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Abstract The existence of fully heavy dibaryonsΩcccΩbbb,
ΩccbΩbbc, ΩcccΩccc, and ΩbbbΩbbb with J = 0, 1, 2, 3
and P = ±1 are investigated in the framework of a con-
stituent quark model with the help of the resonating group
method. The dibaryon composed of six c or b quarks with
J P = 0+ is able to be bound, because the requirement
for antisymmetrization between the same baryon clusters
introduces an attractive interaction between two fully heavy
baryons. Although it is difficult for the dibaryon with the
color-singlet type ΩcccΩbbb to form any bound state, it is
possible for the ΩccbΩbbc state to be bound. The channel
coupling of all channels of both ΩccbΩbbc and ΩcccΩbbb

structures leads to the bound conclusion of this fully heavy
system composed of three c quarks and three b quarks.

1 Introduction

Understanding hadron–hadron interactions and searching for
exotic hadron states are important topics in hadron physics,
among which questing for dibaryons is a long-standing chal-
lenge. Among the various theoretical studies of dibaryons,
the lattice quantum chromodynamics (QCD) simulations by
the HAL QCD (hadrons to atomic nuclei from lattice QCD)
Collaboration have investigated six-quark systems contain-
ing light or strange quarks, and have confirmed the exis-
tence of the NΩ and ΩΩ bound states with nearly physical
quark masses (mπ � 146 MeV and mK � 525 MeV) [1,2].
Recently, Junnarkar and Mathur reported the first lattice
QCD study of deuteron-like (np-like) dibaryons with heavy
quark flavors, using a state-of-the-art lattice QCD calcu-
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lation [3]. They suggested that dibaryons ΩcΩcc(sscscc),
ΩbΩbb(ssbsbb), and ΩccbΩcbb(ccbcbb) were stable under
strong and electromagnetic interactions, and they also found
that the binding of these dibaryons became stronger as they
became heavier in mass. A dibaryon with the highest charm
number ΩcccΩccc was also studied by the (2+1)-flavor lattice
QCD with nearly physical light-quark masses and relativis-
tic heavy-quark action with physical charm quark mass, and
their result indicated that ΩcccΩccc was located in the uni-
tary regime [4]. The ΩbbbΩbbb dibaryon was investigated in
the extended one-boson exchange model, and the existence
of ΩbbbΩbbb was proposed [5]. Moreover, the possibility
of very heavy dibaryons with three charm quarks and three
beauty quarks (bbbccc) was explored using a constituent
model in Ref. [6], and no bound state was found below the
lowest dissociation threshold.

The discovery of the doubly charmed baryon Ξcc by the
Large Hadron Collider beauty (LHCb) Collaboration [7] pro-
vided the crucial experimental input, the interaction between
two heavy quarks, for the existence of the stable heavy
tetraquark QQq̄q̄ [8]. Eichten and Quigg also predicted
the existence of the novel narrow doubly heavy tetraquark
QQq̄q̄ based on the information [9]. Inspired by the LHCb
Collaboration’s observation of the hidden-charm Pc pen-
taquarks [10], the work of Ref. [11] predicted the dibaryons
0+ ΞccΣc, 1+ ΞccΣ

∗
c , 2+ Ξ∗

ccΣc, and 3+ Ξ∗
ccΣ

∗
c . Recently,

the LHCb Collaboration reported their results on the obser-
vations of fully charm states (ccc̄c̄). A narrow structure
X (6900), matching the lineshape of a resonance, and a
broad structure next to the di − J/ψ mass threshold were
obtained [12]. Such a breakthrough offers more informa-
tion to assist the search for the tetraquark consisting of four
charm quarks. It can naturally be expected that a fully heavy
dibaryon cccccc will be accessible experimentally in the
future.
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Thus, the observation of the fully heavy dibaryons
becomes more interesting. Based on the study of the strange
dibaryon NΩ , we predicted the NΩ-like dibaryons NΩccc

and NΩbbb in the framework of the constituent quark
model [13]. The study of the H particle was extended to the
heavy sector states ΛcΛc and ΛbΛb [14]. In this work, we
extend our study to the possibility of fully heavy dibaryon
systems and investigate the interaction between two fully
heavy baryons. The effective potential and binding energy,
as well as the low-energy scattering phase shifts, scattering
length, and effective range, are also calculated to explore the
existence of fully heavy dibaryon systems.

The paper is structured as follows. Section 2 gives a brief
introduction of the quark model and calculation method. The
numerical results and discussion are provided in Sect. 3. A
summary is presented in the last section.

2 Quark model and calculation method

We study the fully heavy dibaryon systems within the con-
stituent quark model, which is similar to what was used in our
previous work on dibaryonsd∗, NΩ , andΩΩ [15–17], and is
extended to the heavy dibaryons NΩccc [13]. When applied
to the fully heavy systems, neither the SU (3) scalar octet
meson exchange nor the Goldstone boson exchange works.
Additionally, although the one-gluon-exchange interaction
(VOGE

i j ) has a tensor part in Ref. [13], it works in the cou-
pling calculation between the S-wave and D-wave channels.
We calculated the threshold energies of the S-wave states
in both Ref. [13] and this work, and the coupling calcula-
tion between the S-wave and D-wave channels are tenta-
tively not included in this work, as we are interested in the
ground states of fully heavy dibaryons, and the spin-orbit and
tensor interactions have very small contributions. For exam-
ple, the tensor force reduced the energy of deuterons 1 or
2 MeV. For the fully heavy dibaryon, the mass shifts will be
smaller, because the tensor force is inversely proportional to
the masses of interacting quarks. In fact, we performed a cal-
culation of the cccccc system including the tensor force, and
the mass shift was less than 0.1 MeV, so it is safe to neglect
the spin-orbit and tensor forces in the calculation of low-
lying fully heavy dibaryons. To reduce the computational
burden, the spin-orbit and tensor part of VOGE

i j is not taken
into account here. Here, we list the interaction Hamiltonian
we used in this work:

H =
6∑

i=1

(
mi + p2

i

2mi

)
− TCM +

6∑

j>i=1

(
VCON
i j + VOGE

i j

)
,

(1)

where TCM is the kinetic energy of the center of mass. V CON
i j

is the phenomenological confinement potential:

VCON
i j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−acλci · λcj (r2
i j + v0), if i, j in the same

cluster

−acλci · λcj

(
1−e

−μqi q j r
2
i j

μqi q j
+ v0

)
, otherwise.

(2)

It is well known that confinement is a nonperturbative
QCD effect. There may be important nonperturbative fea-
tures missed in every two-body confinement potential model.
For example, three-gluon exchange between three quarks and
three-body instanton interactions do not contribute within a
colorless meson or baryon, but do contribute to a multiquark
system [18]. There are many other types of quark interac-
tions resulting from multi-gluon exchanges which cannot be
included in a two-body confinement potential. The QCD con-
densates within a nucleon and between two nucleons might
be different. These arguments show that a direct extension of
the two-body confinement to the multiquark system has not
been justified even though it might be a good approximation
in the single hadron case. The absence of an experimentally
observed color van der Waals force has long been a problem
for the two-body confinement potential model. Multiquark
systems provide greater variation in the low-energy behavior
of QCD and allow for further testing of the phenomenology
built into quark models, especially the nature of confinement.

We assume the following recipe to determine the two-
body matrix element of confinement: the interaction takes
the normal, unscreened form (quadratic in r) when the inter-
acting quarks always remain in the same baryon orbit, both
before and after interaction; otherwise the interaction takes
the screening form (second form shown in Eq. (2)). Although
this has not been demonstrated to be correct, it is more sophis-
ticated than the usual simple two-body confining interaction,
and it is a physically reasonable model of nonlocal, nonper-
turbative effects. Even though we use a two-body interaction
form to evaluate the matrix elements, our model is not a
potential model. It is an effective matrix element approach
extended from bound states to scattering states. It does reduce
to the usual two-body confinement interaction within a single
hadron. It also has the usual meaning of a two-body interac-
tion in the asymptotic regime, although not in intermediate
regions. The main physics introduced is the recognition that
the confining interaction between two nucleons might differ
from that within a nucleon. In particular, we represent the
nonlocal, nonperturbative backflow of color (and pair cre-
ation, as seen in lattice studies [19,20]) by screening of the
confining potential.

In Eq. (2), μqi q j is the color screening parameter, which
is related to the flavor of the i-th quark qi and the j-th
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Table 1 Model parameters. The
mass of the u/d quark is fixed to
mu/d = 313 MeV

b (fm) 0.518 ± 0.003 v0 (fm2) −1.0781 ± 0.008

ms (MeV) 472.4 ± 0.466 α0 0.13697 ± 0.001

mc (MeV) 1622.8 ± 0.690 Λ0 (fm−1) 2.0068 ± 0.002

mb (MeV) 4981.2 ± 0.778 μ0 (MeV) 404.28 ± 0.502

ac (MeV/fm2) 32.406 ± 0.973

quark q j . For the light quark systems, μuu , μus , and μss

are determined by fitting the deuteron properties, nucleon–
nucleon scattering phase shifts, and hyperon–nucleon scat-
tering phase shifts, respectively [21]. We also found that the
heavier the quark, the smaller the parameter μqi q j . When
extending to the heavy quark system, the hidden-charm pen-
taquark system, we took μcc as an adjustable parameter from
0.01 to 0.001 fm−2, and found that the results were insen-
sitive to the value of μcc [22], and the Pc states were well
described in the work of Refs. [22,23]. In fact, if the value
of the μqi q j is very small, the exponential function can be
approximated to

e−μqi q j r
2
i j = 1 − μqi q j r

2
i j + · · · (3)

Then, the confinement expression in Eq. (2) (when two
quarks are in different clusters) is

VCON
i j = −acλ

c
i · λc

j

(
1 − e−μqi q j r

2
i j

μqi q j

+ v0

)

≈ −acλ
c
i · λc

j

(
r2
i j + v0

)
, (4)

which is the same as the expression for two quarks in the same
cluster. Thus, when the value of the μqi q j is very small, the
screened confinement will return to the quadratic form. This
is why the results are insensitive to the value of μcc and μbb.
Therefore, we can use the quadratic form of the confinement
expression for the fully heavy dibaryon systems.

VOGE
i j is the one-gluon-exchange interaction:

VOGE
i j = αs(μ)

4
λc
i · λc

j

×
[

1

ri j
− π

2
δ(r i j )

(
1

m2
i

+ 1

m2
j

+ 4σ i · σ j

3mim j

)]
,

(5)

where αs(μ) is the quark–gluon coupling constant. In
Ref. [24], it is written as

αs(μ) = α0

ln

(
μ2+μ2

0
Λ2

0

) , (6)

where μ is the reduced mass of the interacting quark pair.
The other symbols in the above expressions have their usual
meanings. All parameters are fixed by fitting to the masses of

Table 2 The masses (in MeV) of the light, charmed, and bottomed
baryons. Experimental values are taken from the Particle Data Group
(PDG) [32]

Baryon M ± �M Mexp

N 925.4 ± 1.0 939

Δ 1275.8 ± 6.6 1232

Λ 1113.2 ± 0.5 1116

Σ 1241.1 ± 2.5 1193

Σ∗ 1399.7 ± 5.2 1385

Ξ 1353.3 ± 1.0 1318

Ξ∗ 1511.8 ± 3.9 1533

Ω 1612.3 ± 2.5 1672

Λc 2242.6 ± 0.3 2286

Σc 2462.8 ± 5.3 2454

Σ∗
c 2483.0 ± 3.6 2518

Ξc 2490.6 ± 0.4 2470

Ξ∗
c 2601.0 ± 2.4 2646

Ξcc 3665.1 ± 0.6 3621

Ωc 2699.1 ± 1.1 2695

Ωccc 4882.6 ± 1.1 −
Ωccb 8220.3 ± 1.4 −
Λb 5588.3 ± 0.7 5620

Σb 5818.2 ± 3.1 5813

Σ∗
b 5823.8 ± 3.1 5834

Ξb 5835.3 ± 0.1 5795

Ξ∗
b 5942.3 ± 2.0 5950

Ωb 6047.0 ± 0.9 6046

Ωbbb 14, 894.1 ± 2.1 −
Ωbbc 11, 557.5 ± 1.7 −

baryons with light flavors and heavy flavors, and the MINUIT
program is employed for the fitting. The model parameters
and the masses of the fitted baryons with errors are shown in
Tables 1 and 2.

The resonating group method (RGM) [25,26] and gen-
erator coordinates method [27,28] are used to carry out a
dynamical calculation. The main feature of the RGM for
two-cluster systems is that it assumes that two clusters are
frozen inside, and only considers the relative motion between
the two clusters. Thus, the conventional ansatz for the two-
cluster wavefunctions is
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ψ6q = A
[
[φB1φB2 ][σ ]I S ⊗ χL(R)

]J
, (7)

where the symbol A is the antisymmetrization operator.
For the dibaryon ΩcccΩccc or ΩbbbΩbbb, A = 1 − 9P36;
ΩccbΩbbc, A = 1 − P16 − P26 − P34 − P35 + P16P34 +
P16P35 + P26P34 + P26P35; and ΩcccΩbbb, A = 1. [σ ] =
[222] gives the total color symmetry, and all other symbols
have their usual meanings. φBi is the three-quark cluster
wavefunction, and χL(R) is the relative motion wavefunc-
tion, which is expanded by a set of Gaussians with different
centers [29],

χL(R) = 1√
4π

(
3

2πb2

)3/4 n∑

i=1

Ci

×
∫

exp

[
− 3

4b2 (R − Si )2
]
YLM (Ŝi )d Ŝi , (8)

where L is the orbital angular momentum between two clus-
ters. n is the number of Gaussians used in the expansion,
which is fixed by the requirement that the results are stable
against the increasing of n. By including the center-of-mass
motion

φC (RC ) =
(

6

πb2

)3/4

e
− 3R2

C
b2 , (9)

the ansatz Eq. (7) can be rewritten as

ψ6q = A
n∑

i=1

Ci

∫
d Ŝi√

4π

3∏

α=1

φα(Si )
6∏

β=4

φβ(−Si )

×
[
[ηI1S1(B1)ηI2S2(B2)]I SYLM (Ŝi )

]J

×[χc(B1)χc(B2)][σ ], (10)

where φα(Si ) and φβ(−Si ) are the single-particle orbital
wavefunctions with different reference centers:

φα(Si ) =
(

1

πb2

) 3
4

e
− (rα−Si /2)2

2b2 ,

φβ(−Si ) =
(

1

πb2

) 3
4

e
− (rβ+Si /2)2

2b2 . (11)

In the present work, to reduce the computational burden,
perturbation theory is employed, and the zeroth-order wave-
functions are used to obtain the energy of the system in first
order. The relative motion and center-of-mass motion with
different masses of quarks are calculated, taking proper care.
We used this method to study the dibaryon NΩ [16], and the
result was consistent with the lattice QCD [30]. The exper-
imental result from the STAR Collaboration also supported
our prediction of NΩ resonance [31].

From the variational principle, we obtain the generalized
eigenvalue equation

∑

j

C j Hi, j = E
∑

j

C j Ni, j , (12)

where Hi, j and Ni, j are the Hamiltonian matrix elements
and overlaps, respectively. By solving the generalized eigen
problem, we can obtain the energy and the corresponding
wavefunctions of the dibaryon system.

3 Results and discussion

As the first step, we calculate the energy of the color-singlet
states (two clusters with color singlet) with the quantum num-
bers J = 0, 1, 2, and 3. The results are listed in Table
3. Here, we should mention that in the RGM, the internal
motions of clusters are frozen, and the relative motion wave-
function is expanded by a set of Gaussians (see Eq. (8)).
So, in this method, the orbital angular momentum between
two clusters is also the total orbital angular momentum of
the system. For the ΩcccΩccc or ΩbbbΩbbb system, which
includes six identical quarks, totally antisymmetric wave-
functions must be used. The total symmetry is determined by
the symmetry of four degrees of freedom (color, isospin, spin,
and orbital). Here, the symmetry of both color and isospin
is symmetrical; the spin (S) is symmetrical for S = 1 or 3,
and antisymmetric for S = 0 or 2. To obtain the totally anti-
symmetric wavefunction, the orbital angular momentum L
should be odd for the S = 1 or 3, and even for S = 0 or 2.
If we consider the lower partial wave, we can take L = 1
for S = 1 or 3, and L = 0 for S = 0 or 2. Then, we can
obtain the total angular momentum J = 0, 1, 2, 3, 4 with
negative parity and J = 0, 2 with positive parity. Also,
the spin-orbit interaction is not included in the present cal-
culation. So, for the case of L = 1, S = 1, the results of
J P = 0− are the same with J P = 1− and 2−, and for the
case of L ,= 1, S = 3, the results of J P = 2− are the same
with J P = 3− and 4−. Therefore, we only show the results
of J P = 1− and J P = 3− in Table 3. However, nonidentical
quarks in two subclusters of the system ΩcccΩbbb leading to
both positive and negative parity are possible for this system
with J = 0, 1, 2, and 3.

From Table 3, one can see that the energies of all states
are above the corresponding theoretical threshold, except the
states ΩcccΩccc, ΩbbbΩbbb, and ΩccbΩbbc with J P = 0+,
whose energy is −2.5 MeV, −0.9 MeV, and −1.1 MeV lower
than the corresponding thresholds, respectively. Therefore,
for the J P = 0+ systems, the dibaryon with six c quarks or
six b quarks, or with the ccb−bbc structure, can form bound
states, while the one with the ccc−bbb structure is unbound.
This is due to the different symmetry requirements for the
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Table 3 The energy (in MeV) of the color-singlet channel for the fully
heavy dibaryons

J P ΩcccΩccc ΩbbbΩbbb
Threshold: 9765.2 Threshold: 29788.2

0+ 9762.7 ± 2.2 29, 787.3 ± 4.0

1− 9774.6 ± 2.2 29, 791.2 ± 4.0

2+ 9769.2 ± 2.2 29, 788.8 ± 4.1

3− 9776.2 ± 2.2 29, 791.7 ± 4.0

J P ΩccbΩbbc ΩcccΩbbb

Threshold: 19777.8 Threshold: 19776.7

0± 19, 776.7 ± 3.1 19, 777.7 ± 3.1

1± 19, 778.9 ± 3.2 19, 777.7 ± 3.1

2± 19, 779.2 ± 3.2 19, 777.7 ± 3.1

3± 19, 778.9 ± 3.2 19, 777.7 ± 3.1

different dibaryon structures. An antisymmetrization oper-
ator is required for the systems ΩcccΩccc, ΩbbbΩbbb, and
ΩccbΩbbc, while there is no symmetry requirement between
the clusters Ωccc and Ωbbb. We also note that the energies of
the states ΩcccΩbbb with different quantum numbers are the
same. This is mainly because there is no interaction between
two color-singlet subclusters because there is no exchange
term. In this case, the color-related interaction does not work
between (ccc) and (bbb), so the energies with different total
angular momenta are the same. Besides, the spin-orbit inter-
action is not included in present calculation, and the states
with J P = 0+ (S = 0, L = 0) and J P = 0− (S = 1, L = 1)
have the same energy, because the two clusters are well sepa-
rated to minimize the kinetic energy. However, for the hidden-
color channels (two clusters with a color octet), the color-
related interaction works between (ccc) and (bbb), so the
results will be different for these states. The results of the
hidden-color channels and the channel-coupling calculation
will be shown later.

The effective potentials are also calculated to understand
the interaction between two fully heavy baryons, which are
shown in Figs. 1 and 2. The effective potential between two
colorless clusters is defined as V (S) = E(S)−E(∞), where
E(S) is the diagonal matrix element of the Hamiltonian of
the system in the generating coordinate. It is clear that the
potentials for the ΩcccΩccc, ΩbbbΩbbb, and ΩccbΩbbc with
J P = 0+ are attractive, which leads to the possibility for
these three channels to form bound states. However, the
potentials for other channels are all repulsive, and therefore
the other states are unbound.

To investigate the interactions between two fully heavy
baryons in detail, we calculate the contributions to the effec-
tive potential from the kinetic energy (Vvk), the confinement
(Vcon), and the one-gluon exchange (Voge) of the ΩcccΩccc

(a) (b)

Fig. 1 The effective potential of the ΩcccΩccc and ΩbbbΩbbb systems

(a) (b)

Fig. 2 The effective potential of the ΩccbΩbbc and ΩcccΩbbb systems

and ΩcccΩbbb systems with J P = 0+, which are shown
in Fig. 3. One can see that there is no contribution of color
confinement interaction between two color-singlet clusters.
For the ΩcccΩbbb system, the contribution of the one-gluon
exchange interaction between Ωccc and Ωbbb is also zero,
because there is no quark exchange between these two
baryons. Although the one-gluon exchange interaction works
for the ΩcccΩccc, it is very small due to the small quark–
gluon coupling constant αs(μ) used for the fully heavy sys-
tem. Besides, the effective potential of the kinetic energy
shows that the kinetic energy term provides attractive inter-
actions for the ΩcccΩccc system, while it provides repul-
sive interactions for the ΩcccΩbbb system. This is due to the
different symmetry requirement for the different dibaryon
structures. At finite separation, the kinetic energy of the rela-
tive motion between two clusters generally makes a positive
contribution. However, the antisymmetrization operator for
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(a) (b)

Fig. 3 The contributions to the effective potential from the kinetic
energy (Vvk ), the confinement (Vcon), and the one-gluon exchange
(Voge) of the ΩcccΩccc and ΩcccΩbbb systems with J P = 0+

the ΩcccΩccc and ΩbbbΩbbb systems causes the exchange
of quarks between two clusters, which increases the motion
space of each quark for the six identical quarks systems,
and the internal kinetic energy of each cluster is reduced.
Thus, the total kinetic energy of the six-quark system may be
smaller than the sum of the internal kinetic energies of two
free three-quark systems, although there is relative kinetic
energy between the two clusters. Therefore, it is possible that
the contribution of the kinetic energy term for the ΩcccΩccc

system will be negative. For the ΩcccΩbbb system, there is
no quark exchange between Ωccc and Ωbbb, so the contribu-
tion of the kinetic energy term for the ΩcccΩbbb system is
positive.

In the above calculation, we only consider the color-
singlet channels of the systems. However, the hidden-color
channels and the channel-coupling effect are important in
multiquark systems. Therefore, we calculate the hidden-
color channels and the channel coupling of the systems. The
results are presented in Tables 4 and 5, in which the binding
energy is obtained by subtracting the threshold of the corre-
sponding channel from the energy of the system. Esc1/Bsc1

and Esc2/Bsc2 represent the energies/binding energies of the
color-singlet channels and hidden-color channels, respec-
tively; Ecc/Bcc represents the energies/binding energies of
the channel coupling of both the color-singlet and hidden-
color channels; E ′

cc/B
′
cc represents the energies/binding ener-

gies of the channel coupling of all channels of the ΩccbΩbbc

and ΩcccΩbbb systems; andubmeans that the energy is above
the threshold of the corresponding channel.

We can see from Tables 4 and 5 that the hidden-color chan-
nels have lower energies than the corresponding color-singlet

Table 4 The energies and binding energies (in MeV) of every sin-
gle channel and the channel-coupling calculation of the ΩcccΩccc and
ΩbbbΩbbb systems with J P = 0+

cccccc bbbbbb

Esc1 Bsc1 Esc1 Bsc1

9762.7 ± 2.2 −2.5 ± 0.1 29, 787.3 ± 4.0 −0.9 ± 0.2

Esc2 Bsc2 Esc2 Bsc2

9750.5 ± 2.5 −14.7 ± 0.3 29, 786.9 ± 4.1 −1.3 ± 0.1

Ecc Bcc Ecc Bcc

9735.1 ± 2.7 −30.1 ± 0.5 29, 780.6 ± 4.2 −7.6 ± 0.1

Table 5 The energies and binding energies (in MeV) of every sin-
gle channel and the channel-coupling calculation of the ΩccbΩbbc and
ΩcccΩbbb systems with J P = 0+. E ′

cc and B ′
cc are the results by cou-

pling all channels of both ΩccbΩbbc and ΩcccΩbbb systems

ccbbbc cccbbb

Esc1 Bsc1 Esc1 Bsc1

19, 776.7 ± 3.1 −1.1 ± 0.1 19, 777.7 ± 3.1 ub

Esc2 Bsc2 Esc2 Bsc2

19, 766.2 ± 2.8 −11.6 ± 0.3 19, 807.1 ± 1.9 ub

Ecc Bcc Ecc Bcc

19, 742.2 ± 1.2 −35.6 ± 1.9 19, 777.7 ± 3.1 ub

E ′
cc B ′

cc

19, 696.6 ± 3.2 −80.1 ± 1.3

channels, and the channel coupling of the color-singlet and
hidden-color channels will increase the binding energy of the
systems considerably. For the cccccc system with J P = 0+,
the binding energy in the single-channel calculation is −2.5
MeV for the color-singlet channel and −14.7 MeV for the
hidden-color channel, and it will reach −30.1 MeV in the
channel-coupling calculation. For the bbbbbb system, the
results are similar to those for the cccccc system, −0.9 MeV
for the color-singlet channel, −1.3 MeV for the hidden-color
channel, and −7.6 MeV in the channel-coupling calcula-
tion. For the cccbbb system, the state with the ΩcccΩbbb

structure is unbound, but the state with ΩccbΩbbc is bound,
and the binding energies have similar behavior as that of
the cccccc system, −1.1 MeV for the color-singlet chan-
nel, −11.6 MeV for the hidden-color channel, and −35.6
MeV in the channel-coupling calculation. These two struc-
tures have the same quark content, and they can be coupled.
The structure-coupling calculation obtains binding energy of
−80.1 MeV for the cccbbb system with J P = 0+. Thus, the
fully heavy dibaryons with J P = 0+ are bound states.

In determining the model parameters, the same b, which
relates to the size of baryon, is used for all baryons. This
is not reasonable, because the light baryons and the fully
heavy baryons differ in size. A value of b = 0.518 is good
for describing the properties of the proton, while smaller b
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Fig. 4 The phase shifts of the S-wave ΩcccΩccc and ΩbbbΩbbb sys-
tems with J P = 0+

is expected to describe the fully heavy baryons. To test the
dependence of the result on the baryon size parameter b, we
calculate the fully heavy six-quark systems with b = 0.3 fm.
The results are as follows. The binding energy for the cccccc
system with J P = 0+ is −56 MeV; it is −8.0 MeV for
the bbbbbb system, and −15.4 MeV for the cccbbb system.
Therefore, the existence of fully heavy dibaryons is weakly
dependent on the model parameters.

To further check the possibility of the bound state, we
can also study the low-energy scattering phase shifts of the
state. Here, we calculate the low-energy scattering phase
shifts of the color-singlet channel of the S−wave ΩcccΩccc

and ΩbbbΩbbb states, which are shown in Fig. 4. The well-
developed Kohn–Hulthen–Kato (KHK) variational method
is used here, the details of which can be found in Ref. [26]. It
is obvious that the scattering phase shifts of the two systems
reach 180 degrees at Ec.m. ∼ 0 and rapidly decrease as Ec.m.

increases, suggesting the presence of a bound state.
Then, we can extract the low-energy scattering parame-

ters, scattering length a0, and the effective range r0 for both
ΩcccΩccc and ΩbbbΩbbb systems using the formula

k cot δ = − 1

a0
+ 1

2
r0k

2 + O(k4) (13)

where δ is the low-energy phase shifts obtained above, k is
the momentum of relative motion with k = √

2μEc.m., in
which μ is the reduced mass of two baryons, and Ec.m. is
the incident energy. The binding energy B ′ can be calculated
according to the relation

B ′ = h̄2α2

2μ
(14)

Table 6 The scattering length a0, effective range r0, and binding energy
B ′ of the ΩcccΩccc and ΩbbbΩbbb systems with J P = 0+

a0 (fm) r0 (fm) B ′ (MeV)

ΩcccΩccc 2.5576 ± 0.0233 1.1301 ± 0.0148 −2.72 ± 0.03

ΩbbbΩbbb 2.4865 ± 0.0184 1.0760 ± 0.0091 −0.90 ± 0.01

where α is the wave number which can be obtained from the
relation [33]

r0 = 2

α

(
1 − 1

αa0

)
. (15)

For the bound state, the wave number α is the inverse of
the spatial dimension of the system [34], and the required
solution of Eq. (15) can be fixed accordingly. Please note
that we use another method to calculate the binding energy
here, so we label it B ′. The results are listed in Table 6, from
which we can see that the scattering length is positive for
both dibaryons ΩcccΩccc and ΩbbbΩbbb, which implies the
existence of a bound state of these two fully heavy dibaryons.
The binding energies obtained here are coincident with those
calculated from Table 3.

4 Summary

The main conclusion of our dynamical investigation of fully
heavy dibaryons is that the dibaryons composed of six c
quarks, six b quarks, or three c quarks and three b quarks
can form bound states, and the quantum number is J P =
0+. However, the nature of these systems differs. For the
ΩcccΩccc or ΩbbbΩbbb, the requirement of antisymmetriza-
tion between the same baryon clusters introduces attractive
interaction between two fully heavy baryons, which leads to
a super-heavy bound dibaryon ΩcccΩccc or ΩbbbΩbbb. The
channel coupling between the color-singlet and hidden-color
channels causes the binding energy to increase.

For the system with three c quarks and threeb quarks, there
is no evidence for any stable dibaryon with the structure of
color-singlet ΩcccΩbbb. This outcome is based on the con-
cept of “QCD-inspired” constituent quark model calculation,
where the interactions among quarks are color-related. The
principal reason for the instability of the ΩcccΩbbb system
is that there is no symmetry requirement between the sub-
clusters Ωccc and Ωbbb because quark c and quark b are not
identical quarks. Therefore, the interaction between two sub-
clusters is zero. In contrast, for the ΩccbΩbbc, the exchange
of identical quarks can occur between two subclusters, result-
ing in nonzero exchange terms of the interaction, and thus the
formation of a bound state is possible. The channel coupling
of all channels of both ΩccbΩbbc and ΩcccΩbbb structures
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leads to the bound state of this fully heavy system, which is
composed of three c quarks and three b quarks.

The study of the interaction between two fully heavy
baryons supports this conclusion, because the effective
potentials are attractive. The behavior of low-energy scat-
tering phase shifts and the scattering length also confirm
the existence of stable fully heavy dibaryons ΩcccΩccc and
ΩbbbΩbbb. The lattice QCD was used to study the highest
charm dibaryon ΩcccΩccc, and indicated the existence of
this state [4]. We suggest that the lattice QCD indicates the
existence of the fully heavy dibaryon with six b quarks, and
the one with three c quarks and three b quarks.
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Table 7 The matrix elements in spin-flavor-color-isospin spaces of the
color-singlet channel for the ΩcccΩccc system with J P = 0+

i j 〈Hc
i j 〉D 〈Hc

i j 〉E 〈Hcs
i j 〉D 〈Hcs

i j 〉E
12 −8/3 8/3 −8/3 8/3

13 −8/3 8/3 −8/3 8/3

14 0 −4/3 0 4

15 0 −4/3 0 4

16 0 8/3 0 8/3

23 −8/3 8/3 −8/3 8/3

24 0 −4/3 0 4

25 0 −4/3 0 4

26 0 8/3 0 8/3

34 0 8/3 0 8/3

35 0 8/3 0 8/3

36 0 −16/3 0 112/3

45 −8/3 8/3 −8/3 8/3

46 −8/3 8/3 −8/3 8/3

56 −8/3 8/3 −8/3 8/3

Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix

To provide more information for the six-quark system cal-
culation, the matrix elements in spin-flavor-color space are
listed in the appendix. To save space, only the results for the
ΩcccΩccc and ΩccbΩbbc systems are shown in (Tables 7, 8,

Table 8 The matrix elements in spin-flavor-color-isospin spaces of the
hidden-color channel for the ΩcccΩccc system with J P = 0+

i j 〈Hc
i j 〉D 〈Hc

i j 〉E 〈Hcs
i j 〉D 〈Hcs

i j 〉E
12 −2/3 2/3 −10/3 74/3

13 −2/3 20/3 −10/3 68/3

14 −4/3 35/3 −20/9 21

15 −4/3 35/3 −20/9 21

16 −4/3 20/3 −20/9 68/3

23 −2/3 20/3 −10/3 68/3

24 −4/3 35/3 −20/9 21

25 −4/3 35/3 −20/9 21

26 −4/3 20/3 −20/9 68/3

34 −4/3 20/3 −20/9 68/3

35 −4/3 20/3 −20/9 68/3

36 −4/3 32/3 −20/9 88/3

45 −2/3 2/3 −10/3 74/3

46 −2/3 20/3 −10/3 68/3

56 −2/3 20/3 −10/3 68/3

Table 9 The cross matrix elements in spin-flavor-color-isospin spaces
of the color-singlet and hidden-color channels for the ΩcccΩccc system
with J P = 0+

i j 〈Hc
i j 〉D 〈Hc

i j 〉E 〈Hcs
i j 〉D 〈Hcs

i j 〉E
12 0 32/3 0 32/3

13 0 32/3 0 32/3

14 0 2/3 −16/9 14

15 0 2/3 −16/9 14

16 0 −4/3 −16/9 44/3

23 0 32/3 0 32/3

24 0 2/3 −16/9 14

25 0 2/3 −16/9 14

26 0 −4/3 −16/9 44/3

34 0 −4/3 −16/9 44/3

35 0 −4/3 −16/9 44/3

36 0 8/3 0 −8/3

45 0 32/3 0 32/3

46 0 32/3 0 32/3

56 0 32/3 0 32/3
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Table 10 The matrix elements in spin-flavor-color-isospin spaces of
the color-singlet channel for the ΩccbΩbbc system with J P = 0+

i j 〈Hc
i j 〉D 〈Hc

i j 〉E 〈Hcs
i j 〉D 〈Hcs

i j 〉E
12 −8/3 64/27 −8/3 64/27

13 0 −8/27 0 184/27

14 0 4/27 0 20/3

15 0 4/27 0 20/3

16 −8/3 64/27 −8/3 64/27

23 0 −8/27 0 184/27

24 0 4/27 0 20/3

25 0 4/27 0 20/3

26 −8/3 64/27 −8/3 64/27

34 −8/3 64/27 −8/3 64/27

35 −8/3 64/27 −8/3 64/27

36 0 16/27 0 80/27

45 −8/3 64/27 −8/3 64/27

46 0 −8/27 0 184/27

56 0 −8/27 0 184/27

Table 11 The matrix elements in spin-flavor-color-isospin spaces of
the hidden-color channel for the ΩccbΩbbc system with J P = 0+

i j 〈Hc
i j 〉D 〈Hc

i j 〉E 〈Hcs
i j 〉D 〈Hcs

i j 〉E
12 −2/3 124/27 −10/3 556/27

13 −4/3 232/27 −20/9 544/27

14 −4/3 217/27 −20/9 549/27

15 −4/3 217/27 −20/9 549/27

16 −2/3 106/27 −10/3 562/27

23 −4/3 232/27 −20/9 544/27

24 −4/3 217/27 −20/9 549/27

25 −4/3 217/27 −20/9 549/27

26 −2/3 106/27 −10/3 562/27

34 −2/3 106/27 −10/3 562/27

35 −2/3 106/27 −10/3 562/27

36 −4/3 220/27 −20/9 524/27

45 −2/3 124/27 −10/3 556/27

46 −4/3 232/27 −20/9 544/27

56 −4/3 232/27 −20/9 544/27

9, 10, 11, 12). The definition of the matrix elements are as
follows.

ND = 〈ψ |ψ〉, (A1)

NE = 〈ψ |A′ψ〉, (A2)

〈Hc
i j 〉D = 〈ψ |λci · λc

j |ψ〉, (A3)

〈Hc
i j 〉E = 〈ψ |λci · λc

j |A′ψ〉, (A4)

〈Hcs
i j 〉D = 〈ψ |λci · λc

jσ i · σ j |ψ〉, (A5)

〈Hcs
i j 〉E = 〈ψ |λci · λc

jσ i · σ j |A′ψ〉. (A6)

Table 12 The cross matrix elements in spin-flavor-color-isospin spaces
of the color-singlet and hidden-color channels for the ΩccbΩbbc system
with J P = 0+

i j 〈Hc
i j 〉D 〈Hc

i j 〉E 〈Hcs
i j 〉D 〈Hcs

i j 〉E
12 0 256/27 0 256/27

13 0 4/27 −16/9 292/27

14 0 −2/27 −16/9 294/27

15 0 −2/27 −16/9 294/27

16 0 256/27 0 256/27

23 0 4/27 −16/9 292/27

24 0 −2/27 −16/9 294/27

25 0 −2/27 −16/9 294/27

26 0 256/27 0 256/27

34 0 256/27 0 256/27

35 0 256/27 0 256/27

36 0 −8/27 −16/9 344/27

45 0 256/27 0 256/27

46 0 4/27 −16/9 292/27

56 0 4/27 −16/9 292/27

The wavefunction ψ is the six-quark one in Eq.(10) with-
out the antisymmetrization operator. The antisymmetrization
operator A = 1 − A′, where A′ = 9P36 for ΩcccΩccc and
A′ = P16 + P26 + P34 + P35 − P16P34 − P16P35 − P26P34 −
P26P35 for ΩccbΩbbc.

For the ΩcccΩccc system, the direct and exchange terms of
overlap for the color-singlet channel are ND = 1, NE = −1;
for the hidden-color channel they are ND = 1, NE = −7;
and the cross ones between color-singlet and hidden-color
channels are ND = 0, NE = −4. For the ΩccbΩbbc system,
the direct and exchange terms of overlap for the color-singlet
channel are ND = 1, NE = −8/9; for the hidden-color
channel they are ND = 1, NE = −56/9; and the cross
ones between the color-singlet and hidden-color channels
are ND = 0, NE = −32/9.
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