing two of
the three four-lepton directions (the four-lepton operators
can be distinguished by measuring the angular distribution
in μ → eēe [52,53]). The direction �eS associated to the
scalar four lepton operator interferes with none of the other
operators and receives negligible loop corrections, so it is
complementary by inspection. We also neglect a linear com-
bination of the vector four-lepton directions �eV R and �eV L ,
since their contributions to μ → eēe have similar form. A
judicious choice ensures the approximate orthogonality of

Table 2 Dimensionless operator coefficients expressed in the angular
coordinates. The radial coordinate is 1/�2

LFV , θI : 0..π and φ : 0..2π .
As discussed in Appendix 1, the �eV L × �eV R plane was projected to a
line, deviations from which are measured by θV . In general, the basis
vectors {eA} are not unit vectors, and their normalisation is given in
Table 5 and after Eq. (C.3) for the primed vectors

�C · �eD |�eD | cos θD

�C · �eS |�eS | sin θD cos θS

�C · �eV L |�e′
V L | sin θD sin θS cos θV

�C · �eV R |�e′
V R | sin θD sin θS cos θV

�C · �eAlight |�eAlight | sin θD sin θS sin θV sin φ

�C · �eAheavy⊥ |�eAheavy⊥| sin θD sin θS sin θV cos φ

the remaining four basis vectors. The full details are given in
Appendix C. Modulo these approximations, the parametri-
sation describes the experimentally constrainable space, so
we now plot various slices through the excluded region to
illustrate its shape.

We plot in Fig. 1 the reach of μ → eLγ , μ → eL ēe and
μAl → eLAl as a function of θD for θS = π/2, θV = π/4,
and φ = π/4. This corresponds to �C · �eS = 0, so μ → eēe
induced by the �C · �eD , �C · �eV R and �C · �eV L , and μA→ eA
probed by Al and Au. At θD = 0, the dipole coefficient is
only contribution to the rates. At θD = π/2, �C · �eD vanishes
(so does μ → eγ ) and μ → eēe and μA→ eA are purely
mediated by four-fermion operators. For θD > π/2, �C · �eD
is negative and μA → eA vanishes when the dipole contri-
bution cancels the remaining contributions. The rate drops
abruptly, indicating that the dipole contribution is relatively
small and the cancellation only occurs in a narrow region.
The valley is broader for μ → eēe, since the contribution
of �C · �eD is more important, and the rate never vanishes
because μ → eēe independently constrains each coefficient
contributing to this process, so the rate only vanishes when
all the coefficients do (see Eq. 2.3); although the dipole inter-
feres with four-fermion contributions in the amplitude, the
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Fig. 2 Reach as a function of the angle θV , which is effectively the angle between the μ → eēe and μA→eA four-fermion operators, for different
contributions of the dipole operator: (left) θD = π/2, (middle) θD = 5π/9, and (right) θD = 3π/4. The solid region is currently excluded
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the dipole operator: (left) θD = π/2, (middle) θD = π/4, and (right)
θD = 3π/4. Note that φ runs from 0 → 2π , although it is plotted from
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to those with negative dipole and φ ∈ (0 → π). The solid region is
currently excluded

long-distance log enhancement of the dipole prevents the
vector from cancelling it in the BR.

Our angular coordinate parametrisation defined a mea-
sure on the parameter space that assumes all the coefficients
in our subspace are O(1) once the scale �LFV is fixed. This
might not be the case in some classes of models; for instance
�C ·�eD � four-fermion coefficients can occur (in SUSY [54]),
or the dipole could be suppressed, when the four-fermion
operators are generated at tree level. To illustrate comple-
mentarity when the “natural” size of �C · �eD is significantly
different from the other coefficients, we also plot the reach in
a parametrization similar to that introduced in [31] by defin-
ing a variable

κD = cotan(θD − π/2). (3.1)

This non-linear transformation magnifies the regions where
the dipole contribution either dominates the four-fermion
interactions (θ = 0, π ) or is suppressed (θ = π/2). (A simi-
lar variable κV = cotan(θV ) could be defined to magnify the

regions where leptonic four-fermion coefficients are much
larger or smaller than those with quarks.) We subtract π/2 in
Eq. (3.1) in order to have μ → eγ larger at the centre of the
plot2 following [31].

Figure 2 displays the reach as a function of θV , which is
effectively the angle between the μ → eēe and μA → eA
four-fermion operators. Results for a vanishing dipole con-
tribution (θD = π/2) shows that μ → eēe vanishes at
θV = π/2 and μA → eA at θV = 0, π . Adding a small
negative dipole coefficient, μ → eēe doesn’t vanish anymore
since the dipole contributes independently as well as in inter-
ference with the four-fermion contributions, and the rate is
reduced when this interference is destructive. The magnitude
of the negative dipole coefficient is larger for θD = 3π/4,
exhibiting that μA→ eA vanishes when the dipole cancels
the four-fermion contributions.

2 This choice means that κ=0 corresponds to both to θ = 0 and θ = π ,
whereas ±∞ are identified. The plotted rates are not discontinuous at
0, because all the coefficients at θ = 0, π differ by a sign.
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Fig. 4 Reach as a function of the angle φ and the variable κD for θV = π/4 and θS = π/2. Note that φ runs from 0 → 2π , although it is plotted
from 0 → π ; the rates for φ ∈ (π → 2π) with positive dipole are equal to those with negative dipole and φ ∈ (0 → π)

Figure 3 illustrates the complementarity of heavy and light
targets for μA → eA, by plotting the conversion ratios as
function of �C · �eAlight ∝ sin φ and �C · �eAheavy⊥ ∝ cos φ.
Recall that �C · �eAheavy⊥ parametrizes the independent infor-
mation obtained with Au. This additional contribution to
μAu → eLAu causes the rate to vanish at a different value
than that of the light targets. The dipole, which also con-
tributes to μA→eA, was taken to either vanish (θD = π/2),
be positive (θD = 3π/4) or negative (θD = π/4). This illus-
trates the impact of �C · �eD on the rate: cancellations can occur
among the dipole and four-fermion contributions, as well as
between the two independent combinations of four-fermion
coefficients.

Finally, the dependence of the sensitivity on the angle φ

and the variable κD is exhibited in Fig. 4. As expected, the

μ → eγ and μ → eēe processes are independent of φ. The
shape of the conversion processes on light and heavy targets
are globally similar, although the ridges along which the rates
cancel are slightly different.

4 Summary

We use bottom-up EFT to calculate the reach and illustrate
the complementarity of experiments searching for NP. This
method is particularly well-suited to situations in which the
number of observables is much smaller than the number
of operators. It provides a complete parametrisation of the
rates, without redundancies, and the EFT translation to�LFV

can be systematically improved. In addition, this formalism
allows to explore the complementarity in a self-consistent
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manner at the same scale at which the theory is defined, and
ensure that experiments effectively probe different combi-
nations of NP parameters. This approach is generic and can
be applied to many situations. In this manuscript, we use
it to study CLFV in the muon sector and derive sensitivity
projections for current and future experiments.

At the experimental scale, the Lagrangian given in
Eq. (2.1) includes all and only the operators contributing
at tree level to the observables. The combinations of coeffi-
cients constrained experimentally define the operator basis
for our subspace, whose dimension is equal to the number
of constraints. For μ → eLγ , μ → eL ēe and Spin Inde-
pendent μAl → eLAl and μAu → eLAu, this subspace is
six-dimensional. These coefficients are translated to �N P by
solving the leading order Renormalisation Group Equations
below the weak scale, and matching them to SMEFT at tree
level (see Eq. (2.7)). Since the number of constraints remains
unchanged, the dimension of the subspace cannot grow (but
it could decrease, as discussed in appendix B). However, the
normalisation and direction of the basis vectors is altered, in
order to include, at �LFV , the contributions from all the oper-
ators to the observables via short-distance effects described
in the RGEs.

The ability of different experiments to probe independent
operator coefficients – our definition of complementarity –
is related to the misalignment between vector of coefficients.
While it can be measured in various ways, we observe that
a judiciously selected subset of our basis vectors remain
approximately orthogonal above the weak scale, and we use
various parametrisations (see Table 2 or Eq. (3.1)) to plot the
experimental exclusion curves using the Branching Ratios
given in Eq. (C.3). We also display a few projections to illus-
trate the reach and complementarity of future experiments.

An example of distinct observables probing the same New
Physics is recalled in appendix B: μA→eA on various nuclei
could distinguish scalar μ → e contact interactions on neu-
trons from protons, but this may not allow the distinction
of LFV scalar operators involving up quarks from those with
down quarks. Improving the precision of the scalar q̄q expec-
tation values in the nucleon would be required to improve the
situation.

This work is only a preliminary implementation of
bottom-up EFT, relying on theoretical formalism described
in [33]. In future work, we aim to implement the Renormal-
isation Group running of our vectors above the weak scale
(it was neglected here for simplicity and the lack of knowl-
edge of �LFV ), and match models onto the “observable sub-
space” at �LFV . We hope that finding robust distinctions
among model predictions could be simplified by the reduced
dimension of the subspace.
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Appendix A: Operators, rates and R-matrices at low
energy

The operators contributing at the experimental scale ∼ mμ

to the tree level amplitudes for μ → eLγ , μ → eL ēe and
Spin Independent μA → eL A are given in Eq. (2.1), where
the μA→eA operators can be expanded on:

ONN
S,R = ePRμNN , ONN

V,L = eγ αPLμNγαN (A.1)

where N ∈ {p, n}, and the list neglects subdominant opera-
tors such as ePXμFF [74]. The operator OAlight is approx-
imatively

OAlight ∝ 1

2
(Onn

S,R + O pp
S,R + Onn

V,L + O pp
V,L). (A.2)

The Branching Ratios (BRs) for the various processes can
be expressed in terms of the operator coefficients �C and the
matrices R:

BR(μ → eLγ ) = v4

�4
LFV

�C†Rμ→eLγ
�C (A.3)

⇔ Rμ→eLγ (mμ) = 384π2 v4

�4
LFV

êDê
†
D

where v � mt is the Higgs vev, and �C · êD = CD . For
μ → eL ēe, the BRs given in the text can be written using:

Rμ→eL ēe(mμ) = v4

�4
LFV

⎡
⎢⎢⎣

2 0 0 8e
0 1 0 4e
0 0 1

8 0
8e 4e 0 8e2(8 ln mμ

me
− 11)

⎤
⎥⎥⎦ (A.4)

where R is given in the basis (Ceμee
V L ,Ceμee

V R ,Ceμee
S ,Ceμee

D ).
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For μA→ eA, we consider the conversion ratios on pro-
totypical heavy and light targets, taken to be Au and Al.3

Following Kitano, Koike and Okada (KKO) [62], the Spin-
Independent conversion rate can be written

CRSI (μA → eL A) = 4m5
μ

�4
LFV�capt

∣∣C pp
V,LV

(p)
A

+C pp
S,RS

(p)
A + Cnn

V,LV
(n)
A + Cnn

S,RS
(n)
A + CD,R

DA

4

∣∣2

(A.5)

where we use the nucleus(A)- and nucleon(N )-dependent
“overlap integrals” V (N )

A , S(N )
A , DA given by KKO [62],4

and �cap is the rate for the muon to transform to a neutrino
by capture on the nucleus. Some relevant rates are [75]:

�capt = gcapA × 106s−1 =
⎧⎨
⎩

Al 0.7054
T i 2.59
Au 13.07

⎫⎬
⎭× 106s−1

(A.6)

KKO observed that the overlap integrals were nucleus-
dependent, and measurements of μ → e conversion on dif-
ferent targets could be used to determine the operator coef-
ficients. Reference [42] explored this issue quantitatively,
and showed that with current uncertainties, Ti and Au give
independent constraints. In this work, we are interested in
a slightly different question: whether the observables give
different constraints on New Physics heavier than mμ and
�QCD , instead of understanding if they are independent.
Unfortunately, there is “information loss” in matching nucle-
ons onto quarks (see Sect. B), so we match the nucleon
onto quark operators before constructing the R-matrices for
μAl → eLAl and μAu → eLAu.

Nucleon operators can be matched at 2 GeV onto light
quark operators (see [33] for a basis) as

〈N (Pf )|q̄(x)�Oq(x)|N (Pi )〉
� GN ,q

O 〈N (Pf )|N̄ (x)�ON (x)|N (Pi )〉
= GN ,q

O uN (Pf )�OuN (Pi )e
−i(Pf −Pi )x .

We also include the two-step matching of scalar b and c
operators (ēPRμ)(Q̄Q) [71,76], first onto the gluon operator
(ēPRμ)GG, then onto nucleons. As a result, the nucleon and

3 SINDRUM searched for μ→e conversion on Titanium [10,11], and
we will use these results in our study. However, according to [42], Ti and
Al probe the “same” operator coefficients within current uncertainties,
so we will apply the Ti bounds along the direction in coefficient space
corresponding to Al.
4 The “4/�4

LFV ” in Eq. (A.5) differs from the “2G2
F” given in KKO’s

Equation (14), because −4C̃ |here = g̃|KKO in the case of four-fermion
operators; and DA is divided by 4 in the above because the dipole
normalisation here is identical to KKO. In addition, the KKO overlap
integrals are in units of m3/2

μ , which here sits in front.

quark coefficients are related as

CNN
O,X =

∑
q

GNq
O Cqq

O,X , (A.7)

where O ∈ {S, V } and the relevant Gs are given in Table 4.
One can then define quark “overlap integrals” for target A as

I qA,S = Gpq
S S p

A + Gnq
S SnA

I qA,V = Gpq
V V p

A + Gnq
V V n

A (A.8)

where in this work we use the EFT results [64] for GN ,q
S ,

which differ by ∼50% from lattice results [63,67]. Assem-
bling the quark overlap integrals for target A into a “target
vector” �uA:

�uA = (I bA,S, I
c
A,S, I

s
A,S, I

u
A,S, I

d
A,S, I

u
A,V , I dA,V ), (A.9)

allows to write the Conversion Ratio as

CRSI (μA → eL A) = 6144π3v4

2.197gcapA �4
LFV

∣∣∣∣�uA · �C + CD
DA

4

∣∣∣∣
2

≡ �C†RμA→eL A
�C (A.10)

where gcapA is defined in Eq. (A.6), and DA is the KKO over-
lap integral for the dipole [62]. So the R-matrix at a scale of
2 GeV is

RμA→eL A = 6144π3v4

2.197gcapA �4
LFV

(
�uA + DA

4
êD
)

⊗
(
�uA + DA

4
êD
)†

(A.11)

This translation of nucleon to quark operators neglects
higher order QED and “strong interaction” effects between
the experimental scale mμ and 2 GeV: the QED running is
small for the considered operators, and we did not include
recent χPT results [60].

The prospects of distinguishing coefficients by using dif-
ferent targets depend on the misalignment between the target
vectors, which can be quantified as an angle [42]:

�uA1 · �uA2 = |�uA1 ||�uA2 | cos θ. (A.12)

In the quark operator basis at 2 GeV, this angle is given
for various potential targets in Table 3. The angles are
smaller than the misalignment angles in the nucleon oper-
ator basis[42] (see Figs. 6 and 7), because the scalar quark
overlap integrals are larger than the vector integrals, and com-
parable for u and d quarks. In addition, there is currently a
large discrepancy, ∼ 50%, between lattice and EFT determi-
nations of the scalar overlap integrals. We assume that this
theoretical discrepancy can be solved, so that μA → eL A
on Au and Al give independent information.

Equation (A.11) gives the R-matrices for Al and Au,
which probe directions in quark coefficient space that are
misaligned by ∼ 5 degrees, at a scale of 2 GeV. In the plane
spanned by �uAu and �uAl , the orthogonal combinations used
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Table 3 Misalignment angles (in degrees), between target vectors expressed in the quark operator basis

Li Al Ti Cu Au Pb

Li – 0.545 0.714 1.06 5.57 6.69

Al – 0.433 0.760 5.34 6.46

Ti – 0.356 4.94 6.06

Cu – 4.59 5.71

Au – 1.12

in Eq. (2.1), can be obtained by writing the target vector �uAu

for Au as:

�uAu = |�uAu |(cos θAuAlû Al + sin θAuAlû⊥) ⇒ û⊥

= û Au − cos θAuAl û Al

sin θAuAl
(A.13)

where θAuAl is given in Table 3, and �u⊥ ≈ .56êuuV + .8êddV is
the direction in coefficient space corresponding to the oper-
ator OAheavy⊥ of Eq. (2.1). As a result, from Eqs. (A.2),
(A.10) and Eq. (A.13), one approximatively obtains

OAlight ≈ 1√
2
(Ouu

S + Odd
S ) + 1

16
(Ouu

V + Odd
V )

OAheavy⊥ ≈ 3

5
Ouu

V + 4

5
Odd

V . (A.14)

Appendix B: Are scalar quark currents indistinguish-
able?

This Appendix is focused on the information loss that occurs
in matching nucleons to quarks at 2 GeV. In the data, LFV
scalar interactions with neutrons might be distinguishable
from those on protons [42]. But current theoretical transla-
tions of the nucleon results to quarks erase any distinction
between LFV interactions with scalar u or d currents (the
subdominant s, c, b, t quarks are neglected in this section).

The Spin-Independent Conversion Rate (CR) is given
in Eq. (A.5) in terms of operator coefficients on nucleons.
This result is at “Leading Order” in the low energy the-
ory, and does not include the next order in χPT (paramet-
rically ∼ 10%, two-nucleon effects, pion exchange...) or in
the nuclear matrix element. Such effects have been calcu-
lated for WIMP scattering [57,58], and some partial results
for μA→eA have been obtained [59–61]. Improvements of
the theoretical calculation of �(μA→eA) could change the
form of the conversion ratio (this occurs in [60]), or reduce the
uncertainties on its parameters, thereby resolving the issue
discussed here.

To set the stage, recall from KKO [62] that the overlap
integrals for scalar and vector densities of neutrons and pro-
tons differ by less than a factor of three. In particular, Al

approximately probes

C pp
S,R + C pp

V,L + Cnn
S,R + Cnn

V,L , (B.1)

(neglecting the dipole which could be constrained/measured
elsewhere). In addition, it was pointed out in [42] that measur-
ing μA→eA on another light target with different numbers
of n and p would allow the measurement of

C pp
S,R + C pp

V,L − Cnn
S,R − Cnn

V,L . (B.2)

Then, as noted by KKO, vector overlap integrals dominate
over the scalars in heavy targets, so comparing Al to Au could
allow to determine

C pp
S,R − C pp

V,L + Cnn
S,R − Cnn

V,L . (B.3)

However, heavy targets also have more neutrons, so the n− p
measurement from comparing two light targets is required to
extract the S−V from heavy targets. The one remaining com-
bination of coefficients (an isospin-violating V -S difference)
has little impact on the CR given in Eq. (A.5), and cannot be
extracted with current theoretical uncertainties [42].

The operator coefficients on nucleons can be transformed
to coefficients on quarks according to Eq. (A.7), using the
matrix G given in Table 4.5 Focusing on the first generation
valence quarks, this can be written as:
⎛
⎜⎜⎝

C pp
V,L

Cnn
V,L

C pp
S,R

Cnn
S,R

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

2 1 0 0
1 2 0 0

0 0 Gpu
S G pd

S
0 0 Gnu

S Gnd
S

⎤
⎥⎥⎦

⎛
⎜⎜⎝

Cuu
V,L

Cdd
V,L

Cuu
S,R

Cdd
S,R

⎞
⎟⎟⎠ (B.4)

where the vector coefficients exhibit the expected dominance
of u quarks in the proton, and d quarks in the neutron: the
quark vector coefficients can be calculated from the nucleon
vector nucleon coefficients, and vice versa. In the case of the
scalar coefficients, this is almost not the case; for both lattice
and EFT determinations of the GN ,q

S , the determinant of the
scalar submatrix in Eq. (B.4) is small compared to the product
of two GN ,q

S (Gpu
S Gnd

S −Gpd
S Gnu

S ∼ 92 −82(62 −52)), caus-
ing large uncertainties when it is inverted to solve for quark
coefficients as a function of nucleon coefficients. In addition,

5 This transition to quarks was not included in [42] due to the discrep-
ancy among theoretical determinations of the GN ,q

S .
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Table 4 Expectation values of vector and scalar quark currents in the
nucleon; the scalar values are sometimes called f Nq [63], and for light

quarks are related to σπN [64], where GN ,q
S = mN

mq
f Nq = σπN /mq+

isospin corrections. The first scalar GS induced by u and d quarks
were obtained via dispersive techniques [64–66] and EFT methods [69]
(Some lattice calculations give similar results [70]). The second GN ,q

S

[in brackets] are the lattice results of BMW [67], and an average of
lattice results [68] is used for the strange quark. The heavy quark scalar
GSs are from the lattice [63], and in parentheses from [71]. In all
cases, the MS quark masses at μ = 2 GeV are taken as mu = 2.2 MeV,
md = 4.7 MeV, and ms = 96 MeV [72]. The running heavy quark
masses are [73] mc(mc) = 1.27 GeV, mb(mb) = 4.18 GeV. The
nucleon masses are mp = 938 MeV and mn = 939.6 MeV

Gp,u
V = Gn,d

V = 2 Gp,d
V = Gn,u

V = 1 Gp,s
V = Gn,s

V = 0

Gp,u
S = mp

mu
0.021(2) = 9.0 Gp,d

S = mp
md

0.041(3) = 8.2[
Gp,u

S = mp
mu

0.0139(13)(12) = 5.9
] [

Gp,d
S = mp

md
0.0253(28)(24) = 5.0

]
Gp,s

S = mN
ms

0.043(11) = 0.42

Gn,u
S = mn

mu
0.019(2) = 8.1 Gn,d

S = mn
md

0.045(3) = 9.0[
Gn,u

S = mn
mu

0.0116(13)(11) = 5.0
] [

Gn,d
S = mn

md
0.0302(3) = 6.0

]
Gn,s

S = mN
ms

0.043(11) = 0.42

GN ,c
S = 0.0543

(
= 2mN

27mc
f NGG

)

GN ,b
S = 0.0158

(
= 2mN

27mb
f NGG

)

Fig. 5 Normalised quark (solid line) and nucleon (dotted line) overlap
integrals as a function of the target charge Z . From the top-down at Z =
90: vector n (red, dotted), scalar d (blue) and u (green), vector p (black,
dotted), scalar n (blue, dotted) and p (green, dotted), and vector d (red)
and u (black). The nucleon overlap integrals are defined in Eq. (A.5),
and those for quarks in Eq. (A.8); an overlap integral for nucleons (or
quarks) in target A is normalised by dividing by the the square root of
the sum of the squares of all the nucleon (or quark) integrals for that
target

GN ,q
S � GN ,q

V increases the sensitivity to scalar coefficients,
and reduces the relative contribution of the vector coefficients
to about the magnitude of the scalar uncertainties.

The effects of transforming from nucleon operators to
quark operators can be seen in Fig. 5, where are plotted the
quark and nucleon overlap integrals. This illustrates the dif-
ficulty to distinguish scalar u vs d, and also that the variation
with Z is reduced for the quarks compared to nucleons.

The ability of different targets to distinguish among oper-
ator coefficients can be quantified as the angle between the
directions they probe in coefficient space [42], where the
direction is given by the overlap integrals for the target.
Figs. 6 and 7 plots this misalignment angle as a function

of Z for various past and future targets. The plot on the left
is for quark coefficients, and on the right is for nucleon coef-
ficients (notice the difference in the vertical scale). Refer-
ence [42] estimated that a misalignment angle >∼ 0.1 was
required to overcome theoretical uncertainties in the nuclear
calculation, and obtain independent measurement of distinct
nucleon operator coefficients. Even if one neglects the the-
oretical uncertainty in the GN ,q

O s, applying this >∼ 0.1 rule
for quark coefficients suggests that the theoretical accuracy
needs to be improved.

In summary, upcoming experiments could hope to bound
or measure the three combinations of nucleon coefficients
given in Eqs. (B.1–B.3). However, due to the almost-
vanishing scalar determinant in Eq. (B.4), theoretical
progress in calculating the GNq

S is required, for these to
constrain three independent combinations of quark operator
coefficients.

Appendix C: Including the penguin

This Appendix discusses the orthogonality of the basis used
for the experimentally accessible subspace. We need an
orthogonal basis to illustrate complementarity in polar coor-
dinates; orthogonality would not be required to evaluate com-
plementarity via Eq. (2.6), nor for exploring the model pre-
dictions for coefficients in the subspace. In the following, the
term “penguins” refer to the operators of Eq. (C.1).

The basis vectors at �LFV >∼ mW areG∗(mW ,mμ)êA; we
do not give explicit expressions because the translation from
the observable-motivated basis to an arbitrary other choice
is a technicality more suitable to computers. Expressions for
various �C†G∗(mW ,mμ)êA, appropriate for calculating LFV
BRs in terms of coefficients at the weak scale, can be found
in [33]. The norms and inner products among some basis
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Fig. 6 The misalignement angle θ (defined in Eq. (A.12) between
nucleon target vectors. The decreasing lines are lead (green, upper)
and Au (blue); the rising lines are titanium (blue) and Al (red, dashed,
middle) and lithium (black, dashed, upper)

Fig. 7 The misalignement angle θ (defined in Eq. (A.12) between
quark target vectors; notice the reduced vertical scale and smoother
lines as compared to the nucleon plot. The decreasing lines are lead
(green, upper) and Au (blue); the rising lines are titanium (blue) and Al
(red, dashed, middle) and lithium (black, dashed, upper)

vectors are given in Table 5, which shows an overlap of 10 →
20 degrees between the vector operators (e⊥ has significant
quark-vector components). The shrinking of the quark target-
vectors is largely due to the shrinking scalar coefficients.

The overlap among the coefficients of (ēγ αPLμ)( f̄ γα f )
operators arises because the μ → e penguin operators of the
SM EFT [77,78]:

δLpenguin = CHL1

�2
LFV

(�eγ
α�μ)(H†

↔
Dα H)

+ CHL3

�2
LFV

(�eτ
aγ α�μ)(H†

↔
Da

α H) (C.1)

generate a flavour-changing vertex gv2

cW�2
LFV

(Ceμ
HL1 + Ceμ

HL3)

ē Z/ PLμ, so that Z exchange gives four-fermion operators in
the low energy EFT:

δL =
∑
f,X

g f
X (Ceμ

HL1 + Ceμ
HL3)

�2
LFV

(eγ αPLμ)( f γ αPX f ) (C.2)

where f is any light chiral fermion, we used the SM Z inter-
action g

2cW
(g f

L PL + g f
R PR) and cW = cos θW . As a result,

at the weak scale, the basis vectors �eV L and �eV R have com-
ponents geL and geR in the two penguin directions, respec-
tively, giving a tree-level contribution to �eV L · �eV R of order
2geLg

e
R = 4s2

W (−1 + 2s2
W ).

A more orthogonal basis could be obtained by remov-
ing the penguin contribution from the low energy (ēγ αPLμ)

( f̄ γα f ) operators, and adding Z → μeL as an observable
at mW . This is analogous to what was already done for the
dipole, removing it from the combination of operators con-
tributing to μA→eA, and including μ → eγ as an observ-
able. However, this adds a dimension to the subspace, and tan-
gles the intuitive link between basis vectors and observables.
It is pursued in (C.2). (C.1) describes a simpler approach used
to make the plots in the body of the paper.

C.1 A reduced basis at �LFV ∼ mW

In this section we outline a method for choosing a penguin-
less basis vector corresponding to a linear combination of
�eV L and �eV R , which is approximately orthogonal to the
remaining basis vectors. In addition, the complementarity
plots involving �eV L or �eV R are similar, so this choice sup-
presses redundancy.

The dependence of BR(μ → eēe) on CV L and CV R is
very similar, as can be seen from Eq. (2.3). Since these coef-
ficients can be distinguished via the angular distributions of
the final state electrons in μ → eēe [52,53] rather than by
comparing BR(μ → eγ ) and BR(μ → eēe), it is sufficient
to plot μ → eγ and μ → eēe in terms of a combination of
these coefficients. By choosing this combination to suppress
penguin contribution, we obtain five approximately orthog-
onal basis vectors.

As mentioned above, in the SMEFT basis at mW , �eV L

and �eV R have components ∼ geL , geR along the directions
of the penguin operators of Eq. (C.1). So introducing �eV ∝
geR�eV L − geL �eV R , one sees that its penguin component van-
ishes at tree level, and �eV will be orthogonal to �eAheavy⊥ up
to loop effects. We therefore replace the �eV R ⊗ �eV L plane by
an axis along �eV and plot the complementarity of the three
rates in the resulting 5-dimensional space.

In this reduced basis, the BRs can be written in terms of
operator coefficients at �LFV ∼ mW as

BR(μ → eLγ ) = 384π2 v4

�4
LFV

[|�eD | cos θD
]2
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Table 5 Inner products between the basis vectors �ei (�LFV ∼ mW ) =
G∗(mW ,mμ)êi . On the diagonal are the norms (at mW in SMEFT, for
unit-normalised êi at low energy), whereas the off-diagonals are cos η,

where η is the angle between the vectors. Overlaps smaller than 10−3

are given as 0

�eAlight �eAheavy⊥ �eV L �eV R �eS �eD
�eAlight 0.768 0.05 0.022 − 0.018 0 0

�eAheavy⊥ 0.891 0.16 - 0.14 0 0

�eV L 1.13 - 0.354 0 0

�eV R 1.29 0 0

�eS 1.00 0

�eD 1.39

BR(μ → eēe) = v4

�4
LFV

[ |�eS |2 sin2 θD cos2 θS
8

+(|�e ′
V R | sin θD sin θS cos θV + 4e|�eD | cos θD )2

+2(|�e ′
V L | sin θD sin θS cos θV + 4e|�eD | cos θD)2

+18.76(|�eD | cos θD )2
]

BR(μAl → eAl) = 6144π3v4

2.197gcapAl �4
LFV

×
[
|�uAl ||�eAl | sin θD sin θS sin θV sin φ + DAl

4
|�eD | cos θD

]2

BR(μAu → eAu) = 6144π3v4

2.197gcapAu �4
LFV

×
[
|�uAu |(cos θAuAl |�eAl | sin θD sin θS sin θV sin φ

+ sin θAuAl |�e⊥| sin θD sin θS sin θV cos φ) + DAu
4

|�eD | cos θD

]2

(C.3)

where we replace {θV R, θV L} → θV , the un-primed norms
of the basis vectors at mW are on the diagonal of Table 5

and |�e ′
V R | = −geL |�eV R |/

√
(geL)2 + (geR)2 = 1.05, |�e ′

V L | =
geL |�eV L |/

√
(geR)2 + (geR)2 = 0.709, θAuAl is in Table 3,

and norms obtained from the μA → eA overlap integrals
and nucleon-quark matching are |�uAl | = 0.39706 |�uT i | =
0.991275, and |�uAu | = 1.92876.

C.2 An enlarged basis at �LFV ∼ mW

This section outlines the approach of adding Z → e±μ∓ to
the observables, and removing the contribution of the flavour-
changing Z penguin from the four-fermion operators. This
ensures that the basis vectors are orthogonal at mW to within
a degree or two, and highlights the importance of Z → e±μ∓
for distinguishing among coefficients and models.

The operators Oeμ
HL1 and Oeμ

HL3 of Eq. (C.1) mediate
flavour-changing Z decays, upon which ATLAS [79] sets
the constraint BR(Z → e±μ∓) < 7.5 × 10−7 (based on 20
fb−1 of luminosity), implying:

v2

�2
LFV

|Ceμ
HL1 + Ceμ

HL3| <∼ 1.6 × 10−3 (C.4)

The current sensitivity of μA→ eA and μ → eēe to these
coefficients is three orders of magnitude better, and should
improve by another two orders of magnitude with upcoming
experiments. Nonetheless, improving the experimental reach
in Z → e±μ∓ is interesting, because experiments at muon
mass scale cannot distinguish these penguin operators from
the four-fermion ones.6

We include an additional basis vector in the coefficient
subspace above mW :

êping = 1√
2
(êH L1 + êH L3) (C.5)

(for the case of an outgoing eL ; for outgoing eR it would
be êH E ), and rewrite the operator coefficients in spherical
coordinates as

�C = 1

�2
LFV

[
cos θping êping + sin θping cos θDêD

+ sin θping sin θD cos θS êS,R

+ sin θping sin θD sin θS cos θV RêV,R

+ sin θping sin θD sin θS sin θV R cos θV L êV,L

+ sin θping sin θD sin θS sin θV R sin θV L (sin φêAl + cos φê⊥)
]
,

(C.6)

where θJ : 0..π and φ : 0..2π , and recall that a model would
predict the various angles and the scale.

The expressions for low energy BRs in this enlarged basis
become more complicated, because the low energy four-
fermion coefficients are expressed as the component from
Z exchange, plus the component from four-fermion operator
at the weak scale. The normalisation of some basis vectors
changes as well, becoming:

6 The situations of the Z -penguin and the dipole are rather different: the
dipole is far better constrained than the penguin, because its easier to
produce muons than Z bosons. However, the dipole is also constrained
by BR(μ → eēe), and could be distinguished from four-fermion oper-
ators using angular distributions in μ → eēe, whereas Z → e±μ∓
appears crucial for constraining and identifying the penguins.
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|eV L | = 0.944, |eV R | = 1.041, |eAl | = 0.768, |eAheavy⊥|
= 0.861 (C.7)

The formulae for the reach, obtained from the Branching
Ratios are:

�

v
=
[

384π2

BR(μ → eLγ )

]1/4

×
√

(|�eD| sin θping cos θD + 1.21 × 10−3 cos θping)2

(C.8)

where the one-loop matching of penguin operators to the
dipole was included. For μ → eēe:

�

v
=
[

1

BR(μ → eēe)

]1/4
√

|�eS| sin θping sin θD cos θS

2
√

2

�

v
=
[

1

BR(μ → eēe)

]1/4

×
[
(|�eV R | sin θping sin θD sin θS cos θV R

+0.685 cos θping + 4e|�eD| sin θping cos θD)2

+9.38(|�eD| sin θping cos θD)2
]1/4

�

v
=
[

1

BR(μ → eēe)

]1/4

×
[
2(|�eV L | sin θping sin θD sin θS sin θV R cos θV L

−0.722 cos θping + 4e|�eD| sin θping cos θD)2

+9.38(|�eD| sin θping cos θD)2
]1/4

(C.9)

where 0.685 and -0.722 correspond respectively to
√

2geR,L×QED loop corrections. Finally, subtracting the penguins
from the u and d vector operators in μA→eA gives

�

v
=
[

1.2292 × 105

BR(μAl → eAl)

]1/4

×
[
|�uAl |(|�eAl | sin θping sin θD sin θS

sin θV R sin θV L sin φ − 0.0263 cos θping)

+DAl

4
|�eD| sin θping cos θD

]1/2

�

v
=
[

6.63435 × 103

BR(μAu → eAu)

]1/4

×
[
|�uAu |(cos θAuAl|�eAl | sin θping sin θD sin θS sin θV R

× sin θV L sin φ + sin θAuAl|�e⊥| sin θping sin θD sin θS

× sin θV R sin θV L cos φ − 0.0474 cos θping)

+DAu

4
|�eD| sin θping cos θD

]1/2
(C.10)

C3. The eigenbasis of the covariance matrix

An alternative basis for the subspace of constrained coef-
ficients, also orthogonal and perhaps more familiar, would
be the eigenvectors of the covariance matrix. The inverse
covariance matrix V for all the processes can be written as

�C†V �C = �C† Rμ→eγ

Bexpt
μ→eγ

�C + �C† Rμ→eēe

Bexpt
μ→eēe

�C + �C† RμAl→eAl

Bexpt
μAl→eAl

�C

+ �C† RμAu→eAu

Bexpt
μAu→eAu

�C, (C.11)

where the coefficients are evaluated at the experimental scale.
The inverse eigenvalues give the allowed range of coefficients
in the eigenbasis, and the eigenvectors are orthogonal com-
binations of operators, which correspond to the axes of the
allowed ellipse around the origin in coefficient space. This is
a convenient basis for plotting, because the limiting values of
each parameter are obtained on the axes, so there is no need
to do perform scans. However, we prefer the operator basis
of Eq. (2.1), because it is simple and directly related to the
experimental processes.

A covariance matrix for the coefficients at �LFV can be
obtained by substituting Eq. (2.7) into Eq. (C.11). This matrix
is large, (∼ 90 × 90), so despite that most of the eigenvalues
should vanish, finding the eigenvectors of the 12 non-zero
eigenvalues would be a numerical exercise which could dis-
connect the final basis and constraints from the input pro-
cesses. It has the advantage of giving an orthonormal basis,
whose eigenvectors correspond to the axes of the allowed
ellipse in coefficient space.
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eēe and μA → eA. JHEP 02, 172 (2021). https://doi.org/10.1007/
JHEP02(2021)172. arXiv:2010.00317 [hep-ph]

34. H. Georgi, Effective field theory. Annu. Rev. Nucl. Part. Sci. 43,
209–252 (1993)

35. H. Georgi, On-shell effective field theory. Nucl. Phys. B 361, 339–
350 (1991)

36. A.J. Buras, Weak Hamiltonian, CP violation and rare decays.
arXiv:hep-ph/9806471

37. L. Houches, Lect. Notes 108 (2020)
38. A.V. Manohar, Introduction to effective field theories.

arXiv:1804.05863 [hep-ph]
39. A. Pich, Effective field theory with Nambu–Goldstone modes.

arXiv:1804.05664 [hep-ph]
40. L. Silvestrini, Effective theories for quark flavour physics.

arXiv:1905.00798 [hep-ph]
41. M. Balsiger, M. Bounakis, M. Drissi, J. Gargalionis, E. Gustafson,

G. Jackson, M. Leak, C. Lepenik, S. Melville, D. Moreno et al.,
Solutions to problems at Les Houches Summer School on EFT.
arXiv:2005.08573 [hep-ph]

42. S. Davidson, Y. Kuno, M. Yamanaka, Selecting μ → e conver-
sion targets to distinguish lepton flavour-changing operators. Phys.
Lett. B 790, 380 (2019). https://doi.org/10.1016/j.physletb.2019.
01.042. arXiv:1810.01884 [hep-ph]

43. R. Alonso, E.E. Jenkins, A.V. Manohar, M. Trott, Renormalization
group evolution of the standard model dimension six operators III:
gauge coupling dependence and phenomenology. JHEP 1404, 159
(2014). arXiv:1312.2014 [hep-ph]

44. E.E. Jenkins, A.V. Manohar, M. Trott, Renormalization group evo-
lution of the standard model dimension six operators II: Yukawa
dependence. JHEP 1401, 035 (2014). https://doi.org/10.1007/
JHEP01(2014)035. arXiv:1310.4838 [hep-ph]

45. V. Cirigliano, S. Davidson, Y. Kuno, Spin-dependent μ → e con-
version. Phys. Lett. B 771, 242 (2017). https://doi.org/10.1016/j.
physletb.2017.05.053. arXiv:1703.02057 [hep-ph]

46. S. Davidson, Y. Kuno, A. Saporta, Spin-dependent μ → e conver-
sion on light nuclei. Eur. Phys. J. C 78(2), 109 (2018). https://doi.
org/10.1140/epjc/s10052-018-5584-8. arXiv:1710.06787 [hep-
ph]

47. M. Ciuchini, E. Franco, L. Reina and L. Silvestrini, Leading
order QCD corrections to b → s gamma and b → s g decays
in three regularization schemes. Nucl. Phys. B 421, 41 (1994).
arXiv:hep-ph/9311357

123

https://doi.org/10.1140/epjc/s10052-018-5845-6
http://arxiv.org/abs/1801.04688
https://doi.org/10.1016/0550-3213(88)90462-2
https://doi.org/10.1016/0550-3213(88)90462-2
http://arxiv.org/abs/1301.6113
https://doi.org/10.1140/epjc/s2006-02582-x
https://doi.org/10.1103/PhysRevD.53.2442.
https://doi.org/10.1103/PhysRevD.53.2442.
http://arxiv.org/abs/hep-ph/9510309
https://doi.org/10.1016/j.nuclphysb.2009.12.019.
https://doi.org/10.1016/j.nuclphysb.2009.12.019.
http://arxiv.org/abs/0909.1333
https://doi.org/10.1088/1126-6708/2007/05/013
http://arxiv.org/abs/hep-ph/0702136
https://doi.org/10.1007/JHEP05(2015)028
https://doi.org/10.1007/JHEP05(2015)028
http://arxiv.org/abs/1502.07824
https://doi.org/10.1103/PhysRevD.91.015001
https://doi.org/10.1103/PhysRevD.91.015001
http://arxiv.org/abs/1405.4300
https://doi.org/10.1103/PhysRevD.72.036001
http://arxiv.org/abs/hep-ph/0406040
https://doi.org/10.1088/1126-6708/2006/11/090
https://doi.org/10.1088/1126-6708/2006/11/090
http://arxiv.org/abs/hep-ph/0607263
https://doi.org/10.1016/j.physletb.2007.09.055.
https://doi.org/10.1016/j.physletb.2007.09.055.
http://arxiv.org/abs/0705.1326
https://doi.org/10.1103/PhysRevD.105.035021
https://doi.org/10.1103/PhysRevD.105.035021
http://arxiv.org/abs/2112.11455
https://doi.org/10.1007/JHEP01(2022)098
http://arxiv.org/abs/2108.01101
https://doi.org/10.3389/fphy.2017.00063
https://doi.org/10.3389/fphy.2017.00063
http://arxiv.org/abs/1706.08524
https://doi.org/10.1016/j.ppnp.2013.03.006.
https://doi.org/10.1016/j.ppnp.2013.03.006.
http://arxiv.org/abs/1303.4097
http://arxiv.org/abs/1702.03020
https://doi.org/10.1007/JHEP02(2021)172
https://doi.org/10.1007/JHEP02(2021)172
http://arxiv.org/abs/2010.00317
http://arxiv.org/abs/hep-ph/9806471
http://arxiv.org/abs/1804.05863
http://arxiv.org/abs/1804.05664
http://arxiv.org/abs/1905.00798
http://arxiv.org/abs/2005.08573
https://doi.org/10.1016/j.physletb.2019.01.042
https://doi.org/10.1016/j.physletb.2019.01.042
http://arxiv.org/abs/1810.01884
http://arxiv.org/abs/1312.2014
https://doi.org/10.1007/JHEP01(2014)035
https://doi.org/10.1007/JHEP01(2014)035
http://arxiv.org/abs/1310.4838
https://doi.org/10.1016/j.physletb.2017.05.053
https://doi.org/10.1016/j.physletb.2017.05.053
http://arxiv.org/abs/1703.02057
https://doi.org/10.1140/epjc/s10052-018-5584-8
https://doi.org/10.1140/epjc/s10052-018-5584-8
http://arxiv.org/abs/1710.06787
http://arxiv.org/abs/hep-ph/9311357


Eur. Phys. J. C (2022) 82 :836 Page 15 of 15 836

48. W. Christopher, Murphy, dimension-8 operators in the standard
model effective field theory. JHEP 10, 174 (2020)

49. H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, Y. Jiang-Hao, Y.-H. Zheng,
Complete set of dimension-eight operators in the standard model
effective field theory. Phys. Rev. D 104(1), 015026 (2021)

50. M. Ardu, S. Davidson, What is leading order for LFV in SMEFT?
JHEP 08, 002 (2021). https://doi.org/10.1007/JHEP08(2021)002.
arXiv:2103.07212 [hep-ph]

51. L.E. Blumenson, A derivation of n-dimensional spherical coordi-
nates. Am. Math. Mon. 67(1), 63–66 (1960). http://www.jstor.org/
stable/2308932

52. Y. Okada, K.I. Okumura, Y. Shimizu, Mu → e gamma and mu
→ 3 e processes with polarized muons and supersymmetric grand
unified theories. Phys. Rev. D 61, 094001 (2000). https://doi.org/
10.1103/PhysRevD.61.094001. arXiv:hep-ph/9906446

53. Y. Okada, K.I. Okumura, Y. Shimizu, CP violation in the mu → 3
e process and supersymmetric grand unified theory. Phys. Rev. D
58, 051901 (1998). https://doi.org/10.1103/PhysRevD.58.051901.
arXiv:hep-ph/9708446

54. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, Exact event
rates of lepton flavor violating processes in supersymmet-
ric SU(5) model. Phys. Lett. B 391, 341–350 (1997) [Erra-
tum: Phys. Lett. B 397, 357 (1997)] .https://doi.org/10.1016/
S0370-2693(96)01473-6. arXiv:hep-ph/9605296

55. S. Davidson, D.C. Bailey, B.A. Campbell, Model indepen-
dent constraints on leptoquarks from rare processes. Z. Phys.
C 61, 613–644 (1994). https://doi.org/10.1007/BF01552629.
[arXiv:hep-ph/9309310 [hep-ph]]

56. I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik, N. Košnik, Physics of
leptoquarks in precision experiments and at particle colliders. Phys.
Rep. 641, 1–68 (2016). https://doi.org/10.1016/j.physrep.2016.06.
001. arXiv:1603.04993 [hep-ph]

57. V. Cirigliano, M.L. Graesser, G. Ovanesyan, WIMP-nucleus scat-
tering in chiral effective theory. JHEP 10, 025 (2012). https://doi.
org/10.1007/JHEP10(2012)025. arXiv:1205.2695 [hep-ph]

58. M. Hoferichter, P. Klos, A. Schwenk, Chiral power counting of one-
and two-body currents in direct detection of dark matter. Phys. Lett.
B 746, 410–416 (2015). https://doi.org/10.1016/j.physletb.2015.
05.041. arXiv:1503.04811 [hep-ph]

59. A. Crivellin, M. Hoferichter, M. Procura, Improved predictions
for μ → e conversion in nuclei and Higgs-induced lepton flavor
violation. Phys. Rev. D 89, 093024 (2014). https://doi.org/10.1103/
PhysRevD.89.093024. arXiv:1404.7134 [hep-ph]

60. V. Cirigliano, K. Fuyuto, M.J. Ramsey-Musolf, E. Rule, Next-
to-leading order scalar contributions to μ → e conversion.
arXiv:2203.09547 [hep-ph]

61. W. Dekens, E.E. Jenkins, A.V. Manohar, P. Stoffer, Non-
perturbative effects in μ → eγ . JHEP 01, 088 (2019). https://
doi.org/10.1007/JHEP01(2019)088. arXiv:1810.05675 [hep-ph]

62. R. Kitano, M. Koike, Y. Okada, Detailed calculation of lep-
ton flavor violating muon electron conversion rate for vari-
ous nuclei. Phys. Rev. D 66, 096002 (2002) [Erratum: Phys.
Rev. D 76, 059902 (2007)]. https://doi.org/10.1103/PhysRevD.76.
059902. arXiv:hep-ph/0203110

63. S. Borsanyi, Z. Fodor, C. Hoelbling, L. Lellouch, K.K. Szabo,
C. Torrero, L. Varnhorst, Ab-initio calculation of the proton
and the neutron’s scalar couplings for new physics searches.
arXiv:2007.03319 [hep-lat]

64. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.G. Meissner,
High-precision determination of the pion-nucleon term from Roy–
Steiner equations. Phys. Rev. Lett. 115, 092301 (2015). https://doi.
org/10.1103/PhysRevLett.115.092301. arXiv:1506.04142 [hep-
ph]

65. A. Crivellin, M. Hoferichter, M. Procura, Accurate evaluation of
hadronic uncertainties in spin-independent WIMP-nucleon scat-
tering: disentangling two- and three-flavor effects. Phys. Rev. D
89, 054021 (2014). https://doi.org/10.1103/PhysRevD.89.054021.
arXiv:1312.4951 [hep-ph]

66. J. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.G. Meißner, Extract-
ing the σ -term from low-energy pion-nucleon scattering. J. Phys. G
45(2), 024001 (2018). https://doi.org/10.1088/1361-6471/aa9422.
arXiv:1706.01465 [hep-ph]

67. S. Durr et al., Lattice computation of the nucleon scalar
quark contents at the physical point. Phys. Rev. Lett. 116(17),
172001 (2016). https://doi.org/10.1103/PhysRevLett.116.172001.
arXiv:1510.08013 [hep-lat]

68. P. Junnarkar, A. Walker-Loud, Scalar strange content of the nucleon
from lattice QCD. Phys. Rev. D 87, 114510 (2013). https://doi.org/
10.1103/PhysRevD.87.114510. arXiv:1301.1114 [hep-lat]

69. J.M. Alarcon, J. Martin Camalich, J.A. Oller, The chiral represen-
tation of the πN scattering amplitude and the pion-nucleon sigma
term. Phys. Rev. D 85, 051503 (2012). https://doi.org/10.1103/
PhysRevD.85.051503. arXiv:1110.3797 [hep-ph]

70. R. Gupta, S. Park, M. Hoferichter, E. Mereghetti, B. Yoon, T. Bhat-
tacharya, Pion-nucleon sigma term from lattice QCD. Phys. Rev.
Lett. 127(24), 24 (2021). https://doi.org/10.1103/PhysRevLett.
127.242002. arXiv:2105.12095 [hep-lat]

71. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Remarks on Higgs
boson interactions with nucleons. Phys. Lett. B 78, 443 (1978)

72. K.A. Olive et al. [Particle Data Group], Review of particle
physics. Chin. Phys. C 38, 090001 (2014). https://doi.org/10.1088/
1674-1137/38/9/090001

73. P.A. Zyla et al. [Particle Data Group], Review of particle physics.
PTEP 2020(8), 083C01 (2020)

74. S. Davidson, Y. Kuno, Y. Uesaka, M. Yamanaka, Probing μeγ γ

contact interactions with μ → e conversion. Phys. Rev. D 102(11),
115043 (2020). arXiv:2007.09612 [hep-ph]

75. T. Suzuki, D.F. Measday, J.P. Roalsvig, Total nuclear capture rates
for negative muons. Phys. Rev. C 35, 2212 (1987). https://doi.org/
10.1103/PhysRevC.35.2212

76. V. Cirigliano, R. Kitano, Y. Okada, P. Tuzon, On the model dis-
criminating power of mu -> e conversion in nuclei. Phys. Rev. D
80, 013002 (2009). https://doi.org/10.1103/PhysRevD.80.013002.
arXiv:0904.0957 [hep-ph]

77. W. Buchmuller, D. Wyler, Effective Lagrangian analysis of new
interactions and flavor conservation. Nucl. Phys. B 268, 621 (1986).
https://doi.org/10.1016/0550-3213(86)90262-2

78. B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, Dimension-
six terms in the standard model Lagrangian. JHEP 1010, 085
(2010). arXiv:1008.4884 [hep-ph]

79. G. Aad et al., [ATLAS], Search for the lepton flavor violating decay
Z → eμ̄ in pp collisions at

√
s TeV with the ATLAS detector. Phys.

Rev. D 90(7), 072010 (2014). https://doi.org/10.1103/PhysRevD.
90.072010. arXiv:1408.5774 [hep-ex]

123

https://doi.org/10.1007/JHEP08(2021)002
http://arxiv.org/abs/2103.07212
http://www.jstor.org/stable/2308932
http://www.jstor.org/stable/2308932
https://doi.org/10.1103/PhysRevD.61.094001
https://doi.org/10.1103/PhysRevD.61.094001
http://arxiv.org/abs/hep-ph/9906446
https://doi.org/10.1103/PhysRevD.58.051901
http://arxiv.org/abs/hep-ph/9708446
https://doi.org/10.1016/S0370-2693(96)01473-6
https://doi.org/10.1016/S0370-2693(96)01473-6
http://arxiv.org/abs/hep-ph/9605296
https://doi.org/10.1007/BF01552629.
http://arxiv.org/abs/hep-ph/9309310
https://doi.org/10.1016/j.physrep.2016.06.001
https://doi.org/10.1016/j.physrep.2016.06.001
http://arxiv.org/abs/1603.04993
https://doi.org/10.1007/JHEP10(2012)025
https://doi.org/10.1007/JHEP10(2012)025
http://arxiv.org/abs/1205.2695
https://doi.org/10.1016/j.physletb.2015.05.041.
https://doi.org/10.1016/j.physletb.2015.05.041.
http://arxiv.org/abs/1503.04811
https://doi.org/10.1103/PhysRevD.89.093024
https://doi.org/10.1103/PhysRevD.89.093024
http://arxiv.org/abs/1404.7134
http://arxiv.org/abs/2203.09547
https://doi.org/10.1007/JHEP01(2019)088
https://doi.org/10.1007/JHEP01(2019)088
http://arxiv.org/abs/1810.05675
https://doi.org/10.1103/PhysRevD.76.059902
https://doi.org/10.1103/PhysRevD.76.059902
http://arxiv.org/abs/hep-ph/0203110
http://arxiv.org/abs/2007.03319
https://doi.org/10.1103/PhysRevLett.115.092301
https://doi.org/10.1103/PhysRevLett.115.092301
http://arxiv.org/abs/1506.04142
https://doi.org/10.1103/PhysRevD.89.054021
http://arxiv.org/abs/1312.4951
https://doi.org/10.1088/1361-6471/aa9422
http://arxiv.org/abs/1706.01465
https://doi.org/10.1103/PhysRevLett.116.172001
http://arxiv.org/abs/1510.08013
https://doi.org/10.1103/PhysRevD.87.114510
https://doi.org/10.1103/PhysRevD.87.114510
http://arxiv.org/abs/1301.1114
https://doi.org/10.1103/PhysRevD.85.051503
https://doi.org/10.1103/PhysRevD.85.051503
http://arxiv.org/abs/1110.3797
https://doi.org/10.1103/PhysRevLett.127.242002
https://doi.org/10.1103/PhysRevLett.127.242002
http://arxiv.org/abs/2105.12095
https://doi.org/10.1088/1674-1137/38/9/090001
https://doi.org/10.1088/1674-1137/38/9/090001
http://arxiv.org/abs/2007.09612
https://doi.org/10.1103/PhysRevC.35.2212
https://doi.org/10.1103/PhysRevC.35.2212
https://doi.org/10.1103/PhysRevD.80.013002
http://arxiv.org/abs/0904.0957
https://doi.org/10.1016/0550-3213(86)90262-2
http://arxiv.org/abs/1008.4884
https://doi.org/10.1103/PhysRevD.90.072010
https://doi.org/10.1103/PhysRevD.90.072010
http://arxiv.org/abs/1408.5774

	Reach and complementarity of µtoe searches
	Abstract 
	1 Introduction
	2 Theory overview
	3 Illustrating experimental constraints
	4 Summary
	Acknowledgements
	Appendix A: Operators, rates and R-matrices at low energy
	Appendix B: Are scalar quark currents indistinguishable?
	Appendix C: Including the penguin
	C.1 A reduced basis at ΛLFVsimmW
	C.2 An enlarged basis at ΛLFVsimmW
	C3. The eigenbasis of the covariance matrix

	References




