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Abstract We explore the tripartite entropic uncertainty and
genuine tripartite quantumness of Dirac fields in the back-
ground of the Garfinkle–Horowitz–Strominger (GHS) dila-
tion space-time. It is interesting to note that Hawking radia-
tion leads to the decay of quantum nonlocality in the physi-
cally accessible region while preserving its total coherence.
More importantly, it demonstrates an intrinsic trade-off rela-
tionship between the coherences of physically accessible
and inaccessible regions. Moreover, we examine the effect
of Hawking radiation on entropy-based measured uncer-
tainty and find that stronger Hawking radiation causes the
uncertainty in physically accessible regions to increase while
decreasing the uncertainty in physically inaccessible regions.
Therefore, our investigations may be beneficial to a bet-
ter understanding of the system’s quantumness in a curved
space-time. Combining relativity theory with quantum infor-
mation science offers new avenues for comprehending the
information paradoxes involving black holes.

1 Introduction

In recent years, quantum information science has been widely
combined with many other theories and has served as a foun-
dation for the quantum world. The development of quantum
information science has yielded useful concepts that have
been used to interpret several puzzles in relativity theory,
including the black hole information-loss paradox. Mean-
while, because the world is non-inertial in nature, com-
prehending quantum information science within the frame-
work of relativity leads to a better understanding of quantum
mechanics [1–8]. For examples, Fuentes et al. [1] investi-
gated that entanglement in noninertial frames is character-
ized by the observer-dependent property. Friis [2] showed
that any quantum information theory based on anticommut-
ing operators ought to be supplemented by a superselection
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rule deeply rooted in relativity, to form the so-called entangle-
ment. Martín-Martínez et al. [3] studied entanglement degra-
dation affected by the Hawking effect of Schwarzschild black
hole. Mann et al. [4] pointed out that incorporating concepts
from quantum theory into relativity can yield novel and inter-
esting effects.

Quantum coherence [9] is a fundamental concept that
can be rigorously characterised in the context of quantum
resource theory. Quantum coherence is regarded as a key
quantum resource that originates from the principle of super-
position of states and can be widely used to implement vari-
ous quantum tasks. Several methods are available for quanti-
fying coherence [10,11]. Among these, l1-norm of coherence
is valid and widely used in quantum physics, and is expressed
as follows:

C(ρ) =
∑

i �= j

∣∣ρi, j
∣∣. (1)

As can be seen from the above equation, the value of l1-norm
coherence is equal to the sum of the absolute values of all
off-diagonal elements under the chosen basis.

In addition, according to Bell’s theorem [12], the correla-
tion between the results of local observables may be nonlocal
for some quantum states. Bell nonlocality [13,14] is a prop-
erty of quantum correlations, and this nonlocal property of
quantum states can be revealed by exploiting correspond-
ing Bell-type inequalities [14–17]. With regard to tripartite
states, the Svetlichny inequality can be employed to detect
genuine nonlocality. Initially, the Svetlichny inequality was
proposed in [18] in 1987, and its form for the three-qubit
state ρABE can be expressed as follows:

Tr(S′ · ρ) ≤ 4 (2)

with

S′ = ABE + A′BE + AB ′E + ABE ′
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− A′BE ′ − A′B ′E − AB ′E ′ − A′B ′E ′ (3)

where X and X ′ denote the measurement operators that are
used to perform measurements on the corresponding qubit
X (X = A, B, E). Mathematically, the measurement form
is can be expressed as follows:

A = �a · �σ
A′ = �a′ · �σ , (4)

where �σ = (σ̂1, σ̂2, σ̂3) is a vector composed of Pauli matri-
ces and �a = (a1, a2, a3) and �a′ = (a′

1, a
′
2, a

′
3) are unit vec-

tors in three dimensions. The other four measurements of the
corresponding qubits B and E are similar to those of A.

The uncertainty principle proposed by Heisenberg, which
is one of the most well-known principles of quantum mechan-
ics, [19] states that the position and momentum of a moving
particle cannot be determined simultaneously. Later, Ken-
nard [20] and Robertson [21] generalised it in terms of the
standard deviation, where �R̂ · �Ŝ ≥ 1

2 |〈[R̂, Ŝ]〉|, R̂ and Ŝ

are two arbitrary non-commuting observables and [R̂, Ŝ] rep-
resents the commutator. It can be seen that the lower bound
yields trivial measurement results once the state is prepared in
one of the eigenstates of R̂ or Ŝ. Everett [22] and Hirschman
[23] were the first to use entropy to describe the principle
of uncertainty. Deutsch then developed the entropy-based
uncertainty relation to address the flaw of state dependency
[24]. Thereafter, Kraus [25] and Maassen and Uffink [26]
improved it as follows:

H(R̂) + H(Ŝ) ≥ log2
1

c
=: qMU , (5)

where the Shannon entropy H(R̂) = −∑
i pi log2 pi , pi =

〈μi | ρ̂ |μi 〉, c = maxi j
∣∣〈μi/ϑ j

〉∣∣2 refers to the maximal over-

lap of R̂ and Ŝ, |μi 〉 (or
∣∣ϑ j

〉
) is the eigenstate of R̂ (or Ŝ). In

sharp contrast to Kennard’s inequality, the bound of Eq. (5)
is state independent.

Thus, the uncertainty relations are limited to single-
particle system scenarios. Thus, a logical issue arises: how
can uncertainty be expressed when the measured subsys-
tems are correlated to each other? In this regard, Renes and
Boileau [27] originally proposed a brand-new uncertainty
relation for bipartite and tripartite systems, that is, quantum-
memory-assisted entropic uncertainty relations (QMA-EUR)
[28]. Specifically, the tripartite QMA-EUR can be expressed
as follows:

S(X̂ |B) + S(Ẑ |E) ≥ qMU . (6)

where S(X̂ |B) = S(ρX̂ B) − S(ρB) [29] represents the
conditional entropy of state ρX̂ B . The measured state can

be expressed as ρX̂ B = ∑
i (�

X̂
i ⊗ IB)ρAB(�X̂

i ⊗ IB),

�X̂
i = |ψ X̂

i 〉〈ψ X̂
i | is the measurement operator acting on

the subsystem A, |ψ X̂
i 〉 is the eigenvector of observable

X̂ . S(X̂ |B) is used to measure Bob’s uncertainty regard-
ing Alice’s measurement result for the observable X̂ . Essen-
tially, this inequality can be explained by a monogamy game,
assuming that the source outputs the tripartite state ρABE and
the subsystems A, B and E are sent to Alice, Bob, and Eric,
respectively. Alice selects measurement X̂ or Ẑ on system A
and obtains results K before informing Bob and Eric about
her measurement selection. Bob and Eric win this game only
if they both guess the result K correctly. In fact, QMA-EUR
[30,31] gives rise to a variety of potential applications in
quantum information theory, including entanglement witness
[32,33], quantum key distribution [34–36], and EPR steer-
ing [37,38]. Additionally, it also plays an important role in
probing the quantumness of many different systems [39,40],
such as neutrino systems [41–43] and the Heisenberg spin-
chain model [44–46]. To date, much effort has been made to
improve bipartite [47–56] and tripartite [57,58] QMA-EUR.

Black holes have garnered a lot of attention. Many investi-
gations have been conducted on the dynamics of QMA-EUR
[59–61] and the quantum properties [62] of Schwarzschild
black holes. More recently, several promising studies have
been conducted on the quantumness of Garfinkle–Horowitz–
Strominger dilation (GHS-dilation) black holes [63–65].
There have been few investigations concerning the tripar-
tite quantum correlation and QMA-EUR of Dirac fields in
the background of GHS-dilation black holes, which is a
fundamental requirement for understanding the quantum-
ness of black holes. This prompted us to conduct research
on the issue. The remainder of this paper is organised as
follows: Sect. 2 briefly describes the vacuum structure for
Dirac fields in the GHS-dilation black hole. Sections 3 and
4 investigate the dynamics of the tripartite quantum correla-
tion and QMA-EUR against the backdrop of GHS-dilation
space-time, respectively. Therefore, the intrinsic relationship
between quantum correlation and QMA-EUR was revealed.
Section 5 concludes with concise discussions and summaries.

2 Vacuum states in GHS-dilation space-time

First, according to the definition of vacuum states in a curved
space, the GHS-dilated black hole [66–68] can be written as
follows:

ds2 = −
(
r − 2M

r − 2D

)
dt2 +

(
r − 2M

r − 2D

)−1

dr2

+ r(r − 2D)(dθ2 + sin2 θdφ2), (7)
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where M is related to the mass of the black hole, and D
denotes the parameter of the dilation field. The Hawking tem-
perature can be expressed as T = 1

8π(M−D)
, and the thermal

Fermi-Dirac distribution of particles with T was observed in
Refs. [69–71]. For simplicity, we treat G, c, h̄, κB as unity,
and M , D and the charge Q satisfy D = Q2/2M .

For GHS-dilation space-time, the Dirac equation can be
written as follows:

[γ aeμ
a (∂μ + �μ)]ψ = 0, (8)

where γ a is the Dirac matrix, and ∂μ stands for the spin
connection coefficient, eμ

a represents the inverse of the tetrad
eaμ. By solving the Dirac equation under the GHS-dilation
space-time, one can obtain the positive frequency outgoing
solutions in the inside (I) and outside (II) regions of the event
horizon as [67]

ψ I+
k = ξe−iωu;

ψ II+
k = ξeiωu, (9)

where k represents the field mode, ξ is the 4-component Dirac
spinor, and ω is the monochromatic frequency of the Dirac
field. The retarded time u is expressed as:

u = t − r∗, (10)

where the tortoise coordinates are r∗ = 2(M−D) ln[ r−2M
2(M−D)

]
+ r . ψ I+

k and ψ II+
k constitute a set of complete orthogonal

bases, and the Dirac field can be written as follows:

ψout =
∑

ν=I,II

∫
dk(aν

kψ
ν+
k )(bν∗

k ψν−
k ), (11)

where aν
k and bν∗

k are the fermion annihilation and anti-
fermion creation operators, respectively. Then, for the posi-
tive energy mode, using the generalised Kruskal coordinates,
the new orthogonal basis can be obtained by

χ I+
k = e2(M−D)πωψ I+

k + e−2(M−D)πωψ II−
−k ,

χ II+
k = e−2(M−D)πωψ I−

−k + e2(M−D)πωψ II+
k . (12)

Next, to depict the Dirac field, these new bases can be
expressed as follows:

ψout

=
∑

ν=I,II

∫
dk

1√
2 cosh[4(M − D)πω] (c

ν
kχν+

k + dν∗
k χν−

k ),

(13)

where cν
k anddν∗

k are the fermion annihilation and antifermion
creation operators which act on the state of the exterior region

(ν = I) and interior region (ν = II), respectively. Equations
(11) and (13) correspond to the decomposition of the Dirac
fields in GHS-dilation and Kruskal modes, respectively. The
annihilation operator can then be obtained using the Bogoli-
ubov transformation in the GHS-dilation and Kruskal modes.
Taking into account the orthonormality of the modes, each
annihilation operator cI

k can be attained by a union of dila-
tion particle operators of only one frequency ωi , described
as follows:

cI
k = cos β · aI

k − sin β · bII∗
k ;

cos β =
(
e−8(M−D)πωi + 1

)− 1
2 ;

sin β =
(
e8(M−D)πωi + 1

)− 1
2
. (14)

Because the GHS-dilation space-time can be divided into
physically inaccessible and accessible regions, the mode of
the ground state in a GHS-dilation black hole coordinate cor-
responds to a two-mode squeezed state in the Kruskal coordi-
nate. After properly normalising the state vector, the vacuum
state of the Kruskal particle for mode can be expressed as
follows:

|0k〉+k = cos β · |0k〉+I |0−k〉−II
+ sin β · |1k〉+I |1−k〉−II , (15)

where |n〉I and |n〉II correspond to the orthonormal bases for
the outside and inside regions of the event horizon, respec-
tively, the superscripts + and - indicate the particle and
antiparticle, respectively. For simplicity, we assume ωi =
ω = 1. Similarly, only the excited state can be expanded as
follows:

|1k〉+k = |1k〉+I |0−k〉−II . (16)

3 Evolution of the nonlocality and coherence in
GHS-dilation black hole

Here, we consider the Greenberger–Horne–Zeilinger-like
(GHZ-like) state of the Dirac fields shared by Alice, Bob,
and Eric.

|ψ〉ABE = α |0A0B0E 〉 +
√

1 − α2 |1A1B1E 〉 , (17)

where α ∈ [0, 1] denotes the state parameter. First, Alice,
Bob, and Eric remain in an asymptotically flat region. Then,
Alice was left in the asymptotically flat region, and Bob and
Eric fell towards a GHS-dilation black hole freely and later
hovered around the event horizon. According to the Kruskal
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Fig. 1 Nonlocality and
coherence for ρABIEI in physical
accessible regions. a Svetlichny
value S versus the dilation
parameter D with different state
parameters α; b Svetlichny
value S versus state parameters
α2 the with different dilation
parameter D; c Coherence C
versus the dilation parameter D
with different state parameters
α; d Coherence C versus state
parameters α2 with different
dilation parameter D. (All
plotted with M = 1.)

(a) (b)

(c) (d)

modes above for Bob and Eric, the initial state can be rewrit-
ten as follows:

|ψ〉ABIBIIEIEII

= αcos2β|0〉A|1〉BI
|1〉BII

|1〉EI
|1〉EII

+ αsin2β|0〉A|0〉BI
|0〉BII

|0〉EI
|0〉EII

+
√

1 − α2|1〉A|1〉BI
|0〉BII

|1〉EI
|0〉EII

+ α sin β cos β(|0〉A|0〉BI
|0〉BII

|1〉EI
|1〉EII

+ |0〉A|1〉BI
|1〉BII

|0〉EI
|0〉EII). (18)

Because regions I and II are disconnected, and the modes
inside the event horizon cannot be accessed by Bob and Eric,
thus the modes BI and EI outside the event horizon are called
physically accessible modes, BII and EII inside the event
horizon are called inaccessible modes. Thereafter, the phys-
ically accessible part I state for the tripartite system may
be determined by tracing across all degrees of freedom in
region II, which decreases the density matrix ρABIEI and is
expressed as follows:

ρABIEI =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 0 0 0 ρ18

0 ρ22 0 0 0 0 0 0
0 0 ρ33 0 0 0 0 0
0 0 0 ρ44 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

ρ81 0 0 0 0 0 0 ρ88

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

with

ρ11 = α2cos4β;
ρ44 = α2sin4β; ρ88 = 1 − α2;
ρ18 = ρ81 = α

√
1 − α2cos2β;

ρ22 = ρ33 = α2 sin2 β cos2 β. (20)

If a three-qubit state violates the Svetlichny inequality,
then the state satisfies genuine tripartite nonlocality [72–74].
For the X state with the density operator

ρX =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 0 0 0 ρ18

0 ρ22 0 0 0 0 ρ27 0
0 0 ρ33 0 0 ρ36 0 0
0 0 0 ρ44 ρ45 0 0 0
0 0 0 ρ54 ρ55 0 0 0
0 0 ρ63 0 0 ρ66 0 0
0 ρ72 0 0 0 0 ρ77 0

ρ81 0 0 0 0 0 0 ρ88

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

there is a more direct formula [65,75] to detect the nonlo-
cality, which can be expressed by the maximal violation of
Svetlichny inequality as follows:

S = max Tr(S′ · ρ). (22)

For any element ρi j in ρX with i + j = 9, the Svetlichny
value can be quantified as follows:

S(ρX ) = max{8√
2

∣∣ρi j
∣∣ , 4 |T |}, (23)
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where T = ρ11 −ρ22 −ρ33 +ρ44 −ρ55 +ρ66 +ρ77 −ρ88. As
a result, according to Eqs. (1) and (23), the Svetlichny value
and coherence of ρABIEI in physically accessible regions
can be expressed as follows:

SI = max
{

8α
√

2(1 − α2)cos2β,

4
∣∣∣α2cos4β + α2sin4β − 2α2 sin2 β cos2 β − (1 − α2)

∣∣∣
}

(24)

and

CI = 2α
√

1 − α2cos2β. (25)

Svetlichny value and coherence with respect to the varia-
tion in the dilation parameter D and state parameter α2 are
plotted in Fig. 1 to explore the nonlocality and coherence of
the proposed model. As previously mentioned, the dilation
parameter D is correlated with the Hawking temperature T ;
that is, T ∝ −1/D. As displayed in Fig. 1a, the Svetlichny
value keeps at a certain value when D < 0.8, and its value
begins to decrease when D > 0.8. It is discovered that the
Svetlichny value S is greater than four in some cases, cor-
responding to a violation of the Svetlichny inequality in Eq.
2, indicating that the system has quantum nonlocality. Note
that S eventually decreases to less than 4. In addition, there
are cases where S is always less than four. As indicated by
the purple line in Fig. 1a, S never exceeds 4 when α = 0.3.
This is because the thermal noise induced by Hawking radi-
ation destroys the physically accessible nonlocality among
Alice, Bob, and Eric in the situation. Furthermore, Fig. 1b
indicates the nonlocality of the tripartite subsystem ρABIEI

with state’s parameter α2 ∈ [0, 1]. As shown in the figure, S
is symmetric around α2 = 1/2 and S(ρABIEI) ≥ 4, imply-
ing that the state of the system is nonlocal. Furthermore, the
Svetlichny value is the largest with respect to α2 = 0.5. It
should be noted that S exhibits an inflection point for S < 4.
This can be explained as follows. The first term in Eq. (24)
dominates the Svetlichny value before and after the inflec-
tion point, whereas S is determined by the second term in
Eq. (24). This also shows that the physically accessible non-
locality between Alice, Bob, and Eric is destroyed when α

approaches 0 or 1.
The system’s coherence (C) is plotted as a function of the

dilation parameter D with different state parameters α in Fig.
1c. The coherence is initially stable at a fixed value, and it
gradually decreases but never disappears as D increases after
approximately 0.8 . This indicates that the Hawking temper-
ature T will induce a reduction in the coherence and never
lead to the disappearance of quantum coherence. C is max-
imised when the initial state is a GHZ state with α = √

2/2.
Moreover, as α2 increases, the coherence first increases and
then decreases, and its value is fully symmetric with α2, as
shown in Fig. 1d. The figure also supports the idea that a

larger D will result in a smaller coherence, which is essen-
tially consistent with the conclusion made before.

To better understand the dynamics of quantum coherence
and nonlocality in physically accessible modes, we consider
the quantum correlation of ρABIIEII in the physically inacces-
sible modes. First, we need to trace the modes BI and EI of
|ψ〉ABIBIIEIEII

to obtain the reduced density operator ρABIIEII

as follows:

ρABIIEII =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 0 0 0 0
0 ρ22 0 0 0 0 0 0
0 0 ρ33 0 0 0 0 0
0 0 0 ρ44 ρ45 0 0 0
0 0 0 ρ54 ρ55 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(26)

with

ρ11 = α2cos4β;
ρ44 = α2sin4β; ρ55 = 1 − α2;
ρ45 = ρ54 = α

√
1 − α2sin2β;

ρ22 = ρ33 = α2 sin2 β cos2 β. (27)

According to Eqs. (1) and (23), the Svetlichny value and
coherence of the physically inaccessible region can be written
as follows:

SII = max

{
8α

√
2(1 − α2)sin2β, 4

∣∣∣α2cos4

β + α2sin4β − 2α2 sin2 β cos2 β − (1 − α2)

∣∣∣
}

(28)

CII = 2α
√

1 − α2sin2β. (29)

The same has been plotted in Fig. 2. Overall, Fig. 2a, b
show that the Svetlichny is always less than 4, implying that
the nonlocality is always absent in physically inaccessible
region II. Coherence, on the other hand, still exists in region
II, as shown in Fig. 2c, d. Quantum coherence first remains
invariable and subsequently increases with increasing Hawk-
ing temperature T , the dynamics of which are obviously
opposite to those shown in Fig. 1c in physically accessible
regions.

To investigate the quantification relationship between the
coherences of regions I and II, we can define the total coher-
ence of the composite system as follows:

Ctot = CI + CII

= 2α
√

1 − α2cos2β + 2α
√

1 − α2sin2β
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Fig. 2 Nonlocality and
coherence for ρABIIEII . a
Svetlichny value S versus the
dilation parameter D with
different state parameters α; b
Svetlichny value S versus state
parameters α2 with different
dilation parameter D; c
Coherence C versus the dilation
parameter D with different state
parameters α; d Coherence C
versus state parameters α2 with
different dilation parameter D.
(All plotted with M = 1.)

(a) (b)

(c) (d)

Fig. 3 Coherence of physically
accessible region I, physically
inaccessible region II, and the
summation of regions I and II. a
Coherence C versus the dilation
parameter D with α = √

2/2; b
Coherence C versus state
parameters α2 with D = 0.95.
(All plotted with M = 1.)

(a) (b)

Fig. 4 Uncertainty of ρABIEI in
physical accessible regions. a
Uncertainty versus the dilation
parameter D with different state
parameters α; b Uncertainty
versus state parameters α with
different dilation parameter D.
(All plotted with M = 1.)

(a) (b)

≡ 2α
√

1 − α2, (30)

by employing Eqs. (25) and (29), respectively. The preceding
equation shows that the total coherence Ctot is determined
only by state parameter α and is independent of dilation
parameter D (and T ). Meanwhile, we draw Ctot, CI and CII

as functions of D and α2 in Fig. 3. Figure 3a clearly shows
the trade-off relationship between the coherence of regions
I and II with α = √

2/2. As the Hawking temperature T
increases, CI decreases and CII simultaneously inflates. In
principle, this phenomenon can be explained using informa-

tion flow theory. Technically, a change in the Hawking tem-
perature causes the flow of information. When T increases,
the information in physically accessible region I flows into
physically inaccessible region II, while the total coherence
remains unchanged. Likewise, Fig. 3b supports our result
obtained in Eq. (30). Considering all this, we conclude that
total coherenceCtot is fixed when the initial state is prepared.
Thus, we argue that quantum coherence is a good candidate
for illustrating the information-loss paradox.
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Fig. 5 Uncertainty of ρABIIEII

in physical inaccessible regions.
a Uncertainty U versus the
dilation parameter D with
different state parameters α; b
Uncertainty versus state
parameters α2 with different
dilation parameter D; All
plotted with M = 1

(a) (b)

4 QMA-EUR in GHS-dilation black hole

Uncertainty is considered one of the basic and nontrivial top-
ics in quantum physics as it is an important feature of the
quantum world. To observe the dynamic features of the mea-
sured uncertainty in the curved space-time, we choose σ̂x and
σ̂z as two incompatible measurements so that the maximal
overlap of measurement c(σ̂x , σ̂z) = 1

2 . Then, according to
Eq. (6), we obtain the post-measurement states, ρσ̂x BI and
ρσ̂zCI . Through calculation, we found that the uncertainty is
not only related to the Hawking temperature but also to the
coefficient of the state. We show the uncertainty versus dila-
tion parameter D and the state parameter α in Figs. 4 and 5,
respectively, based on the left side of the inequality in Eq.
(6). In addition, Figs. 4 and 5 correspond to the uncertainty
in the physically accessible region I and inaccessible region
II, respectively.

The entropic uncertainty is plotted in terms of the dila-
tion parameter D for different values of α for the physically
accessible region I in Fig. 4a. As shown, when D ≤ 0.5, the
entropic uncertainty is small and remains at a stable value
that is independent of α. For the region D > 0.5, the uncer-
tainty starts to increase with an increase in D. That is to say
that an increase in the Hawking temperature will cause an
increase in uncertainty in these situations. Furthermore, Fig.
4b depicts the uncertainty versus α2 with different D. In gen-
eral, a large D will lead to higher uncertainty, which supports
the conclusions derived from Fig. 4a. By comparing Figs. 1c
and 2c with Figs. 4a and 5a respectively, we find that the
uncertainty is anti-correlated with quantum coherence.

Based on the above analysis, we can conclude that the
uncertainty in physically accessible region I is sensitive to the
Hawking temperature and the uncertainty in the physically
inaccessible region II is sensitive to the chosen initial state
parameter α in the current architecture.

5 Conclusion

In conclusion, we investigated quantum coherence, non-
locality, and entropic uncertainty in Garfinkle–Horowitz–
Strominger dilation black hole. It has been shown that the

Hawking effect degrades both physically accessible non-
locality and physically accessible coherence. In particu-
lar, it was shown that the nonlocality can be destroyed by
the Hawking temperature while the amount of coherence
remains nonzero regardless of the Hawking temperature. In
this regard, it was concluded that quantum coherence is more
robust against the Hawking effect than nonlocality. Mean-
while, the coherence flows between regions I and II under
the influence of Hawking radiation. More importantly, we
observed an interesting phenomenon in which the total coher-
ence is conserved for a given initial state. Specifically, the
coherences of regions I and II exhibit a tradeoff relationship,
and every coherence variation stems from information flows
between the physically accessible and inaccessible regions.
Regarding the measurement uncertainty, it has been found
that the Hawking effect leads to an inflation of the measure-
ment uncertainty in the physically accessible region. In addi-
tion, it is worth noting that uncertainty and coherence exhibit
anti-correlation characteristics with increasing T . This is
because coherence is essentially a sort of nonclassical cor-
relation, and a stronger quantum correlation would lead to
a smaller measurement uncertainty. Thus, we have greater
coherence and lower uncertainty, and vice versa. In the end,
we hope that our investigations could be helpful for simu-
lating the development of relativistic quantum information
science.
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