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Abstract In this paper, we consider a high-curvature limit
of the varying fundamental constants toy model in which
both the value of the speed of light and the value of the grav-
itational constant are related to the values of the two non-
minimally coupled scalar fields. The high-curvature limit
motivates the application of the third quantization procedure
to such a toy model which results in a theory that describes
bosonic massive particles that move freely in the three-
dimensional minisuperspace associated with the degrees of
freedom of the original model. Motivated by the idea that
in the quantum cosmological description the minisuperspace
gets promoted to a real configurational space of the system
we supplement the third quantized action of the considered
model with an interaction term that allows for decay and scat-
tering processes. We show that such interaction term induces
a scenario in which a parent universe decays into two uni-
verses described by a nearly maximally entangled Bell state.
We eventually asses the strength of the entanglement, in the
created pair of universes, by calculating the von Neumann
entropy of entanglement.

1 Introduction

The idea of the multiverse is quite capacious. Most of the
conceptualizations of such an idea can be assigned to one
of Tegmark’s levels of the multiverse [1]. Level one defines
multiverse as regions beyond our cosmic horizon. The effects
of quantum entanglement between different causally dis-
connected patches of space-time were investigated in [2,3].
Tegmark’s level two defines multiverse as a collection of
post-inflationary bubbles with possibly different values of
the physical constants. Level three involves Everett’s many-
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worlds interpretation of quantum physics while level four
also includes all well defined mathematical structures. An
interesting class of models, that can be classified as a level
two multiverse, is based on the third quantization of the
Wheeler–DeWitt wave function. In the process of the third
quantization, the Wheeler–DeWitt wave function becomes
an operator, which creates or annihilates universes character-
ized by some sets of quantum numbers (these are usually the
momentum components in the minisuperspace) [4,5]. Such
approach, which explicitly uses the third quantization for-
malism to describe the emergence of the entanglement in the
multiverse, has inspired the area of research that explored
different scenarios of generation of the interuniversal entan-
glement. It exploits the two different representations (the
emergence of the entanglement resulting from the represen-
tation change is a generic feature of any quantum field the-
ory [6]), namely the invariant one (for the first time found
in [7]) which conserves the number of the universes and the
diagonal one. Further development of the multiverse mod-
els relying on the third quantization includes postulating
an interaction between the different universes which con-
stitute the multiverse with each universe being represented
by a different Wheeler–DeWitt wave function. It is usually
assumed that the interaction between the universes can be
represented by a term that formally describes an interaction
between two harmonic oscillators coupled by a spring [8–
10].

In this paper, we will construct, by acting in a similar
spirit, a model, in which by including into the action an
appropriate interaction term, the universes represented by
the massive bosonic particles moving in the minisuperspace
(or according to the third quantization concept by the mas-
sive Klein–Gordon fields) can decay and collide with each
other. Such decay processes will result in the emergence of

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10704-3&domain=pdf
mailto:adam.balcerzak@usz.edu.pl


732 Page 2 of 8 Eur. Phys. J. C (2022) 82 :732

the entanglement in the produced pairs of the universes. We
will also show that a model, with the abovementioned prop-
erties, can result from the non-minimally coupled biscalar
gravity theory of varying fundamental constants in which
both the speed of light and the gravitational constant are
represented by the two non-minimally coupled scalar fields
[11].

There have been many approaches to the idea of vary-
ing speed of light presented in the literature. Most of them,
however, encounters profound conceptional problems such
as violation of the Lorentz invariance [12–17]. The theory
of varying fundamental constants assumed in this paper is
largely based on the locally Lorentz-invariant varying speed
of light (VSL) theory postulated by Magueijo in [14] that
extends the VSL theories introduced in [12,13] which break
the general covariance and, in consequence, require to choose
a preferred reference frame (usually identified with the cos-
mological frame) to formulate the particular model. It was
shown that such theories can solve the horizon, the flat-
ness and the cosmological constant problem, however, the
dynamics of varying speed of light is not given explicitly
due to the lack of suitable terms in the action. The approach
presented in [14] complements the mentioned VSL model
by explicitly adding in the action the dynamical terms that
govern the behaviour of the speed of light and the gravita-
tional constant. It also proposes the definitions of covariance
and local Lorenz invariance for the case of varying speed of
light. It was also shown that such a model includes a sce-
nario in which the whole multiverse emerges from nothing
[18] and that the created pairs of the multiverses are entan-
gled as confirmed by non-vanishing entanglement entropy
[19]. The interuniversal entanglement was also investigated
in the context of the third quantized varying fundamen-
tal constants cyclic cosmological models in [20] where it
was argued that the third quantization naturally provides a
thermodynamical description of the entanglement [21]. The
emergence of the entanglement in pairs of created universes
at the critical points of their evolution was investigated in
[22].

Our paper is organized as follows. In Sect. 2 we intro-
duce the non-minimally coupled varying speed of light c and
varying gravitational constantG cosmological toy model and
define its third quantized action. In Sect. 3 we add to the
action an interaction term that enables scattering and decay
processes. In Sect. 4 we show that pairs of universes, which
are produced in the decay processes induced by the interac-
tion term introduced in Sect. 3, are described by nearly max-
imally entangled Bell states. We also calculate the entropy
of entanglement for such pairs. In Sect. 5 we give our con-
clusions.

2 Third quantized non-minimally coupled varying c
and G cosmological model

We start with a model of varying speed of light c and vary-
ing gravitational constant G introduced in [11,18] where
both fundamental constants in the original Einstein-Hilbert
action are replaced with a certain functions of the two scalar
fields. Thus, the resulting action formally describes a non-
minimally coupled scalar–tensor gravity theory with two
scalar degrees of freedom. The considered model is largely
based on the covariant and locally Lorentz-invariant varying
speed of light theories postulated in [14] and is defined by
the following action:

S =
∫ √−g

(
eφ

eψ

)

× [
R + Λ + ω(∂μφ∂μφ + ∂μψ∂μψ)

]
d4x, (1)

where R is the Ricci scalar, Λ is the cosmological constant,
ω is the parameter of the model and φ and ψ are the non-
minimally coupled scalar fields, which values are, by defi-
nition, linked with the values of c and G via the following
formulas:

c3 = eφ, (2)

G = eψ. (3)

By introducing the new fields β and δ defined by:

φ = β√
2ω

+ 1

2
ln δ, (4)

ψ = β√
2ω

− 1

2
ln δ, (5)

the action (1) can be recast into the Brans-Dicke type action
which has the following form:

S =
∫ √−g

[
δ(R + Λ) + ω

2

∂μδ∂μδ

δ
+ δ∂μβ∂μβ

]
d4x .

(6)

An introduction of varying c into the action (1) or (6) breaks
the general covariance of the original theory [14]. This, on
the other hand, forces one to choose a preferred reference
frame in which our theory is formulated. We will follow an
approach proposed in [14] and formulate our model in the
cosmological frame defined by the flat FLRW metric which
reads:

ds2 = −N 2(dx0)2 + a2(dr2 + r2dΩ2), (7)

in which both the scale factor a and the lapse function N
depend on the coordinate x0. The form of the action (6) in
the cosmological frame defined by the metric (7) reads:

S = 3V

8π

∫
dx0

(
−a2

N
a′δ′ − δ

N
aa′2 + Λδa3N
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− ω

2

a3

N

δ′2

δ
− a3

N
δβ ′2

)
, (8)

where ()′ ≡ ∂
∂x0 . Fixing the preferred reference frame com-

pletely requires to choose a specific form of the lapse function
N . Since we are free in making such a choice, we will assume
throughout the paper the following form of the lapse function
N :

N = a3δ. (9)

The action (8) can be further simplified by the application of
the following sequence of the field transformations:

X = ln(a
√

δ), Y = 1

2A
ln δ (10)

and

η = r(AY − 3X), x1 = r(3Y − AX), x2 = 2
√
Ṽβ, (11)

where A = 1√
1−2ω

, Ṽ = 3V
8π

and r = 2
√

Ṽ
A2−9

. The action
(8) in the new variables η, x1 and x2 takes the following form:

S =
∫

dx0
[

1

4
(η′2 − x ′2

1 − x ′2
2 ) + Λ̄e−2 η

r

]
, (12)

where Λ̄ = ṼΛ.
The hamiltonian corresponding to the action (12) is:

H = π2
η − π2

x1
− π2

x2
− Λ̄e−2 η

r , (13)

where πη = η′
2 , πx1 = − x ′

1
2 and πx2 = − x ′

2
2 are the respective

conjugated momenta. Since both πx1 and πx2 are conserved
quantities which is directly implied by (13) we can depict the
classical evolution as a scattering of a point particle on the
exponential potential barrier.

Since we are interested in the high-curvature near singu-
larity behaviour, which occurs for η → ∞ (see Appendix A),
we need now to switch to the canonical quantum cosmologi-
cal framework which is governed by the Wheeler–DeWitt
equation. An application of the Jordan quantization rules
which boil down to replacing the canonical momenta with the
operators in accordance with the following scheme: πη →
π̂η = −i ∂

∂η
, πx1 → π̂x1 = −i ∂

∂x1
and πx2 → π̂x2 = −i ∂

∂x2
leads to the following the Wheeler–DeWitt equation:

Φ̈ − ΔΦ + m2(η)Φ = 0, (14)

where (̇) ≡ ∂
∂η

, Δ = ∂2

∂x2
1

+ ∂2

∂x2
2

and m2(η) = Λ̄e− 2
r η.

Equation (14) is formally the same as the Klein–Gordon
equation which allows us to perform the so-called third quan-
tization of the Wheeler–DeWitt wave function Φ. The third
quantization procedure is completely analogous to the proce-
dure of quantization of the Klein–Gordon field and leads to
the Fock space whose vectors represent the states of the con-
sidered model of the multiverse. The first step of the third
quantization procedure requires writing the so-called third

quantized action which leads to the Wheeler–DeWitt equa-
tion. The third quantized action for the case of the Wheeler–
DeWitt equation given by (14) has the following form:

S3Q = 1

2

∫ [
Φ̇2 − (∇Φ)2 − m2(η)Φ2

]
d2xdη, (15)

where ∇ is a two-dimensional gradient operator associated
with the variables x1 and x2. The corresponding third quan-
tized hamiltonian is:

H3Q = 1

2

∫ [
π2 + (∇Φ)2 + m2(η)Φ2

]
d2x, (16)

where the conjugated momentum π = Φ̇. The description of
the classical evolution associated with the considered model
can be find in the Appendix A.

3 Interacting universes in the minisuperspace

In our model, the set of universes is formally equivalent to
the set of bosonic particles represented by the third quantized
field Φ, characterized by specific values of the momentum
pμ. Since, in the quantum cosmological description, it is
the minisuperspace that constitutes the true configurational
space of the system under consideration, it seems natural
to include an interaction term that allows for the decay and
the scattering processes. The simplest action that enables the
abovementioned processes reads:

S̄M = 1

2

3∑
i=1

∫ {
ηab∂aΦi∂bΦi − (m2

i (η))Φ2
i

}
d2xdη

−g
∫

Φ1Φ2Φ3d
2xdη, (17)

where

ηab =
⎡
⎣1 0 0

0 −1 0
0 0 −1

⎤
⎦ ,

a, b = 0, 1, 2 and it enumerate the minisuperspace dimen-

sions, ∂0 ≡ ∂η, ∂1 ≡ ∂x1 , ∂2 ≡ ∂x2 and mi (η) =
√

Λ̄i e
− η

ri

is the mass associated with the field Φi . Since we are par-
ticularly interested in the description of the decay processes
which are expected to occur in the high-curvature regime that
takes place for sufficiently large value of the time parameter
η (see Appendix A), we will be using a simplified version
of the action (17) which reads:

SM = 1

2

3∑
i=1

∫ {
ηab∂aΦi∂bΦi − m2

Φi
Φ2
i

}
d2xdη

−g
∫

Φ1Φ2Φ3d
2xdη, (18)
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Fig. 1 Diagrammatic representation of the coupling (20) up to order
g2

with mΦi = mi (ηh−c), where ηh−c denotes the moment
in which the high-curvature regime begins. Throughout the
paper we will assume that mΦ1 > mΦ2 + mΦ3 .

The corresponding hamiltonian is:

ĤM = 1

2

3∑
i=1

∫ [
π2
i + (∇Φi )

2 + m2
Φi

Φ2
]
d2x

︸ ︷︷ ︸
Ĥ f ree

+ g
∫

Φ1Φ2Φ3d
2x

︸ ︷︷ ︸
Ĥint

, (19)

where πi = Φ̇i constitute a set of conjugated momenta.
The interaction term in (19) couples the one-particle states

of the field Φ1 with the definite energy and the definite
momentum states of the two other fields, namely Φ2 and
Φ3. Such coupling can more precisely be described by the
following formula:

∣∣∣1Φ1−→
0

〉
Ĥint←−−→

∣∣∣Φ2−−→p
〉
⊗
∣∣∣Φ3−→p

〉
, (20)

where
∣∣∣1Φ1−→

0

〉
represents a zero-momentum one-particle state

of the field Φ1 while
∣∣∣Φ2−−→p

〉
and

∣∣∣Φ3−→p
〉

represent the def-

inite energy states (they are the eigenstates of Ĥ f ree) of
the fields Φ2 and Φ3, respectively, with opposite momenta
of magnitude p (we assume the centre-of-mass reference
frame). The presence of such interaction term allows for the
processes in which a particle, represented by the field Φ1,
decays into pairs of particles represented by the fields Φ2

and Φ3. The states
∣∣∣Φ2−−→p

〉
and

∣∣∣Φ3−→p
〉

are, on the other

hand, coupled back to the state
∣∣∣1Φ1−→

0

〉
(see Fig. 1).

The second order of the perturbations theory leads to the
intermediate three-particle states (see Fig. 2) which con-
tribute to the shift in the vacuum energy. Since this contri-
bution influences only the phase factor which multiplies the
one-particle state of the field Φ1 it will be neglected in the
following considerations [23,24].

Fig. 2 Second order contribution to the vacuum energy

4 Emergence of interuniversal entanglement via decay
process. Bell states and the entropy of entanglement

It is convenient to use an interaction picture to describe the
evolution of the state of the multiverse. Generally, the state
of the multiverse |Ψ 〉 can always be represented by linear
combination of the eigenstates of the free hamiltonian Ĥ f ree:

|Ψ 〉 =
∑
n

cn(η) |ϕn〉 e−i Enη, (21)

where c(η) are some complex coefficients, En and |ϕn〉 are
the eigenvalues and the eigenstates of Ĥ f ree, respectively,
and thus fulfil the following eigenequation:

Ĥ f ree |ϕn〉 = En |ϕn〉 . (22)

By substituting Eq. (21) into the Schrödinger equation

i ˙|Ψ 〉 = (Ĥ f ree + Ĥint ) |Ψ 〉 (23)

one gets:

i ċl =
∑
n

cn 〈ϕl | ĤI |ϕn〉 , (24)

where ĤI ≡ ei Ĥ f reeη Ĥint e−i Ĥ f reeη is the interaction picture
of Ĥint .

For the case of the coupling given by (20) we will be fol-
lowing the Wigner–Weisskopf approach [25] elegantly pre-
sented in [23]. In order to make the notation more compact
we will shorten the formula (20) as follows:

|G〉 Ĥint←−−→ |α〉 , (25)

where |α〉 constitutes the set of the eigenstates of Ĥ f ree cou-
pled to |G〉 via ĤI . We will also assume that the initial state of
the considered setup is identical with the state represented by
|G〉, which is equivalent to the assumption that cG(0) = 1 and
cn �=G(0) = 0. The Wigner–Weisskopf approach for the case
of coupling abbreviated by (25) gives the following expres-
sions for the coefficients cG and cα:

ċG(η) = −
∫ η

0
dη′Θ(η − η′)cG(η′), (26)

cα(η) = −i
∫ η

0
dη′ 〈α| ĤI (0) |G〉 ei(Eα−EG )η′

cG(η′), (27)
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where

Θ(η − η′) =
∑
α

| 〈G| ĤI (0) |α〉 |2ei(EG−Eα)(η−η′). (28)

It can be shown [24] that:

|cG(η)|2 +
∑
α

|cα(η)|2 = 1, (29)

which means that the evolution is unitary even in the case of
perturbative approach.

We will be considering the following scenario: as the evo-
lution begins, the state of the universe is characterized by a
high value of the curvature, since the value of the scale fac-
tor a is close to zero. This, on the other hand, corresponds
to an infinite value of the time parameter, i.e. η → ∞ (see
Appendix A). In the state of high curvature, the interaction
term Ĥint switches on, what enables the decay processes.
We will argue that in such processes, the one-particle zero
momentum state of mass mΦ1 decays into a pair of parti-
cles of masses mΦ2 and mΦ3 , maximally entangled in the
momentum space.

The formula (28) adjusted to our particular setup is:

Θ(η − η′) =
∑
p

∣∣∣∣
〈
1Φ1−→

0

∣∣∣ ĤI (0)

∣∣∣Φ2−−→p
〉
⊗
∣∣∣Φ3−→p

〉 ∣∣∣∣
2

×ei(mΦ1 −EΦ2 (p)−EΦ3 (p))(η−η′), (30)

where p ≡ −→p . We will also define the following function:

D0(η, η′) ≡
∫ η′

0
dη′′Θ(η − η′′), (31)

which derivative is:

∂

∂η′ D0(η, η′) = Θ(η − η′). (32)

By calculating the integral in Eq. (26) by parts, one gets:

∂

∂η
cΦ1 (η) = −

∫ η

0
dη′Θ(η − η′)cΦ1 (η

′)

= −D0(η, η)cΦ1 (η) +
∫ η

0
dη′D0(η, η′) ∂

∂η′ cΦ1 (η
′).

(33)

The first term, in the formula above, is of second order in ĤI

while the second term, is of fourth order in ĤI . This means
that up to the leading order the equation that governs the time
evolution of cΦ1 is:

ċΦ1 = −D0(η, η)cΦ1 . (34)

The integral in Eq. (31) which explicit form is given by:

D0(η, η′) =
∫ η′

0
dη′′∑

p

∣∣∣∣
〈
1Φ1−→

0

∣∣∣ ĤI (0)

∣∣∣Φ2−−→p
〉
⊗
∣∣∣Φ3−→p

〉 ∣∣∣∣
2

×ei(mΦ1 −EΦ2 (p)−EΦ3 (p))(η−η′′), (35)

in the limit for η → ∞ is:

D̄0 ≡ lim
η→∞ D0(η, η) = iΔEΦ1 + 1

2
Γ, (36)

where

ΔEΦ1 ≡ P
∑
p

∣∣∣∣
〈
1Φ1−→

0

∣∣∣ ĤI (0)

∣∣∣Φ2−−→p
〉
⊗
∣∣∣Φ3−→p

〉 ∣∣∣∣
2

mΦ1 − EΦ2(p) − EΦ3(p)
, (37)

Γ ≡ 2π
∑
p

∣∣∣∣
〈
1Φ1−→

0

∣∣∣ ĤI (0)

∣∣∣Φ2−−→p
〉
⊗
∣∣∣Φ3−→p

〉 ∣∣∣∣
2

×δ(mΦ1 − EΦ2(p) − EΦ3(p)), (38)

P denotes a principal value while E2
Φ2

(p) = p2 + m2
Φ2

and

E2
Φ3

(p) = p2+m2
Φ3

. The solution of (34) in the limit η → ∞
gives:

cΦ1 = e−D̄0η = e−iΔEΦ1 η− 1
2 Γ η. (39)

In order to arrive to a more explicit version of the expression
for Γ we need first to calculate

M(p) ≡
〈
1Φ1−→

0

∣∣∣ ĤI (0)

∣∣∣Φ2−−→p
〉
⊗
∣∣∣Φ3−→p

〉
. (40)

After decomposing all the three fields Φ1, Φ2 and Φ3 into
modes with the following expression:

Φi = 1√
2A

∑
p

(
ap√

EΦi (p)
e−i EΦi (p)ηeip·x

+ a†
p√

EΦi (p)
ei EΦi (p)ηe−ip·x

)
, (41)

where A denotes the volume of compact rectangular space-
like part of the minisuperspace, the M(p) assumes the fol-
lowing form:

M(p) = g√
8AmΦ1 EΦ2(p)EΦ3(p)

. (42)

In the three dimensional minisuperspace the explicit form of
the expression for the Γ is:

Γ = g2

8m2
Φ1

. (43)

The state of the three fields Φ1, Φ2 and Φ3 can be
expressed as:

|Ψ (η)〉 = e−iΔEΦ1 η− 1
2 Γ η

∣∣∣1Φ1−→
0

; 0Φ2; 0Φ3

〉

+
∑
p

CΦ2Φ3(p, η)
∣∣0Φ1

〉 ∣∣∣Φ2−−→p
〉
⊗
∣∣∣Φ3−→p

〉
.

(44)

The formula (27) gives the following expression for the coef-
ficients CΦ2Φ3(p, η) in (44):

123
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CΦ2Φ3(p, η)

= M(p)
1 − e

−i
(
mΦ1,R−EΦ2 (p)−EΦ3 (p)−i Γ

2

)
η

EΦ2(p) + EΦ3(p) − mΦ1,R + i Γ
2

, (45)

wheremΦ1,R = mΦ1+ΔEΦ1 is the renormalized mass (in the
following we skip the index R inmΦ1,R and assume thatmΦ1

represents the renormalized mass mΦ1,R). The expression
(44) explicitly describes the entanglement of the momentum
eigenstates.

Since we are interested in calculating the entropy of entan-
glement we need first to calculate the reduced density matrix
associated with one of the universes. After tracing away the
degrees of freedom of the universe represented by the field
Φ2 we obtain the following reduced density matrix for the
universe represented by the field Φ3:

ρΦ3 =
∑
p

〈
Φ2−→p

∣∣∣ ρ
∣∣∣Φ2−→p

〉
= e−Γ η

∣∣∣1Φ1−→
0

〉 〈
1Φ1−→

0

∣∣∣

+
∑
p

|CΦ2Φ3(p, η)|2
∣∣∣Φ3−→p

〉 〈
Φ3−→p

∣∣∣ , (46)

where ρ ≡ |Ψ (η)〉 〈Ψ (η)|.
The von Neumann entropy is then given by:

S(η) = −e−Γ η ln e−Γ η

−
∑
p

|CΦ2Φ3(p, η)|2 ln |CΦ2Φ3(p, η)|2. (47)

In the narrow width limit Γ << mΦ1,mΦ2 +mΦ3 the func-
tion |CΦ2Φ3(p, η)|2 is sharply picked at

pd = 1

2mΦ1

[m4
Φ1

+ m4
Φ2

+ m4
Φ3

−2m2
Φ1
m2

Φ2
− 2m2

Φ1
m2

Φ3
− 2m2

Φ2
m2

Φ3
]1/2, (48)

so the last term in Eq. (47) can be approximated by the fol-
lowing expression:

ln |CΦ2Φ3(pd , η)|2 A
(2π)2

∫
dp2|CΦ2Φ3(p, η)|2. (49)

In the narrow width limit we have that

A
(2π)2

∫
dp2|CΦ2Φ3(p, η)|2 = 1 − e−Γ η, (50)

what ensures fulfillment of the unitary evolution condition
(29). Since the average number of the universes with momen-
tum of magnitude p represented by the field Φ2 (or Φ3) is
given by:

〈Ψ (η)| a†
Φ2

(p)aΦ2(p) |Ψ (η)〉 = |CΦ2Φ3(p, η)|2, (51)

the formula (50) also gives the total number of the universes
of either type (Φ2 or Φ3) produced in the volumeA. Thus, the
decay results in a production of only one universe of either
type in region A.

Fig. 3 Dependence of the entanglement entropy S(∞) on the cosmo-
logical constants Λ̄2 and Λ̄3 of pair of entangled universes produced in
the decay processes. More elongated shapes corresponds to the higher
value of the mass mΦ1 of the parent universe

Taking into account the formula (50) the von Neumann
entropy (47) can be expressed as:

S(η) = Γ ηe−Γ η − (1 − e−Γ η) ln |CΦ2Φ3(pd , η)|2, (52)

which in the high-curvature limit (η → ∞, see Appendix A)
gives:

S(∞) = − ln

[
32m3

Φ1

g2AEΦ2(pd)EΦ3(pd)

]
. (53)

The identification E = i ∂
∂η

and the fact that asymptotically,

for η → ∞, the value of πη =
√

Λ̄ (see Appendix A), allow
us to rewrite the formula (53) as:

S(∞) = − ln

[
32m3

Φ1

g2A
√

Λ̄2Λ̄3

]
, (54)

(see Fig. 3).
Since in the considered case the function |CΦ2Φ3(p, η)|2

is narrowly peaked at p = pd a typical term that contributes
to the expansion (44) has the form:

CΦ2Φ3(pd , η)
[∣∣∣Φ2−−→p d

〉
⊗
∣∣∣Φ3−→p d

〉

+
∣∣∣Φ2−→p d

〉
⊗
∣∣∣Φ3−−→p d

〉]
, (55)

which means that the pair of the universes produced in the
decay process is described by the nearly maximally entangled
Bell state.
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5 Conclusions

A trend in which the minisuperspace is treated as a funda-
mental scene, where the physical phenomena occur, gained
a noticeable representation in the literature [26–34]. Such an
approach motivates an inclusion of different types of inter-
actions between the Wheeler–DeWitt wave functions (repre-
senting individual universes of the multiverse) such as the
interaction represented by the harmonic potential [8–10].
Moreover, postulating such interactions and investigating the
consequences of their existence seems to be the only way to
make the concept of the multiverse a physical theory which is,
at least in principle, amenable to observational verification.
Following this trend, we include in the action, stemming from
the varying fundamental constants model, an interaction term
that enables scattering and decay of the universes represented
by the third quantized Wheeler–DeWitt wave function. The
product of the decaying parent universe is a nearly maximally
entangled pair of universes approximately described by a
Bell state. Thus, the emergence of a nearly maximally entan-
gled pairs of universes results from the inclusion of a very
natural type of the interaction that allows for scattering and
decay processes. Such type of entanglement is typical for the
interaction term introduced in our multiverse toy model [23].
However, the form of the state that describes the products of
any decay process generically depends on the particular char-
acter of the interaction responsible for that decay [35]. The
entanglement concerns the spatial components of the min-
isuperspace momentum associated with individual universes.
The strength of the entanglement measured by the von Neu-
mann entropy depends on the values of the cosmological con-
stants in each of the universes in the created pair and achieves
higher values when both cosmological constants have simi-
lar values. Interestingly, the presented approach relies on the
standard interpretation of the Fock space, which means that
it treats the representation dependent orthonormal vectors,
that form the basis in the Hilbert space of the multiverse,
as vectors representing occupation with universes in a state
completely determined by a particular set of proper quantum
numbers. The standard interpretation of the Fock space was
also assumed in [18] where it was used to derive a scenario in
which the whole multiverse subjected to the Bose–Einstein
distribution emerged from nothing. On the other hand, there
have been developed approaches to the problem of interuni-
versal entanglement, in which the standard quantum field
theoretical interpretation of the Fock space was overridden
in the sense that the Hilbert space basis vectors are assumed to
define the excited states of the universes with a specific value
of the momentum in the minisuperspace [19,20]. Thus, the
mechanism of interuniversal entanglement generation pre-
sented in this paper, seems to be quite a natural one since it

does not assume any non-standard interpretation of the basic
concepts of quantum field theory.
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Appendix A: Classical cosmological time evolution in the
non-minimally coupled varying c and G model

The classical evolution associated with the model defined in
Sect. 2 is given by the following formulas [11]:

a = 1

D2(eFx0
)
2

sinhM |√(A2 − 9)Λx0|
, (A.1)

δ = D6(eFx
0
)
6

sinhW |√(A2 − 9)Λx0| , (A.2)

where M = 3−A2

9−A2 , W = 2A2

9−A2 while D and F are some

integration constants. The variables x0 is connected with the
cosmological time x̄0 via the following expressions:

x0 = 2√
(A2 − 9)Λ

arctanh

(
e
√

(A2−9)Λx̄0
)

, for x̄0 < 0 ,

x0 = 2√
(A2 − 9)Λ

arctanh

(
e−

√
(A2−9)Λx̄0

)
, for x̄0 > 0 ,

(A.3)

where we assumed that A2 > 9. The set of the solutions
above defines the time evolution of the scale factor a, speed
of light c and the gravitational constant G. The qualitative
behaviour of the three parameters is depicted in Fig. 4. It can
be seen that the model contains the pre-big-bang contraction
(for x̄0 < 0) and the post-big-bang expansion (for x̄0 > 0)
with both phases separated by the curvature singularity at
x̄0 = 0.

The Hamilton’s equation of motion associated with the
hamiltonian (13) gives the following time evolution:

η = r ln sinh |
√

(A2 − 9)Λx0|, (A.4)
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Fig. 4 Time evolution of the scale factor a (black), the speed of light
c (red) and the gravitational constant G (blue) for x̄0 < 0 and x̄0 > 0
which corresponds to the phase before and after the curvature singularity

x1 = −2πx1x
0 + E, (A.5)

x2 = −2πx2x
0 + P, (A.6)

where E and P are some integration constants. The solution
(A.4) allows us to define the high-curvature limit for η → ∞
which corresponds to near curvature singularity evolution
and the low-curvature limit for η → −∞ which corresponds
to the late evolution (far form the curvature singularity). The
asymptotic value of the momentum πη in the high-curvature
limit (for η → ∞) is:

πη =
√

Λ̄. (A.7)
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