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Abstract For any physical system satisfying the Ein-
stein’s equations, the comoving curvature perturbations sat-
isfy an equation involving the momentum-dependent effec-
tive sound speed, valid for any system with a well defined
energy-stress tensor, including multi-fields models of infla-
tion. We derive a general model-independent formula for
the effective sound speed of comoving adiabatic perturba-
tions, valid for a generic field-space metric, without assuming
any approximation to integrate out entropy perturbations, but
expressing the momentum-dependent effective sound speed
in terms of the components of the total energy-stress tensor.
As an application, we study a number of two-field models
with a kinetic coupling between the fields, identifying the sin-
gle curvature mode of the effective theory and showing that
momentum-dependent effective sound speed fully accounts
for the predictions for the power spectrum of curvature per-
turbations. Our results show that the momentum-dependent
effective sound speed is a convenient scheme for describing
all inflationary models that admit a single-field effective the-
ory, including the effects of entropy pertubations present in
multi-fields systems.

1 Introduction

The study of cosmological pertubations is one of the founda-
tions of modern cosmology, since it allows to make quanti-
tative predictions for different observables such as the char-
acteristics of the cosmic microwave background radiation
or large scale structure formation. In the simplest models
of inflation, with a single scalar field minimally coupled to
gravity, the scalar field is driving the accelerated expansion
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of the Universe, and its perturbations induce metric pertu-
bations which, in the comoving gauge, obey an evolution
equation containing a Laplacian whose coefficient is called
sound speed. In these models, the sound speed is only a func-
tion of time, but it has been shown [1] that a similar equation,
but with a space- or momentum-dependent sound speed, is
satisfied by an adiabatic perturbation in an arbitrary physical
system satisfying Einstein’s equations, including multi-field
models and modified gravity models.

In general, a given mode of adiabatic perturbations can
receive contributions from different degrees of freedom cou-
pled to that mode. However, there exist a broad class of
models, including models with a strong kinetic coupling
between the adiabatic and entropy perturbations, in which
the mode of adiabatic perturbations responsible for genera-
tion of observable CMB anisotropies evolves independently
of other modes. There has been an extensive effort to iden-
tify situtations in which complex models of inflation can be
effectively derscribed with a single-field effective theory with
possible corrections [2–21].

In this paper, we show that the evolution of that effective
adiabatic mode is correctly described within the formalism of
momentum-dependent effective sound speed, discussing the
notion of effective single-field theory for inflationary pertur-
bations and providing a set of numerical calculations corre-
sponding to specific two-field inflationary models that have
attracted considerable attention.

The paper is organized as follows. In Sect. 2, we briefly
introduce the formalism of momentum-dependent sound
speed. In Sect. 3, we analyze decoupling of heavy degrees
of freedom and calculate the sound speed in models with a
constant turning rate of the inflationary trajectory from the
geodesic line. In Sect. 4, we discuss the normalization of per-
turbations and appropriate initial conditions in single-field
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effective theories by means of the Liouville formula. Section
5 is devoted to numerical examples corroborating our analyti-
cal calculations. After a short discussion of the results in Sect.
6, we conclude in Sect. 7. Appendices contain more techni-
cal aspects of our derivations: a calculation of the effective
sound speed in two-field models with arbitrary field-space
metric, as well as the generalization of the Liouville formula
to multi-field models and the resulting discussion of the ini-
tial conditions for the perturbations.

2 Momentum effective sound speed

2.1 Effective equation of motion

It has recently been shown [1] that for any system satisfying
Einstein’s equations the evolution of the adiabatic perturba-
tion ζ can be described by means of a single differential
equation

ζ̈ + ∂t (Z2)

Z2 ζ̇ − v2
s

a2

(3)

� ζ + v2
s

ε

(3)

� �

+ 1

3Z2 ∂t

(
Z2

Hε

(3)

� �

)
= 0 . (1)

where Z2 ≡ εa3/v2
s and an effective space-dependent sound

speed (SESS) has been defined as

v2
s (t, x

i ) ≡ δPc(t, xi )

δρc(t, xi )
, (2)

where δρc and δPc are the energy density and pressure per-
turbations in the comoving gauge, respectively.

In this picture, the entropy perturbations do not appear
explicitly in the equation for adiabatic perturbations, and are
‘hidden’ in the SESS. This can be understood by comparing
(2) with the result of the standard approach [22], in which
entropy perturbations 	 are defined by

δPc(t, x
i ) = cs(t)

2δρc(t, x
i ) + 	(t, xi ) , (3)

where cs is interpreted as sound speed and is a function of
time only. Combining Eqs. (3) and (2) we get the relation
between SESS and entropy perturbations:

v2
s = c2

s

⎡
⎢⎣1 + 	

2Hε
(
ζ̇ + 1

3Hε

(3)

� �
)
⎤
⎥⎦

−1

. (4)

In the momentum space, one can similarly write a single dif-
ferential equation for the Fourier components of the adiabatic

perturbations:

ζ̈k +
(

3H + ∂t (Z̃2
k )

Z̃2
k

)
ζ̇k + ṽ2

k

a2 k
2ζk − ṽ2

k

ε
k2�k

− 1

3Z̃2
k

∂t

(
Z̃2
k

Hε
k2�k

)
= 0 , (5)

where the momentum-dependent effective sound speed
(MESS) now reads:

ṽ2
k (t) ≡ δPc,k(t)

δρc,k(t)
, (6)

and δρc,k(t) and δPc,k(t) are Fourier components of the
energy density perturbations and pressure in the comoving
gauge, respectively, and Z̃2

k ≡ ε/ṽ2
k . In this paper we will

consider scalar fields with isotropic EST, for which Eq. (5)
simplifies to

ζ̈k +
(

3H + ∂t (Z̃2
k )

Z̃2
k

)
ζ̇k + ṽ2

k

a2 k
2ζk = 0 . (7)

It can be shown that Eq. (7) reduces to the Sasaki-Mukhanov
equation when ṽk is a function of time only. It is important
to note that the MESS ṽk(t) defined in Eq. (6) is not simply
the Fourier transform of the SESS vs(xμ) defined in Eq. (2),
because the product of the Fourier transforms of two func-
tions is the transform of the convolution of the two functions.

2.2 Solution of the effective equation of motion

In order to solve Eq. (7), one has to know the time evolution
of ṽ2

k . With a simple phenomenological assumption that this
quantity evolves as a power law of the scale factor, i.e. ṽ2

k =
V 2

0 a
p, we can solve Eq. (7) in the limit |Ḣ | � H2, obtaining:

ζ = DiA
1
2 (p−3)H (i)∣∣∣ p−3

p−2

∣∣∣

(
A 1

2 (p−2)

1
2 |p − 2|

)
, i = 1, 2 , (8)

where H (i)
μ are Hankel functions of the first and second kind,

respectively. a = κA with κ2−p = V 2
0 k

2/H2 and V 2
0 > 0;

for V 2
0 < 0 the argument of the Hankel function has to be

multiplied by the imaginary unit. In the special case p = 2,
the solution is

ζ = D±A− 1
2 ± 1

2

√
1− 4V 2

0 k2

H2 . (9)

The late-time asymptotic behavior of the solution (8) depends
on the value of p.

For p < 2, the argument of the Hankel function goes
to zero as a increases to infinity and using H (1)

μ (ξ) ∼
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Fig. 1 Evolutions of the amplitude of curvature perturbation ζ given
in Eq. (8) for different sound speeds ṽ2

k ∝ a p with different values of p
is shown as thick lines. Color coding corresponds to late-time behavior:
freezing (red), decaying (blue) and growing (black); the special case
of p = 4 is shown in green. Thin green lines indicate the real and
imaginary part of of ζ for p = 4. Normalization of ζ is arbitrary

−i(	(μ)/π)(2/ξ)μ for small |ξ |, where 	 is the Euler
gamma function, we obtain for the positive frequency solu-
tion

ζ ∼ −
iD1(2 − p)

3−p
2−p 	

(
3−p
2−p

)
π

= const . (10)

Thus, for p < 2 there is a freezing mode of the curvature
perturbation, irrespective of the sign of V 2

0 .
For p > 2, the argument of the Hankel function goes to

infinity as a increases to infinity and the asymptotic behavior
of Eq. (7) becomes

ζ ∼ A p
4 −1exp

(
iA 1

2 (p−2)

1
2 (p − 2)

)
(11)

With V 2
0 > 0, we obtain decaying solutions for 2 < p < 4

and growing solutions for p > 4; all solutions oscillate.
For V 2

0 < 0, there is an exponential growth of the solution.
These cases do not admit a freezing solution for the curvature
perturbation.

In Fig. 1, we show the time evolution of curvature pertur-
bations given by Eq. (8).

3 Effective equation of motion vs full theory in
multi-field models

As a particular example, we will consider models involving
N = 2 scalar fields minimally coupled to Einstein gravity,
and whose action reads:

S =
∫

d4x
√−g

[
−1

2
GI J

(
φK

)
∂μφ I ∂μφ J − V

(
φK

)]
.

(12)

In Eq. (12), uppercase Latin letters refer to the field space
directions and summation over repeated indices is assumed.
It is

convenient to project the evolution of homogeneous fields
and the perturbations in the field space onto the adia-
batic/entropic basis (eIσ , eIs ) [23,24], where eIσ ≡ φ̇ I /σ̇ is
the unit vector pointing along the background trajectory in
field space, and where eIs is such that the basis (eIσ , eIs ) is
orthonormal and right-handed for definiteness; the velocity
of the system in the field space reads σ̇ = (GI J φ̇

I φ̇ J )1/2.
The adiabatic perturbation Qσ ≡ eσ I QI is directly propor-
tional to the comoving curvature perturbation ζ = H

σ̇
Qσ ,

while the genuine multifield effects are embodied by the
entropic fluctuation Qs , perpendicular to the background tra-
jectory.

In this basis, the equations of motion take the form

Q̈σ + 3H Q̇σ +
(
k2

a2 + m2
σ

)
Qσ = 2Hη⊥ Q̇s

−
(
Ḣ

H
+ V,σ

σ̇

)
2Hη⊥ Qs , (13)

Q̈s + 3H Q̇s +
(
k2

a2 + m2
s

)
Qs = −2σ̇ η⊥ζ̇ , (14)

where

η⊥ ≡ − V,s

H σ̇
(15)

is the dimensionless parameter, describing the rate (in Hubble
times) at which the trajectory in the field space deviates from
a geodesic line [24]. Here V,s ≡ eIs V,I , the adiabatic mass
(squared) is given bym2

σ /H2 = − 3
2ε2+. . .with the slow-roll

parameters given by ε1 ≡ − Ḣ
H2 , ε2 = ε̇1

Hε1
and the dots rep-

resenting terms of higher order in the slow-roll parameters,
and the entropic mass squared reads m2

s = V;ss − 2(Hη⊥)2.
In order to connect the system of equations of motion (13)

and (14) to the effective Eq. (5), we note that

δρc,k(t) = − ζ̇

H
σ̇ = −H2σ̇ 2

Ḣ

k2

a2H2 � − 2η⊥HQs (16)
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δPc,k(t) = δρc,k(t) + 2η⊥HQs = −H2σ̇ 2

Ḣ

k2

a2H2 � , (17)

where � is the Bardeen potential. Inserting (16) and (17) into
(6), we find that

ṽ−2
k = 1 − 2η⊥H2Qs

ζ̇ σ̇
. (18)

Plugging (18) into (1), we find that the latter equation, upon
setting � = 0, which is appropriate for the system of scalar
fields, is equivalent to (13), i.e. it describes the evolution of
the adiabatic perturbations if it is supplemented by (14) that
dictates the evolution of the entropy perturbations.

3.1 Momentum-dependent sound speed and effective field
theory of inflation

An important comment is now in order. For any classical
solution of the equations of motion for the perturbations (13)
and (14), it is always possible to determine ṽ2

k from (18)
and then the adiabatic perturbation ζ satisfies the effective
equation of motion (7). Different choices of initial conditions
for a multi-field system would lead to different functions ṽ2

k .
In order to account for all degrees of freedom in a multi-field
system, it appears necessary to define as many momentum-
dependent effective sound speeds as the number of the fields.

However, a considerable simplification arises if the ampli-
tudes of the perturbations other than the final adiabatic pertur-
bation decay significantly on super-Hubble scales. For con-
creteness, let us discuss this point for two-field models.

Equations of motion (13) and (14) have to be supple-
mented with initial conditions for the fields. (One often
adopts initial conditions with vanishing either entropic or
adiabatic perturbations, but we argue in Appendix C that
other choices may be more natural.) As a result, one obtains
two solutions, ζ1 and ζ2, corresponding to different, orthog-
onal initial conditions. Because they correspond to differ-
ent quantum degrees of freedom, for calculation of the
power spectrum they should be added in quadratures, |ζ |2 =
|ζ1|2 + |ζ2|2. However, if the late-time super-Hubble behav-
ior of the modes is dominated by a single degree of freedom,
one can perform a unitary transformation U , such that:

(
ζ̃1

ζ̃2

)
= U

(
ζ1

ζ2

)
(19)

with ζ̃2 → 0 at late times; then |ζ |2 = |ζ̃1|2 fully accounts for
the adiabatic power spectrum. An identical transformation
can then be performed for entropy modes. In such a case, we
define the momentum-dependent effective sound speed as
one obtained for ζ̃1 and the associated entropy perturbation.

While applying the procedure described above guarantees
reproducing the full time evolution of ζ̃1, specifying ṽ2

k is

not equivalent to formulating an effective single-field theory
of perturbations. This is because the matrix U is defined
in terms of the late-time behavior of adiabatic perturbations
and this does not ensure a proper single-field normalization
of perturbations at early times, in sub-Hubble regime. It can
readily be seen for initial conditions ζ̃2,i = 0 and |U11| < 1.

We can conclude that the usefulness of introducing MESS
consists in the possibility to account fully for time depen-
dence of the adiabatic perturbations, even in cases in which a
single-field effective theory does not exist On the other hand,
if it does, then introducing MESS is equivalent to formulat-
ing the effective theory to calculate the power spectrum of
the adiabatic perturbations.

There are several examples discussed in the literature,
which admit an effective single-field description and for
which the predictions for the power spectrum of adiabatic
perturbation was calculated. These examples are obtained in
a two-field inflationary model, in which, to make discussion
easier, the inflationary trajectory exhibits a constant turning
rate in the field space. Depending on that rate and on the
mass parameters of the fields, several interesting cases in
which the evolution of the perturbations differs significantly
from the single-field scenario have been discussed over last
decade. Later in Sect. 5, we shall demonstrate the usefulness
of MESS beyond those examples.

3.2 Examples

3.2.1 Geodesic trajectory

If the trajectory in the field space follows a geodesic line,
the entropy perturbations do not affect the adiabatic pertur-
bations, which evolve as if the entropy perturbations were
entirely absent. We can, therefore, set Qs = 0 in Eq. (18)
and conclude that the speed of adiabatic perturbations is that
of light, ṽ2

k = 1.

3.2.2 Sourcing on super-Hubble scales

If the amplitude of the entropy modes are not significantly
smaller than those of after the adiabatic ones after Hubble-
radius crossing and the trajectory in the field space does not
follow a geodesic line, adiadiabatic perturbations are sourced
by the entropy ones. The rate of this sourcing can be read
from Eq. (16); as the first term on the r.h.s. is negligible
on super-Hubble scales, we arrive at ζ̇ σ̇ ≈ 2η⊥H2Q2

s and
the two terms in Eq. (18) practically cancel. This can be
interpreted as infinite sound speed. This should not come as
a surprise, because on super-Hubble scales, the amplitude of
the adiabatic perturbations grows coherently over distances
exceeding the size of the horizon.
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3.2.3 Strongly coupled perturbations and sub-Hubble
freeze-in

If the turn rate is large, η⊥ 
 1 and slowly varying, the adia-
batic and entropy perturbations exhibit interesting dynamics,
leading to the adiabatic perturbations freezing in before the
Hubble radius crossing and to enhancement of the power
spectrum compared to the predictions of a single-field sce-
nario with the same Hubble and slow-roll parameters [25–
29]. This happens after the amplitude of the more massive
of the solutions of the system of Eqs. (13) and (14) becomes
negligible and the lighter and more slowly changing mode
becomes dominant. The relation between the adiabatic and
entropy component of that mode can be read from (14):

(
k2

a2 + m2
s

)
Qs = −2σ̇ η⊥ζ̇ . (20)

Substituting Eq. (20) to (18), we obtain:

ṽ−2
k = 1 + 4η2⊥

k2

a2H2 + m2
s

H2

. (21)

If the sound speed of perturbations deviates significantly
from one, the second term in Eq. (21) must dominate; depend-
ing on the relative size of the two terms in the denominator,
we arrive at:

ṽ2
k ≈ m2

s

4η2⊥H2
for k/a � ms (22)

or

ṽ2
k ≈ k2

4η2⊥a2H2
≈ k2η2

4η2⊥
for k/a 
 ms . (23)

The first limit shown in Eq. (22) corresponds to constant
reduced sound speed and has been extensively studied in the
literature. The positive and negative frequency solutions of
Eq. (5) read:

ζ = A±e∓iṽkkη
(

1 ∓ i

ṽkkη

)
, (24)

where A is a normalization constant and the symbol ± refers
to positive- and negative-frequency solutions.

The second limit shown in Eq. (23) was first studied in [26]
and later in [27]; because of the explicit dependence of ṽk
on k, we shall refer to these models as models with modified
dispersion relations. They correspond to our solution (8) with
p = −2 and V 2

0 = k2/4η2⊥H2.
The examples discussed in this subsection offer a route

to a consistent interpretation of Eq. (18) in a class of multi-
field models that allow an effective field theory with just

one field. If the amplitudes of all the pertubations except
for the freezing-in adiabatic perturbations decay quickly,
either because they are massive or, according to Eq. (20),
the entropy perturbations are suppressed after freeze-in of
curvature perturbations, we can describe the evolution of
the adiabatic perturbations in the single-field model with an
effective sound spped vk , which depends both on time and
the wavenumber of the mode.

In Sect. 5, we shall present a set of numerical examples,
corroborating the assertion above and show that the predic-
tions of the effective theory are consistent with those of the
full theory for all times. But before we start comparing the
full and the effective theory, we shall need a tool to translate
the evoultion of the effective sound speed to the normaliza-
tion of the power spectrum. This tool will be provided by the
Liouville formula described in the following Section.

4 Liouville formula

The Liouville formula states that for a function y(η), which
solves the equation:

d2u

dη2 + b1(η)
du

dη
+ b0(η)u = 0 , (25)

where b1 and b0 are real-values functions, the Wronskian
defined as:

W (η) ≡ u∗ du

dη
−

(
du

dη

)∗
u (26)

satisfies:

W (η) = W (η0) exp

(
−

∫ η

η0

b1(η
′) dη′

)
. (27)

In order to apply Eq. (27) to (7), we substitute u = aζ and
take the independent variable to be conformal time. Eq. (7)
becomes:

u′′+
(

d

dη
log Z̃2

k

)(
u′ + 1

η
u

)
+

(
ṽ2
k k

2 − 2

η2

)
u = 0 , (28)

where we used de Sitter approximation a ≈ −1/Hη with
constant H . We obtain

W (η) = W (η0) exp

(
−

∫ η

η0

(
d

dη′ log Z̃2
k

)
dη′

)

= W (η0)
Z̃2
k (η0)

Z̃2
k (η)

. (29)

Remembering that Z̃2
k = ε/ṽ2

k and assuming that the slow-
roll parameter ε does not change significantly in the time
interval between the time when the observed adiabatic modes
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are deep inside the Hubble radius and the time of freeze-in,
we obtain:

W (η) = W (η0)
ṽ2
k (η)

ṽ2
k (η0)

. (30)

Perturbations deep inside the Hubble radius have ṽk = 1.
If this value was constant throughout the entire inflationary
evolution, the solution to Eq. (7) would have a familar form
corresponding to standard single-field inflation:

ζ0 = C

a
e−ikη

(
1 − i

kη

)
. (31)

If this solution was true throughout the entire inflationary
dynamics, at late times, η → 0− we would have

|ζ0|2 ∼ |C |2 · κ2H2

k2 (32)

However, with ṽ2
k ∝ a p, the true solution is (8), whose late-

time limit for p < 2 leads to:

|ζ |2 ∼ |D1|2
⎛
⎝	

(
3−p
2−p

)
π

⎞
⎠

2

(2 − p)
6−2p
2−p . (33)

Using the Wronskian condition (30) with W (η0) calculated
with the solution (31), valid in the sub-Hubble limit, we
obtain:

|C |2 = (2 − p)κ1−pH

πV 2
0 k

|D1|2 . (34)

Hence the enhancement factor for power spectrum of the cur-
vature perturbationsP (in comparison to the power spectrum
for a slow-roll single-field model Psf ) reads:

P
Psf

= |ζ |2
|ζ0|2 =

(
k

H

) p
p−2

V
2

p−2
0

	2
(

3−p
2−p

)
π

(2 − p)
4−p
2−p .

(35)

Equation (35) reproduces several well-known results. For
p = 0 and V 2

0 = const, corresponding to the first of the two
limits discussed in Sect. 3.2.3, we obtain:

P
Psf

= 1

V0
. (36)

For p = −2 and V 2
0 = k2

4η2⊥H2 , which correspond to the

second limit in Sect. 3.2.3, we have

P
Psf

=
8
√

2
(
	

(
5
4

))2

π
η

1/2
⊥ ∼ 2.96 η

1/2
⊥ . (37)

Fig. 2 Enhancement of the power spectrum of curvature perturbations
predicted by Eq. (35)

This formula agrees very well with numerical results pre-
sented in [26].

Both results (36) and (37) correspond to a scale-invariant
power spectrum. Generally, if we parametrize V 2

0 = γ (k/
H)q , where γ is a k-independent coefficient, the scalar spec-
tral index is

ns = 1 − p + q

2 − p
. (38)

Assuming a scale-invariant power spectrum, i.e. p + q = 0,
we show the predictions of the formula (35) in Fig. 2.

The calculations for the single-field case presented in this
section can be easily generalized to a multi-field system. In
Appendix B, we present an appropriate derivation, followed
in Appendix C by a prescription for matching the perturba-
tions in the sub- and super-Hubble regime.

5 Numerical examples

In Sect. 3, we have put forth a number a hypotheses. We
argued that slow-roll fast-turn two-field inflationary models
can be effectively described by a single-field theory with a
time and k-dependent sound speed. We also proposed which
combination of modes serves as an effective degree of free-
dom in the single-field theory. In this Section, we would like
to corroborate those findings by presenting results of numer-
ical calculations.
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We study the evolution of the perturbations in the model
described by the Lagrangian:

L = e−2φ2/M

2
(∂φ1)

2 −Vinf(φ1)+ 1

2
(∂φ2)

2 − 1

2
m2

2φ
2
1 . (39)

In this model, the interactions stemming from the non-
canonical kinetic term can compensate the potential force
acting on the field φ2. As a consequence, there may exist
an inflationary trajectory, for which φ1 rolls slowly and φ2

stays constant. Models of this type have been analyzed by
many authors and it was found that for certain values of the
parameters one can describe the curvature perturbations with
a single-field effective theory, either one with an effective
sound speed smaller than one or one with modified disper-
sion relations.

Here we consider the approximation of quasi-de Sitter
space, i.e., following [26,30], we assume that the Hubble
parameter is practically constant and that the field φ1 moves
negligibly during inflation, so all the quantities defined in
terms of the homogeneous background are also practically
constant. In this approximation, equations of motion result-
ing from (39) assume the form (B.1) with (B.3) and (B.4),

where η⊥ = φ̇1
MH can be much larger than 1. This approx-

imation allows us to capture characteristic features of the
evolution of the effective sound speed in various models with
high accuracy (which is particularly important for |η⊥| 
 1),
disentangling the effects of the changes in the sound speed
from other time dependencies, e.g. those originating from
time-dependent background. Of course, the MESS approach
is completely general and does not require the simplifications
discussed here, but our goal is to discuss it in the context of
multi-field examples already worked out in the literature.

For numerical calculations, we use initial conditions (C.1)
and (C.3) with θ0 = 0, integrating the equations of motion
(B.1) with (B.3) and (B.4) twice: to cover both intitial con-
ditions. In order to isolate the adiabatic mode that dominates
after Hubble radius crossing, we preform the following uni-
tary transformations of the two results corresponding to ini-
tial conditions. If the first initial condition leads to u(1)

σ = z1

and the second initial condition leads to u(2)
σ = z2, we con-

sider combinations of the two solutions, corresponding to
rotated vectors in (C.1):

(
ũ(1)

σ

ũ(2)
σ

)
= 1√|z1|2 + |z2|2

(
z∗1 z∗2

−z2 z1

) (
u(1)

σ

u(2)
σ

)
. (40)

At the end of numerical evolution, we have ũ(2)
σ → 0, and

therefore we identify the freezing mode with ũ(1)
σ and the

decaying mode with ũ(2)
σ . According to our discussion in

Appendix B, with freeze-in at sub-Hubble scales the freezing
mode should correspond to z2 = −iz1 and we confirm this
in our numerical examples.

Table 1 Color coding of the perturbations in Figs. 3-6

Perturbation Mode (defined by the
behavior of the adia-
batic mode)

Color coding

Multi-field model

Curvature
Freezing Thick, black,

solid

Curvature
Decaying Thin, black,

dashed

Entropy
Freezing Thin, red, dashed

Entropy
Decaying Thin, red, solid

Single-field effective model

Curvature
ṽk given by

Eq. (6)
evaluated for
the solution of
the equations of
motion
corresponding
to the freezing
adiabatic mode

Thick, green,
dashed

Curvature
ṽk given by

Eq. (6)
evaluated for
the solution of
the equations of
motion
corresponding
to the decaying
adiabatic mode

Thick, yellow,
dashed (only
Fig. 6)

We represent perturbations as instantaneous power spec-
tra and normalize them to the corresponding instantaneous
power spectra of curvature perturtbations in single-field mod-
els, as described in detail in [31]. We use color coding for dif-
ferent components and different initial conditions described
in Table 1.

5.1 Single-field effective theories with reduced sound speed

For the first numerical example, we assume η⊥ = 30 and
ν = 102, which leads to the effective sound speed ṽ2

k =
0.0265 ≈ 1/37.7. Evolution of the effective sound speed
calculated from (6) and evolution of adiabatic perturbations
is shown in Fig. 3. We find exquisite consistency at all scales
between the predictions of the full two-field model and the
effective single-field theory with a MESS sound speed.

5.2 Single-field effective theories with modified dispersion
relations

For the second numerical example, we assume η⊥ = 300
and ν = 10. This model is not described by an effective

123



767 Page 8 of 16 Eur. Phys. J. C (2022) 82 :767

Fig. 3 Numerical calculations in single-field effective theories with
constant reduced sound speed; model described in Sect. 5.1. Left panel:
evolution of the sound speed given by Eq. (6) for initial conditions lead-
ing to a freezing adiabatic mode (red solid line) and for initial conditions
leading to a decaying adiabatic mode (blue dashed lines); thin dashed

line corresponds to the value (22). Right panel: evolution of the instan-
taneous power spectra in the full theory and in the effective theory;
color coding described in Table 1; thin dashed line corresponds to the
asymptotic value (36). N = 0 corresponds to the Hubble radius crossing

single-field theory with a constant, reduced sound speed, but
rather by by an effective single-field theory with modified
dispersion relations. Evolution of the effective sound speed
calculated from (6) and evolution of adiabatic perturbations

is shown in Fig. 4. We again find exquisite consistency at all
scales between the predictions of the full two-field model and
the effective single-field theory with a MESS sound speed.

Fig. 4 Numerical calculations in single-field effective theories with
modified dispersion relations; model described in Sect. 5.2. Left panel:
evolution of the sound speed given by Eq. (6) for initial conditions
leading to a freezing adiabatic mode (red solid line) and for initial con-
ditions leading to a decaying adiabatic mode (blue dashed lines); of
thin dashed lines, one corresponds to the value (22) and the other shows

that the sound speed decreases as ∼ a−2. Right panel: evolution of
the instantaneous power spectra in the full theory and in the effective
theory; color coding described in Table 1; thin dashed line corresponds
to the asymptotic value (37). N = 0 corresponds to the Hubble radius
crossing
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Fig. 5 Numerical calculations in single-field effective theories for
hyperinflation; model described in Sect. 5.3. Left panel: evolution of
the sound speed given by Eq. (6) for initial conditions leading to a
freezing adiabatic mode (red solid line) and for initial conditions lead-
ing to a decaying adiabatic mode (blue dashed lines); change of sign of

the sound speed squared, i.e. transition from real to imaginary sound
speed, is indicated; thin dashed line corresponds to the value (22). Right
panel: evolution of the instantaneous power spectra in the full theory
and in the effective theory; color coding described in Table 1; N = 0
corresponds to the Hubble radius crossing

5.3 Hyperinflation

If the Lagrangian mass term for the entropy perturbations is
small compared to other scales, the mass of these perturba-
tions is dominated by the ‘geometrical’−2H2η2⊥ term, which
in our example is related to the negative curvature of the field
space. Such a negative mass term leads to instability and to
a very strong enhancement of the amplitude of the perturba-
tions. This phenomenon was first described in [26], which
dubbed it transient tachyonic instability around the Hubble
radius, and after a decade it was rediscovered in [32], which
called it hyperinflation, and further analyzed in [33]. In a
slightly different context, sidetracked inflation models with
a negative effective sound speed were discussed in [28,29].
In all works mentioned above, inflation was realized on a
steep potential in a hyperbolic field space.

It is interesting to note that hyperinflation can also be
described in our effective single-field approach, albeit with
a sound speed ṽ2

k which changes sign during evolution. We
demonstrate this numerically by an example with η⊥ = 300
and ν = −104. Evolution of the effective sound speed cal-
culated from (6) and evolution of adiabatic perturbations is
shown in Fig. 5. We find exquisite consistency at all scales
between the predictions of the full two-field model and the
effective single-field theory with a MESS sound speed.

In [26], hyperinflation was described as an intrinsically
two-field phenomenon. However, [32] hinted at a curious
property, determined numerically, that the freezing adiabatic
mode is obtained from a single, well-defined initial mode.

Here we confirm this observation and show that the evolution
of that mode can be understood in effective theory with a
time-dependent sound speed that starts at a canonical value
of 1 and then goes imaginary.

5.4 Single-field description for models with light entropy
modes that cannot be integrated out

In Sect. 3, we showed how the MESS approach allows to
formulate a single-field description for models which were
previously studied in the literature by integrating out entropy
modes. Here we will consider the case in which the approach
based on integrating out entropy modes cannot be applied,
i.e. the first two terms in Eq. (13) cannot be neglected, and no
simple algebraic relation between ζ and Qσ holds at all times.
In these cases the MESS approach can still be used to com-
pute the effective sound speed of each independent quantum
degree of freedom of the system. While from a field theo-
retic point of view the fact that there are two light degrees
of freedom would be interpreted as the non existence of a
single-field description, the effective sound of the appropri-
ately rotated modes allows to compute the final value of the
full curvature spectrum by studying the evolution of a single
degree of freedom, providing a single-field description.

We consider a model with light entropy perturbations,
ν = 0 and moderate kinetic coupling between perturba-
tions, η⊥ = 0.3. Such models were proposed in [30] to
explain in an alternative way the red tilt of the power spec-
trum of adiabatic perturbations; later they were rediscovered
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Fig. 6 Numerical calculations in single-field effective theories for light
entropy perturbations; model described in Sect. 5.4. Left panel: evolu-
tion of the sound speed given by Eq. (6) for initial conditions leading
to a freezing adiabatic mode (red solid line) and for initial conditions
leading to a decaying adiabatic mode (blue dashed lines); change of sign
of the sound speed squared, i.e. transition from real to imaginary sound

speed, is indicated; thin dashed line corresponds to the value (22). Right
panel: evolution of the instantaneous power spectra in the full theory
and in the effective theory; color coding described in Table 1;N = 0
corresponds to the Hubble radius crossing; the pink line corresponds to
the total curvature power spectrum

and analyzed anew in an improved way, invoking symme-
tries of the theory [34]. Our particular model has entropy
perturbations slowly decaying, so the sourcing of the adia-
batic perturbations eventually becomes ineffective; had we
chosen ν = −2η2⊥, the amplitude of entropy perturbations
would remain nearly constant and the sourcing could last
much longer.

In these models, adiabatic perturbations are sourced by
entropy perturbations on super-Hubble scales, which cor-
responds to the situation described in Sect. 3.2.2, with the
sound speed diverging to infinity. A closer inspection shows
[30] that the amplitude of the adiabatic perturbations grows
as ∼ η⊥N on super-Hubble scales, hence the sound speed
increases as ∼ a2−η⊥ , according to Eq. (18). Similarly, the
sound speed for of the decaying mode increases as a2+η⊥ .
This is consistent with our findigs in Sect. 2.2 that ṽk ∼ a2

marks a divide between freezing and decaying solutions.
In Fig. 6, we show that, similarly to the case of hyperin-

flation, the sound speed ṽ2
k changes sign during evolution.

We also show the evolution of adiabatic and entropy pertur-
bations.

The evolution of the freezing and decaying modes of
the adiabatic perturbations is compared to the evolution of
a single-field effective description with an effective sound
speed given by (6) with an appropriate set of initial condi-
tions. We find a good agreement betwen the predictions of
the full theory and two single-field effective theories with
different effective sound speeds. Depending on the phase of

the evolution, either the freezing or the decaying mode dom-
inates the instantaneous power spectrum and the late-time
domination of the freezing mode starts only after Hubble
radius crossing. This shows that the model cannot be approx-
imated by an effective single-field theory at all times – we
need to combine two single-field theories with two effective,
independent sound speeds to obtain correct predictions for
the curvature perturbations at all times, but the freezing mode
is sufficient to compute the final value. Our numerical analy-
ses also point to the fact that this conclusion holds true for all
models described in Sect. 3.2.2, i.e. models with sourcing
of the adiabatic perturbations on super-Hubble scales.

Since those models can be studied also by integrating out
entropy modes, the fact that a single EFT valid at any time
does not exist, would also be a limitation of the EFT obtained
using that method, and is an intrinsic property of these sys-
tems, independent of the method adopted to study them.

6 Discussion

In the context of cosmological perturbations, the existence
of a single-field effective theory requires that the degree of
freedom corresponding to the freezing mode, accounting for
the entire amplitude of adiabatic perturbations at the end of
inflation, evolves independently of all other perturbations.
Those perturbations can be dynamical, but as their masses are
larger than the Hubble parameter, their amplitudes decrease
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as power law functions of the scale factor. Hence the notion
of the effective theory in cosmology is different from the one
used in particle physics, where decoupling normally means
that other degrees of freedom are too heavy to be excited.

At face value, our effective description of single-field
inflation resembles the quadratic part of the action for adia-
batic perturbations derived in [35]. However, we would like
to point out that the sound speed in that reference is a func-
tion of time only. Using a very simple model with a large
and constant turning rate, analyzed previously in [26,27], we
have shown that the evolution of the adiabatic perturbations
is correctly accounted for by a sound speed that is both time-
and momentum-dependent. Hence our approach generalizes
the effective theory of inflation of [35] in a non-trivial way,
including the effects of entropy.

A truly effective single-field theory has only one relevant
degree of freedom that fully accounts for both the power spec-
trum of the adiabatic perturbations and for higher-order cor-
relation functions of adiabatic perturbations. Although such
a mode has both the adiabatic and the entropic components, a
known effective sound speed (6) provides an algebraic rela-
tion between these two components, so the entropic compo-
nent is no longer an independent quantity. Such an effective
description requires just one effective sound speed, because
other degrees of freedom are assumed to have decayed before
the Hubble radius crossing and thus do not contribute to cor-
relation functions of adiabatic perturbations. In this sense, the
models analyzed in Sects. 5.1, 5.2 and 5.3 have a single-field
effective theory, while the model described in Sect. 5.4 does
not. In this latter case, there is a non-negligible independent
degree of freedom that significantly contributes to the ampli-
tude of adiabatic perturbations around the Hubble cross-
ing. We can therefore conclude that a momentum-dependent
effective sound speed parametrizes single-field effective the-
ories of inflation and provides an effective description of the
adiabatic perturbations when such a theory cannot be formu-
lated.

There is also an alternative, more general view of the mod-
els discussed in Sect. 5, which, however, involves more input
and is thus less predictive. Since the perturbed energy-stress
tensor enters Einstein equations and does not rely on a par-
ticular model of multi-field inflation, the evolution of the
adiabatic component of each degree of freedom is described
by Eq. (7) with an appropriate sound speed. We can define
a number of different effective sound speeds to account for
the evolution of all degrees of freedom, as we have done in
Sect. 5.4. This approach allows us to describe also the evo-
lution of adiabatic perturbations (without resorting explicitly
to the notion of entropy perturbations) in models which do
not admit an effective single-field theory.

The effective field theory of inflation [35] is based on
the assumption that only one scalar degree of freedom is
present, and is formulated in the uniform field gauge, also

called unitary gauge, in which an action invariant under
time-dependent space diffeomerphism can be written with-
out any matter perturbation terms. The unitary gauge does
not coincide with the comoving slices gauge in multi-field
systems [1], so in general the effective theory of inflation
cannot be applied to multi-field systems in which there is no
gauge in which the matter perturbations can be completely
set to zero (in other words, entropy perturbations) cannot be
neglected. Nevertheless, there can also be effective entropy
in the comoving slicea gauge in modified gravity theories
with a single scalar degree of freedom, e.g. in such as KGB
models [36], which can be described by the effective theory
of inflation. These modified gravity theories give rise to a
modification of the dispersion relation, related to extrinsic
curvature terms of the effective action [27,35] and leading
to a momentum-effective sound speed, consistent with the
MESS approach, once the gauge transformation from the
unitary to the comoving slices gauge is performed [36]. In
contrast, effective theory of inflation cannot be applied to
multi-fields systems where there is no gauge in which the
action can only be written in term of geometrical quantitites
This is confirmed, e.g. by the modified dispersion relation
obtained in Eq. (B.6) in [27], which has a different momen-
tum dependency from the one which arises from extrinsic
curvature terms in the effective theory of inflation, as shown
in Eq. (3.22) in [27], associated to intrinsic entropy in single
field modified gravity theories.

In summary, the advantages of the MESS are that it relates
the effective sound speed to the energy-stress tensor in a
model-independent way. It also does not require integrating
out e ntropy modes and it is not based on any further approx-
imation, such as the decoupling limit often assumed in the
effective theory of inflation. Thus it gives a general model-
independent description of adiabatic perturbations, valid at
any energy scale. It also makes explicit the relation between
the entropy of the mulfi-field theory and the momentum
dependent effective sound speed of the corresponding sin-
gle field effective theory, and that it can be computed directly
from the solutions of the matter perturbations equations with-
out the need of computing an effective action.

The definition of MESS is completely general, and can
be applied to any multifields model, including models with
sharp turns of the classical field trajectory. It can also be
applied to modified gravity theories [36], and more complex
systems involving gauge fields, such as axion inflation, as
long as the comoving gauge of the total effective energy-
momentum tensor is properly computed. The ungauged ten-
sor can always be computed analytically, while the comov-
ing gauge condition can be added to the field equations to be
solved numerically, in case it cannot be used to simply them
analytically.

As long as numerical calculations can be carried out
with sufficient accuracy, the method can be applied without
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any restrictions to any multi-field model, with no restric-
tion on the classical field trajectory. The computation of
the MESS involves in some cases the cancellation between
very small numbers, which requires the use of a sufficiently
high numerical accuracy to avoid instabilities, but for mod-
els where entropy modes cannot be integrated out, this is the
only approach which can be adopted to obtain a single-field
description capable of predicting the time dependence of the
adiabatic perturbations of the full multi-field theory.

7 Conclusions

In this work, we presented a formulation of a single-field
effective description of inflation, making use of a recently
advocated approach based on the momentum-dependent
effective sound speed (MESS) [1]. We have shown that this
formulation includes a number of multi-field models that
were considered in the literature in the last decade. We have
identified the effective degree of freedom and shown how its
evolution can be treated independently of other degrees of
freedom, even at scales at which the amplitudes the latter are
not suppressed yet. We have also applied the MESS approach
to a models with light entropy perturbations, which does not
admit an effective field theory obtained by integrating out
entropy modes. Hence we have demonstrated that the MESS
approach, which generalizes the notion of single-field effec-
tive theory of inflation, is a powerful and useful scheme for
studying a wide range of inflationary models.
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Appendix A: MESS of multiple scalar fields

The energy-stress tensor for the system described by the
action given in Eq. (12) is

Tμ
ν = GI J

(
�K

)
∂μ�I ∂ν�

J + δμ
ν

×
[
−1

2
GI J

(
�K

)
∂λ�

I ∂λ�J − V
(
�K

)]
. (A.1)

The scalar fields at linear order can be expanded as�K (xμ) =
φK (t) + δφK (xμ), where the background parts of the scalar
fields satisfy the following equations of motion

φ̈ I +3H φ̇ I +	 I
J K φ̇ J φ̇K +GI J

(
φK

)
V,J

(
φ J

)
= 0 , (A.2)

where 	 I
J K are the Christoffel symbols corresponding to

the fields space metric GI J
(
φK

)
, and we denote the partial

derivative respect to the field φ J according to V,J
(
φ J

) =
∂

∂φ J V
(
φ J

)
. The background energy density and pressure are

ρ = 1

2
σ̇ 2 + V

(
φK

)
, (A.3)

P = 1

2
σ̇ 2 − V

(
φK

)
, (A.4)

where σ̇ 2 = GI J
(
φK

)
φ̇ I φ̇ J . The components of the per-

turbed energy-stress tensor of the two scalar fields system,
without gauge fixing, are

δT 0
0 = −1

2
GI J

(
φK

) (
φ̇ I ˙δφ J + φ̇ J ˙δφ I

)
+ σ̇ 2A

− δφk
(

1

2
φ̇ I φ̇ J G I J ,K

(
φK

)
+ V,K

(
φK

))
,

δT i
j = δij

[
1

2
GI J

(
φK

) (
φ̇ I ˙δφ J + φ̇ J ˙δφ I

)
− σ̇ 2A

+δφk
(

1

2
φ̇ I φ̇ J G I J ,K

(
φK

)
− V,K

(
φK

))]
,

δT 0
i = −∂i

[
GI J

(
φK

)
φ̇ I δφ J

a

]
. (A.5)

Under an infinitesimal time translation t → t + δt the fields
perturbations transform according to the gauge transforma-
tion

δ̃φ
K = δφK − φ̇K δt . (A.6)

From these equations we can find the time translation δtc nec-
essary to go to the comoving gauge, by imposing the comov-
ing gauge condition (δT 0

i )c = 0 → GI J
(
φK

)
φ̇ I δ̃φ

J = 0,
obtaining

δtc = GI J
(
φK

)
φ̇ I δφ J

σ̇ 2 . (A.7)
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We can now compute the gauge invariant comoving field
perturbations according to

UK = δφK − φ̇K δtc = δφK − φ̇K GI J
(
φK

)
φ̇ I δφ J

σ̇ 2 , (A.8)

and the comoving pressure and energy density perturbations

α = δPc = 1

2
GI J

(
φK

) (
φ̇ I U̇ J + φ̇ J U̇ I

)
− σ̇ 2γ

+Uk
(

1

2
φ̇ I φ̇ J G I J ,K

(
φK

)
− V,K

(
φK

))
, (A.9)

sβ = δρc = 1

2
GI J

(
φK

) (
φ̇ I U̇ J + φ̇ J U̇ I

)

− σ̇ 2γ +Uk
(

1

2
φ̇ I φ̇ J G I J ,K

(
φK

)
+ V,K

(
φK

))
.

(A.10)After replacing Eqs. (A.8) and (A.2) into these expressions
we find

UkV,K

(
φK

)
= 1

2
GI J

(
φK

) (
φ̇ I U̇ J + φ̇ J U̇ I

)

+Uk 1

2
φ̇ I φ̇ J G I J ,K

(
φK

)
= −σ̇ 2 �

4
,

(A.11)

α = −σ̇ 2γ = −σ̇ 2 ζ̇

H
, (A.12)

β = −σ̇ 2
(

γ + �

2

)

= −σ̇ 2
(

ζ̇

H
+ �

2

)
, (A.13)

where we have used the perturbed Einstein’s equation γ =
ζ̇ /H , and we have defined the function � according to

� ≡ −4φ̇1φ̇2

σ̇ 3

√
G

(
δφ1

φ̇1
− δφ2

φ̇2

)
V,s = 4

σ̇ 2 Q,sV,s ,

(A.14)

where G is the determinant of the fields space metric
GI J

(
φK

)
, i.e.G ≡ det (GI J ), Q,s ≡ Q,K eKs V,s ≡ V,K eKs ,

and

eKs =
(
e1
s , e

2
s

)
=

(
G21φ̇1 + G22φ̇2

σ̇
√
G

,−G11φ̇1 + G12φ̇2

σ̇
√
G

)
.

(A.15)

Finally the MESS is given by

ṽ2
k (t) =

(
1 + H�

2ζ̇

)−1

=
(

1 + 2HV,s Q,s

ζ̇ σ̇ 2

)−1

=
(

1 − 2H2η⊥Q,s

ζ̇ σ̇

)−1

, (A.16)

where

η⊥ ≡ − V,s

H σ̇
. (A.17)

Appendix B:Multi-field case

The calculation given in Sect. 4 can be easily generalized to
a system of N coupled linear and homogeneous equations,
which can be written as:

d2 �U
dη2 + L(η)

d �U
dη

+ M(η) �U = 0 , (B.1)

where �U = (U1(η), . . . ,UN (η)) and L(η), M(η) are real-
valued N × N matrices, which are functions of the inde-
pendent variable η. It is easy to show that for L = 0 and
M

T = M the Wronskian defined as:

W (η) ≡ �U†
�U

dη
−

(
d �U
dη

)†

�U (B.2)

does not depend on η.
The equations of motion for the two-field system of adia-

batic and entropy perturbations (13)–(14) can be transformed
so that we can make use of this fact. We first redefine pertur-
bations as �u = (aQσ , aQs) and identify η with conformal
time. We obtain a system of equations of the form (B.1) with:

L =
(

0 2η⊥
η

− 2η⊥
η

0

)
(B.3)

and

M =
(
k2 − 2

η2

)
1 +

(
0 − 4η⊥

η2

− 2η⊥
η2

ν
η2

)
, (B.4)

where ν = m2
s

H2 − 2η2⊥ and we used de Sitter approximation

again.1 We then define

�U = R�u (B.5)

with

R(η) =
⎛
⎝ cos

(
η⊥ log

(
η
η0

))
sin

(
η⊥ log

(
η
η0

))
− sin

(
η⊥ log

(
η
η0

))
cos

(
η⊥ log

(
η
η0

))
⎞
⎠ ,

(B.6)

1 This system was given e.g. in [31] and [26], but some later references
[32,33] write these equations with M

T instead of M without comment-
ing on this discrepancy.

123



767 Page 14 of 16 Eur. Phys. J. C (2022) 82 :767

where η0 is an arbitrary constant. In terms of the new vari-
able �U , the equation of motion (B.1) reads:

d2 �U
dη2 +

[(
k2 + η2⊥ − 2

η2

)
1 + 1

η2 RMR
T

]
�U = 0 , (B.7)

where

M =
(

0 −3η⊥
−3η⊥ ν

)
, (B.8)

The conserved Wronskian (B.2) reads:

W (η) = �u† d�u
dη

−
(

d�u
dη

)†

�u + 2η⊥
η

�u†
E�u , (B.9)

where we denoted:

E =
(

0 1
−1 0

)
(B.10)

and made use of the fact that dR
dη

= η⊥
η
RE.

This form of the Liouville equation can be used to identify
the initial Bunch–Davis conditions in a coupled multi-field
system and to match those initial condition with the late-time
behavior of the perturbations. We comment on these issues
below.

Appendix C: Matching curvature and entropy perturba-
tions in the sub- and super-Hubble regime

Based on the results of Appendix B, we can comment on the
choice of the Bunch-Davies vacuum as an initial state for the
adiabatic and entropy perturbations and on a simple way in
which that initial state can be matched with the asymptotic
late-times solutions of the equations of motion. Deep inside
the Hubble radius, i.e. for η → −∞, Eq. (B.7) becomes an
equation of motion for a harmonic oscillator and it has two
independent positive-frequency solutions:

�U (1)(η) ∼ e−ikη

√
2k

�U (1)
0 and �U (2)(η) ∼ e−ikη

√
2k

�U (2)
0 ,

(C.1)

where �U (1)
0 and �U (2)

0 are constant vectors satisfying

�U (I )†
0

�U (J )
0 = δI J . (C.2)

These vectors can be parametrized as:

�U (1)
0 =

(
cos θ0

sin θ0eiφ0

)
and �U (2)

0 =
(− sin θ0e−iφ0

cos θ0

)
.

(C.3)

In terms of perturbations �u, the solution (C.1) reads:

�u(1) ∼ e−ikη

√
2k

×
⎛
⎝ cos θ0 cos

(
η⊥ log

(
η
η0

))
− eiφ0 sin θ0 sin

(
η⊥ log

(
η
η0

))
cos θ0 sin

(
η⊥ log

(
η
η0

))
+ eiφ0 sin θ0 cos

(
η⊥ log

(
η
η0

))
⎞
⎠

(C.4)

and�u(2) ∼ e−ikη

√
2k

×
⎛
⎝ −e−iφ0 sin θ0 cos

(
η⊥ log

(
η
η0

))
− cos θ0 sin

(
η⊥ log

(
η
η0

))
−e−iφ0 sin θ0 sin

(
η⊥ log

(
η
η0

))
+ cos θ0 cos

(
η⊥ log

(
η
η0

))
⎞
⎠ .

(C.5)

The modulus squared of the upper (adiabatic) component in
(C.4) reads:

∣∣∣u(1)
σ

∣∣∣2 = 1

4k

(
1 + cos 2θ0 cos

(
2η⊥ log

(
η

η0

))

− cos φ0 sin 2θ0 sin

(
2η⊥ log

(
η

η0

)))
. (C.6)

This expression is constant for θ0 = ±π
4 and φ0 = π

2 , which

also corresponds to constant |u(1)
s |2, |u(2)

σ |2 and |u(2)
s |2. Our

final results is, therefore:

�u(1) ∼ e
−ikη+iη⊥ log

(
η
η0

)

2
√
k

(
1
−i

)

and

�u(2) ∼ e
−ikη−iη⊥ log

(
η
η0

)

2
√
k

(−i
1

)
. (C.7)

Note that Eq. (C.7) exhibits some redundancy, which was
not visible in the intermediate steps leading to that result.
A change in arbitrary constant η0 can be extracted as an
unphysical phase factor multiplying the solution.

The approximate solution (C.7) is reliable as long as the
last term in Eq. (B.7) is negligible. This is satified for (kη)2 >

max{ν, 3η⊥}.
It is also interesting to study the late-time behavior of the

system of Equations (B.7) with (B.3) and (B.4), following
the treatment in [26]. In the limit η → 0−, we can neglect
the k-dependent term and assume solutions of the form:

�u =
(

η

η0

)P (
Aσ

As

)
, (C.8)
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where η0 represents the value of the conformal time at which
the solution should be matched with the early-time solution.
We obtain an algebraic equation:

(
P(P − 1) − 2 2η⊥(P − 2)

−2η⊥(P + 1) P(P − 1) − 2 + ν

) (
Aσ

As

)
= 0 . (C.9)

Equation (C.9) has four nontrivial solutions for p:

P1 = −1 , with
A(1)
s

A(1)
σ

= 0 (C.10)

P2 = 2 , with
A(2)
s

A(2)
σ

= 6η⊥
ν

(C.11)

P3,4 = 1

2
∓ i

√
ν + 4η2⊥ − 9

4
, with

A(3,4)
s

A(3,4)
σ

= − ν + 4η2⊥

η⊥
(

3 ± 2i
√

ν + 4η2⊥ − 9
4

) . (C.12)

The last two solutions (C.12) correspond to the positive and
negative frequency solutions for a massive mode, of mass
squared (ν + 4η2⊥)H2. The first two solutions, Eqs. (C.10)–
(C.11) correspond to the growing and decaying part of a
massless mode. It is also clear that the growing mode ∼ 1/η

carries only the adiabatic component, i.e. in the considered
model adiabatic perturbations can freeze in at some scale,
while all entropy perturbations decay at late times.

The mode corresponding to the exponent p4 corresponds
to negative frequency. If the relative change of the sound
speed is not much larger than one, this mode is not excited
during the evolution of the perturbations. It is instructive to
analyze the relations between the sub-Hubble solutions (C.7)
and the solutions (C.10)–(C.12). This is particularly simple
in the limit ν → 0, which will correspond to numerical exam-
ples to be discussed later. In this limit, we have:

A(1)
s = 0 , A(2)

σ ≈ 0 , A(3)
s ≈ iA(3)

σ . (C.13)

Matching (C.7) with (C.10)–(C.12), we find that �u(2) corre-
sponds to a massive mode with p3, which decays on super-
Hubble scales, while �u(1) is a combination of a growing mode
corresponding to p1 and the decaying massive mode corre-
sponding to p2, with A(1)

σ ≈ −iA(2)
s .

A general late-times solution of (B.1) can therefore be
written as:

�u =
4∑

I=1

(
η

η0

)PI
(
A(I )

σ

A(I )
s

)
, (C.14)

where for a given I the coefficients A(I )
σ and A(I )

s satisfy the
relations in respective Eqs. (C.10)–(C.12). Plugging (C.14)

into the expression for the conserved Wronskian, we find:

W = − i
(
ν + 4η2⊥

)
η⊥η0

Im
(
A(1)

σ A(2)∗
s

)

−
i
(
ν + 4η2⊥

) √
ν + 4η2⊥ − 9

4

2η2⊥η0(∣∣∣A(3)
σ

∣∣∣2 −
∣∣∣A(4)

σ

∣∣∣2
)

. (C.15)

In the limit ν → 0 considered above, this reduces to:

W = −4iη⊥
η0

|A(1)
σ |2 . (C.16)

As the Wronskian (C.16) is conserved and equal −i, we find
that |Aσ,1|2 = η0/4η⊥, which leads to the following predic-
tion for the power spectrum of the adiabatic perturbations:

P
Psf

= |kη0|3
2η⊥

. (C.17)

Since η0 corresponds to matching between the early- and
late-time solutions, and we argued that for ν → 0 we have
η0 = −√

3η⊥/k, we obtain:

P
Psf

= 3
√

3

2
η

1/2
⊥ . (C.18)

We note that this equation has the same parametric form as
Eq. (37) and the numerical prefactor ∼ 2.6 in Eq. (C.18) is
very close to that Eq. (37). This is a remarkable consistency,
given our crude approach to solving the equations of motion
for the two-field system, relying on matching between the
early- and late-time asymptotic solutions.
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