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Abstract We construct wormholes in Einstein-vector–
Gauss–Bonnet theory where a real massless vector field is
coupled to the higher curvature Gauss–Bonnet invariant. We
consider three coupling functions which depend on the square
of the vector field. The respective domains of existence of
wormholes possess as their boundaries (i) black holes, (ii)
solutions with a singular throat, (iii) solutions with a degener-
ate throat and (iv) solutions with cusp singularities. Depend-
ing on the coupling function wormhole solutions can feature
a single throat or an equator surrounded by a double throat.
The wormhole solutions need a thin shell of matter at the
throat, in order to be symmetrically continued into the sec-
ond asymptotically flat region. These wormhole spacetimes
allow for bound and unbound particle motion as well as light
rings.

1 Introduction

Like black holes also wormholes have received much atten-
tion in recent years, not the least since they may mimic
numerous properties of black holes [1–9]. The quest for their
possible signatures in astrophysical observations has given
rise to investigations on gravitational lensing by wormholes
[2,10–20], to studies of their possible shadows [2,21–24],
to the analysis of accretion disks around wormholes [25–
31], and more. The construction of traversable wormholes
requires the violation of energy conditions [32–34]. In Gen-
eral Relativity one therefore should include exotic matter that
would provide such a violation. A massless real scalar field
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with a negative kinetic term, i.e., a phantom field, indeed
leads to wormhole solutions, as shown by Ellis [35,36] and
Bronnikov [37]. However, the need for exotic matter repre-
sents a weak point of such wormholes, motivating the search
for wormholes that could exist without it. A direction that has
been followed since long and that may provide traversable
wormholes without this deficiency is the consideration of
wormholes in alternative theories of gravity (see, e.g., [34]
and references therein).

Alternative theories of gravity have been studied widely
in recent years, both in the context of compact objects as
well as cosmology [38–40]. Among the plethora of alterna-
tive theories, a particular focus has been on scalar–tensor
theories that lead to second order equations of motion, i.e.,
so-called Horndeski theories [41–44]. A subset of such theo-
ries arises also in the low energy limit of string theory, where
higher curvature terms are present in the form of the Gauss–
Bonnet (GB) invariant coupled to a dilatonic scalar field, i.e.,
Einstein-dilaton–Gauss–Bonnet (EdGB) theories [45–47].

While scalar–tensor theories are well-known and have
been studied in many contexts, analogous alternative theo-
ries that involve vector fields instead of scalar fields, have
received much less attention. Such vector–tensor theories
may also lead to second order equations and involve mass-
less or massive vector fields [48–50]. These provide a largely
uncharted area, whose exploration may lead to new options
and insights, but these theories should also recover the known
phenomenology of the gravitational interaction.

Besides the strong bounds known for the solar system,
there are also strong restrictions from pulsars that must be
obeyed, while observations of gravitational radiation and
black hole shadows impose further constraints (see, e.g., [51–
56]). While, in particular, for the theoretically well-motivated
EdGB theories the observational window has become rather
narrow, an attractive related set of theories is less effected by
recent observations. Here instead of the dilaton some other
scalar field is coupled in a specific way, that allows these
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Einstein-scalar–Gauss–Bonnet (EsGB) theories to retain the
solutions of General Relativity as solutions of the new set
of field equations, and that leads in addition to scalarized
solutions in certain regions of parameter space [57–60].

For wormholes the situation is different, since General
Relativity does not allow for wormhole solutions, without
the addition of exotic matter. As shown first in EdGB the-
ories, the effective stress–energy tensor that arises from the
GB term, coupled to the scalar field, itself allows for the vio-
lation of the energy conditions and therefore gives rise to
wormholes [61,62]. This remains true when other coupling
functions are employed, as demonstrated already for various
EsGB theories [63–65]. The black holes of the correspond-
ing theories represent typically a part of the boundary of the
domain of existence (DoE) of the wormhole solutions.

To the best of our knowledge we here explore for the
first time the existence of wormhole solutions in vector–
tensor theories. In contrast, black holes and neutron stars
have already been addressed and investigated in various
vector–tensor theories [66–73]. In particular, we here con-
sider Einstein-vector–Gauss–Bonnet (EvGB) theories that
retain the vacuum solutions of General Relativity, but allow
in addition for vectorized solutions [74–82]. We investigate
EvGB theories with a massless vector field for three coupling
functions, for which the associated spontaneously vectorized
black holes have been recently obtained [79]. When inves-
tigating the DoE of these wormholes we find that the vec-
torized black holes form part of their boundary of existence,
and also the Schwarzschild and Reissner–Nordström (RN)
black holes can be found on parts of the boundary.

We note that the coupling of the vector field to the Gauss–
Bonnet invariant breaks the gauge invariance of the theory.
Consequently, the vector field cannot be identified with the
Maxwell field, or with the U (1) fields in string theory.

In Sect. 2 we provide the theoretical setting for the study,
and present the action, the field equations, and the Ansätze for
spherically symmetric wormholes. We discuss the charges,
i.e., the mass M and the vector charge Q, and the identifi-
cation of throats and equators, and we recall the equations
for the geodesics of particles and light. Section 3 contains
the presentation of our results. We illustrate the wormhole
solutions and discuss the occurrence of singularities, whose
presence leads us to consider only symmetrized wormholes
here. To that end we reflect the solutions at the throat or
equator to obtain the solution in the second asymptotically
flat region on the other side of the throat or equator, respec-
tively.

Subsequently we investigate the DoE and determine its
boundary, covering the range of the GB coupling constant
0 ≤ λ/M2 ≤ 108. We then determine the DoE for the area of
the throat, and consider the values of the vector field and the
metric at the throat. We demonstrate the violation of the null
energy condition by the wormhole solutions, and we illus-

trate selected solutions in terms of their embeddings, both for
solutions that feature only a single throat and those with an
equator and a double throat. We finally turn to the geodesics
in these wormholes spacetimes. We show the presence of
bound and unbound motion, and we extract their light rings.
We then end with our conclusions. The Appendix discusses
the junction conditions that need to be satisfied at the throat
or equator, in order to obtain symmetric wormholes.

2 Theoretical setting

2.1 Action and equations of motion

We start from the action for EvGB theory

S = 1

16π

∫ [
R − FμνF

μν + λF(AμA
μ)R2

GB

] √−gd4x

(1)

with curvature scalar R, field strength tensor Fμν of the mass-
less vector field Aμ, and Gauss–Bonnet (GB) term R2

GB

R2
GB = Rμνρσ R

μνρσ − 4RμνR
μν + R2. (2)

In the action the vector field Aμ is coupled with some
coupling function F(AμAμ) to the GB invariant in order
to obtain non-vanishing contributions to the equations of
motion, since the GB invariant R2

GB is topological in four
dimensions. The strength of the coupling is determined by
the GB coupling constant λ, which has dimension length
squared. The coupling function F(AμAμ) is chosen to
depend only on the square of the vector field, and vanishes for
vanishing vector field. These conditions allow Schwarzschild
black holes to remain solutions of the field equations. RN
black holes in contrast are only solutions for vanishing GB
coupling constant. We consider the following choices for
F(AμAμ) [79]

(i) F(AμA
μ) = AμA

μ (3)

(ii) F(AμA
μ) = 1 − exp(−AμA

μ) (4)

(iii) F(AμA
μ) = exp(AμA

μ) − 1. (5)

We obtain the field equations from the variational princi-
ple. Varying the action (1) with respect to the vector field and
to the metric yields the coupled set of EvGB equations

∇μF
μν = −1

2

dF(AμAμ)

d AμAμ
R2

GBA
ν, (6)

Gμν = 1

2
T (eff)

μν , (7)
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whereGμν denotes the Einstein tensor and T (eff)
μν the effective

stress–energy tensor

T (eff)
μν = T (A)

μν − 2T (GB)
μν , (8)

consisting of contributions from the vector field

T (A)
μν = 4Fλ

μFνλ − gμνFρλF
ρλ, (9)

and the GB invariant

T (GB)
μν = 1

2

(
gρμgλν + gλμgρν

)
ηκλαβ R̃ργ

αβ ∇γ ∇κF(AμA
μ)

+ R2
GB

dF(Aσ Aσ )

d(Aσ Aσ )
AμAν, (10)

with R̃ργ
αβ = ηργστ Rσταβ and ηργστ = εργ στ /

√−g.
To obtain static, spherically symmetric solutions we con-

sider the line element in isotropic coordinates

ds2 = − f0(r)dt
2

+ f1(r)
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (11)

and we assume for the vector field the form

Aμdx
μ = At (r)dt. (12)

When we insert the above ansatz (11) and (12) for the metric
and the vector field into the set of EvGB equations we obtain
four coupled, nonlinear ordinary differential equations, one
of which can be treated as a constraint. This leaves us with
three independent second order ordinary differential equa-
tions (ODEs).

Inspection of the field equations reveals an invariance
under the scaling transformation

r → χr, t → χ t, F → χ2F, χ > 0. (13)

2.2 Asymptotic expansion at spatial infinity

Introducing the constants M and Q we obtain the asymptotic
behaviour as

gtt = − f0(r) = −1 + 2M

r
+ O

(
1

r2

)
, (14)

grr = f1(r) = 1 + 2M

r
+ O

(
1

r2

)
, (15)

At = A0(r) = Q

r
+ O

(
1

r2

)
. (16)

In the static, spherical case the timelike Killing vector is
ξμ = (1, 0, 0, 0). The mass associated with the 3-volume
Vr between the throat and the 2-sphere Sr of constant r is
obtained from the boundary ∂Vr . Because the boundary inte-
gral over the throat surface does not vanish, the expression

for the mass in this volume picks up a contribution from the
throat.

Plugging in our choice of the line element and then the
expansions at infinity, the Komar mass reads

MKomar(r)

= Mthr + 1

4π

∫
∂Vr

dθdϕ

√
ĝ(2)ntσr∇ tξ r (17)

MKomar(∞)

= 1

8π
lim
r→∞

∫
Sr

f ′
0(r)√

f0(r) f1(r)
sin θ r2 dθdϕ = M.

(18)

We therefore identify the constant M with the mass of
the solution. Here nμ is the future-pointing timelike nor-
mal vector of Vr , ĝ(2) is the induced metric on the bound-
ary and σν is its inward pointing spacelike normal vector.
Mthr denotes the Komar integral evaluated at the throat,
Mthr = 1

4π

∫
thr dθdϕ

√
ĝ(2)ntσr∇ tξ r . Analogously we com-

pute the vector charge from the asymptotic behaviour

QKomar(r)

= Qthr + 1

4π

∫
∂Vr

dθdϕ

√
ĝ(2)nμσνF

μν (19)

QKomar(∞)

= 1

4π
lim
r→∞

∫
Sr

−A′
0(r)√

f0(r) f1(r)
sin θ r2dθdϕ = Q,

(20)

with Qthr = 1
4π

∫
thr dθdϕ

√
ĝ(2)nμσνFμν . Thus, as expected,

the constant Q is identified with the vector charge of the
wormhole. In both cases, the contribution from the inner
boundary cancels the explicit throat charges.

2.3 Throats and equators

To identify and characterize a wormhole one has to consider
the circumferential radius Rc(r) as a function of the radial
coordinate

Rc(r) = 1

2π

∫ 2π

0

√
gϕϕ(r, θ)

∣∣∣∣
θ=π/2

dϕ. (21)

This yields for the line element (11)

Rc(r) = √
f1(r)r. (22)

When Rc develops a minimum at some value r0, this cor-
responds to the location of a wormhole throat. However, Rc

could also develop a maximum at some value r0, which would
then represent an equator. In mathematical terms this trans-
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lates into

dRc

dr

∣∣∣∣
r0

= 0,
d2Rc

dr2

∣∣∣∣
r0

≷ 0, (23)

where the greater sign (>) corresponds to the presence of
a throat and the smaller sign (<) to an equator. The special

case d2Rc
dr2 (r0) = 0 corresponds to a saddle point and will be

referred to as degenerate throat. In these coordinates the area
of the throat or the equator is given by

At,e = 4πR2
c (r0) = 4πr2

0 f1(r0). (24)

Alternatively, we also consider the line element in
isotropic wormhole coordinates

ds2 = −F0(η)dt2

+ F1(η)
[
dη2 + (η2 + η2

0)(dθ2 + sin2 θdϕ2)
]
. (25)

In contrast to ordinary wormhole coordinates, this expression
is sufficiently general to allow for minima (i.e., throats) and
maxima (i.e., equators) of the circumferential radius. In these
coordinates, symmetric wormholes would either possess a
single throat at η = 0, or they would possess an equator at
η = 0. In the latter case, the equator would be symmetrically
located between two throats.

The coordinate transformation between the two radial
coordinates η and r is given by

η = r0

(
r

r0
− r0

r

)
(26)

with η0 = 2r0. Note that η scales in the same way as r ,
η → χη. For a throat or equator that is located at η = 0, its
area is

At,e = 4πR2
c (0) = 4πη2

0F1(0), (27)

while for a symmetric double-throat wormhole, whose
throats would be located at ±ηt , the area of the throats would
be

At = 4πR2
c (ηt) = 4π(η2

t + η2
0)F1(ηt). (28)

2.4 Geodesics

The Lagrangian for geodesics is 2L = gμν ẋμ ẋν , where the
dot indicates the derivative with respect to some affine param-
eter τ . In the wormhole coordinates used in Eq. (25) it reads

2L = −F0(η)ṫ2

+ F1

[
η̇2 +

(
η2 + η2

0

) {
θ̇2 + sin2(θ)ϕ̇2

}]
.

The conjugate momenta of the cyclic coordinates (t, ϕ) are
conserved and identified with the negative energy E of the
orbit and its angular momentum L , respectively,

−E ≡ pt Z = ∂L
∂ ṫ

= −F0 ṫ (29)

pη = ∂L
∂η̇

= F1η̇ (30)

pθ = ∂L
∂θ̇

= F1

(
η2 + η2

0

)
θ̇ (31)

L ≡ pϕ = ∂L
∂ϕ̇

= F1 sin2 θ
(
η2 + η2

0

)
ϕ̇. (32)

The square κ of the tangent vector is conserved along a
geodesic. We choose θ = π/2, θ̇ = 0 and rewrite

2L = − E2

F0(η)
+ F1(η)η̇2 + L2

F1(η)(η2 + η2
0)

= κ. (33)

The equations of motion then take the simple form

η̇2 = E2 − V 2
eff

F0(η)F1(η)
, (34)

ϕ̇ = L

F1(η)(η2 + η2
0)

(35)

with the effective potential

V 2
eff = F0(η)

(
L2

F1(η)(η2 + η2
0)

− κ

)
. (36)

2.5 Numerics

In isotropic coordinates the equations are all of second order.
Solving the field equations subject to a set of boundary condi-
tions is an integration problem. For the wormholes presented
in this work a Runge–Kutta method of fifth order (Bogacki–
Shampine [83]) was used. The black holes were computed
using the collocation point solver COLSYS as described in
[79].

3 Results

In the following we present our results for the EvGB worm-
holes obtained for the coupling functions (i), (ii) and (iii),
given by Eq. (3), focusing mostly on (i). We start our dis-
cussion by exhibiting a selection of typical solutions. Then
we provide an overview of the solutions by presenting their
DoE. Subsequently we give further details of these types of
solutions and discuss the emergence of cusps. Then we turn
to the energy conditions and provide embeddings for some
of the solutions. Finally, we analyze their geodesics.
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Fig. 1 gtt , gηη and At vs η/η0 for coupling function (i) and Q/M = 1
and λ/M2 = 3. Dashed: RN solution of the same mass and charge

Fig. 2 Same as Fig. 1 for Q/M = 1 and λ/M2 = 20

3.1 Sets of solutions

For illustration we display in Figs. 1, 2, 3 and 4 a selection of
the symmetric vectorized wormhole solutions for coupling
function (i), associated with various points in the DoE. The
wormhole solutions are uniquely determined by their val-
ues of the dimensionless charge Q/M and coupling con-
stant λ/M2, noted in the legend. Shown are the metric coef-
ficients gtt and gηη as well as the time component of the
vector field At as functions of the radial coordinate η. The
throat is located at η = 0, and it splits the total Universe into
two parts, that are symmetric with respect to reflection at the
throat, η → −η. Therefore only one side of the solutions is
depicted.

The solutions are asymptotically flat, finite, and continu-
ously differentiable for 0 < η < ∞. Reflection at the throat
leads to symmetric wormholes with two asymptotically flat
infinities, which are everywhere continuous. However, due

Fig. 3 Same as Fig. 1 for Q/M = 2 and λ/M2 = 15

Fig. 4 Same as Fig. 1 for Q/M = 2 and λ/M2 = 45

to the reflection the solutions are not differentiable at the
throat, and therefore a thin shell of matter at the throat will
be necessary to amend this. Without reflection at the throat
in contrast, a singularity would be encountered somewhere
beyond the throat, where η < 0.

Since the wormholes carry mass and charge, the figure also
provides a comparison with the RN solutions that possess the
corresponding same values of the mass and charge in each
case. For better comparison we have chosen the same radial
coordinate η/η0 for the RN solutions as the one employed for
the respective wormholes. Depending on the value of Q/M
the RN solutions represent black holes (Q/M ≤ 1) or naked
singularities (Q/M > 1). For the black holes the metric
coefficients are monotonic functions, whereas for the naked
singularities they exhibit extrema. In the next subsection we
will see that the RN black holes form a part of the boundary of
the DoE of the wormhole solutions. In fact, they are reached
when the limit λ/M2 → 0 is taken and Q/M ≤ 1.
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We end this subsection with a brief discussion on the mass
and the charge of the wormholes. The expansion at spatial
infinity, Eqs. (14)–(16), (r > 0), defines the mass M and
the vector charge Q of the wormholes. On the other hand,
for these spherically symmetric systems, we can also con-
sider a mass function M(r) and a charge function Q(r), that
we define via the respective Komar integrals evaluated at the
radial coordinate r , Eqs. (17)–(20). For r → ∞ these func-
tions M(r) and Q(r) then converge towards the respective
charges M and Q. This is demonstrated in Figs. 5, 6, 7 and
8 for a set of wormhole solutions, where we employed the
isotropic wormhole coordinate η instead of r .

3.2 Domain of existence

As discussed above, EvGB wormholes depend on two inde-
pendent parameters. This is in contrast to EvGB black holes
which are characterized by a single parameter. Taking advan-
tage of the invariance under scaling transformations, we
demonstrate the DoE of symmetric EvGB wormholes in
terms of the dimensionless coupling constant λ/M2 and the
dimensionless vector charge Q/M in Figs. 9 and 10 for the
coupling functions (i) and (ii), respectively. Here we restrict
to parameter values λ/M2 ≤ 150 for convenience. Symmet-
ric wormholes exist in the colored regions. Since the the-
ory is symmetric with respect to Aμ → −Aμ, the DoE
can be reflected through the axis Q = 0. Therefore only
the Q/M ≥ 0 part of the DoE is shown. Also shown are
the families of EvGB black holes (thick-solid black), the
Schwarzschild black holes (dash-dotted black) and the RN
black holes (dash-dotted black). The boundaries of the DoE
consist of singular wormholes (short-dashed), wormholes
with a cusp-singularity outside the throat (long-dashed black)
and wormholes with a degenerate throat (long-dashed red).

We now consider these domains and their boundaries
in more detail, starting with the coupling function (i) and
addressing first the boundaries of the domain. For vanishing
coupling constant, no wormholes arise. Relevant solutions
of the field equations are only the Schwarzschild and the
RN black holes. The Schwarzschild black holes form the left
boundary of the DoE of wormholes, while the RN black holes
form a part of the lower boundary of the DoE.

Beyond the extremal RN black hole the lower boundary
is formed by solutions with a regular throat. For small values
of the coupling parameter, 0 ≤ λ/M2 ≤ 0.162, the bound-
ary consists of solutions whose throats degenerate to saddle
points. These wormholes possess no cusps nor singularities.
They are shown by the long-dashed red curve in Figs. 9 and
10.

For larger values of the coupling parameter the boundary
is formed by solutions, that develop a cusp-singularity, i.e.,
a certain curvature singularity. Since this cusp arises before
the throat (η > 0), these solutions cannot be smoothly con-

Fig. 5 Komar mass and charge evaluated at η/η0 for symmetric worm-
holes are shown for coupling function (i) and Q/M = 1 and λ/M2 = 3

Fig. 6 Same as Fig. 5 for Q/M = 1 and λ/M2 = 20

Fig. 7 Same as Fig. 5 for Q/M = 2 and λ/M2 = 15

tinued to infinity and must be discarded. The onset of the
cusp-singularity is marked by a long-dashed black curve. The
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Fig. 8 Same as Fig. 5 for Q/M = 2 and λ/M2 = 45

Fig. 9 Domain of existence (DoE) in theλ/M2 vs Q/M plane is shown
for symmetric wormhole solutions for coupling function (i). The DoE
is bounded by black holes, singular throats, degenerate throats and the
emergence of cusps

mechanism leading to a cusp-singularity will be discussed
below.

When following the cusp-singularity along the boundary
while increasing λ/M2, the cusp moves closer to the throat
until it hits the throat at the maximal value of the vector charge
Q/M , indicated by P1 in Figs. 9 and 10. The throat itself
is then singular. No symmetric wormholes exist beyond this
maximal value of the vector charge. Solutions with a singular
throat (short-dashed) also form most of the remaining parts
of the boundary of the DoE.

Continuing along the boundary to smaller values of the
coupling and the charge, a local minimal value of the charge
Q/M of the singular boundary solutions is reached. Let us
denote it as Q1 for later reference. At this point we observe a
bifurcation with a second branch of singular wormhole solu-

Fig. 10 The same as Fig. 9 for coupling function (ii)

tions, which extends up to a local maximum of the charge
Q/M at some point P2. Here a third branch of singular worm-
holes emerges which extends to arbitrarily large values of
λ/M2. We note that for small Q/M and large λ/M2 more
void regions exist in the DoE, which are bounded by singular
wormholes. The emergence of these regions are indicated by
the point Q2 in Figs. 9 and 10.

Interestingly, the families of EvGB black holes seem to
extend exactly up to the bifurcation point Q1 and Q2 of
the singular wormholes. EvGB black holes exist between
vanishing charge and a maximal value of the charge, where
a singularity arises [79]. Since the boundary curve consists
also of singular solutions it cannot be precisely determined,
where EvGB black holes end and singular boundary solutions
start. Possible transition points could be the points Qn . But
the transition could also arise later.

We expect that to each point Qn a branch of black holes is
associated, such that the vector field component At possesses
n nodes (including the zero at the horizon).

The DoE of coupling function (ii) is shown in Fig. 10.
It is very similar in structure to the domain of existence of
coupling function (i). However, there are no wormholes with
degenerate throat at the boundary of the DoE.

In Figs. 11 and 12 we give an alternative presenta-
tion of the DoE. Here we show the dimensionless throat
radius Rt/R0 = √

At/(16πM2) versus the dimensionless
charge Q/M for several values of the dimensionless cou-
pling parameter λ/M2. Also shown is Rt/R0 along (part of)
the boundary of the DoE in Figs. 9 and 10. In addition the
dimensionless Schwarzschild radius of the RN black holes
and the EvGB black holes is shown.

We note that for the black holes Rt/R0 is a decreasing
function of Q/M with values Rt/R0 = 1 at Q/M = 0.
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Fig. 11 Throat radius vs. vector charge: Shown are wormhole solutions
for coupling function (i)

Fig. 12 Zoom of Fig. 11

For the RN black holes Rt/R0 =
(

1 + √
1 − Q2/M2

)
/2,

which implies Rt/R0 = 1/2 at Q/M = 1. For small values
of λ/M2 the branches of wormholes follow closely the curve
of RN black holes. However, they end at some wormhole
with degenerate throat or cusp-singularity with Q/M > 1.
For larger values of λ/M2 the quantity Rt/R0 is no longer
a decreasing function of Q/M , but possesses maxima and
minima. If λ/M2 is larger than some value given by the point
Q1, the curves Rt/R0 vs Q/M possess gaps corresponding
to the voids in the DoE. For example for λ/M2 = 30 one part
of the curves Rt/R0 extends from the Schwarzschild black
hole up to some point on the lower boundary of singular
wormholes. The second part to the curve starts at some point
on the upper boundary of singular wormholes and ends at a

Fig. 13 Vector field at the throat vs. scaled vector charge for coupling
function (i)

point of the boundary of wormholes with cusp singularities.
If λ/M2 > 51.1 (corresponding to Q2 and P2) the first part
of the curve again ends at some singular wormhole solution,
but with vanishing Rt/R0. The second part again connects
singular wormholes and wormholes with cusp singularities,
provided λ/M2 is smaller than the value of P1. In Fig. 12 we
give a closer look at the curves Rt/R0 vs Q/M , restricting
to small Q/M and Rt/R0. The round dots indicate the gaps
corresponding to the voids. We note that the functions Rt/R0

are oscillating around one, and that the number of oscillations
increases with increasing λ/M2. Interestingly, the minima of
the oscillations are close to the values of the RN black holes,
but never below, as can be seen in the inset.

As can be seen in Fig. 11 the dimensionless throat radius
Rt/R0 equals zero for singular wormholes along the curve in
Figs. 9 and 10 extending from the point P2 up to arbitrarily
large values of the coupling parameter λ/M2. Although the
curvature invariants at the throat diverge for these solutions,
the metric functions are finite at the throat. As a consequence,
the throat degenerates to a single point, which corresponds to
the origin of the coordinate system. Thus the total spacetime
may be considered as two copies of a topologically trivial
spacetime glued together at their singular points.

We note that for the coupling function (ii) the DoE is very
similar to the case (i), except that there are no wormhole
solutions with degenerate throat.

In Figs. 13 and 14 we show the vector field At at the throat
versus the dimensionless charge Q/M for several values of
the dimensionless coupling parameter λ/M2. Also shown is
At for the RN black holes, given by the simple expression

At = (Q/M)/
(

1 + √
1 − Q2/M2

)
. Note that At = 0 for

the EvGB black holes and the singular wormholes along the
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Fig. 14 Zoom of Fig. 13

boundary of the DoE. For the RN black holes the maximum
value of At is one. We observe that for the wormhole solutions
At exceeds this value only slightly at the point where the
boundaries with degenerate wormholes and wormholes with
cusp singularities meet.

In Fig. 14 we show At for large coupling parameter λ/M2

and small Q/M . The dots indicate the voids in the DoE. We
note that At oscillates around zero. The number of nodes of
At at the throat indicates the number of nodes of At , when
considered as function of r : with decreasing values of Q/M
the number of nodes of At increases by one exactly when
At (rth) passes through zero.

We end our discussion of the DoE by considering the met-
ric component gtt at the throat, shown for coupling function
(i) in Figs. 15 and 16. Here we show the metric component gtt
at the throat versus the dimensionless charge Q/M for sev-
eral values of the dimensionless coupling parameter λ/M2.
We note that gtt vanishes for the black holes and the singular
wormholes along the boundary of the DoE, but it is finite for
wormholes with degenerate throats and cusp singularities.

Finally, we note that for the coupling function (ii) the
graphs At vs Q/M and gtt vs Q/M are very similar to the
case of coupling function (i).

3.3 Cusps and degenerate throats

We now turn to the cusps that arise when the wormhole solu-
tions are constructed. This is similar to the appearance of
cusps for particle-like solution in EsGB theories [84,85]. The
wormhole solutions are obtained by solving the coupled set
of ODEs in the radial variable r , integrating numerically from
asymptotic infinity towards zero. The second order equations
are not diagonal with respect to the second derivatives of the
functions. Diagonalization of these equations then implies

Fig. 15 −gtt at the throat vs. scaled vector charge for coupling function
(i). Analogous to Fig. 11

Fig. 16 Zoom of Fig. 15

that a determinant arises, containing the respective coeffi-
cients. Since these coefficients are functions of the radial
variable, it may happen that the determinant possesses a node
at some value of the radial variable r�. However, the diag-
onalization procedure involves division by this determinant
and, consequently, the respective solution will possess a cusp
singularity at r�. The emergence of cusps is demonstrated
in Fig. 17 , where we show the derivatives of some func-
tions together with the scaled determinant det/det∞, with
det∞ = −r5/(16λMQ2).

Next we turn to the discussion of degenerate throats which
appear for small values of the coupling parameter λ/M2,
when the dimensionless charge Q/M approaches a critical
value. In this limit the derivative of the circumferential radius
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Fig. 17 Formation of a cusp for λ/M2 = 15. Shown are several func-
tions and derivatives as function of η/η0 for several values of Q/M ,
approaching the critical value Q/M = 3.01

Fig. 18 Formation of a degenerate throat λ/M2 = 0.01. Shown is
the derivative ∂ηRc as function of η/η0 for several values of Q/M ,
approaching the critical value Q/M ≈ 1.062

Rc with respect to the radial coordinate r , i.e. Rc,r (r), does
not possess a zero any more. This is demonstrated in Fig. 18
for λ/M2 = 0.01.

3.4 Energy conditions

We next turn to the violation of the energy conditions for the
symmetric wormholes solutions. In particular, we demon-
strate the violation of the null energy condition (NEC)

Tμνn
μnν ≥ 0. (37)

Here nμ is an arbitrary null vector, nμnμ = 0. Choosing the
null vectors

nμ =
(

1,
√−gtt/gηη, 0, 0

)
, (38)

nμ =
(

1, 0,
√−gtt/gθθ , 0

)
, (39)

Fig. 19 The quantity (−T t
t +T η

η )/N is shown versus η/η0 for coupling
function (i). Here η = 0 refers to a throat

and inserting these into the NEC, e.g., Tμνnμnν = T t
t n

tnt +
T η

η nηnη = −gtt (−T t
t +T η

η ) we find for the NEC to hold the
respective conditions

−T t
t + T η

η ≥ 0, (40)

−T t
t + T θ

θ ≥ 0. (41)

These conditions for the NEC are always violated for
the symmetric wormhole solutions. We demonstrate this
violation with some examples for coupling function (i) in
Fig. 19, where we show the combination of the stress–
energy tensor (−T t

t + T η
η)/N with normalization factor

N =
√

(T t
t )

2 + (T η
η)2 + 2(T θ

θ )
2 versus the radial wormhole

coordinate η. Clearly, the conditions are always violated at
the throat, but violation occurs also in other regions. The same
observation holds for the combination of the stress–energy
tensor (−T t

t + T θ
θ )/N . We note that for wormhole solutions

in the presence of an equator, as obtained for coupling func-
tion (iii), the angular condition is satisfied at the equator. But
since the radial condition is violated at the equator, the NEC
is violated there, as well. This is illustrated in Fig. 20.

3.5 Embeddings

Embeddings of wormholes with throats and equators are
helpful means to visualize the corresponding geometries. To
obtain the isometric embedding of the equatorial plane of
the solutions, we start from the line element (25) with t con-
stant, and θ = π/2. We then equate this line element with
a hypersurface of the 3-dimensional Euclidean space with
cylindrical coordinates (ρ, ϕ, h). This yields

F1(η) [dη2 + (η2 + η2
0) dϕ2] = dρ2 + ρ2dϕ2 + dh2. (42)
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Fig. 20 The quantity (−T t
t +T η

η )/N is shown versus η/η0 for coupling
function (iii). Here η = 0 refers to an equator. The vertical lines indicate
the respective throat

We now consider the coordinates ρ and h to be functions
of the wormhole coordinate η. Comparing coefficients we
obtain

ρ(η) =
√
F1(η)

(
η2 + η2

0

)
, (43)

(
dρ

dη

)2

+
(
dh

dη

)2

= F1(η). (44)

Finally, we solve for the function h(η)

h(η) = ±
∫ η

0

√
F1(η̃) −

(
dρ

dη̃

)2

dη̃. (45)

The functions ρ(η) and h(η) then provide a parametric rep-
resentation of the equatorial plane.

We show such 2-dimensional embeddings for a fixed angle
ϕ in Figs. 21 and 22. The coordinate ρ corresponds to the
circumferential radius Rc, shown on the abscissa, h corre-
sponds to the ordinate of the figures. In particular, we com-
pare the symmetrized wormhole solutions with their respec-
tive ‘parent’ solutions, which still possess singularities in the
η < 0 region. The figure contains wormholes with a sin-
gle throat (Fig. 21) from coupling function (i) as well as
wormholes with an equator and a double throat (Fig. 22)
obtained with coupling function (iii). Figure 23 shows sets
of 3-dimensional embeddings of single throat wormholes,
where we have included the azimuthal coordinate ϕ. A
3-dimensional embedding of a double throat wormhole is
shown in Fig. 24.

3.6 Geodesics

We finally consider the different types of geodesics that arise
in these wormhole spacetimes, considering first the motion
of massive particles. As discussed in Sect. 2.4, the motion is

Fig. 21 Embedding diagram of wormhole a solutions for parameters
Q/M = 1 and λ/M2 = 3

Fig. 22 Same as Fig. 21 for Q/M = 0.5 and λ/M2 = 20

characterized by an effective potential (36), where κ = −1
for massive particles. Here we identify three qualitatively
different cases for the effective potential that are visualized
in Figs. 25, 26, 27, 28, 29, 30, 31 and 32. On the left hand
side of the figures the effective potential is shown versus the
wormhole coordinate for a selection of values of the particle
angular momentum L , while on the right hand side contours
of the effective potential are shown in the L–η plane.

The first case corresponds to the example with parame-
ters Q/M = 1, λ/M2 = 3, and is demonstrated in Figs. 25
and 26. For L = 0 the effective potential is monotonic and
tends to one for η → ∞. At the throat Veff is finite, and
its derivative ∂ηVeff > 0. A particle could sit at rest at the
throat or oscillate radially across the throat. For small angular
momenta bound Rosetta orbits across the throat arise. These
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Fig. 23 3D embedding diagram of a wormhole for several parameter
values of Q/M and λ/M2 for coupling function (i). The proper distance
between adjacent horizontal grid lines is 2

Fig. 24 Same as Fig. 23 for Q/M = 2.5 and λ/M2 = 15 for coupling
function (iii)

Fig. 25 Veff vs η/M for massive particles (κ = −1) for a selection of
angular momenta L (parameters Q/M = 1, λ/M2 = 3)

orbits are retained also for large angular momenta. At some
critical angular momentum Lcrit the effective potential devel-
ops a saddle point. For L > Lcrit the saddle point splits into
an inner local maximum and an outer local minimum, thus
in addition bound orbits exist, that do not cross the throat.
With further increasing L the maximum reaches a value of
Veff = 1 at some L refl. For L > L refl the effective potential
acts as a reflective barrier, such that there are unbound orbits
that do not cross the throat.

The second case corresponds to the example with param-
eters Q/M = 2, λ/M2 = 45, and is exhibited in Figs. 27
and 28. As in the first case, for L = 0 the effective potential
is monotonic and tends to one for η → ∞, it is finite at the
throat and ∂ηVeff > 0. Nonstatic bound orbits cross the throat.
For some small Lcrit,0 the derivative at the throat then van-
ishes. When L > Lcrit,0 the potential has a local maximum
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Fig. 26 Contours of Veff in the L–η plane for parameters Q/M = 1,
λ/M2 = 3. The solid red contour shows Veff = 1, the dashed white and
black lines show ∂ηVeff = 0 and ∂2

ηVeff = 0, respectively. The crossings
of the white and black lines indicate the critical angular momenta Lcrit.
The crossings of the red line and the maxima indicate the reflective
angular momenta L refl. The contour differences are �Veff = 0.2

Fig. 27 Same as Fig. 25 for parameters Q/M = 2, λ/M2 = 45

at the throat and bound orbits do no longer cross the throat.
At some L refl,0 the potential assumes the value Veff = 1
at the throat. With further increasing L a second critical L ,
Lcrit,1 is reached, where the effective potential develops a
saddle point. Above Lcrit,1 this saddle has split into a maxi-
mum and a minimum, and thus a second region with bound
orbits is present. Next, at L refl,1 the local maximum of the
effective potential reaches the value Veff = 1. Subsequently,
at Lcrit,2 the inner minimum and the outer local maximum
merge to a saddle point. Beyond this saddle point only the
outer bound orbits remain. (The colours in Figs. 35 and 36
refer to L = 0.34, E = 0.714 (blue) with 3-fold symmetry

Fig. 28 Same as Fig. 26 for parameters Q/M = 2, λ/M2 = 45

Fig. 29 Same as Fig. 25 for parameters Q/M = 1.6, λ/M2 = 30.4

but 6 apastra, passing the throat 6 times during one revolu-
tion; L = 4, E = 0.974 (green) a precessing ‘Keplerian’
orbit and L = 5.2, E = 1.039 (red) a zoom-whirl orbit.)

The third case corresponds to the example with parameters
Q/M = 1.6, λ/M2 = 30.4, and is shown in Figs. 29 and
30. Here the throat is always a minimum, allowing for bound
throat crossing orbits. At a first critical angular momentum
Lcrit,1 a first saddle point arises, allowing for additional bound
orbits for L > Lcrit,1. Soon a second saddle point arises,
allowing for the third set of bound orbits for L > Lcrit,2.

For the coupling function (iii) solutions with an equator
and a double throat appear for certain values of the param-
eters. As an example we illustrate the effective potential in
Figs. 31 and 32 for parameters Q/M = 2, λ/M2 = 5. In
wormhole spacetimes with an equator and a double throat the
equator is now at the center of the motion and the two throats
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Fig. 30 Same as Fig. 26 for parameters Q/M = 1.6, λ/M2 = 30.4

Fig. 31 Same as Fig. 25 for a wormhole with equator (coupling func-
tion (iii), parameters Q/M = 2, λ/M2 = 5). The dotted vertical line
indicates the throat

will be passed when crossing from one asymptotic region to
the other. However, the presence of the equator surrounded
by two throats now also allows for motion between the two
throats, crossing the equator. (The colours in Figs. 37 and 38
refer to L = 5, E = 0.71 (blue) passing only the equator;
and L = 1, E = 0.92789 (red) passing the equator and the
throat. The outer and inner black circles indicate the equator
and the throat, respectively.)

Some examples of bound orbits in single throat wormhole
spacetimes are shown in Figs. 33, 34, 35 and 36. The 2-
dimensional figures show projections of the orbits, where

x = 1

M
Rc cos ϕ, y = 1

M
Rc sin ϕ, (46)

Fig. 32 Same as Fig. 26 for the wormhole solution of Fig. 31

Fig. 33 Projection of a closed orbit for L = 3, E = 0.95 with 3-fold
symmetry, passing the throat 6 times during 8 revolutions

Fig. 34 3D view of the orbit of Fig. 33
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Fig. 35 Projection of bound orbits for the second example

Fig. 36 3D view of the orbit of Fig. 35

while the 3-dimensional figures illustrate the orbits with the
help of embedding diagrams.

Orbits in a wormhole spacetimes with an equator are illus-
trated in Figs. 37 and 38.

At last we turn to the motion of light in these spacetimes,
i.e., κ = 0 in Eq. (36). In this case we are mostly inter-
ested in the circular orbits, since wormholes are often con-
sidered black hole mimickers. Spherical black holes possess
an unstable circular orbit, their light ring, which is associated
with their shadow size. Wormholes would have a light ring
at their center, but they may possess more circular orbits.
Because of the symmetry of the spacetime, these would
always arise in pairs, so there could be 3 or 5 or more light
rings present. The location of the light rings is exhibited in
Figs. 39 and 40 for several typical wormhole solutions (cou-
pling (i)) and a wormhole solution with equator (coupling
(iii)).

Fig. 37 Projection of orbits of massive particles in a wormhole space-
time with equator and double throat

Fig. 38 3D view of the orbit of Fig. 37

4 Conclusions

We have considered wormhole solutions in a family of
Einstein-vector–Gauss–Bonnet theories. The coupling func-
tions of these theories vanish quadratically for vanishing
massless vector field. Consequently, the Schwarzschild solu-
tion remains a solution of the field equations. In contrast, the
Reissner–Nordström solution is only a solution in the limit
of vanishing coupling constant.

While General Relativity alone does not lead to classical
traversable wormhole solutions, the presence of the Gauss–
Bonnet term coupled to the vector field provides the needed
violation of the energy conditions to obtain wormholes. In
fact, wormhole solutions arise naturally in these theories
when the equations of motion are solved. In these solutions
the circumferential radius develops a minimum, which phys-
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Fig. 39 Effective potentialVeff for massless particles and light (κ = 0):
coupling (iii) with equator at η = 0 and throat at the vertical dashed
line

Fig. 40 Same as Fig. 39 for coupling (i) and for several values of the
coupling constant λ. The extrema of Veff, and thus the zeros of ∂ηVeff
(inset), correspond to light rings. Depending on the coupling constant
λ there are 3, 5 or 7 light rings for symmetric wormholes

ically represents a throat, allowing passage to another part
of the Universe. However, typically this other part is not an
infinite asymptotically flat region for the solutions of these
theories.

Instead, in the construction of the wormhole solutions typ-
ically singularities arise. As long as these singularities reside
in the region beyond the throat, they can be avoided by reflect-
ing the regular asymptotically flat side across the throat. Of
course, in this case a thin shell of matter is needed to satisfy
the junction conditions (see Appendix). The set of the result-
ing wormholes is then referred to as symmetric wormholes.
Also maximal surfaces may arise, across which the solutions

can be reflected. These solutions then represent wormholes
with an equator and a double throat.

The domain of existence of these wormholes is bounded
by the black holes of General Relativity and by singular solu-
tions, where the singularity either arises on the throat or in
the prime part of the Universe. The vectorized black holes
also feature prominently in the domain of existence, forming
part of a critical line of solutions, where the vector field and
the time component of the metric vanish at the regular hori-
zon or singular throat. Like the vectorized black holes also
the wormholes may possess nodes for sufficiently large cou-
pling. Moreover, as the coupling constant increases a critical
value of the charge is approached.

The wormholes feature a variety of interesting orbits for
particles and light. Unbound and bound motion of massive
particles is present in each part of the Universe, but also
across the throat and equator. Light rings are always present
at the center of the wormhole, be it a throat or an equator,
but in addition pairs of light rings arise or disappear again,
when the parameters are varied. In particular, the presence of
unstable light rings, i.e., maxima of the effective potential,
then signals that the respective wormholes may be viewed as
ultracompact objects (UCOs) [86].
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Appendix A: Junction conditions

When constructing symmetric wormholes by reflecting the
solution at the throat, we need to restore differentiability of
the metric functions and the vector field by introducing a thin
shell of matter at the throat. The action then acquires a new
source term at the throat (η = 0)
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S = 1

16π

∫
d4x

√−g
[
R − FμνF

μν + F(AμA
μ)R2

GB

+ δ(η)(−4Aμ jμ + 16πLM )
]
, (A1)

with the matter Lagrangian LM and the current density jμ.
Note, that for simplicity of notation, we present this discus-
sion in ordinary wormhole coordinates

ds2 = − f0(η)dt2

+ f1(η)dη2 + (η2 + η2
0)(dθ2 + sin2 θdϕ2). (A2)

(Of course, the radial coordinate and the functions differ from
those used previously, although the notation is the same.)
Varying with respect to Aμ and gμν yields the equations of
motion,

∇νF
νμ = − 1

2
λR2

GBF
′(A2)Aμ + δ(η) jμ, (A3)

Gμ
ν =1

2
T (A)μ

ν − T (GB)μ
ν + δ(η)8πTμ

ν , (A4)

where T (A)μ
ν and T (GB)μ

ν are as in Eqs. (9) and (10), and
variation of the matter Lagrangian yields the stress energy
tensor

Tμν := −2√−g

δ(
√−gLM )

δgμν
. (A5)

In these coordinates the throat is located at η = 0, and
η0 is its circumferential radius. η > 0 describes the radial
domain on the main side of the throat, that is reflected at the
throat to the η < 0 side. In practise, we continue all three
functions f ∈ { f0, f1, A0} symmetrically in η to the other
side,

f (η) = f (−η), f ′ = − f ′(−η), f ′′ = f ′′(−η)

with η < 0.

Therefore, if some f is part of a solution of the equations of
motion, then the replacement

f (η) �→ f + (2�(η) − 1)η f ′ + O(η2), (A6)

f ′(η) �→ (2�(η) − 1) f ′ + O(η), (A7)

f ′′(η) �→ 2δ(η) f ′ + const, (A8)

η �→ (2�(η) − 1)η (A9)

with f and f ′ being evaluated at the throat will yield a fully
symmetric first order solution that, by construction, satisfies
the equations on both sides near the throat. Here � is the
Heaviside step function and δ the Dirac delta distribution. In
order to be a solution over the entire radial regime the jumps
of the field equations, introduced by second derivatives as in

Eq. (A8), are required to vanish,

lim
L→0

∫ L

−L
(∇νF

νμ + 1

2
λR2

GBA
μ − δ(η) jμ)ds = 0, (A10)

lim
L→0

∫ L

−L
(Gμ

ν − 1

2
T (A)μ

ν + T (GB)μ
ν

−δ(η)8πTμ
ν )ds = 0, (A11)

with line element ds = √
f1(η)dη.

The source stress energy tensor and current density that
are required to compensate the jumps are attributed to com-
binations of matter and fields, j = j (M) + j (�) and T =
T (M) + T (�). For the former we assume the form of a per-
fect fluid at rest

T (M)
μν = (ε + p)uμuν + pgμν,

T (M)μ
ν = diag(−ε, p, p, p),

j (M)μ = ( j0, 0, 0, 0)

with 4-velocity uμ = ( f −1/2
0 , 0, 0, 0). Since in wormhole

solutions of EsGB theory an additional contribution to the
action proved advantageous [61–65], we suggest the presence
of an analogous term on the throat surface described by the
action

S� = 1

16π

∫ √
−ĝ

[
λ1 + 2λ0F(A2)R̂

]
d3x, (A12)

where ĝ = det(ĝμν) denotes the determinant of the induced
(2 + 1)-dimensional metric and R̂ denotes the associated
Ricci scalar,

R̂μ
ν = diag

(
0, η−2

0 , η−2
0

)
, R̂ = 2η−2

0 . (A13)

Variation with respect to the vector field and the metric yields

δS�

δAμ

≈ 1

4π
λ0A

μF ′(A2)R̂
√

−ĝ,

δS�

δĝμν
≈ 1

16π

[
−1

2
λ1ĝμν + 2λ0

(
F(A2)

(
R̂μν − 1

2
R̂gμν

)

+ AμAνF
′(A2)R̂

)]√
−ĝ,

respectively.
Expressing the system of Eqs. (A3) and (A4) in wormhole

coordinates as specified above, doing the replacements given
in Eqs. (A6)–(A9), and performing the integration (A10),
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(A11) finally leads to the junction conditions

2A0
(
A0 f0′ − f0A0

′) λF ′

πη0
2 f02√ f1

= −ε +
(

4 f0λFλ0 + 8A0
2λ0λF ′

16π f0η2
0

+ λ1

16π

)
,

f0′

8π f0
√

f1
= p + λ1

16π
,

(
4A0 f0′λF ′

f02η0
2
√

f1
− 2A0

′

f0
√

f1

)
= j0 + A0λ0λF ′

8π f0η0
2 ,

where all quantities are evaluated at the throat and ′ denotes
the derivative with respect to η.

Since ordinary wormhole coordinates cannot describe
equators, we perform the analogous steps also for isotropic
wormhole coordinates. In that case the jumps are given by

2At
(
At F0

′ − F0At
′) (

4F1
2 − 3η2

0

(
F1

′)2
)
F ′

4πF0
2F1

7/2η2
0

+ F1
′

4πF1
3/2 ,

(
F1F0

′ + F0F1
′)

8πF0F1
3/2

−6
At F0

′F1
′ (At F0

′ − 2F0At
′) F ′

8πF0
3F1

5/2
,

At F0
′
(

4F1
2 − 3η2

0

(
F1

′)2
)
F ′ − 2F0F1

3η2
0 At

′

F0
2F1

7/2η2
0

.
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