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Abstract The purpose of this paper is to analyze the con-
formally flat spherically symmetric fluid distribution with
generalized polytropic equations of state. We have devel-
oped two different framework for two different definitions
of generalized polytropes. The frameworks for development
of modified Lane–Emden equation are presented for both
cases. The conformally flat condition is used to calculate
anisotropy factor which transform considered systems into
consistent systems. Tolman mass function is used in the poly-
tropic models to check their stability.

1 Introduction

General relativity (GR) is the geometric theory of gravita-
tion presented in 1905 to provide a comprehensive approach
in the study of gravitational interactions. However, ordinary
matter ingredients of GR do not provide a suitable explana-
tion to some recent cosmological and astrophysical data sets
(see [1–7] and references therein). This theory adequately
describe weak field regimes, however, it do not provide sat-
isfactory description of strong field eras. Current image of the
universe suggests refinement in the framework, that strongly
recommends development of alternative theories of gravity.
These theories can be classified as scalar tensor gravities, the-
ories with extra gravitational fields, extra spatial dimension.
Theory of f (R) incorporates non-linear terms of curvature
as a function of Ricci scalar denoted by f (R) in its action
[5,6].

Existence of some symmetry in spacetime reduces degrees
of freedom in constitutive equations that makes analysis less
complicated. The gravitating systems are usually studied
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by considering spherical symmetry. Observational evidences
suggests that deviations in spherical symmetry are very rare
and incidental [8]. These deformations in spacetime are not
fundamental characteristic of gravitating sources, that is why
spherical symmetry is preferred [9]. Weyl tensor accounts
the tidal pressure that a frame feels while shifting along a
geodesic. The Riemann curvature tensor defines variation in
the volume of compact object while Weyl tensor describes
modifications in shape distorted by the tidal forces. Vanishing
of Weyl tensor refers to conformally flat spacetime.

Likewise GR, distribution of matter within the metric
induces non-flatness in the spacetime that is an origin to
report the gravitational interaction in extended theories. A
second rank tensor termed as energy momentum tensor is
used for the description of the matter dissemination at each
event in spacetime. This tensor is used to explain the relation-
ship of curvature of spacetime with the matter distribution.
The inner matter configuration of compact object may consist
of different types of fluid such as perfect fluid, isotropic fluid,
anisotropic fluid and many others. Perfect fluid can be com-
pletely described by rest mass density and pressure, isotropic
fluid have uniform pressure distribution in all directions while
anisotropic fluid contains irregular pressure distribution.

In astronomy, a polytrope refers to the solution of Lane–
Emden equation (LEe) in which the pressure stresses rely on
the density and the polytropic equation of state (EoS). It has
been considered by many researchers by means of LEe that
describes departure from the hydrostatic equilibrium com-
position of the compact object. Polytropic EoS has tempted
scientists around the globe to explore the features of poly-
tropic models. Tooper [10] discussed the solutions to gen-
eral relativistic field equations for compressible fluid sphere
assuming that system obeys polytropic EoS. The generalized
polytropic equation of state (GPEoS) can be written as

Pr = α1 ρ0 +K ρ
1+ 1

n
0 , (1)
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where Pr denotes the radial pressure, mass density is labeled
as ρ0, K is a constant and n is polytropic index. The relation
between mass density ρ0 and the total energy density ρ is
expressed as

ρ = ρ0 +n Pr . (2)

Second formation of GPEoS existing in literature is in the
form of total energy density ρ, that turns out to be

Pr = α1 ρ + kρ1+ 1
n , (3)

and it must satisfies the following relation

ρ = ρ0

(1 − kρ
1
n
0 )

n . (4)

Theory of slowly rotating polytropes was reviewed and
comprehend with numerical results in [11]. In [12], the
polytropes were discussed by considering generalized n-
dimensional system. Herrera and Barreto [13,14] developed
general framework to study polytropes in Newtonian and
general relativistic regimes. Herrera and his collaborators
[15] employed conformally flat condition (vanishing value of
Weyl tensor) on spherically symmetric anisotropic fluid dis-
tributions incorporating polytropic EoS. The effects of gener-
alized polytropic EoS to discuss late and early time universe
under several constraints is discussed in [16–18]. Impact of
generalized polytropic EoS on spherically and cylindrically
symmetric anisotropic polytropes was studied by Azam et
al. in [19,20]. Mardan et al. [21] developed a new class
of polytropic models by using generalized polytropic EoS
for charged anisotropic fluid configuration. Comprehensive
study of various gravitational phenomenon through GPEoS
has been worked out in [22–26].

Bekenstein [27] generalized the Oppenheimer Volkoff
equations of hydrostatic equilibrium for spherically symmet-
ric charged perfect fluid matter configuration. Tolman mass
which is a measure of the active gravitational mass has sig-
nificant impact on dynamical properties of spherically sym-
metric gravitating systems. It is used to establish the stability
or instability levels of compact object for both Newtonian
and relativistic polytropes having anisotropic inner matter
configuration [28,29].

Many researchers have worked on evolution of compact
objects analytically in various alternative gravitational the-
ories [30–37]. In the present work, we are intend to work-
out the conformally flat condition for spherically symmetric
spacetime with the help of GPEoS in f (R) gravity. This
paper is the generalization of the work on conformally flat
polytropes with polytropic EoS [38]. We have assumed that
physical parameters follow GPEoS and apply conformally

flat condition on considered f (R) model i.e., Starobinsky
model.

In the framework of f (R) gravity the Einstein-Hilbert
action modifies in a way that a general function of Ricci
scalar is incorporated in place of its linear term. Modified
action becomes

S f (R) = 1

2κ

∫
d4x

√−g f (R) + SM , (5)

where κ is the coupling constant, g denotes determinant of
the metric tensor and SM is the matter field action. Variation
of above action (5) by metric variation leads to the following
modified field equations in f (R) framework:

Rαβ fR − 1

2
f (R) gαβ +(gαβ � − ∇α∇β) fR = κTαβ. (6)

Here fR = d f
dR , the usual matter energy momentum tensor

is indicated by Tαβ , ∇α is the covariant derivative and � ≡
∇α∇α is de’Alembertian operator.

The manuscript is organized as follows:

• Section 2 constitutes the development of modified field
equations in f (R) gravity for anisotropic spherically
symmetric spacetime. Also, the generalized hydrostatic
equilibrium equations and energy condition are discussed
in this section.

• In Sect. 3, f (R) model is implemented on constitutive
equations.

• Conformally flat condition is applied in Sect. 4.
• Section 5 covers discussion of Tolman mass.
• Last section incorporates concluding remarks followed

by an Appendix and list of references.

2 Modified field equations

The modified field equations can be written as:

Gαβ = k

fR
(T D

αβ + Tαβ). (7)

Gαβ indicates the Einstein tensor and T
(D)
αβ is the effective

energy momentum tensor incorporating dark source con-
stituents, given by

T
(D)
αβ = 1

k
(∇α∇β fR − fRgαβ + gαβ

2
( f − R fR)). (8)

Spherically symmetric spacetime has been considered to pro-
ceed with the analysis, written as

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdφ2, (9)
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where ν and λ are the metric coefficients having dependence
on the radial coordinate r . The usual matter energy momen-
tum tensor is given by

Tαβ = (ρ + p⊥)uα uβ − p⊥ gαβ +(Pr − P⊥)sαsβ, (10)

where P⊥ is tangential pressure. The four velocity is denoted
by uα while sα is the radial four vector defined as:

uα = (e
−ν
2 , 0, 0, 0), sα = (0, e

−λ
2 , 0, 0),

satisfying sα uα = 0, sα sα = −1. The onset of modified
field equations turns out to be

ρ = e−λ

2k r2 (r2 λ′ fR ′ − f r2eλ + 2 fRrλ
′ + fRr

2eλR

+2 fRe
λ − 2r2 fR

′′ − 4r fR
′ − 2 fR), (11)

Pr = − e−λ

2k r2 (− r2 ν′ fR ′ − f r2eλ

−2 fRrν
′ + fRr

2eλR + 2 fRe
λ − 4r fR

′ − 2 fR),

(12)

P⊥ = e−λ

4k r
(2 rν′ fR ′ − fRrν

′λ′ + 2 fRrν
′′ − 2 fRre

λR

+2r fRe
λ + 4r f ′′

R + 4 fR
′

−2 fRλ′ + fRrν
′2 − 2 fRν′ − 2rλ′ f ′

R), (13)

here prime denotes the derivative with respect to r . The
expression for Ricci scalar is given by

R = e−λ

2r2 (4−4eλ +ν′2r ′2 −4rλ′ +4v′r −λ′r2ν′ +2r2ν′′).

(14)

The schwarzschild spacetime has been considered as exterior
line element, written as

ds2 =
(

1 − 2M

r


)
dt2 −

(
1 − 2M

r


)−1

dr2 − r2dθ2 − r2 sin2 θdφ2,

(15)

also at the boundary surface r = r
 , the internal and external
region must match smoothly so we have

eν
 = e−λ
 = 1 − 2M

r

, (kPr − τ11)r
 = 0, (16)

where r
 denotes the boundary surface. The hydrostatic
equilibrium condition can be well interpreted by following
expression

P ′
r = −ν′

2
(ρ + Pr ) + 2�

r
− χ1, (17)

where � = P⊥ − Pr is the anisotropy factor and χ1 repre-
sents the contribution of dark source given in appendix as
Eq. (A1). The equilibrium equation is also called the gen-
eralized Tolman Oppenheimer Volkoff (TOV) equation and

ν′

2
= (kPrr3 − τ11r3) + 2m fR

r(r − 2m)2 fR
. (18)

The mass function m(r) of spherical geometry is given by

e−λ(r) = 1 − 2m

r
, m(r) = k

2

r∫

0

r2

fR

(
ρ − τ00

k

)
dr , (19)

where

m′(r) = kr2

2 fR

(
ρ − τ00

k

)
. (20)

The dark source terms added in the above equations by using
of Eq. (18) in Eq. (17), so the generalized TOV equation
becomes

P ′
r = −

[
(kPrr3 − τ11r3) + 2m fR

r(r − 2m)2 fR

]
(ρ + Pr )+ 2�

r
−χ1.

(21)

It is already mentioned that χ1 is given in appendix as
Eq. (A1).

2.1 Energy conditions

For any compact star model to be physical realistic, cer-
tain energy conditions must be satisfied. For our model, the
energy momentum tensor given in previous Eq. (7) is consid-
ered to develop such conditions. The eigenvalues �i where
i = 0, 1, 2, 3 are the roots of following equation

| T (D)
αβ −�αgαβ | = 0. (22)

The energy conditions are given as

�0 ≥ 0, �0 + �i ≥ 0, (23)

where, �0 denotes the eigenvalue related to the timelike eigen-
vector and �i represents the eigenvalues that corresponds to
the spacelike eigenvectors. For the anisotropic matter config-
uration considered in our case, the Eq. (22) can be rewritten
as:

∣∣∣∣∣∣∣∣

ρ − τ00
k − � 0 0 0
0 Pr − τ11

k + � 0 0
0 0 P⊥ − τ22

k + � 0
0 0 0 P⊥ − τ22

k + �

∣∣∣∣∣∣∣∣
= 0,
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we obtain the following result

[
(ρ − τ00

k
− �)(Pr − τ11

k
+ �)

] (
P⊥ − τ22

k
+ �

)2 = 0,

(24)

above equation have four roots, first two are distinct and the
following one is repeated

(
P⊥ − τ22

k
+ �

)2 = 0, (25)

The roots of Eq. (24) are listed below:

�0 =
(
ρ − τ00

k

)
, �1 = −

(
Pr − τ11

k

)
, (26)

�2 = −
(
P⊥ − τ22

k

)
, �3 = −

(
P⊥ − τ33

k

)
. (27)

Following three energy conditions have been developed by
making use of Eqs. (26) and (27) in Eq. (23)

kρ − τ00 > 0,
kPr − τ11

kρ − τ00
≤ 1,

kP⊥ − τ22

kρ − τ00
≤ 1. (28)

The dark source terms τ00, τ11 and τ22 are defined in appendix
as Eqs. (A2)–(A4).

3 Implementation of Starobinsky model

The f (R) model that has been considered to study the evo-
lution of developed model is Starobinsky model [39], having
following mathematical form:

f (R) = R + δR2, (29)

where δ can take positive value. The model under consider-
ation depicts that the viable candidate for the constituents of
dark matter pertaining stable stellar configuration.

3.1 Case I

In this case, we consider the GPEoS given in Eq. (1) and we
define dimensionless variables as

α = Prc
ρc

, α2 = (α − α1 + nαα1), r = ξ

A
, ψn

0 = ρ0

ρ0c
,

α3 = (α1n(1 − nα)ψ−1
0 + (1 + n)α2), A2 = 4πρc,

α4 = (α1 − nαα1 + ψ0α2), v(ξ) = m(r)A3

4πρc
. (30)

TOV equation for Starobinsky model can be obtained by
using Eqs. (1), (2), (30) in Eq. (21) and we obtain

ξ2α3
dψ0

dξ

[
(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

+ ξ3

8π fR

[
κα1ψ

n
0 (1 − nα)

+κψn+1
0 α2 − τ11

ρc
+ 8πv fR

ξ3

]

−2ξ�ψ−n
0

ρc

[
(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

+χ1ξ
2ψ−n

0

ρc

[
(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

= 0. (31)

The mass function m(r) of spherical geometry in the frame-
work of f (R) gravity with the help of Eq. (20) turns out to
be

dv

dξ
= ξ2ψn

0 κ

8π fR

[
1 − nα2 + nα2ψ0 − τ00ψ

−n
0

κρc

]
. (32)

Insertion of f (R) model in above expression leads to follow-
ing hydrostatic equilibrium equation

ξ2α3
dψ0

dξ

[ (1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

+ ξ3

8π + 16πδR∗

×
[
κα1ψ

n
0 (1 − nα) + κψn+1

0 α2 − τ̄11

ρc
+ 8πv + 16vπR∗

ξ3

]

+
[
−2ξ�ψ−n

0

ρc
+ χ̄1ξ

2ψ−n
0

ρc

]
×

[
(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

= 0.

(33)

In this case, we have

dv

dξ
= ξ2ψn

0 κ

8π + 16vπR∗

[
1 − nα2 + nα2ψ0 − τ̄00ψ

−n
0

κρc

]
.

(34)

Dark source terms using f (R) model given in appendix as
Eqs. (A5)–(A7). For the physical consistency of the poly-
tropes, the energy conditions modifies in the following form

(1 − nα) >
τ00

κρc
,

(α1 − nαα1 + ψ0α2) − (τ11ψ
−n
0 /κρc)

(1 − nα2 + nα2ψ0) − (τ00ψ
−n
0 /κρc)

≤ 1, (35)

1

ψn
0 (1 − nα2 + nα2ψ0) − (τ00/κρc)((

(α1 − nαα1)ψ
n
0 + ψn+1

0 α2

)
+ 8π fR

κ[
3v/ξ3 − ψn

0 κ

8π fR

(
(1 − nα2 + nα2ψ0) − τ00ψ

−n
0

κρc

)]

−(τ11/κρc)) ≤ 1, (36)

and with generalized polytropic conditions

(1 − nα) >
τ̄00

κρc
,

(α1 − nαα1 + ψ0α2) − (τ̄11ψ
−n
0 /κρc)

(1 − nα2 + nα2ψ0) − (τ̄00ψ
−n
0 /κρc)

≤ 1, (37)
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1

ψn
0 (1 − nα2 + nα2ψ0) − (τ̄00/κρc)

[ (
(α1 − nαα1)ψ

n
0 + ψn+1

0 α2

)

+(8π + 16δπR∗)/κ
[

3v/ξ3 − ψn
0 κ

(8π + 16πδR∗)

((1 − nα2 + nα2ψ0) − τ̄00ψ
−n
0 /κρc)

]
− (τ̄11/κρc)

]
≤ 1. (38)

3.2 Case 2

We consider the GPEoS given in Eq. (3) and define ψn = ρ
ρc

as dimensionless variable, the following similar methodol-
ogy as in case I, we obtain

ξ2((α − α1)(n + 1) + nα1ψ
−1)

dψ

dξ

[
(1 − 2v/ξ)

1 + α + ψ(α − α1)

]

+ ξ3

8π fR
×

[
κα1ψ

n + κψn+1(α − α1) − τ11

ρc
+ 8πv fR

ξ3

]

+
[
−2ξ�ψ−n

ρc
+ χ1ξ

2ψ−n

ρc A

]
×

[
(1 − 2v/ξ)

1 + α + ψ(α − α1)

]
= 0,

(39)

and by applying Starobinsky model, we get

ξ2((α − α1)(n + 1) + nα1ψ
−1)

dψ

dξ

[
(1 − 2v/ξ)

1 + α + ψ(α − α1)

]

+ ξ3

8π + 16πδR∗

[
κα1ψ

n + κψn+1(α − α1) − τ̄11

ρc

+8πv + 16vπR∗

ξ3

]

+
[

− 2ξ�ψ−n

ρc
+ χ̄1ξ

2ψ−n

ρc A

]
×

[
(1 − 2v/ξ)

1 + α + ψ(α − α1)

]
= 0.

(40)

Also by using mass function given in Eq. (20) for interior
spherical geometry results the form

dv

dξ
= ξ2kψn

8π fR

[
1 − τ00ψ

−n

κρc

]
, (41)

and we obtain

dv

dξ
= ξ2κψn

8π(1 + 2δR∗)

[
1 − τ̄00ψ

−n

κρc

]
. (42)

For the physically viable model, the following conditions
must be satisfied

ρ >
τ00

κ
, α1 + ψ(α − α1) ≤ 1 −

(
τ00 − τ11

κρcψn

)
, (43)

α1 + ψ(α − α1) + 8π fR
κ

[
3v

ξ3ψn
− 1 + τ00 − τ11

κρcψn

]
≤ 1.

(44)

and by applying Starobinsky model

ρ >
τ̄00

κ
, α1 + ψ(α − α1) ≤ 1 −

(
τ̄00 − τ̄11

κρcψn

)
, (45)

α1 + ψ(α − α1) + 8π(1 + 2R∗)
ψnκ[

3v

ξ3 − ψn + τ̄00 − τ̄11

8πρc(1 + 2δR∗)

]
≤ 1. (46)

A system of ordinary differential equation (33), (34) or (40),
(42), which have three unknown functions: �, ψ and v that
can be depending any set of parameters α and n, In order to
closed the system we need to evaluate one unknown and for
this purpose we will apply conformally flat condition.

4 Conformally flat condition

We will use conformally flat condition to calculate �. The
electric part Weyl tensor C3

232 is given by

W = r3e−λ

6

(
eλ

r2 + λ′ν′

4
− 1

r2 − ν′2

4
− ν′′

2
− λ′ − ν′

2r

)
, (47)

by using integration of mass function it become

W = −κ

6

r∫

0

r3

fR

(
ρ − τ00

k

)′
dr+ κ

6

r∫

0

r3 f ′
R

fR2

(
ρ − τ00

κ

)
dr

+ r3κ

6 fR

[(
Pr − τ11

κ

)
−

(
P⊥ − τ22

κ

)]
. (48)

Integrating this factor, such that

eν = q̃2
1r

2cosh2
[∫

eλ

r
dr + q̃

]
, (49)

where q̃ is the constant of integration. Now using conformally
flat condition W = 0, we obtain

� = r fR
κ

(
e−λ − 1

r2

)′
+

(
τ22 − τ11

κ

)
. (50)

4.1 Case 1

By making use of Eqs. (12), (13) and Eq. (20), � can be
written as

� = 8πρc fR
κ

[
3v

ξ3 − ψn
0 κ

8π fR

(
(1 − nα2 + nα2ψ0)

−τ00ψ
−n
0

κρc

)
+ τ22 − τ11

8πρc fR

]
. (51)
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Using f (R) model for anisotropic factor

� = 8πρc(1 + 2δR∗)
κ

[3v

ξ3 − ψn
0 κ

8π(1 + 2δR∗)

×
(

(1 − nα2 + nα2ψ0) − τ̄00ψ
−n
0

κρc

)

+ τ̄22 − τ̄11

8πρc + 16πδρc R∗
]
. (52)

Following condition have been developed by making use of
Eqs. (2), (3), (51) and dimensionless variable in Eq. (30)

ξ2α3
dψ0

dξ

[
(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

+ ξ3

8π fR

[
κα1ψ

n
0 (1 − nα) + κψn+1

0 α2 − τ11

ρc

+8πv fR
ξ3

]
− 16ξπ fR

ψn
0 κ

[
3v

ξ3 − ψn
0 κ

8π fR

(
(1 − nα2 + nα2ψ0)

− τ00ψ
−n
0

κρc

)
+ τ22 − τ11

8πρc fR

]

×
[

(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

+ χ1ξ
2ψ−n

0

ρc A

×
[

(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

= 0. (53)

also by applying Starobinsky model, we obtain

ξ2α3
dψ0

dξ

[
(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

+ ξ3

8π(1 + 2δR∗)

(
κα1ψ

n
0 (1 − nα)

+κψn+1
0 α2 − τ̄11

ρc
+ 8πv(1 + 2δR∗)

ξ3

)

+
[

(1 − 2v/ξ)

[1 − nα + (n + 1)α4]
]

×
[

χ̄1ξ
2ψ−n

ρc A
− 16πξ(1 + 2R∗δ)

κψn
0

×
[

3v

ξ3 − ψn
0 κ

8π(1 + 2δR∗)
×

(
(1 − nα2 + nα2ψ0) − τ̄00ψ

−n
0

κρc

)

+ τ̄22 − τ̄11

8πρc(1 + 2δR∗)

]]
= 0. (54)

4.2 Case 2

Following the similar pattern as in case I and by making use
of Eqs. (12), (13), (20), � can be written as

� = 8πρc fR
κ

[
3v

ξ3 − ψnκ

8π fR

(
1 − τ00ψ

−n

κρc

)
+ τ22 − τ11

8πρc fR

]
,

(55)

after some simplifications, we have

� = 8πρc(1 + 2δR∗)
κ

[
3v

ξ3 − ψnκ

8π(1 + 2δR∗)

(
1 − τ̄00ψ

−n

κρc

)

+ τ̄22 − τ̄11

8πρc(1 + 2δR∗)

]
. (56)

Following condition have been developed by making use
Eqs. (3), (4), (55) and dimensionless variable in Eq. (21)

ξ2
(
((α − α1)(n + 1)) + α1ψ

−1
)dψ

dξ

×
[

(1 − 2v/ξ)

1 + α + ψ(α − α1)

]
+ ξ3

8π fR

×
[
κα1ψ

n + κψn+1(α − α1) − τ11

ρc
+ 8πv fR

ξ3

]

+
[

(1 − 2v/ξ)

1 + α + ψ(α − α1)

]

×
[
χ1ξ

2ψ−n

ρc A
− 2ξψ−n

ρc

(
8π fR

κ

[
3v

ξ3 − ψnκ

8π fR

×
(

1 − τ00ψ
−n

κρc

)
+ τ22 − τ11

8πρc fR

])]
= 0, (57)

the generalized TOV equation we becomes

ξ2((α − α1)(n + 1) + α1ψ
−1)

dψ

dξ

[
(1 − 2v/ξ)

1 + α + ψ(α − α1)

]

+
[

(1 − 2v/ξ)

1 + α + ψ(α − α1)

]

×
[

χ̄1ξ
2ψ−n

ρc A
− 2ξψ−n

ρc

(
8π(1 + 2δR∗)

κ

×
[

3v

ξ3 − ψnκ

8π(1 + 2δR∗)
(1 − τ̄00ψ

−n

κρc
) + τ̄22 − τ̄11

8πρc(1 + 2δR∗)

])]

+ ξ3

8π + 16πδR∗ ×
[
κα1ψ

n + κψn+1(α − α1)

− τ̄11

ρc
+ 8πv + 16πvδR∗

ξ3

]
= 0. (58)

5 Tolman mass

Tolman mass (which is the measure of active gravitational
mass) is computed for our anisotropic spherical geometry in
the background of f (R) gravity as and that function is used
the polytropic model to check the stability

mT = 4π

κ

[
e

ν+λ
2 (κPrr

3 − τ11r
3 + 2m fR)

+
r∫

0

r2e(ν+λ)/2(τ00 + τ11 + τ22)dr

]
. (59)
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The alternative explanation for Tolman mass

mT = M

(
r

r


)3

− 4πr3

κ

r
∫

r

×
[
e(ν+λ)/2

(
κ�

r
− 6w fR

r̃4 + τ ∗
1

r̃
− 3τ ∗

2

r̃4

)]
dr̃ , (60)

where

τ ∗
1 = τ00 + 2τ11, τ ∗

2 =
r∫

0

r2e(ν+λ)/2(τ00 + τ11 + τ22)dr.

5.1 Case 1

For case 1 by integrating w.r.t r, we get

ν = ν
 − 2

r
∫

r

(
(κPrr3 − τ11r3) + 2m fR

r(r − 2m)2 fR

)
dr. (61)

Now we will introduce the following dimensionless variables

r
r


= ξ

Ã
= x, y = M

r

, m̃ = m

M , Ã = r
 A

y = α(n + 1) v


ξ

, � ≡ �

ρc
, e−λ = 1 − 2αv(n+1)

x2 Ã2 .
(62)

The explanation for the stability of Tolman mass

mT = 4π

κ

[
e

ν+λ
2 (κPrr

3 − ¯̄τ11r
3 + 2m + 4mδR∗∗)

+
r∫

0

r2e(ν+λ)/2( ¯̄τ00 + ¯̄τ11 + ¯̄τ22)dr

]
, (63)

we obtained the following equation

mT = M

(
r

r


)3

− 4πr3

κ

r
∫

r

[
e(ν+λ)/2

(
κ�

r
− 6w(1 + 2δR∗∗)

r̃4

+ τ ∗
1

r̃
− 3τ ∗

2

r̃4

)]
dr̃ , (64)

similarly, from TOV equation

ν = ν
 − 2

r
∫

r

(
(κPrr3 − ¯̄τ11r3) + 2m + 4mδR∗∗

r(r − 2m)(2 + 4δR∗∗)

)
dr.

(65)

By using Eq. (63), we introduce the following auxiliary vari-
ables

mT

M
= x3 + x3 Ã2

y

1∫

x

√
1 − 2y√

1 − 2vα(n + 1)/x Ã
exp

1

8π fR Ã

1∫

x

κx3 Ã3α1ψ
n
0 1 − nα + κx3 Ã

3
ψn+1

0 α2 − 4π ¯̄τ11x3 Ãr2

 + 8πv fR

x2(1 − 2v/x Ã)
dx

×
(

κ�

x
+ 4πτ ∗

1 r
2



Ã2x
− 12πτ ∗

2

Ã2x4r


)
dx . (66)

The contribution of dark source and Ricci scalar in terms
of dimensionless variables given in appendix as Eqs. (A8)–
(A10) and Eq. (A13), we calculate this equation by Tolman
mass and obtain result

mT

M
= x3 + x3 Ã2

y

1∫

x

[ √
1 − 2y√

1 − 2vα(n + 1)/x Ã
exp

(
1

8π(1 + 16R∗∗δ) Ã

×
1∫

x

κx3 Ã3α1ψ
n
0 (1 − nα) + κx3 Ã

3
ψn+1

0 α2 − 4π ¯̄τ11x3 Ãr2

 + 8πv(1 + 2δR∗∗)

x2(1 − 2v/x Ã)

)
dx

×
(

κ�

x
+ 4πτ ∗

1 r
2



Ã2x
− 12πτ ∗

2

Ã2x4r


)
dx

]
. (67)

Now � can be calculated from anisotropic factor as

� = �

ρc
= 8π fR

κ

[
3v

ξ3 − ψn
0 κ

8π fR

(
(1 − nα2 + nα2ψ0)

−
¯̄τ00ψ

−n
0

κρc

)
+ ¯̄τ22 − ¯̄τ11

8πρc fR

]
, (68)

we may write

� = 8π(1 + 2δR∗∗)
κ

[
3v

ξ3 − ψn
0 κ

8π(1 + 2δR∗∗)

×
(

(1 − nα2 + nα2ψ0) −
¯̄τ00ψ

−n
0

κρc

)
+ ¯̄τ22 − ¯̄τ11

8πρc(1 + 2δR∗∗)

]
.

(69)
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5.2 Case 2

5.2.1 Using model R + δR2

By using Eq. (63), we introduce the following auxiliary vari-
ables

mT

M
= x3 + x3 Ã2

y

1∫

x

√
1 − 2y√

1 − 2vα(n + 1)/x Ã
exp

1

8π fR Ã

×
1∫

x

κx3 Ã3α1ψ
n + κx3 Ã

3
ψn+1(α − α1) − 4π ¯̄τ11x3 Ãr2


 + 8πv fR

x2(1 − 2v/x Ã)
dx

×
(

κ�

x
+ 4πτ ∗

1 r
2



Ã2x
− 12πτ ∗

2

Ã2x4r


)
dx . (70)

Using f (R) model

mT

M
= x3 + x3 Ã2

y

1∫

x

[ √
1 − 2y√

1 − 2vα(n + 1)/x Ã
exp

(
1

8π(1 + 16R∗∗δ) Ã

×
1∫

x

κx3 Ã3α1ψ
n + κx3 Ã

3
ψn+1(α − α1) − 4π ¯̄τ11x3 Ãr2


 + 8πv(1 + 2δR∗∗)
x2(1 − 2v/x Ã)

)
dx

×
(

κ�

x
+ 4πτ ∗

1 r
2



Ã2x
− 12πτ ∗

2

Ã2x4r


)
dx

]
. (71)

Now � can be calculated from anisotropic factor as

� = 8π fR
κ

[
3v

ξ3 − ψnκ

8π fR

(
1− ¯̄τ00ψ

−n

κρc

)
+ ¯̄τ22 − ¯̄τ11

8πρc fR

]
. (72)

We get

� = 8π(1 + 2δR∗∗)
κ

[
3v

ξ3 − ψnκ

8π(1 + 2δR∗∗)

×
(

1 − ¯̄τ00ψ
−n

κρc

)
+ ¯̄τ22 − ¯̄τ11

8πρc(1 + 2δR∗∗)

]
. (73)

These results are consistent both cases of generalized poly-
tropes.

6 Conclusion

In this work, we have developed generalized frameworks for
conformally flat generalized polytropes with anisotropic fluid
in modified f (R) gravity by using spherical symmetric distri-
bution. In order to incorporate higher order curvature invari-
ants, we have worked out the well known Starobinsky model

i.e., f (R) = R + δR2 where δ can be a positive constant.
The independent components are obtained from the gener-
alized field equations. Herein, we have presented two cases
of generalized polytropes for development of LEe: firstly by
using relationship between mass density, pressure and total
energy density, secondly using generalized polytropic equa-

tion relating energy density and pressure. The generalized
TOV equations which describes the hydrostatic equilibrium
state of the systems are constructed. The energy conditions
have been developed for developed frameworks and dimen-
sionless parameters are introduced for both cases to conve-
niently proceed with the analysis.

The EoS are playing an important role to describe the
two very fundamental aspects of the universe, dark energy
and dark matter. Babichev et al. [40] used a form of EoS,
called generalized linear EoS with perfect fluid distribution to
describe the different scenarios for dark energy. Mukhopad-
hyay et al. [41] discussed the real nature of dark energy
through the parameter of polytropic EoS specially in non-
dust situation. The GPEoS is used to discuss the general-
ized polytropes for the study of astronomical objects. Slat-
tery [42] developed a GPEoS, called a perturbed polytropic
EoS, to describe the thermodynamic process of the matter
inside the astronomical objects. According to this, the log-
arithm of pressure has an extra term that perturbs its poly-
tropic behavior, that is, a polynomial expansion in powers
of density. The GPEoS and resulting LEe are of significant
importance, physical motivation behind selection of GPEoS
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Fig. 1 Graphical representation of � for case 1

can be depicted through some of the applications listed
below.

• GPEoS is used in the development of quasi-normal
modes for superfluid neutron stars [43].

• In relativistic superfluid stars GPEoS plays an important
role in the discussion of r-modes [44].

• The use of GPEoS is vital to discuss non-local symmetric
classification of planar gas dynamics equations [45].

• GPEoS helped in the explorations related to identification
of the symmetry between early and late time universe. In
cosmological point of view, the GPEoS was used in a
series of papers to study dark energy and dark matter
by Chavanis. He incorporated dark source along with
GPEoS to explain the early and late universe [16,17,46,
47].

• It is used in the study of primordial quantum fluctuations
and build a universe with constant density at the origin
[18].

• The generalized thermodynamic processes expressed as
a random superposition of Gaussian polytropes with the
help of GPEoS [48].

• The GPEoS is used to develop mathematical models
to describe different aspects of realistic astrophysical
objects like PSR J1614-2230, PSR J1903+327, Vela X-1,
Vela 4U, 4U 1820-30, 4U 1608-52 [49,50].

• The core-envelope models to study the interior of SAX
J1808.4-3658 and 4U1608-52 was developed with the
help GPEoS [51].

• The GPEoS is used to study realistic polytropic models
in Finch–Skea spacetime [52].

The generalized Weyl tensor is constructed for modified
gravity model whose vanishing value is used to apply con-
formally flat condition in order to make a consistent system
of differential equations. The vanishing value of this tensor
establishes a specific relation between anisotropic pressure
and density. The Tolman mass which is the measure of active

Fig. 2 Graphical representation of � for case 2

gravitational mass is used to discuss the stability of devel-
oped frameworks. Our solutions leads to the construction of
the models of highly compact spheres that are in the equilib-
rium mainly due to pressure anisotropy. The factor � is the
measure that determines stability or instability in the gravitat-
ing system and it interprets cracks or instabilities occurring
in fluid distribution due to perturbations in the system. We
have presented graphical representation of � for three dif-
ferent values of k in both the frameworks as Figs. 1 and 2
by considering a unit test sphere. It is clear from figures that
value of omega do not change its sign that shows no cracking
for both cases.
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Appendix

χ1 = 1

k

[−ν′′e−λ fR ′

2
+ ν′λ′e−λ fR ′

4
− f ′′

Re
−λ

r

+e−λ fR ′

r2 − R fR ′

2
+ ν′ f

2
+ f ′

2

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


794 Page 10 of 11 Eur. Phys. J. C (2022) 82 :794

− R′ fR
2

− ν′R fR
2

− ν′2 fR ′e−λ

4
− ν′ fR ′e−λ

2r

−λ′e−λ fR ′

2r
+ f

2
− R fR

r

]
. (A1)

τ00 =
(
R fR

2
+ λ′e−λ fR ′

2
− f

2
− 2 fR ′e−λ

r
− fR

′′e−λ

)
,

(A2)

τ11 =
(

− R fR
2

+ ν′e−λ fR ′

2
+ f

2
+ 2 fR ′e−λ

r

)
, (A3)

τ22 =
(

− R fR
2

+ ν′e−λ fR ′

2
+ f

2
+ fR ′e−λ

r

+ fR
′′e−λ − λ′e−λ fR ′

2

)
. (A4)

For both cases the extra curvature are same ingredients of
f (R) gravity

τ̄00 = λ′e−λδR′ − 2e−λR′′δ − 4Ae−λδR′

ξ
+ δR2

2
, (A5)

τ̄11 = ν′e−λδR′ + 4Ae−λδR′

ξ
− δR2

2
, (A6)

τ̄22 = 2Ae−λδR′

ξ
+ 2e−λR′′δ + ν′e−λδR′

−λ′e−λδR′ − δR2

2
. (A7)

Define the dark source terms in this equation using dimen-
sionless variables

¯̄τ00 =
(
R fR

2
+ λ′e−λ fR ′

2
− f

2
− 2 fR ′e−λ

xr

− fR

′′e−λ

)
,

(A8)

¯̄τ11 =
(

− R fR
2

+ ν′e−λ fR ′

2
+ f

2
+ 2 fR ′e−λ

xr


)
, (A9)

¯̄τ22 =
(

− R fR
2

+ ν′e−λ fR ′

2
+ f

2
+ fR ′e−λ

xr

+ fR

′′e−λ

−λ′e−λ fR ′

2

)
, (A10)

χ̄1 is given as

χ̄1 = 1

κ

[
A3e−λδ

2

(
dv

dξ

) (
dλ

dξ

)(
dR

dξ

)

−A3e−λδ

(
d2v

dξ2

) (
dR

dξ

)

− 2A3δe−λ

ξ

(
d2R

dξ2

)
+ A

2

(
dR

dξ
+ 2δR

dR

dξ

)

+ (AR + AR2δ)

2

(
dv

dξ

)

× 2δA3e−λ

ξ2

(
dR

dξ

)
− ARδ

(
dR

dξ

)

− (A + 2AδR)

2

(
dR

dξ

)
− (AR + 2AR2δ)

2

×
(
dv

dξ

)
− A3e−λδ

2

(
dv

dξ

)2 (
dR

dξ

)
− A3δe−λ

ξ

(
dv

dξ

) (
dR

dξ

)

− A3δe−λ

ξ

(
dλ

dξ

)(
dR

dξ

)
+ (AR + δR2)

ξ
− (AR + 2AR2δ)

ξ

]
.

(A11)

Ricci scalar, we have

R∗ = 2πe−λρc

ξ2

(
4 − 4eλ + ν′2ξ2

4πρc
− 4ξλ′

A

+4ξν′

A
− ξ2λ′ν′

4πρc
+ ν′′ξ2

2πρc

)
. (A12)

R∗∗ = e−λ

2x2r2



(4 − 4eλ + ν′2x2r ′2

 − 4xr
λ′

+4ν′xr
 − λ′x2r2

ν′ + 2x2r2


ν′′). (A13)
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