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Abstract Scalar-tensor theories offer the prospect of
explaining the cosmological evolution of the Universe
through an effective description of dark energy as a quan-
tity with a non-trivial evolution. In this work, we investi-
gate this feature of scalar-tensor theories in the teleparallel
gravity context. Teleparallel gravity is a novel description of
geometric gravity as a torsional- rather than curvature-based
quantity which presents a new foundational base for gravity.
Our investigation is centered on the impact of a nontrivial
input from the kinetic term of the scalar field. We consider a
number of model settings in the context of the dynamical sys-
tem to reveal their evolutionary behavior. We determine the
critical points of these systems and discuss their dynamics.

1 Introduction

The last several decades have seen cosmology radically
altered with unprecedented observational evidence, first with
the discovery of a Universe that is accelerating [1,2] due
to some form of dark energy and more recently with the
increasingly convincing Hubble tension [3–7]. This tension
has arisen between local measurements of the Hubble con-
stant H0 [8,9] and predictions of this cosmological parame-
ter from observations from the early Universe [10,11] which
require the use of the concordance model or �CDM. To a
lesser extent, the tension also appears in other cosmologi-
cal parameters related to large scale structure measurements
[12–14], which has prompted various attempts in the com-
munity to resolve the possible issue using additional contri-
butions from the matter sector, as well as renewed interest
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in physics beyond general relativity (GR) which are now
becoming mainstream.

GR acts as the base gravitational model on which �CDM
rests as a foundation. However, there exist many possible
directions for modified gravity to work toward. Recently,
there have been a plethora of possible observationally moti-
vated theories in the literature [15–18] which are yet to
show promise of behaving better than �CDM when con-
fronted with observations. By and large, these are mostly
built as correction terms to the Einstein–Hilbert action of
GR [19,20]. In these works, gravitational interactions con-
tinue to be described through the curvature associated with
the Levi-Civita connection which is the sole source of curva-
ture in GR [21]. However, this is not the only way to construct
gravitational models. In recent years there has been growing
interest in teleparallel gravity (TG) where torsion is consid-
ered as the base mode of interactions for the gravitational
sector [22–25].

In TG, the Levi-Civita connection is replaced with the
teleparallel connection [22,26] which expresses geometric
deformations through torsion rather than curvature. In this
regime, all measures of curvature vanish identically such as
the Ricci scalar R(�σ

μν) = 0, where as its regular curvature

form does not vanish R̊(�̊σ
μν) �= 0 (over-circles represent

quantities calculated with the Levi-Civita connection). By
relating the connections together, a torsion scalar T can be
produced which is equal to the regular Ricci scalar up to
a boundary term, meaning that it will produce field equa-
tions that are dynamically equivalent to GR, also called the
Teleparallel equivalent of General Relativity (TEGR). Thus,
observations are indistinguishable between GR and TEGR.
This boundary term is important because it embodies the
fourth-order terms of the Ricci scalar, which are boundary
terms in the Einstein–Hilbert action. Its only when general-
izations such as f (R̊) gravity are considered [20] do these
terms impact the order of the field equations.
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The division of the torsion scalar and boundary term
means that a weaker Lovelock theorem is developed [27–
29] where much more general theories that are second order
can be produced such as f (T ) gravity [25]. f (T ) theories of
gravity [30–38] emerged using the same rationale as f (R̊)

gravity [15,19,20] where the TEGR Lagrangian is general-
ized to an arbitrary function of the torsion scalar. These the-
ories are generically second order and have shown promise
in meeting some observational challenges in the literature
[24,39–43]. In this work, we explore the space of cosmo-
logical models that feature a scalar field. In curvature-based
gravity, there has been extensive analyses of scalar couplings
in this setting [44,45] that have shown real promise in con-
structing viable models. An interesting collection of such
models is that of Horndeski gravity [46] in which a single
scalar field is allowed to couple arbitrarily to the Einstein–
Hilbert action provided that it produces second order field
equations [47–49]. In the TG regime, a teleparallel analogue
of Horndeski gravity has been proposed in the literature [29]
which has the added benefit that it allows for a much wider
range of models that are consistent with recent measurements
of the gravitational propagation speed [50], as well as hosting
a vast array of models that are consistent with solar system
tests [51]. These models also show a rich array of possi-
ble gravitational wave polarizations [52] which is a growing
topic for gravitational wave astronomy. More recently, the
teleparallel analogue of Horndeski gravity has been used to
construct well motivated models using well-tempered cos-
mological methods in either Minkowski [53] or cosmolog-
ical backgrounds [54]. Another interesting direction related
to constructing models in this framework is that of using
Noether symmetries to construct cosmology oriented mod-
els as was performed in Ref. [55].

In this study, we probe possible cosmological behaviours
using a dynamical systems approach which can reveal the
evolution of the individual models under consideration in
the context of their potential to attain the known critical
points of the Universe [56]. By taking a flat homogeneous
and isotropic background solution, dynamical systems can
be used to determine the number and nature of the critical
points of the system which express whether these positions
in the cosmic evolution are stable or not. In the literature,
scalar couplings with torsion have shown interesting results
such as Ref. [57] where a nontrivial scalar field is allowed to
contribute while the kinetic term remains canonical. In the
present study, we extend these efforts to allow for several
models with a nontrivial kinetic term. Our aim is to assess
whether this type of generalization can produce a dynamical
system consistent with our expectations for the Universe. To
that end, we first briefly review the literature on TG and the
structure of the teleparallel analogue of Horndeski gravity
in Sect. 2. The cosmological system is then introduced in
Sect. 3, while the dynamical system analysis for the models

is conducted in Sects. 4, 5. In these models we explore the
impact of a power-law kinetic term coupled with the torsion
scalar and another nonzero (for this background) scalar of
the theory respectively. Finally, we summarize our results in
Sect. 6 where we discuss how these results compare with the
present literature.

2 Scalar-tensor teleparallel gravity

The curvature associated with GR and other models based
on the Levi-Civita connection [16] is reformulated in TG
through the teleparallel connection where torsion replaces
curvature as the means by which gravity is expressed [22].
The origin of curvature in GR and related theories is not
the metric, but rather the Levi-Civita connection �̊σ

μν (over-
circles are used throughout to denote quantities determined
using the Levi-Civita connection) which characterizes how
any geometric deformation is to be characterized. On the
other hand, TG characterizes gravitation as torsion through
the teleparallel connection �σ

μν which is curvature-less and
satisfies metricity [23,58]. While the regular Riemann tensor
R̊β

μνα does not vanish, its teleparallel analogue does, as do all
quantitative measures of curvature, meaning that an entirely
new approach to forming gravitational theory needs to be
adopted (see reviews in Refs. [23–25]).

The most efficient path to forming teleparallel theories of
gravity is through the tetrad eAμ (and its inverses E μ

A ) which
takes the place of the metric as the fundamental variable of
theory through the relations

gμν = eAμe
B
νηAB, ηAB = E μ

A E ν
B gμν, (1)

where Latin indices represent coordinates on the tangent
space while Greek indices continue to represent indices on
the general manifold [24]. While they do appear in GR, the
direct use of tetrads in GR is largely suppressed [59]. Similar
to the metric, the tetrads must satisfy orthogonality condi-
tions which take of the form of

eAμE
μ

B = δAB , eAμE
ν

A = δν
μ, (2)

preserving internal consistency.
The teleparallel connection can be directly defined as [26,

60]

�σ
νμ := E σ

A

(
∂μe

A
ν + ωA

Bμe
B
ν

)
, (3)

where contributions of the tetrad are complemented by ωA
Bμ

which is a flat spin connection and is responsible for incorpo-
rating local Lorentz invariance into teleparallel theories. This
arises due to the explicit appearance of the Lorentz indices
and thus the Lorentz frames. As tetrads appear in GR, so too
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do spin connections but one important distinction is that they
are not flat in the GR case [21]. The tetrad-spin connection
pair represent the gravitational and local degrees of freedom
in the equations of motion of TG. Now, analogous to the way
that the Levi-Civita connection builds up to the Riemann ten-
sor, the teleparallel connection directly leads to the torsion
tensor [58]

T σ
μν := 2�σ[νμ], (4)

where square brackets denote the anti-symmetry operator,
and where T σ

μν acts as the field strength of gravity [23]. This
tensor is covariant under both diffeomorphisms and local
Lorentz transformations. By an appropriate combination of
contractions of torsion tensors, a torsion scalar can be written
down such that [22–25]

T := 1

4
T α

μνT
μν

α + 1

2
T α

μνT
νμ

α − T α
μαT

βμ
β, (5)

which is the result of a requirement that T be equivalent to
the curvature scalar R̊ (up to a boundary term). Similar to the
way in which the curvature scalar is dependent only on the
Levi-Civita connection, the torsion tensor is only dependent
on the teleparallel connection.

Exchanging the Levi-Civita connection with the telepar-
allel connection means that measures of curvature identi-
cally vanish, such as R ≡ 0 (where we emphasize that
R = R(�σ

μν) and R̊ = R̊(�̊σ
μν)). In this context, we

can write the following relation for the curvature and tor-
sion scalars [39,61]

R = R̊ + T − B = 0. (6)

where B = (2/e)∂ρ

(
eTμ ρ

μ

)
is a total divergence term,

where e = det
(
eaμ

) = √−g is the determinant of the tetrad.
This guarantees that the GR and TEGR actions will generate
identical field equations.

Taking a similar rationale as with many other extensions
to GR, such as f (R̊) gravity [20,62], TEGR can be directly
generalized to f (T ) by raising the TEGR Lagrangian to an
arbitrary function [30–34,63]

SF(T ) = 1

2κ2

∫
d4x e (−T + F(T )) +

∫
d4x eLm, (7)

where κ2 = 8πG, and Lm is the matter Lagrangian in the
Jordan frame. The tetrad and spin connection are independent
variables in TG and thus produce independent field, which
correspond to the ten metrical field equations and the six local
Lorentz degrees of freedom. However, the tetrad variation
W μ

a = δSF(T )
/δeAμ has an interesting property that when

acted on by the anti-symmetric operator, it produces the spin
connection field equations. Thus, all the equations of motion
can be determined with this variation as [22]

W(μν) = κ2�μν, and W[μν] = 0, (8)

which also holds for any other teleparallel gravity theory,
and where �ν

ρ is the regular energy-momentum tensor for
matter. In this setting, the Weitzenböck gauge can defined as
the tetrad choice in which the spin connection vanishes, i.e.
where the anti-symmetric field equations are identically zero
for the choice (1) of tetrad.

In the present work, we explore the dynamical systems
of a particular class of scalar-tensor models which uniquely
appear in teleparallel gravity. To form the broader class of
scalar-tensor extensions in TG, we first consider the irre-
ducibles pieces of the torsion tensor [58,64]

aμ := 1

6
εμνλρT

νλρ, (9)

vμ := T λ
λμ, (10)

tλμν := 1

2

(
Tλμν + Tμλν

) + 1

6

(
gνλvμ + gνμvλ

) − 1

3
gλμvν,

(11)

which are respectively the axial, vector, and purely tenso-
rial parts, and where εμνλρ is the totally antisymmetric Levi-
Civita tensor in four dimensions. Taking appropriate contrac-
tions leads to the scalar invariants [61]

Tax := aμa
μ = − 1

18

(
TλμνT

λμν − 2TλμνT
μλν

)
, (12)

Tvec := vμvμ = T λ
λμT

ρμ
ρ , (13)

T ten := tλμν t
λμν = 1

2

(
TλμνT

λμν + TλμνT
μλν

) − 1

2
T λ

λμT
ρμ

ρ .

(14)

These three scalars form the most general parity preserving
scalars that are quadratic in contractions of the torsion tensor,
and even reproduce the torsion scalar T := 3

2Tax + 2
3Tten −

2
3T vec. Recently, this has led to the proposal of a telepar-
allel analogue of Horndeski gravity [29,50–55], also called
Bahamonde–Dialektopoulos–Levi Said (BDLS) theory. As
in curvature-based gravity, this is grounded on the Lovelock
theorem [27,28,65], and leads to the linear torsion scalar
contraction scalar invariants [29]

I2 = vμφ;μ, (15)

where φ is the scalar field, and while for the quadratic sce-
nario, we find

J1 = aμaνφ;μφ;ν, (16)

J3 = vσ t
σμνφ;μφ;ν, (17)

J5 = tσμν t α
σ νφ;μφ;α, (18)

J6 = tσμν t αβ
σ φ;μφ;νφ;αφ;β, (19)

J8 = tσμν t α
σμ φ;νφ;α, (20)

J10 = εμ
νσρa

ν tαρσ φ;μφ;α, (21)

123



680 Page 4 of 28 Eur. Phys. J. C (2022) 82 :680

where semicolons represent covariant derivatives with
respect to the Levi-Civita connection. The Levi-Civita con-
nection enters into the scalar field sector through the mini-
mal coupling prescription of TG (See Ref. [29] for further
details).

Naturally, the regular Horndeski terms from curvature-
based gravity also appear in this framework [46]

L2 := G2(φ, X), (22)

L3 := G3(φ, X)�̊φ, (23)

L4 := G4(φ, X) (−T + B)

+ G4,X (φ, X)

((
�̊φ

)2 − φ;μνφ
;μν

)
, (24)

L5 := G5(φ, X)G̊μνφ
;μν

− 1

6
G5,X (φ, X)

((
�̊φ

)3 + 2φ
ν

;μ φ
α

;ν φ
μ

;α

−3φ;μνφ
;μν �̊φ

)
, (25)

where the kinetic term is defined as X := − 1
2∂μφ∂μφ. BDLS

theory simply adds the further Lagrangian component [29]

L Tele :=G Tele (φ, X, T, Tax, Tvec, I2, J1, J3, J5, J6, J8, J10) .

(26)

This results in the BDLS action given by

SBDLS = 1

2κ2

∫
d4x eL Tele

+ 1

2κ2

5∑
i=2

∫
d4x eLi +

∫
d4x eLm, (27)

with G̊μν is the standard Einstein tensor. The curvature-based
regular Horndeski theory is recovered for the limit where
G Tele = 0. BDLS theory is invariant under local Lorentz
transformations and diffeomorphisms due to it being based
on the torsion tensor. One minor difference with regular
Horndeski theory is that calculations are now based on the
tetrad and spin connection components rather than the metric
tensor, but this will not impact the values for the L2 − L5

contributions. Another important point to highlight is that
this version of the popular scalar-tensor theory provides a
much more general framework on which to construct mod-
els. Indeed, this allows for a path to circumvent the strong
constraints imposed in regular Horndeski gravity from grav-
itational wave observations [66].

3 Teleparallel scalar-tensor flat FLRW cosmology

We consider a flat isotropic and homogeneous background
cosmology through the Friedmann–Lemaître–Robertson–
Walker (FLRW) metric [21]

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (28)

Where a(t) is the scale factor depends on cosmic time t . This
can be described by the tetrad

eAμ = (1, a(t), a(t), a(t)), (29)

which is consistent with the Weitzenböck gauge described in
Sect. 2. We take the standard definition of the Hubble param-
eter H = ȧ

a , where dots refer to derivatives with respect to
cosmic time. We also consider the equation of state (EoS) for
matter ωm = pm

ρm
= 0 and radiation ωr = pr

ρr
= 1/3, which

will both contribute to our representation of cosmology. In
this work, we consider the class of models in which

G2 = X − V (φ), (30)

G3 = 0 = G5, (31)

G4 = 1/2κ2, (32)

where we take a generalization of a canonical scalar field
together with a TEGR term. This then lets use probe differ-
ent forms of the GTele term in the action (27). As discussed,
our aim is to probe the nature of power-law couplings with
the kinetic term. To that end, we consider two models that
embody nonvanishing terms for an FLRW background cos-
mology, which are

GTele1 = XαT, (33)

GTele2 = Xα I2, (34)

where the other terms effectively do not contribute to the
Friedmann equations [29], and where

T = 6H2, (35)

I2 = 3H φ̇. (36)

Thus, we can write the effective Friedmann equations as

3

κ2 H
2 = ρm + ρr + X + V + 6H φ̇GTele,I2

+ 12H2GTele,T + 2XGTele,X − GTele, (37)
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− 2

κ2 Ḣ = ρm + 4

3
ρr

+ 2X + 3H φ̇GTele,I2 + 2XGTele,X − d

dt
× (

4HGTele,T + φ̇GTele,I2

)
, (38)

and where the scalar field equation is given by

1

a3

d

dt

[
a3φ̇

(
1 + GTele,X

)] = −V ′(φ) − 9H2GTele,I2

+GTele,φ − 3
d

dt

(
HGTele,I2

)
. (39)

This effective fluid observes the energy-conservation equa-
tion

ρ̇DE + 3H(ρDE + pDE) = 0, (40)

but this description breaks down at perturbative level. More-
over, in what follows we will use the density parameters

�m = κ2ρm

3H2 , �DE = κ2ρDE

3H2 , �r = κ2ρr

3H2 . (41)

which satisfies the conservation relation

�m + �DE + �r = 1. (42)

4 Model 1 – kinetic term coupled with torsion scalar

The action for Model 1 is given by a coupling between a
power-law-like term and the torsion scalar represented by

S =
∫

d4xe[X − V (φ) − T

2κ2 + XαT ] + Sm + Sr, (43)

where V (φ) is the scalar potential, Sm represents the action
of for matter and Sr describes the action for the radiation
component. We shall perform the dynamical system analysis
for the general case α, followed by two examples with α =
1, α = 2. Taking background FLRW cosmology (29) and
the action above, we can obtain the Friedmann equations

in Eqs. (44–45) whereas the Klein–Gordon equation can be
obtained in Eq. (46), altogether giving

T

2κ2 − V (φ) − X − XαT − 2αXαT = ρm + ρr, (44)

− V (φ) + T

2κ2 + X − XαT + 2Ḣ

κ2 − 4Xα Ḣ − 8αXαH
φ̈

φ̇
= −pr ,

(45)

V
′
(φ) + 3H φ̇ + 6XαTαH

φ̇
+ 4αXαT Ḣ

φ̇H

+ φ̈[1 − αXα−1T + α2Xα−2T ] = 0. (46)

Now using the background expressions defined in Sect. 3,
we can obtain the expression for energy density and pressure
of effective dark energy as

ρDE = XαT + 2αXαT + V (φ) + X, (47)

pDE = −V (φ) + X − XαT − 4Xα Ḣ − 8αXαH φ̈

φ̇
. (48)

To study the phases of cosmic evolution, the autonomous
dynamical system for the above set of cosmological expres-
sions can be defined using following dimensionless variables.

x = κφ̇√
6H

, y = κ
√
V√

3H
, u = 2Xακ2, ρ = κ

√
ρr√

3H
,

λ = −V
′
(φ)

κV (φ)
, � = V (φ)V

′′
(φ)

V ′
(φ)2

, (49)

where the constraint equation for the dimensionless variables
can be obtained as,

x2 + y2 + (1 + 2α)u + �m + ρ2 = 1. (50)

Now the autonomous dynamical system can be defined by
differentiating the dimensionless variables with respect to
N = ln a as,
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dx

dN
=

x
(
−x2

(
ρ2 + 3(α(2α + 5) + 1)u − 3y2 − 3

) + √
6λxy2(2αu + u − 1) − 3x4

)

2(u − 1)x2 − 2αu(2α(u + 1) + u − 1)

− αux
(
2α

(
ρ2 + 3

) + ρ2 + (6α + 3)u − 3(2α + 1)y2 − 3
)

2(u − 1)x2 − 2αu(2α(u + 1) + u − 1)
, (51)

dy

dN
=

−y
(
x2

(
ρ2 + (

6α2 + 9α − 3
)
u − 3y2 + 3

) − 2
√

6αλuxy2 + 3x4
)

2(u − 1)x2 − 2αu(2α(u + 1) + u − 1)

+ αu(−y)
(
(6α + 3)u − (2α − 1)

(−ρ2 + 3y2 − 3
))

2(u − 1)x2 − 2αu(2α(u + 1) + u − 1)
− y

√
3

2
λx, (52)

du

dN
=

αu
(

2αu
(
ρ2 + 3x2 − 3y2

) + (u − 1)x
(

6x − √
6λy2

))

αu(2α(u + 1) + u − 1) − (u − 1)x2 , (53)

dρ

dN
=

ρ
(
−x2

(
ρ2 + 6α2u + 9αu + u − 3y2 − 1

) + 2
√

6αλuxy2 − 3x4
)

2(u − 1)x2 − 2αu(2α(u + 1) + u − 1)

+ αρu
(
2αu + u + (2α − 1)

(−ρ2 + 3y2 + 1
))

2(u − 1)x2 − 2αu(2α(u + 1) + u − 1)
, (54)

dλ

dN
= √

6(� − 1)λ2x . (55)

Unless the parameters � is known, the dynamical sys-
tems presented in this work are not an autonomous systems.
We will now on wards focus on the exponential potential
V (φ) = V0e−λκφ with λ is a dimensionless constant. This
particular form of potential function leads to, � = 1 and
can give rise to an accelerated expansion of the universe. We
obtain the critical points (or fixed points) for autonomous
dynamical system presented in Eqs. (51–55) by imposing
conditions dx

dN = 0, dy
dN = 0, du

dN = 0, dρ
dN = 0. The critical

points are titled with capital letters and presented in corre-
sponding tables. To study the cosmological implications, the
value of the deceleration parameter and value for the total
EoS ωtot are also presented in the tables. From the Table 1
observation, it can be concluded that parameter α contributes
in the co-ordinates of critical points D and E and represents
the de Sitter solution for the dynamical system presented in
Eqs. (51–55). While analyzing the critical points for the case
general α, there is a chance to get more number of critical
points than for a particular value of α. The critical points
L , M , F , G and A represent same cosmological implica-
tion. These critical points show deceleration parameter value
q = 1

2 and ωtot = 0, hence explaining the cold dark matter-
dominated era. Similarly the critical points B, C , and N rep-
resent the same phase of evolution with value of ωtot = 1,
hence cannot describe current accelerated phase of evolution
and behave as stiff matter. The critical points J and K are
defined at λ = 2 and show value of ωtot = 1

3 hence describe
the radiation dominated era. Since the critical points H and I

represent deceleration parameter value, q = −1 + λ2

2 , these

critical points can describe current acceleration of the uni-
verse for any real value of λ and are compatible with current
observational data.

The stability of critical points can be studied by obtaining
eigenvalues of linear perturbation matrix at critical points.
Depending upon the signature of eigenvalues one can clas-
sify the stability properties as, if all the eigenvalues pos-
sesses positive signature it is an unstable node; if all the
eigenvalues possesses negative signature then it is a stable
node; if one of the eigenvalue possesses positive signature
and other possesses negative sign in this case it is saddle
point and if the determinant of linear perturbation matrix is
negative and the real parts of all the eigenvalues possesses
negative signature then it is a stable spiral. The eigenvalues
and stability conditions for dynamical system in Eqs. (51–
55) are presented in Table 2. The existence of positive and
negative eigenvalues for permutation matrix at the critical
points A, B, C , J , K and N describe saddle point behaviour
at these critical points hence these critical points are unsta-
ble. However value of deceleration parameter at these crit-
ical points clarify that these critical points can not explain
accelerated expansion phase of the universe. Critical points
F and G ensure stability in the range of parameter α > 0

and

(
−2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

)
these critical

points explain the standard matter dominated era. The criti-
cal points D and E shows stable behaviour and explain the
de Sitter solution.
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For any real value of λ, the critical points H and I rep-
resent dark energy dominated era and this point shows sta-
ble behaviour for the parameters obey the value α > 0 and
(−√

3 < λ < 0 ∨ 0 < λ <
√

3). During the study of sta-
bility conditions, for critical points F , G, H and I , we get
condition on α, α > 0. This implies stability of critical points
can be assessed for positive value of α for Model-I. All the
eigenvalues at critical points L and M are less than zero for
λ ∈ R ∧ λ �= 0 ∧ 7λ2−24

7λ2 ≤ χ < λ2−3
λ2 , hence show stable

behaviour at these parametric values.
We have analyse the phase space for all the critical points

by fixing some parameters to a appropriate value. The phase
space plots for dynamical system described in Eqs. (51–55)
are presented in Fig. 1. From phase space diagram for Model-
I, we can conclude that the phase space trajectories for critical
points L , F , M , G, A, J , N and K are moving away from
the critical point hence confirm saddle point behaviour. Crit-

ical points F and G show stability for −2
√

6
7 ≤ λ < −√

3

or
√

3 < λ ≤ 2
√

6
7 but we choose λ =

√
2
9 hence these

are showing saddle points nature in phase diagram. For the
critical points L and M the stability conditions depend on χ

which represents u co-ordinate and the phase plots are anal-
ysed in xy-axis plane hence critical points L and M may
show saddle point behaviour. From the phase diagram, it can
observe that at critical points H , I , D and E trajectories are
attracted towards the critical point hence describe attracting
behaviour of these critical points, also these critical points can
explain dark energy dominated universe. Although eigenval-

ues at B and C contains both positive and negative signature,
from the phase portrait critical points B and C represent an
unstable node leading to the positive eigenvalues only (due
to consideration of u = 0, ρ = may the negative eigenvalues
are not contributing in the phase space plot). We shall present
below two examples of this model for α = 1 and α = 2.

4.1 Case A: α = 1

In this case we have consider α = 1, in the action equation
Eq. (43). The evolution equations can be obtained by limiting
Eqs. (44–46) from general α to α = 1. To study cosmic
evolution through dynamical system analysis approach, the
set of dimensionless variables associated with the above set
of cosmological equations can be defined as follow [57]

x = κφ̇√
6H

, y = κ
√
V√

3H
, u = 3φ̇2κ2, ρ = κ

√
ρr√

3H
,

λ = −V
′
(φ)

κV (φ)
, � = V (φ)V

′′
(φ)

V ′
(φ)2

. (56)

In this case the dimensionless variables are selected such
that they can linked with each other in following constraint
equation form, note that in this expression u is considered as
it is (without any scalar multiplier).

x2 + y2 + u + �m + ρ2 = 1 (57)

Using these dimensionless variables the cosmological expres-
sions in this case can be written in terms of autonomous
dynamical system as follow,

dx

dN
=

3xy2
(√

6λ(u − 1)x + 3u + 3x2
)

− 3x
(
u2 + u

(
ρ2 + 8x2 + 1

) + x2
(
ρ2 + 3x2 − 3

))

2(u − 3)x2 − 2u(u + 1)
, (58)

dy

dN
= −y

⎛
⎝−3u2 − u

(
ρ2 + 12x2 + 3

) + uy2
(

2
√

6λx + 3
)

− 3x2
(
ρ2 + 3x2 − 3y2 + 3

)

2u(u + 1) − 2(u − 3)x2 +
√

3

2
λx

⎞
⎠ , (59)

du

dN
=

2u
(
ρ2u + (6u − 9)x2

) − uy2
(√

6λ(u − 3)x + 6u
)

u(u + 1) − (u − 3)x2 , (60)

dρ

dN
=

ρ
(
−u2 + u

(
ρ2 + 16x2 − y2

(
2
√

6λx + 3
)

− 1
)

+ 3x2
(
ρ2 + 3x2 − 3y2 − 1

))

2u(u + 1) − 2(u − 3)x2 , (61)

dλ

dN
= −√

6(� − 1)λ2x . (62)
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Fig. 1 Phase portrait for above dynamical system, the upper left plot is for u = 0, ρ = 0, λ =
√

2
9 . The upper right plot having parameter values

u = 0, ρ = 0, ζ = 1
9 , τ = 1, α = 1.1, lower left phase portrait is for u = 0, ρ = 0, λ =

√
2
9 , lower right phase portrait is for u = 0, ρ = 0, δ = 1

From Table 3 observations, we can conclude that, at crit-
ical points A, F , G the value of deceleration parameter is
1
2 with ωtot = 0. These critical points not represent the
accelerating universe, but the cold dark matter-dominated
era. The critical points B and C behave as stiff matter show-
ing ωtot = 1. The critical points J and K represent the
radiation-dominated solutions. The critical points D, E , H
and I show the value of the deceleration parameter negative,
these critical points can represent the accelerating behavior
of the universe. The critical points D and E are the de Sitter
solutions with the value of ωtot = −1 and can be obtained
only at particular value of λ = 0. At the critical points H
and I deceleration parameter shows negative value for −√

2
< λ <

√
2, these points explains dark energy dominated uni-

verse. To analyse the stability behavior of all these critical
points the eigenvalues and stability conditions are presented
in Table 4

From Table 4, we can conclude that, the critical points
D, E shows stable behaviour and these critical points can
attract the universe at late time. At the critical points H and I
eigenvalues show stability at −√

3 < λ < 0 or 0 < λ <
√

3
these points explain dark energy domination at late time. The
critical points A to C are saddle points and hence unstable
for all values of λ. However these points cannot describe the
current accelerated expansion of the universe. The radiation
dominated representation belong to the critical points J and
K , these points are also saddle points for any value of λ and
hence unstable in nature. Although critical points F and G
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Table 3 Critical points for dynamical system corresponding to Model-I, α = 1

Name of critical point xc yc uc ρc Deceleration parameter (q) ωtot

A τ, τ 2 + τ �= 0 0 0 0 1
2 0

B 1 0 0 0 2 1

C −1 0 0 0 2 1

D, in this case λ = 0 ζ, ζ �= 0
√

2ζ 2 + 1 −3ζ 2 0 −1 −1

E , in this case λ = 0 ζ, ζ �= 0 −√
2ζ 2 + 1 −3ζ 2 0 −1 −1

F

√
3
2

λ

√
3
2

√
1
λ2 0 0 1

2 0

G

√
3
2

λ
−

√
3
2

√
1
λ2 0 0 1

2 0

H λ√
6

√
1 − λ2

6 0 0 1
2

(
λ2 − 2

) −1 + λ2

3

I λ√
6

−
√

1 − λ2

6 0 0 1
2

(
λ2 − 2

) −1 + λ2

3

J , in this case λ = 2
√

2
3

1√
3

0 0 1 1
3

K , in this case λ = 2
√

2
3 − 1√

3
0 0 1 1

3

represents cold dark matter dominated universe these critical

point obey stability at −2
√

6
7 ≤ λ < −√

3 or
√

3 < λ ≤
2
√

6
7 .

From the Fig. 2 observation, it can be conclude that critical
points H , I are attractors and can be analysed by setting

λ =
√

2
9 which belongs to the stability range of λ (that is

−√
3 < λ < 0 ∨ 0 < λ <

√
3 ). Since F and G show

stability for −2
√

6
7 ≤ λ < −√

3 or
√

3 < λ ≤ 2
√

6
7 and

here, we have analyse phase plots at λ =
√

2
9 which does not

belong to stability range of λ, the critical points F andG show
saddle point behaviour. The critical points A, J , K having
eigenvalues with both positive and negative sign and hence
these are saddle points. The particular parametric value λ = 2
helps us to analyse the stability at J and K also from phase
space analysis it can be observe that phase space trajectories
are moving away at these critical points and hence show the
saddle point behaviour. The de Sitter solution is represented
by critical points D and E , these critical points are exists
only for parametric value λ = 0 and from the phase space
analysis it can conclude that these points represent attracting
solution. The critical points A to K can obtained in particular
case α = 1 similar to general α, but the critical points L , M
and N discussed in general α case are not contributing in the
case α = 1.

4.2 Case B: α = 2

In this case we have analyse cosmological implications by
using dynamical system approach for particular value α =
2 in action Eq. (43). In this case, the set of dimensionless
variables to obtain autonomous dynamical system can be
defined as follow,

x = κφ̇√
6H

, y = κ
√
V√

3H
, u = 5

2
κ2φ̇4, ρ = κ

√
ρr√

3H
,

λ = −V
′
(φ)

κV (φ)
, � = V (φ)V

′′
(φ)

V ′
(φ)2

. (63)

One can observe that the dimensionless variables defined
in the study of these scalar tensor models are not same in
[57], but these types of variables are usually used to obtain
viable critical points in cosmology.. The dimensionless vari-
ables defined in Eq. (63) also satisfy the constraint equation
Eq. (57) and the dynamical system in this case can be defined
as follow,
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Table 4 Eigenvalues and stability of corresponding critical point

Name of critical point Corresponding eigenvalues Stability

A
{ 3

2 , 3
2 ,− 1

2 , 0
}

Unstable

B
{
−6, 3, 1, 1

2

(
6 − √

6λ
)}

Unstable

C
{
−6, 3, 1, 1

2

(
6 + √

6λ
)}

Unstable

D {0,−3,−3,−2} Stable

E {0,−3,−3,−2} Stable

F

{
−3,− 1

2 ,
3
(
−λ4−√

24λ6−7λ8
)

4λ4 ,
3
(√

24λ6−7λ8−λ4
)

4λ4

}
Stable for −2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

G

{
−3,− 1

2 ,
3
(
−λ4−√

24λ6−7λ8
)

4λ4 ,
3
(√

24λ6−7λ8−λ4
)

4λ4

}
Stable for −2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

H
{−λ2, 1

2

(
λ2 − 6

)
, 1

2

(
λ2 − 4

)
, λ2 − 3

}
Stable for −√

3 < λ < 0 ∨ 0 < λ <
√

3

I
{−λ2, 1

2

(
λ2 − 6

)
, 1

2

(
λ2 − 4

)
, λ2 − 3

}
Stable for −√

3 < λ < 0 ∨ 0 < λ <
√

3

J {−4,−1, 1, 0} Unstable

K {−4,−1, 1, 0} Unstable

dx

dN
=

x
(
−5ρ2

(
2u + x2

) + 5y2
(√

6λ(u − 1)x + 6u + 3x2
)

+ 3(5 − 19u)x2 − 6u(u + 3) − 15x4
)

2(u − 5)x2 − 4u(u + 3)
, (64)

dy

dN
= −y

⎛
⎝−6u2 − 3u

(
2ρ2 + 13x2 + 6

) + 2uy2
(

2
√

6λx + 9
)

− 5x2
(
ρ2 + 3x2 − 3y2 + 3

)

4u(u + 3) − 2(u − 5)x2 +
√

3

2
λx

⎞
⎠ , (65)

du

dN
=

4u
(
2ρ2u + 3(3u − 5)x2

) − 2uy2
(√

6λ(u − 5)x + 12u
)

2u(u + 3) − (u − 5)x2 , (66)

dρ

dN
=

ρ
(
−2u2 + u

(
6ρ2 + 43x2 − 2y2

(
2
√

6λx + 9
)

− 6
)

+ 5x2
(
ρ2 + 3x2 − 3y2 − 1

))

4u(u + 3) − 2(u − 5)x2 , (67)

dλ

dN
= −√

6(� − 1)λ2x . (68)

To study cosmological implications, the study of dynam-
ical system at critical points obtained from cosmological
evolution equations is very important. Critical points for
autonomous dynamical system presented in Eqs. (64–68) are
presented in Table 5. From the table observations it can con-
clude that, although critical points have different co-ordinates
than the critical points in the Table 3 (for α = 1) case, but
the cosmological implications are almost similar in nature.
When we observe critical points in Tables 3 and 5, we can
easily see that the deceleration parameter (q) and ωtot for
critical points with the same name are same. From Table 5
it can be clearly observe that critical points D, E , H and
I can show deceleration parameter value in negative range
and hence these critical points can deal with the dark energy
dominated era. For critical points H and I , we get accelerat-

ing behaviour for −√
2 < λ <

√
2 and critical points D and

E are defined only for parametric value λ = 0 and represent
de Sitter solution for the system. The other critical points
do not gives negative value for deceleration parameter and
hence defines non-accelerating phase of evolution. The criti-
cal points A, F and G represents cold dark matter dominated
era with ωtot = 0. In this case (for α = 2) also we are getting
critical points B and C representing stiff matter. The critical
points J and K are defined for λ = 2 and deliver value for
ωtot = 1

3 , hence represent radiation-dominated era.
The stability conditions for critical points corresponding

to dynamical system in Eqs. (64–68) are presented in Table 6.
The signature of eigenvalues confirms the stability of corre-
sponding critical point. From the table observations, we can
conclude that critical points A, B and C are unstable for
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Fig. 2 Phase portrait for dynamical system presented in Eqs. (58–62),
the upper left plot is for the parametric value u = 0, ρ = 0, τ = 1

and λ =
√

2
9 . The upper right plot is for the parameteric values u = 0,

ρ = 0 and ζ = 1
9 . The lower left phase portrait is for u = 0, ρ = 0 and

λ =
√

2
9 and lower right phase portrait is for u = 0 and ρ = 0

all values of λ and are saddle points. At the critical points
H and I eigenvalues show stability at −√

3 < λ < 0 or
0 < λ <

√
3 and these points explain dark energy domina-

tion at late time. Critical points D, E show stable behaviour
and in the further analysis it is noticed that they can attract the
universe at late time. The critical points J and K represent
radiation dominated and from signature of eigenvalues these
points are saddle points for any value of λ, hence unstable in
nature. Critical points F and G represents cold dark matter
dominated universe and these critical point obey stability at

−2
√

6
7 ≤ λ < −√

3 or
√

3 < λ ≤ 2
√

6
7 . From Tables 4

and 6 it can observe that, the stability conditions for the case

(α = 1) and (α = 2) are showing similar nature to explain
the evolution of the universe. The phase space diagram is

presented in Figs. 3 and 4 for the parametric values λ =
√

2
9

which belongs to the stability range for λ for critical points
H and I and other parameters τ = 1, ζ = 1

9 are chosen such
that the phase space diagram explain the stability conditions
for the corresponding critical points. Critical points D and
E , represent de Sitter solution the phase space analysis con-
firms the attracting nature of these critical points. From the
Fig. 2 observations, it can be conclude that due to different
co-ordinates the critical point A is presented in Fig. 3 moves
in positive X-axis than in Fig. 2, but it does not impact on
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Table 5 Critical points for dynamical system corresponding to Model-I, α = 2

Name of critical point xc yc uc ρc Deceleration parameter (q) ωtot

A τ.τ 2 + 3τ �= 0 0 0 0 1
2 0

B 1 0 0 0 2 1

C −1 0 0 0 2 1

D, in this case λ = 0 ζ, 3ζ 3 − 2ζ �= 0
√

3ζ 2

2 + 1 − 1
2

(
5ζ 2

)
0 −1 −1

E , in this case λ = 0 ζ, 3ζ 3 − 2ζ �= 0 −
√

3ζ 2

2 + 1 − 1
2

(
5ζ 2

)
0 −1 −1

F

√
3
2

λ

√
3
2

√
1
λ2 0 0 1

2 0

G

√
3
2

λ
−

√
3
2

√
1
λ2 0 0 1

2 0

H λ√
6

√
1 − λ2

6 0 0 1
2

(
λ2 − 2

) −1 + λ2

3

I λ√
6

−
√

1 − λ2

6 0 0 1
2

(
λ2 − 2

) −1 + λ2

3

J , in this case λ = 2
√

2
3

√
1
3 0 0 1 1

3

K , in this case λ = 2
√

2
3 −

√
1
3 0 0 1 1

3

Table 6 Eigenvalues and stability of eigenvalue at corresponding critical point

Name of critical point Corresponding eigenvalues Stability

A
{ 3

2 , 3
2 ,− 1

2 , 0
}

Unstable

B
{
−12, 3, 1, 1

2

(
6 − √

6λ
)}

Unstable

C
{
−12, 3, 1, 1

2

(√
6λ + 6

)}
Unstable

D {0,−3,−3,−2} Stable

E {0,−3,−3,−2} Stable

F

{
−6,− 1

2 ,
3
(
−λ2−√

24λ2−7λ4
)

4λ2 ,
3
(√

24λ2−7λ4−λ2
)

4λ2

}
Stable for −2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

G

{
−6,− 1

2 ,
3
(
−λ2−√

24λ2−7λ4
)

4λ2 ,
3
(√

24λ2−7λ4−λ2
)

4λ2

}
Stable for −2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

H
{−2λ2, 1

2

(
λ2 − 6

)
, 1

2

(
λ2 − 4

)
, λ2 − 3

}
Stable for −√

3 < λ < 0 ∨ 0 < λ <
√

3

I
{−2λ2, 1

2

(
λ2 − 6

)
, 1

2

(
λ2 − 4

)
, λ2 − 3

}
Stable for −√

3 < λ < 0 ∨ 0 < λ <
√

3

J {− 8, − 1, 1, 0} Unstable

K {− 8, − 1, 1, 0} Unstable

it’s stability nature. Critical points F and G show stability

for −2
√

6
7 ≤ λ < −√

3 or
√

3 < λ ≤ 2
√

6
7 but we choose

λ =
√

2
9 hence these are a saddle points. The phase space

diagram allows us to conclude that critical points J and K
are saddle points.

5 Model 2 – kinetic term coupled with I2

The model second action equation consist of a coupling
between the Xα term with I2, the action for Model 2 is

described as below with

S =
∫

d4xe

[
X − V (φ) − T

2κ2 + Xα I2

]
+ Sm + Sr, (69)

In the action equation, we have I2 = 3H φ̇ and other nota-
tions are same as in the first model. The expression for sum
of energy density for matter and radiation and negative of
pressure for radiation can be obtained on varying of action
equation for Model 2 with respect to the tetrad field presented
in Eqs. (70–71) respectively. The motion equation in this case
can be obtained by taking variation of action equation with
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Fig. 3 Phase portrait for dynamical system in Eqs. (64–68), the left plot is for u = 0, ρ = 0, τ = 1, λ =
√

2
9 , the right plot having parametric

values u = 0, ρ = 0, ζ = 1
9

Fig. 4 Phase portrait for dynamical system in Eqs. (64–68), left phase portrait is for u = 0, ρ = 0, λ =
√

2
9 and the right phase portrait is for

u = 0, ρ = 0

respect to φ, presented in Eq. (72).

T

2κ2 − V (φ) − X − Xα I2 − 2αXα I2 = ρm + ρr, (70)

− V (φ) + T

2κ2 + X + 2Ḣ

κ2 − Xαφ̈ − 2αXαφ̈ = −pr ,

(71)

V
′
(φ) + 3H φ̇ + (3 + 6α)

2
XαT + (3 + 6α)Xα Ḣ

+ φ̈

[
1 + αXα6H

φ̇
+ α2Xα12H

φ̇

]
= 0. (72)

Using background expressions discussed in Sect. 3, we can
obtain expression for energy density and pressure for effec-
tive dark energy are presented in Eqs. (73) and (74) respec-
tively.

ρDE = V (φ) + X + Xα I2 + 2αXα I2, (73)

pDE = −V (φ) + X − (1 + 2α)Xαφ̈, (74)

To define autonomous dynamical system, the dimensionless
variables defined in this case are as follow
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x = κφ̇√
6H

, y = κ
√
V√

3H
, u = κ2Xαφ̇

H
,

ρ = κ
√

ρr√
3H

, λ = −V
′
(φ)

κV (φ)
, � = V (φ)V

′′
(φ)

V ′
(φ)2

. (75)

These dimensionless variables also satisfy constraint equa-
tion Eq. (50), and dynamical system can be obtained as pre-
sented below

dx

dN
=

x
(
(2α + 1)u

(
2αρ2 + 6α + ρ2 + 6αx2 + 9x2 − y2

(
6α + √

6λx + 3
)

− 3
))

(2α + 1)u(2α(u + 2) + u) + 4x2

+
x

(
3(2αu + u)2 + 2x

(
3x3 + x

(
ρ2 − 3y2 − 3

) + √
6λy2

))

(2α + 1)u(2α(u + 2) + u) + 4x2 , (76)

dy

dN
= −

√
3

2
λxy + y

(
3(2αu + u)2 + 2x2

(
ρ2 + 3x2 − 3y2 + 3

))

(2α + 1)u(2α(u + 2) + u) + 4x2

+
(2α + 1)uy

(
6(α + 1)x2 − √

6λxy2 + 2α
(
ρ2 − 3y2 + 3

))

(2α + 1)u(2α(u + 2) + u) + 4x2 , (77)

du

dN
=

u
(

3(2αu + u)2 + (2α + 1)u
(

4αρ2 + ρ2 + 12αx2 + 9x2 − y2
(

12α + √
6λx + 3

)
− 3

))

(2α + 1)u(2α(u + 2) + u) + 4x2

+
2ux

(
3x3 + x

(
ρ2 − 3

(
4α + y2 + 1

)) + √
6(2α + 1)λy2

)

(2α + 1)u(2α(u + 2) + u) + 4x2 , (78)

dρ

dN
= ρ

(
(2αu + u)2 + 2x2

(
ρ2 + 3x2 − 3y2 − 1

))

(2α + 1)u(2α(u + 2) + u) + 4x2

+
ρu

(
(2α + 1)

(
6(α + 1)x2 − √

6λxy2 + 2α
(
ρ2 − 3y2 − 1

)))

(2α + 1)u(2α(u + 2) + u) + 4x2 , (79)

dλ

dN
= √

6(� − 1)λ2x . (80)

The critical points for the dynamical system described in
Eqs. (76–80) are presented in Table 7. From table observa-
tions it can conclude that, critical points J to O represent
similar cosmological implications in terms of deceleration
parameter q = 1 and ωtot = 1

3 describe radiation dominated
phase of the universe. Amongst these critical points the criti-
cal points N and O are defined for α = 1

2 . The critical points
F , G and P also describe the same cosmological implication
and represent cold dark matter dominated era with ωtot = 0.
α play role in the co-ordinate representation of critical points
D and E , these critical points describe de Sitter solution and
defined for λ = 0. The critical points H and I represent
value for deceleration parameter q = −1 + λ2

2 , these critical
points can explain dark energy dominated universe. Critical
points A, B and C deliver same value for q and ωtot hence
these critical points also represent similar phase of universe
evolution and behaves as stiff matter.

The stability conditions of the critical points are dis-
cussed in Table 8. The critical points J to O are present-
ing radiation dominated universe, eigenvalues for the lin-
ear perturbation matrix at these critical points having at
least one eigenvalue with positive signature hence showing
unstable behaviour. The critical points F , G show eigen-

values in negative range for α > 0 ∧ (−2
√

6
7 ≤ λ <

−√
3 ∨ √

3 < λ ≤ 2
√

6
7 ) and critical point P is stable

at

(
λ < 0 ∧ σ <

√
3
2

λ

)
∨

(
λ > 0 ∧ σ >

√
3
2

λ

)
, hence show

stability within this range, also these points express ωtot = 0,
hence addressing cold dark matter phase of the universe
evolution. The critical points B and C represent stiff mat-
ter era and possessing at least one eigenvalue with positive
signature hence are unstable in nature, where critical point
A show stable behaviour in the parametric range same as
critical point P . The critical points D, E , H and I repre-
sent dark energy dominated era, where D and E are non-
hyperbolic critical points but are stable in nature and critical
points H and I show their stability in the parametric range

α > 0∧
(
−√

3 < λ < 0 ∨ 0 < λ <
√

3
)

. The stability con-
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ditions of critical points F ,G, H and I show α > 0 condition
which implies stability of critical points representing cold
dark matter and dark energy dominated era can be obtained
for positive value of α.

The critical points are plotted in the phase diagram Fig. 5.
These phase plots are plotted for the dynamical system pre-
sented in Eqs. (76–80). The lower right plot shows that the
phase space trajectories are moving away from critical points
L , M , N and O hence these points represent instability with
saddle point behaviour. The critical points N and O are
defined for α = 1

2 . The critical points D and E are de Sitter
solutions and phase diagram clarify that these points behaves
as attracting solutions. The upper left phase plot describe
phase space trajectories behaviour of critical points H , I , B,
C , F and G. We can observe that the critical points B and
C which is unstable saddle point but showing unstable node

behaviour which is leading to the positive eigenvalues at crit-
ical points B and C . Also point H and I showing attracting
point behaviour, these critical points represent dark energy
dominated era with stability as described in Table 8. Crit-
ical points F and G represent cold dark matter dominated

era, we have plotted plots for λ =
√

2
9 which is not in the

stability range of F and G. The upper right diagram rep-
resent phase space trajectories at critical points K , J and
P , since the phase space trajectories are moving away from
these critical points, these critical points are showing saddle
point behaviour hence unstable. Since the parametric value
σ = 1 do not follow stability range of critical point A hence
getting saddle point behaviour.

5.1 Case A: α = 1

We have consider α = 1 in the action equation Eq. (69) to
discuss role of α in getting number of critical points and their
participation in describing different phases of Universe evo-
lution. In this case, the evolution equations can be obtained
by limiting the general α to α = 1 from Eqs. (70–72) the set
of dimensionless variables can be defined as follow

x = κφ̇√
6H

, y = κ
√
V√

3H
, u = 3κ2φ̇3

2H
, ρ = κ

√
ρr√

3H
,

λ = −V
′
(φ)

κV (φ)
, � = V (φ)V

′′
(φ)

V ′
(φ)2

. (81)

These dimensionless variables satisfy constraint equation
Eq. (57), and the dynamical system in this case can be defined
as follow,

dx

dN
=

x
(

3u2 + 3ρ2u − y2
(√

6λ(u − 2)x + 9u + 6x2
)

+ 15ux2 + 3u + 2ρ2x2 + 6x4 − 6x2
)

u(u + 4) + 4x2 , (82)

dy

dN
= −y

⎛
⎝−3u2 − 2u

(
ρ2 + 6x2 + 3

) + uy2
(√

6λx + 6
)

− 2x2
(
ρ2 + 3x2 − 3y2 + 3

)

u(u + 4) + 4x2 +
√

3

2
λx

⎞
⎠ , (83)

du

dN
=

u
(

3u2 + 5ρ2u − y2
(√

6λ(u − 6)x + 15u + 6x2
)

+ 21ux2 − 3u + 2ρ2x2 + 6x4 − 30x2
)

u(u + 4) + 4x2 , (84)

dρ

dN
=

ρ
(
u2 + 2u

(
ρ2 + 6x2 − 1

) − uy2
(√

6λx + 6
)

+ 2x2
(
ρ2 + 3x2 − 3y2 − 1

))

u(u + 4) + 4x2 , (85)

dλ

dN
= −√

6(� − 1)λ2x . (86)

The critical points with value of deceleration parameter
and ωtot are presented in the Table 9. From the table obser-
vations we can conclude that we get less number of critical
points than the general case. The critical points J and K show
deceleration parameter value q = 1, hence describe radiation
dominated era. The critical points F and G are showing simi-
lar cosmological implication in terms of value of deceleration
parameter and value of ωtot , representing cold dark matter
dominated era. Amongst all the critical points, an accelerated
phase of evolution can be described by the critical points D,
E , H and I . The critical points D and E describe de Sitter
solution with q = −1 and critical points H and I deliver
deceleration parameter value q = −1 + λ2

2 hence represent
the dark energy dominated era. The critical points B and C
gives q = 2, these points can describe stiff matter. The criti-
cal point A showing deceleration parameter value in positive
range, hence can not describe the accelerated phase of the
evolution.
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Fig. 5 Phase portrait for above dynamical system Eqs. (76–80), the

upper left plot is for u = 0, ρ = 0, λ =
√

2
9 and the upper right plot

having parameter values x = 0, ρ = 0„ σ = 1, α = 1.1. The lower

left phase portrait is for x = 0, ρ = 0, α = 1.1, ϕ = 1
2 , the lower right

phase portrait is for u = 0, ρ = 0, η = 1, ε = 1
3

To analyse the stability conditions eigenvalues for all crit-
ical points are presented in Table 10. The critical points F ,

G show stability for the parametric values −2
√

6
7 ≤ λ <

−√
3 ∨ √

3 < λ ≤ 2
√

6
7 and describe cold dark matter

dominated era. The critical points H and I are shows stable
behaviour for the parametric values −√

3 < λ < 0 ∨ 0 <

λ <
√

3 these critical points represent dark energy domi-
nated era for any real values of λ. The critical points J and
K are defined at λ = 2 and presence of eigenvalues with both
positive and negative signature leads to saddle point hence
unstable. The critical points B and C is also showing saddle
point behaviour and unstable in nature. In this case, we get

critical point A with deceleration parameter value q = 4
5

with existence of positive eigenvalues at linear perturbation
matrix hence unstable in nature.

The phase space plots for dynamical system presented in
Eqs (82–86) are described in Figs. 6 and 7. The phase space
analysis concludes that critical points H and I shows attract-
ing nature, the accelerating expansion of the universe can be
described at these critical points. The phase trajectories at
critical points B and C are moving away from the critical
point hence showing unstable node behaviour leading to the
positive eigenvalues. The phase space plot for critical points
F and G describe saddle point behaviour and represent cold
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Table 9 Critical points for the dynamical system corresponding to updated calculations for Model-I

Name of critical point xc yc uc ρc Deceleration parameter (q) ωtot

A 0 0 1 0 4
5

1
5

B 1 0 0 0 2 1

C −1 0 0 0 2 1

D, in this case λ = 0 σ, σ 3 − σ �= 0
√

σ 2 + 1 −2σ 2 0 −1 −1

E , in this case λ = 0 σ, σ 3 − σ �= 0 −√
σ 2 + 1 −2σ 2 0 −1 −1

F

√
3
2

λ

√
3
2

√
1
λ2 0 0 1

2 0

G

√
3
2

λ
−

√
3
2

√
1
λ2 0 0 1

2 0

H λ√
6

√
1 − λ2

6 0 0 1
2

(
λ2 − 2

) −1 + λ2

3

I λ√
6

−
√

1 − λ2

6 0 0 1
2

(
λ2 − 2

) −1 + λ2

3

J , in this case λ = 2
√

2
3

1√
3

0 0 1 1
3

K , in this case λ = 2
√

2
3 − 1√

3
0 0 1 1

3

Table 10 Eigenvalues and stability of eigenvalue at corresponding critical point

Name of critical point Corresponding eigenvalues Stability

A
{ 9

5 , 6
5 , 3

5 ,− 1
5

}
Unstable

B
{
−12, 3, 1, 1

2

(
6 − √

6λ
)}

Unstable

C
{
−12, 3, 1, 1

2

(√
6λ + 6

)}
Unstable

D {0,−3,−3,−2} Stable

E {0,−3,−3,−2} Stable

F

{
−3,− 1

2 ,
3
(
−λ2−√

24λ2−7λ4
)

4λ2 ,
3
(√

24λ2−7λ4−λ2
)

4λ2

}
Stable for −2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

G

{
−3,− 1

2 ,
3
(
−λ2−√

24λ2−7λ4
)

4λ2 ,
3
(√

24λ2−7λ4−λ2
)

4λ2

}
Stable for −2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

H
{−λ2, 1

2

(
λ2 − 6

)
, 1

2

(
λ2 − 4

)
, λ2 − 3

}
Stable for −√

3 < λ < 0 ∨ 0 < λ <
√

3

I
{−λ2, 1

2

(
λ2 − 6

)
, 1

2

(
λ2 − 4

)
, λ2 − 3

}
Stable for −√

3 < λ < 0 ∨ 0 < λ <
√

3

J {−4,−1, 1, 0} Unstable

K {−4,−1, 1, 0} Unstable

dark matter dominated era. The phase plots at critical points
D and E show attracting behaviour and these critical points
describe de Sitter solution. The critical point A is a saddle
point and can be confirmed by observing phase trajectories
at A. The plot in Fig. 7 also describe that phase space trajec-
tories are moving away from critical points hence showing
unstable. behaviour.

5.2 Case B: α = 2

In this case we have discussed dynamical system analysis for
Model-II, α = 2. The evolution expressions can be obtained

by limiting Eqs. (70–72) from general α toα = 2. The dimen-
sionless variables to obtain autonomous dynamical system
can be defined as follow

x = κφ̇√
6H

, y = κ
√
V√

3H
, u = 5κ2φ̇5

4H
, ρ = κ

√
ρr√

3H
,

λ = −V
′
(φ)

κV (φ)
, � = V (φ)V

′′
(φ)

V ′
(φ)2

. (87)

These dimensionless variables satisfy constraint equation
presented in Eq. (57), the dynamical system in this case is as
follow
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Fig. 6 Left phase portrait is plotted for the parametric values u = 0, ρ = 0 and λ =
√

2
9 and right side plot parametric values are x = 0, ρ = 0,

σ = 1
4 for right side Fig.

dx

dN
=

x
(

3u2 + 5ρ2u − y2
(√

6λ(u − 2)x + 15u + 6x2
)

+ 21ux2 + 9u + 2ρ2x2 + 6x4 − 6x2
)

u(u + 8) + 4x2 , (88)

dy

dN
= −y

⎛
⎝−3u2 − 2u

(
2ρ2 + 9x2 + 6

) + uy2
(√

6λx + 12
)

− 2x2
(
ρ2 + 3x2 − 3y2 + 3

)

u(u + 8) + 4x2 +
√

3

2
λx

⎞
⎠ , (89)

du

dN
=

u
(

3u2 + 9ρ2u − y2
(√

6λ(u − 10)x + 27u + 6x2
)

+ 33ux2 − 3u + 2ρ2x2 + 6x4 − 54x2
)

u(u + 8) + 4x2 , (90)

dρ

dN
=

ρ
(
u2 + 2u

(
2ρ2 + 9x2 − 2

) − uy2
(√

6λx + 12
)

+ 2x2
(
ρ2 + 3x2 − 3y2 − 1

))

u(u + 8) + 4x2 , (91)

dλ

dN
= −√

6(� − 1)λ2x . (92)

The critical points with value of deceleration parameter
and ωtot for dynamical system in Eqs. (88–92) are presented
in Table 11. From table observations in Model-II for critical
point Awe get different positive deceleration parameter value
for different values of α. For α = 2 we are getting q = 2

3
and ωtot = 1

9 . The critical points D, E represent the de
Sitter solution to the system and defined for λ = 0. While
critical points H and H deliver deceleration parameter value
q = −1+ λ2

2 which may describe dark energy dominated era
of the universe. Critical points F and G represent cold dark
matter dominated era with ωtot = 0. The critical points J and
K are defined for λ = 2 and describe radiation dominated
era of the universe evolution. The critical points B and C
behaves as stiff matter with ωtot = 1.

The stability conditions for this case α = 2 are pre-
sented in Table 12. Table observations conclude that criti-
cal points H and I show stability for parametric condition
−√

3 < λ < 0 ∨ 0 < λ <
√

3 and can describe dark energy
dominated era. The critical points F and G show stability at

−2
√

6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7 and describe cold

dark matter dominated era. The critical point A, B andC with
deceleration parameter in positive range are unstable since
eigenvalues are with both positive and negative signature.
The critical points D and E represent de Sitter solution and
show stable behaviour. The critical points J and K are rep-
resenting radiation dominated era at λ = 2 and are unstable
in nature.

The phase space diagram for dynamical system Eqs. (88–
92) are plotted in Fig. 8. The critical points D and E showing
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Fig. 7 The phase portrait is plotted for the parametric values λ = 2,
u = 0, ρ = 0

attracting stable de Sitter solution and represent dark energy
dominated era. While at critical point A phase space tra-
jectories are moving away hence unstable addressing saddle
point behaviour. Similarly critical points J and K are show-
ing unstable behaviour representing radiation dominated era.
The upper right plot is presented for critical points B, C , H ,
I , F and G. The critical points B and C behaves as unstable
node with respect to the existence of positive eigenvalues.
The phase space trajectories are moving away from criti-
cal points F and G, these critical points represent unsta-
ble behaviour and critical points H and I display attracting
behaviour of phase space trajectories and show consistent
with current observational studies.

6 Conclusion

In this work we have explored the cosmological dynamics
of dark energy through the prism of scalar-torsion gravity
[36,37] in the context of power-law couplings with the kinetic
term. In particular, we have studied one nontrivial extension
of the recently proposed teleparallel analogue of Horndeski
gravity [29]. This new frameworks offers a pathway to cir-
cumvent the severe constraints on the speed of gravitational
wave constraint. This is possible due to the lower order nature
of TG where the curvature associated with the Levi-Civita
connection is exchanged with the torsion from the telepar-
allel connection. In the present case, we are interested in
extending the analysis of dynamical systems by looking into
how power-law-like couplings with the nonvanishing terms
for background FLRW cosmologies. The teleparallel ana-
logue of Horndeski theory offers a broad spectrum of pos-
sible extensions to regular Horndeski gravity and thus the

space of possible functional forms are vast. This work goes
some way to elucidating the behaviour that such functions
adhere to.

For our FLRW background cosmology, we explore these
models in the presence of both radiation and cold dark matter
through the density parameters in Eq. (41). The Friedmann
equations in Eqs. (37, 38) and Klein–Gordon equation in
Eq. (39) directly lead to a set of autonomous equations for
each of the models under investigation. These are then used
in each case to derive the critical points of the particular
cosmologies from which we can expose the model behaviour
using the dynamical analysis in the parameter phase space.
This also opens the doorway to understanding the stability
of the models in question.

In the first model for the action in Eq. (43), we utilize the
dynamical variables defined in Eq. (49), which using the con-
straint in Eq. (50) together with the equations of motion, are
then used to derive the system of autonomous equations given
in Eqs. (51–55) which express the behaviour of the model in
phase space. The critical points are then arrived at by impos-
ing that each of these derivatives vanishes. These first order
equations of motion of the dynamical variables are repre-
sented as derivatives with respect to N = ln a which shows
the behaviour of the system in a more direct way. The result
of this analysis is shown in Table 1. In this table we show
the values of the dynamical variables at which these critical
points occur together with the value of the deceleration and
EoS parameters which already show an indication of the cos-
mological behaviour at those points in the evolution of the
cosmological model. Each of these critical points is then fur-
ther analyzed for their stability in Table 2. In some circum-
stances, stability occurs for a smaller change of parameter
values as described in the last column of the table. For trans-
parency we also show the corresponding Eigenvalues at each
critical point. In Fig. 1, we show the phase portraits of this
model for four specific examples of representative parameter
values. In these plots the nature of the critical points is further
exposed through their impact on the evolution contours.

We further probe the behaviour of this model in the specific
cases of the kinetic term being linear and quadratic which
represent the first cases that a Taylor expansion would open
to. We do this in Sects. 4.1 and 4.2 respectively. We also show
the phase portraits for these cases in Figs. 2, 3, 4 for the two
respective cases. Finally, we show the nuanced critical points
for both cases in Tables 3, 5 and their respective stability in
Tables 4, 6.

The second model we explore the coupling between a
power-law kinetic term and I2 scalar written in Eq. (36).
This scalar represents the only nonvanishing term that is lin-
ear in its contractions with the torsion tensor. In this case,
we take the action Eq. (69) where TEGR and the canoni-
cal scalar field are complemented by this new coupling term
together with the matter and radiation contributions. This
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Table 11 Critical points for the dynamical system corresponding to updated calculations for Model-I

Name of critical point xc yc uc ρc Deceleration parameter (q) ωtot

A 0 0 1 0 2
3

1
9

B 1 0 0 0 2 1

C −1 0 0 0 2 1

D, in this case λ = 0 σ, σ 3 − 3σ �= 0
√

σ 2 + 1 −2σ 2 0 −1 −1

E , in this case λ = 0 σ, σ 3 − 3σ �= 0 −√
σ 2 + 1 −2σ 2 0 −1 −1

F

√
3
2

λ

√
3
2

√
1
λ2 0 0 1

2 0

G

√
3
2

λ
−

√
3
2

√
1
λ2 0 0 1

2 0

H λ√
6

√
1 − λ2

6 0 0 1
2

(
λ2 − 2

) −1 + λ2

3

I λ√
6

−
√

1 − λ2

6 0 0 1
2

(
λ2 − 2

) −1 + λ2

3

J , in this case λ = 2
√

2
3 − 1√

3
0 0 1 1

3

K , in this case λ = 2
√

2
3

1√
3

0 0 1 1
3

Table 12 Eigenvalues and stability of eigenvalue at corresponding critical point

Name of critical point Corresponding eigenvalues Stability

A
{

5
3 , 4

3 ,− 1
3 , 1

3

}
Unstable

B
{
−12, 3, 1, 1

2

(
6 − √

6λ
)}

Unstable

C
{
−12, 3, 1, 1

2

(√
6λ + 6

)}
Unstable

D {0,−3,−3,−2} Stable

E {0,−3,−3,−2} Stable

F

{
−6,− 1

2 ,
3
(
−λ2−√

24λ2−7λ4
)

4λ2 ,
3
(√

24λ2−7λ4−λ2
)

4λ2

}
Stable for −2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

G

{
−6,− 1

2 ,
3
(
−λ2−√

24λ2−7λ4
)

4λ2 ,
3
(√

24λ2−7λ4−λ2
)

4λ2

}
Stable for −2

√
6
7 ≤ λ < −√

3 ∨ √
3 < λ ≤ 2

√
6
7

H
{−2λ2, 1

2

(
λ2 − 6

)
, 1

2

(
λ2 − 4

)
, λ2 − 3

}
Stable for −√

3 < λ < 0 ∨ 0 < λ <
√

3

I
{−2λ2, 1

2

(
λ2 − 6

)
, 1

2

(
λ2 − 4

)
, λ2 − 3

}
Stable for −√

3 < λ < 0 ∨ 0 < λ <
√

3

J {−8,−1, 1, 0} Unstable

K {−8,−1, 1, 0} Unstable

leads directly to the Friedmann equations in Eqs (70, 71),
and the Klein–Gordon equation in Eq. (72). Now, by defin-
ing the dynamical variables in Eq. (75) we can explore the
dynamical system that the background cosmology represents
through the system of linear autonomous differential equa-
tions given in Eqs. (76–80). By performing a similar critical
point analysis as in first case, we find the critical points as
listed in Table 7. These are then further analyzed for their
stability nature in Table 8. As in the first case, we find a rich
structure of critical points for the various model parameter
values, which we show through the phase portrait in Fig. 5.
As in the first model, we consider the cases where the power
index takes linear and quadratic forms in the model action.

For the linear case, the dynamical system is represented by
Eqs. (82–86) which produce the critical points in Table 9 with
natures shown in Table 10. This interesting scenario produces
the phase portraits given in Figs. 6 and 7. On the other hand,
the quadratic case is represented through the dynamical sys-
tem given in Eqs. (88–92). The corresponding critical point
analysis produces Table 11 which have stability conditions
described in Table 12. The final phase portraits for this case
are then shown in Fig. 8.

The action presented Eq. (27) produces the most general
second order theory that contains only one scalar field in TG.
Naturally, this will produce a wealth of dynamics for which
reason we explore two prominent models and expose their

123



Eur. Phys. J. C (2022) 82 :680 Page 25 of 28 680

Fig. 8 Phase portrait upper left is plotted for the parametric values u = 0, ρ = 0 and λ =
√

2
9 and for upper right side plot parametric values are

x = 0, ρ = 0, σ = 1
4 . The lower phase portrait is for the parametric values u = 0, ρ = 0, λ = 2

dynamical systems in the ensuing sections. While the models
produce a vast array of critical points in Tables 1, 7, these
are not all realized in each possible evolution of the indi-
vidual models. Another aspect to highlight is the impact of
boundary conditions on these potential evolution histories,
that is, some critical points will not be accessible for cer-
tain boundary. This is further highlighted through the phase
portrait examples where some critical points are common to
all cosmological histories while other only appear for some
iterations of the system. Thus, as explored in the interesting
review in Ref. [56], while some behaviours remain common
to the model produced by one of the actions such as a de Sitter
future critical point, others only partially appear in the broad
range of possible cosmological evolution histories available.

If we glance at a study made in Ref. [68], we can easily
compare the cosmological implications and stability condi-
tions of critical points from Table-1 in Ref. [68] and Table 1
for the Model-I general α case. From this comparison, we can
note that we get four more critical points than in Ref. [68],
this may be possible because of the model construction and
background formalism in the teleparallel Horndeski theory.
This comparison allows us to know more about minor differ-
ences; in our study we get four critical points which are able
to describe the dark energy era that is critical points H, I D,
E. From these, the two critical points, D and E, are the stable
de-Sitter solution (the study for the Model-II, Table 7 also
showing similar comparison conclusion with sixteen critical
points), but in Ref. [68], we will likely deal with four critical
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points explaining the dark energy era with only one de-Sitter
solution, critical point “l.” With this progress we also have
the number of critical points describing the matter-dominated
solution with ω = 0 is more than in Ref. [68]. These novel
critical points plays an important role to get more clarity in
the description of the matter and the dark energy dominated
era. Also, we can compare our analysis with the study of var-
ious dark energy models in the modified theory of gravity in
Ref. [56].
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