
Eur. Phys. J. C (2022) 82:678
https://doi.org/10.1140/epjc/s10052-022-10632-2

Regular Article - Theoretical Physics

Exploring phase space with nested sampling

David Yallup1,a , Timo Janßen2, Steffen Schumann2, Will Handley1

1 Cavendish Laboratory and Kavli Institute for Cosmology, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
2 Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

Received: 17 May 2022 / Accepted: 23 July 2022 / Published online: 5 August 2022
© The Author(s) 2022

Abstract We present the first application of a Nested Sam-
pling algorithm to explore the high-dimensional phase space
of particle collision events. We describe the adaptation of the
algorithm, designed to perform Bayesian inference computa-
tions, to the integration of partonic scattering cross sections
and the generation of individual events distributed according
to the corresponding squared matrix element. As a first con-
crete example we consider gluon scattering processes into 3-,
4- and 5-gluon final states and compare the performance with
established sampling techniques. Starting from a flat prior
distribution Nested Sampling outperforms the Vegas algo-
rithm and achieves results comparable to a dedicated multi-
channel importance sampler. We outline possible approaches
to combine Nested Sampling with non-flat prior distributions
to further reduce the variance of integral estimates and to
increase unweighting efficiencies.

1 Introduction

Realistic simulations of scattering events at particle collider
experiments play an indispensable role in the analysis and
interpretation of actual measurement data for example at the
Large Hadron Collider (LHC) [1,2]. A central component of
such event simulations is the generation of hard scattering
configurations according to a density given by the squared
transition matrix element of the concrete process under con-
sideration. This is needed both for the evaluation of corre-
sponding cross sections, as well as the explicit generation
of individual events that potentially get further processed,
e.g. by attaching parton showers, invoking phenomenolog-
ical models to account for the parton-to-hadron transition,
and eventually, a detector simulation. To adequately address
the physics needs of the LHC experiments requires the eval-
uation of a wide range of high-multiplicity hard processes
that feature a highly non-trivial multimodal target density
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that is rather costly to evaluate. The structure of the target
is thereby affected by the appearance of intermediate reso-
nances, quantum interferences, the emission of soft and/or
collinear massless gauge bosons, or non-trivial phase space
constraints, due to kinematic cuts on the final state particles.
Dimensionality and complexity of the phase space sampling
problem make the usage of numerical methods, and in partic-
ular Monte Carlo techniques, for its solution indispensable.

The most widely used approach relies on adaptive multi-
channel importance sampling, see for example [3–7]. How-
ever, to achieve good performance detailed knowledge of
the target distribution, i.e. the squared matrix element, is
needed. To this end information about the topology of scat-
tering amplitudes contributing to the considered process is
employed in the construction of individual channels. Alter-
natively, and also used in combination with importance sam-
pling phase space maps, variants of the self-adaptive VEGAS

algorithm [8] are routinely applied [9–12].
An alternative approach for sampling according to a

desired probability density is offered by Markov Chain
Monte Carlo (MCMC) algorithms. However, in the con-
text of phase space sampling in high energy physics these
techniques attracted rather limited attention, see in particu-
lar [13,14]. More recently a mixed kernel method combin-
ing multi-channel sampling and MCMC, dubbed (MC)3, has
been presented [15]. A typical feature of such MCMC based
algorithms is the potential autocorrelation of events that can
affect their direct applicability in typical use case scenarios
of event generators.

To meet the computing challenges posed by the upcom-
ing and future LHC collider runs and the corresponding event
simulation campaigns, improvements of the existing phase
space sampling and event unweighting techniques will be
crucial [16,17]. This has sparked renewed interest in the sub-
ject, largely driven by applications of machine learning tech-
niques, see for instance [18–36].

In this article we explore an alternative direction. We here
study the application of Nested Sampling [37] as imple-
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mented in PolyChord [38] to phase space integration and
event generation for high energy particle collisions. We
here assume no prior knowledge about the target and inves-
tigate the ability of the algorithm to adapt to the prob-
lem. Nested Sampling has originally been proposed to per-
form Bayesian inference computations for high dimensional
parameter spaces, providing also the evidence integral, i.e.
the integral of the likelihood over the prior density. This
makes it ideally suited for our purpose. In Sect. 2 we will
introduce Nested Sampling as a method to perform cross
section integrals and event generation, including a reliable
uncertainty estimation. In Sect. 3 we will apply the method
to gluon scattering to 3-, 4-, and 5-gluon final states as a
benchmark for jet production at hadron colliders, thereby
comparing results for total cross sections and differential dis-
tributions with established standard techniques. Evaluation
of the important features of the algorithm when applied in
the particle physics context is also discussed in this section.
In Sect. 4 we illustrate several avenues for future research,
extending the work presented here. Finally, we present our
conclusions in Sect. 5.

2 Nested sampling for event generation

The central task when exploring the phase space of scat-
tering processes in particle physics is to compute the cross
section integral, σ . This requires the evaluation of the transi-
tion squared matrix element, |M|2, integrated over the phase
space volume, Ω , where Ω is composed of all possible kine-
matic configurations, �, of the external particles. Up to some
constant phase space factors this amounts to performing the
integral,

σ =
∫

Ω

d�|M|2(�) . (1)

In practice rather than sampling the physical phase space vari-
ables, i.e. the particles’ four-momenta, it is typical to integrate
over configurations, θ ∈ [0, 1]D , from the D-dimensional
unit hypercube. Some mapping, � : [0, 1]D → Ω , is then
employed to translate the sampled variables to the physical
momenta. The mapping is defined as, � = �(θ), and the
integral in Eq. (1) is written,

σ =
∫

[0,1]D
dθ |M|2(�(θ))J (θ) =

∫

[0,1]D
dθL(θ) . (2)

A Jacobian associated with the change of coordinates
between θ and � has been introduced, J , and then absorbed
into the definition of L(θ) = |M|2(�(θ))J (θ). With no
general analytic solution to the sorts of scatterings considered

at the high energy frontier, this integral must be estimated
with numerical techniques. Numerical integration involves
sampling from the |M|2 distribution in a manner that gives
a convergent estimate of the true integral when the samples
are summed. As a byproduct this set of samples can be used
to estimate integrals of arbitrary sub-selections of the inte-
grated phase space volume, decomposing the total cross sec-
tion into differential cross section elements, dσ . Additionally
these samples can be unweighted and used as pseudo-data to
emulate the experimental observations of the collisions. The
current state of the art techniques for performing these tasks
were briefly reviewed in Sect. 1.

Importance Sampling (IS) is a Monte Carlo technique used
extensively in particle physics when one needs to draw sam-
ples from a distribution with an unknown target probability
density function, P(�). Importance Sampling approaches
this problem by instead drawing from a known sampling dis-
tribution, Q(�) (A number of standard texts for inference
give more thorough exposition of the general sampling the-
ory used in this paper, see e.g. [39]). Samples drawn from
Q are assigned a weight, w = P(�)/Q(�), adjusting the
importance of each sampled point. The performance of IS
rests heavily on how well the sampling distribution can be
chosen to match the target, and adaptive schemes like VEGAS

are employed to refine initial proposals. It is well estab-
lished that as the dimensionality and complexity of the target
increase, the task of constructing a viable sampling distribu-
tion becomes increasingly challenging.

Markov Chain based approaches fundamentally differ in
that they employ a local sampling distribution and define an
acceptance probability with which to accept new samples.
Markov Chain Monte Carlo (MCMC) algorithms are widely
used in Bayesian inference. Numerical Bayesian methods
have to be able to iteratively refine the prior distribution to
the posterior, even in cases where the two distributions are
largely disparate, making stochastic MCMC refinement an
indispensable tool in many cases. This is an important con-
ceptual point; in the particle physics problems presented in
this work we are sampling from exact theoretically derived
distributions. The lack of noise and a priori well known struc-
ture make methods with deterministic proposal distributions
such as IS more initially appealing, however at some point
increasing the complexity and dimensionality of the prob-
lem forces one to use stochastic methods. Lattice QCD cal-
culations are a prominent example set of adjacent problems
sampling from theoretical distributions that make extensive
use of MCMC approaches [40]. MCMC algorithms intro-
duce an orthogonal set of challenges to IS; a local proposal
is inherently simpler to construct, however issues with explo-
ration of multimodal target distributions and autocorrelation
of samples become new challenges to address.

Nested Sampling (NS) is a well established algorithm for
numerical evaluation of high dimensional integrals [37]. NS
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differs from typical MCMC samplers as it is primarily an
integration algorithm, hence by definition has to overcome
a lot of the difficulties MCMC samplers face in multimodal
problems. A recent community review of its various applica-
tions in the physical sciences, and various implementations
of the algorithm has been presented in [41].

At its core NS operates by maintaining a number, nlive, of
live point samples. This ensemble of live points is initially
uniformly sampled from θ ∈ [0, 1]D – distributed in the
physical volume Ω according to the shape of the mapping
�. These live points are sorted in order of L(θ) evaluated at
the phase space point, and the point with the lowest L, Lmin,
in the population is identified. A replacement for this point is
found by sampling uniformly under a hard constraint requir-
ing, L > Lmin. The volume enclosed by this next iteration
of live points has contracted and the procedure of identifying
the lowest L point and replacing it is repeated. An illustra-
tion of three different stages of this iterative compression on
an example two-dimensional function are shown in Fig. 1.
The example function used in this case has four identical
local maxima to find, practical exploration and discovery of
the modes is achieved by having a sufficient (O (10)) initial
samples in the basis of attraction of each mode. This can
either be achieved by brute force sampling a large number of
initial samples, or by picking an initial mapping distribution
that better reflects the multi-modal structure. By continually
uniformly sampling from a steadily compressing volume,
NS can estimate the density of points which is necessary for
computing an integral as given by Eq. (1). Once the itera-
tive procedure reaches a point where the live point ensemble
occupies a predefined small fraction of the initial volume,
TC , the algorithm terminates. The fraction TC can be char-
acterised as the termination criterion. The discarded points
throughout the evolution are termed dead points which can
be joined with the remaining live points to form a represen-
tative sample of the function, that can be used to estimate the
integral or to provide a random sample of events.

To estimate the integral and generate (weighted) random
samples, Nested Sampling achieves this by probabilistically
estimating the volume of the shell between the two outermost
points as approximately 1

nlive
of the current live volume. The

volume X j within the contour L j – defined by the point with
Lmin – at iteration j may therefore be estimated as,

X j =
∫
L(θ)>L j

dθ

⇒ X0 = 1,

P(X j |X j−1) = Xnlive−1
j

nliveX
nlive
j−1

⇒ log X j ≈ − j ± √
j

nlive
.

Fig. 1 Schematic of live point evolution (blue dots) in Nested Sam-
pling, over a two-dimensional function whose logarithm is the negative
Himmelblau function (contours). Points are initially drawn from the
unit hypercube (top panel). The points on the lowest contours are suc-
cessively deleted, causing the live points to contract around the peak(s)
of the function. After sufficient compression is achieved, the dead points
(orange) may be weighted to compute the volume under the surface and
samples from probability distributions derived from the function

123



678 Page 4 of 19 Eur. Phys. J. C (2022) 82 :678

The cross section and probability weights can therefore
be estimated as,

σ =
∫

dθL(θ) =
∫

dXL(X)

≈
∑
j

L j�X j , w j ≈ �X jL j

σ
. (3)

Importantly, for all of the above the approximation signs indi-
cate errors in the procedure of probabilistic volume estima-
tion, which are fully quantifiable.

The method to sample new live points under a hard con-
straint can be realised in multiple ways, and this is one of the
key differences in the various implementations of NS. In this
work we employ the PolyChord implementation of Nested
Sampling [38], which uses slice sampling [42] MCMC steps
to evolve the live points. NS can be viewed as being an ensem-
ble of many short Markov Chains.

Much of the development and usage of NS has focused
on the problem of calculation of marginal likelihoods (or
evidences) in Bayesian inference, particularly within the field
of Cosmology [43–48]. We can define the Bayesian evidence,
Z , analogously to the particle physics cross section, σ . NS
in this context evaluates the integral,

Z =
∫

dθL(θ)π(θ) , (4)

where the likelihood function,L, plays a similar role to |M|2.
In the Bayesian inference context, the phase space over which
we are integrating, θ , has a measure defined by the prior dis-
tribution, π(θ), which without loss of generality under a suit-
able coordinate transformation can be taken to be uniform
over the unit hypercube. Making the analogy between the
evidence and the cross section explicit will allow us to apply
some of the information theoretic metrics commonly used
in Bayesian inference to the particle physics context [49],
and provide terminology used throughout this work. Among
a wide array of sampling methods for Bayesian inference,
NS possesses some unique properties that enable it to suc-
cessfully compute the high dimensional integral associated
with Eq. (4). These properties also bear a striking similar-
ity to the requirements one would like to have to explore
particle physics phase spaces. These are briefly qualitatively
described as follows:

– NS is primarily a numerical integration method that pro-
duces posterior samples as a by product. In this respect
it is comfortably similar to Importance Sampling as
the established tool in particle physics event generation.
It might initially be tempting to approach the particle
physics event generation task purely as a posterior sam-
pling problem. Standard Markov Chain based sampling

tools cannot generically give good estimates of the inte-
gral, so are not suited to compute the cross section. Addi-
tionally issues with coverage of the full phase space from
the resulting event samples are accounted for by default
by obtaining a convergent estimate of the integral over
all of the phase space.

– NS naturally handles multimodal problems [45,46]. The
iterative compression can be augmented by inserting
steps that cluster the live points periodically throughout
the run. Defining subsets of live points and evolving them
separately allows NS to naturally tune itself to the modal-
ity of unseen problems.

– NS requires a construction that can handle sampling
under a hard likelihood constraint in order to perform
the compression of the volume throughout the run. Hard
boundaries in the physics problem, such as un-physical
or deliberately cut phase space regions, manifest them-
selves in the sampling space as a natural extension of
these constraints.

– NS is largely self tuning. Usage in Bayesian inference has
found that NS can be applied to a broad range of prob-
lems with little optimisation of hyper-parameters neces-
sary [50–52]. NS can adapt to different processes in parti-
cle physicswithout anyprior knowledgeof the underlying
process needed.

The challenge to present NS in this new context is to find
an even comparison of sampling performance between NS
and IS. It is typical in phase space sampling to compare the
difference between the target and the sampling distribution as
reducing the variation between these two distributions gives
a clear metric of performance for IS. For NS there is no such
global sampling distribution; the closest analogue being the
prior which is then iteratively refined with local proposals
to an estimate of the target. In Sect. 2.1 we attempt to com-
pare the sampling distribution between NS and IS using a
toy problem, however in the full physical gluon scattering
example presented in Sect. 3 we instead focus directly on the
properties of the estimated target distribution as this is the
most direct equitable point of comparison.

2.1 Illustrative example

To demonstrate the capabilities of NS we apply the algorithm
to an illustrative sampling problem in two dimensions. Fur-
ther examples validating PolyChord on a number of chal-
lenging sampling toy problems are included in the original
paper [38], here we present a modified version of the Gaus-
sian Shells scenario. An important distinction of the phase
space use case not present in typical examples is the empha-
sis on calculating finely binned differential histograms of the
total integral. As a comparison to NS, we sample the same
problem with a method that is well-known in high energy
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physics – adaptive Importance Sampling (IS), realised using
the VEGAS algorithm.

For our toy example we introduce a “stop sign” target
density, whose unnormalised distribution is defined by

f (x, y) = 1

2π2

�r(√
(x − x0)2 + (y − y0)2 − r0

)2 + (�r)2

· 1√
(x − x0)2 + (y − y0)2

+ 1

2πr0

�r

((y − y0) − (x − x0))2 + (�r)2

· 	

(
r0 −

√
(x − x0)2 + (y − y0)2

)
, (5)

where 	(x) is the Heaviside function. It is the sum of a ring
and a line segment, both with a (truncated) Cauchy profile.
The ring is centred at (x0, y0) = (0.5, 0.5) and has a radius
of r0 = 0.4. The line segment is located in the inner part
of the ring and runs through the entire diameter. We set the
width of the Cauchy profile to �r = 0.002. This distribution
can be seen as an example of a target where it makes sense to
tackle the sampling problem with a multi-channel distribu-
tion. One channel could be chosen to sample the ring in polar
coordinates and one to sample the line segment in Cartesian
coordinates. However, here we deliberately use VEGAS as a
single channel in order to highlight the limitations of the algo-
rithm. From the perspective of a single channel, there is no
coordinate system to factorise the target distribution. That
poses a serious problem for VEGAS, as it uses a factorised
sampling distribution where the variables are sampled indi-
vidually. Both algorithms are given zero prior knowledge of
the target, thus starting with a uniform prior distribution.

Our VEGAS grid has 200 bins per dimension. We train it
over 10 iterations where we draw 30k points from the current
VEGAS mapping and adapt the grid to the data. The distribu-
tion defined by the resulting grid is then used for IS without
further adaptation. This corresponds to the typical use in an
event generator, where there is first an integration phase in
which, among other things, VEGAS is adapted, followed by
a non-adaptive event generation phase. We note that VEGAS

gets an advantage in this example comparison as we do not
include the target evaluations from the training into the count-
ing. However, it should be borne in mind that in a realistic
application with a large number of events to be generated,
the costs for training are comparatively low. For NS we use
PolyChord with a number of live points nlive = 1000 and
a chain length nrepeats = 4, more complete detail of Poly-
Chord settings and their implication are given in Sect. 3.1.
Figure 2a shows the bivariate target distribution along with
the marginal x and y distributions of the target, VEGAS and
PolyChord. For this plot (as well as for Fig. 2c) we merged
70 independent runs of PolyChord to get a better visual

(c)

(b)

(a)

Fig. 2 A two-dimensional toy example: a Histogram of the target
function along with the marginal sampling distributions of VEGAS and
PolyChord. b Ratio of the target function and the probability density
function of VEGAS. c Ratio of the target density to the sampling density
of PolyChord
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representation due to the larger sample size. It can be seen
that both algorithms reproduce the marginal distributions rea-
sonably well. There is some mismatch at the boundaries for
VEGAS. This can be explained by the fact that VEGAS, as a
variance-reduction method, focuses on the high-probability
regions, where it puts many bins, and uses only few bins for
the comparably flat low-probability regions. As a result, the
bins next to the boundaries are very wide and overestimate
the tails. PolyChord also oversamples the tails, reflecting
the fact that in this example the prior is drastically different
from the posterior, meaning the initial phase of prior sam-
pling in PolyChord is very inefficient. In addition it puts
too many points where the ring and the line segment join,
which is where we find the highest values of the target func-
tion. This is not a generic feature of NS at the termination
of the algorithm, rather it reflects the nature of having two
intersecting sweeping degenerate modes in the problem, a
rather unlikely scenario in any physical integral.

Figure 2b shows the ratio between the target distribution
and the sampling distribution of VEGAS, representing the IS
weights. It can be seen that the marginals of the ratio are
relatively flat, with values between 0.1 and 5.7. However,
in two dimensions the ratio reaches values up to 1 × 10−2.
By comparing Fig. 2a and b, paying particular attention to
the very similar ranges of function values, it can be deduced
that VEGAS almost completely misses to learn the structure
of the target. It tries to represent the peak structure from the
ring and the line segment by an enclosing square with nearly
uniform probability distribution.

The same kind of plot is shown in Fig. 2c for the Poly-
Chord data. NS does not strictly define a sampling distribu-
tion, however a proxy for this can be visualised by plotting
the density of posterior samples. Here the values of the ratio
are much smaller, between 1 × 10−2 and 7. PolyChord
produces a flatter ratio function than VEGAS while not intro-
ducing additional artifacts that are not present in the original
function. The smallest/largest values of the ratio are found in
the same regions as the smallest/largest values of the target
function, implying that PolyChord tends to overestimate
the tails and to underestimate the peaks. This can be most
clearly explained by examining the profile of where poste-
rior mass is distributed throughout a run, an important diag-
nostic tool for NS runs [53]. It is shown in Fig. 3, where the
algorithm runs from left to right; starting with the entire prior
volume remaining enclosed by the live points, log X = 0, and
running to termination, when the live points contain a van-
ishingly small remaining prior volume. The posterior mass
profile, shown in blue, is the analogue to the sampling density
in VEGAS. To contextualise this against the target function,
a profile of the log-likelihood of the lowest live point in the
live point ensemble is similarly shown as a function of the

Fig. 3 Likelihood (logL) and posterior mass (LX ) profiles for a run of
PolyChord on the example target density. The x-axis tracks the prior
volume remaining as the run progresses, with log X = 0 corresponding
to the start of the run, with the algorithm compressing the volume from
left to right, where the run terminates

remaining prior volume, X . Nested Sampling can be moti-
vated as a likelihood scanner, sampling from monotonically
increasing likelihood shells. These two profiles indicate some
features of this problem, firstly a phase transition is visible in
the posterior mass profile. This occurs when the degenerate
peak of the ring structure is reached, the likelihood profile
reaches a plateau where the iterations kill off the degenerate
points at the peak of the ring, before proceeding to scan up the
remaining line segment feature. An effective second plateau
is found when the peak of the line segment is reached, with
a final small detail being the superposition of the ring likeli-
hood on the line segment. Once the live points are all occu-
pying the extrema of the line segment, there is a sufficiently
small prior volume remaining that the algorithm terminates.
The majority of the posterior mass, and hence sampling den-
sity is distributed around the points where the two peaks are
ascended. This reflects the stark contrast between the prior
initial sampling density and the target, the samples are nat-
urally distributed where the most information is needed to
effectively compress the prior to the posterior.

We compare the efficiencies of the two algorithms for
the generation of equal-weight events in Table 1. It shows
that PolyChord achieves an overall efficiency of ε =
0.0113(90) which is almost three times as high as the effi-
ciency of VEGAS. While for VEGAS the overall efficiency ε

is identical to the unweighting efficiency εuw, determined
by the ratio of the average event weight over the maximal
weight in the sample, for PolyChord we also have to take
the slice sampling efficiency εss into account, which results
from the thinning of the Markov Chain in the slice sampling
step. Here, the total efficiency ε = εssεuw is dominated by the
slice sampling efficiency. We point out that it is in the nature
of the NS algorithm that the sample size is not determinis-
tic. However, the variance is not very large and it is easily
possible to merge several NS runs to obtain a larger sample.
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Table 1 Comparison of VEGAS and NS for the toy example in terms of
size of event samples produced. NL gives the number of target evalua-
tions, NW the number of weighted events and Nequal the derived number
of equal weight events. A MC slice sampling efficiency, εss, is listed for

NS. A total, ε, and unweighting, εuw, efficiency are listed for both algo-
rithms. We report the mean and standard deviation of ten independent
runs of the respective algorithm

Algorithm NL εss NW εuw Nequal ε

VEGAS 300,000 300,000 0.004(2) 1267 (460) 0.004 (2)

NS 308,755 (17505) 0.041 (3) 12,669 (147) 0.273 (7) 3462 (96) 0.0113 (9)

Table 2 Comparison of integrals calculated in the toy example with
VEGAS and NS, along with the respective uncertainties

Algorithm I �σtot �w �MC

VEGAS 1.71 0.02 0.02

NS 1.65 0.05 0.04 0.02

Table 2 shows the integral estimates along with the corre-
sponding uncertainty measures. While the pure Monte Carlo
errors are of the same size for both algorithms, there is an
additional uncertainty for NS. It carries an uncertainty on
the weights of the sampled points, listed as �w. This arises
due to the nature of NS using the volume enclosed by the
live points at each iteration to estimate the volume of the
likelihood shell. The variance in this volume estimate can be
sampled, which is reflected as a sample of alternative weights
for each dead point in the sample. Summing up these alter-
native weight samples gives a spread of predictions for the
total integral estimate, and the standard deviation of these
is quoted as �w. This additional uncertainty compounds the
familiar statistical uncertainty, listed as �MC for all calcu-
lations. In Appendix A, we present the procedure needed to
combine the two NS uncertainties to quote a total uncertainty,
�σtot, as naively adding in quadrature will overestimate the
true error.

3 Application to gluon scattering

As a first application and benchmark for the Nested Sam-
pling algorithm, we consider partonic gluon scattering pro-
cesses into three-, four- and five-gluon final states at fixed
centre-of-mass energies of

√
s = 1 TeV. These channels

have a complicated phase space structure that is similar to
processes with quarks or jets, while the corresponding ampli-
tude expressions are rather straightforward to generate. The
fixed initial and final states allow us to focus on the under-
lying sampling problem. For regularisation we apply cuts
to the invariant masses of all pairs of final state gluons such
thatmi j > 30 GeV and on the transverse momenta of all final
state gluons such that pT,i > 30 GeV. The renormalisation
scale is fixed toμR = √

s. The matrix elements are calculated

using a custom interface betweenPolyChord and the matrix
element generator AMEGIC [5] within the SHERPA event gen-
erator framework [54]. Three established methods are used to
provide benchmarks to compare NS to. Principle comparison
is drawn to the HAAG sampler, optimised for QCD antenna
structures [55], illustrating the exploration of phase space
with the best a priori knowledge of the underlying physics
included. It uses a cut-off parameter of s0 = 900 GeV2.
Alongside this, two algorithms that will input no prior knowl-
edge of the phase space, i.e. the integrand, are used; adaptive
importance sampling as realised in the VEGAS algorithm [8]
and a flat uniform sampler realised using the RAMBO algo-
rithm [56,57]. VEGAS remaps the variables of the RAMBO

parametrisation using 50, 70, 200 bins per dimension for the
three-, four-, and five-gluon case, respectively. The grid is
trained in 10 iterations using 100k training points each. Note,
the dimensionality of the phase space for n-gluon production
is D = 3n−4, where total four-momentum conservation and
on-shell conditions for the external particles are implicit.

As a first attempt to establish NS in this context, we treat
the task of estimating the total and differential cross sections
of the three processes starting with no prior knowledge of
the underlying phase space distribution. For the purposes of
running PolyChord we provide the flat RAMBO sampler as
the prior, and the likelihood function provided is the squared
matrix element. In contrast to HAAG, PolyChord performs
the integration without any decomposition into channels,
removing the need for any multichannel mapping. NS is a
flexible procedure, and the objective of the algorithm can
be modified to perform a variety of tasks, a recent example
has presented NS for computation of small p-values in the
particle physics context [58]. To establish NS for the task
of phase space integration in this study, a standard usage of
PolyChord is employed, mostly following default values
used commonly in Bayesian inference problems.

The discussion of the application of NS to gluon-scattering
processes is split into four parts. Firstly, the hyperparam-
eters and general setup of PolyChord are explained in
Sect. 3.1. In Sect. 3.2 a first validation of NS performing
the core tasks of (differential) cross-section estimation from
weighted events – against the HAAG algorithm – is pre-
sented. In Sect. 3.3 further information is given to contex-
tualise the computational efficiency of NS against the alter-
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Table 3 PolyChord hyperparameters used for this analysis, parame-
ters not listed follow the PolyChord defaults

Parameter PolyChord
name

Value Description

Number of
dimensions

ndim [5, 8, 11] Dimension of sampling
space

Number of live
points

nlive 10,000 Resolution of the
algorithm

Number of
repeats

nrep ndim × 2 Length of Markov
chains

Number of prior
samples

nprior nlive Number of initial
samples from prior

Boost posterior nrep Write out maximum
number of posterior
samples

native established tools for these tasks. Finally a considera-
tion of unweighted event generation with NS is presented in
Sect. 3.4.

3.1 PolyChord hyperparameters

The hyperparameters chosen to steer PolyChord are listed
in Table 3. These represent a typical set of choices for a high
resolution run with the objective of producing a large num-
ber of posterior samples. The number of live points is one
of the parameters that is most free to tune, being effectively
the resolution of the algorithm. Typically nlive larger than
O (1000) gives diminishing returns on accuracy, Bayesian
inference usage in particle physics has previously employed
nlive = 4000 [59] to provide some context for the choice
made in this work. The particular event generation use case,
partitioning the integral into arbitrarily small divisions (dif-
ferential cross sections), logically favours a large nlive (res-
olution). The number of repeats is a parameter that controls
the length of the slice sampling chains, the value chosen
is the recommended default for reliable posterior sampling,
whereas nrep = ndim ×5 is recommended for evidence (total
integral) estimation. As this study aims to cover both differ-
ential and total cross sections, the smaller value is favoured
as there is a strong limit on the overall efficiency imposed
by how many samples are needed to decorrelate the Markov
Chains.

An important point to note is in how PolyChord treats
unphysical values of the phase space variables, e.g. if they
fall outside the fiducial phase space defined by cuts on the
particle momenta. This is not an explicit hyperparameter of
PolyChord, rather how the algorithm treats points with zero
likelihood. In both the established approaches and in Poly-
Chord the sampling is performed in the unit hypercube,
which is then translated to the physical variables which can
be evaluated for consistency and rejected if they are not phys-

ically valid. One of the strengths of NS is that the default
behavior is to consider points which return zero likelihood1

as being excluded at the prior level. During the initial prior
sampling phase, unphysical points are set to log-zero and the
sampling proceeds until nprior initial physical samples have
been obtained. Provided each connected physical region con-
tains some live points after this initial phase, the iterative
phase of MCMC sampling will explore up to the unphysi-
cal boundary. This effect necessitates a correction factor to
be applied to the integral, derived as the ratio of total initial
prior samples to the physically valid prior samples. In prac-
tice the correction factor is found in the prior_info file
written out by PolyChord. An uncertainty on this correc-
tion can be derived from order statistics [60], however it was
found to be negligibly small for the purposes of this study so
is not included.

Another standout choice of hyperparameter is the chosen
value of nprior. The number of prior samples is an impor-
tant hyperparameter that would typically be set to some
larger multiple of nlive in a Bayesian inference context,
nprior = 10 × nlive would be considered sensible for a broad
range of tasks. For the purpose of generating weighted events,
using a larger value would generally be advantageous, how-
ever increasing nprior will strongly decrease the efficiency
in generating unweighted events. As the goal is to construct
a generator taking an uninformed prior all the way through
to unweighted events, the default value listed is used. How-
ever it is notable that this is a particular feature of starting
from an uninformed prior, if more knowledge were to be
included in the prior then a longer phase of prior sampling
becomes advantageous. The final parameter noted, the factor
by which to boost posterior samples, has no effect on Poly-
Chord at runtime. Setting this to be equal to the number
of repeats simply writes out the maximum number of dead
points, hence is needed in this scenario. All plots and tables
in the remainder of this section are composed of one single
run of PolyChord with these settings, with the additional
entries in Table 4 demonstrating a join of ten such runs.

3.2 Exploration and integrals

Before examining the performance of NS in detail, it is
first important to validate that the technique is capable of
fully exploring particle physics phase spaces in these cho-
sen examples. The key test to validate this is to compare
if various differential cross sections calculated with NS are
statistically consistent with the established techniques. To do
this, a single NS and HAAG sample of weighted events is pro-
duced, using approximately similar levels of computational

1 Since PolyChord operates in log space, to avoid the infinity associ-
ated with log(0), log-zero is defined as a settable parameter. By default
this is chosen to −1 × 10−25.
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Table 4 Comparison of integrals calculated for the three-, four- and five-gluon processes using RAMBO, VEGAS, NS and HAAG, along with the
respective uncertainties

Process Algorithm σ �σtot �w �MC

3-jet RAMBO 24.580 0.191 0.191

VEGAS 24.807 0.017 0.017

NS 24.669 0.467 0.484 0.100

NS (×10) 24.888 0.145 0.150 0.030

HAAG 24.840 0.017 0.017

4-jet RAMBO 9.876 0.107 0.107

VEGAS 9.849 0.009 0.009

NS 9.837 0.194 0.196 0.036

NS (×10) 9.778 0.064 0.066 0.011

HAAG 9.853 0.006 0.006

5-jet RAMBO 2.644 0.024 0.024

VEGAS 2.680 0.003 0.003

NS 2.612 0.051 0.048 0.009

NS (×10) 2.667 0.017 0.017 0.003

HAAG 2.685 0.001 0.001

overhead (more detail on this is given in Sect. 3.3). Both sets
of weighted events are analysed using the default MC_JETS
Rivet routine [61]. Rivet produces binned differential cross
sections as functions of various physical observables of the
outgoing gluons. For each process, the total cross section
for the NS sample is normalised to the HAAG sample, and a
range of fine grained differential cross sections is calculated
using both algorithms covering the following observables;
ηi , yi , pT,i , �φi j , mi j , �Ri j , �ηi j , where i �= j label the
final state jets, reconstructed using the anti-kT algorithm [62]
with a radius parameter of R = 0.4 and pT > 30 GeV. The
normalised difference between the NS and HAAG differential
cross section in each bin can be computed as,

χ = dσHAAG − dσNS√
�2

HAAG + �2
NS

, (6)

in effect this is the differences between the two algorithms
normalised by the combined standard deviation. By sum-
ming up this χ deviation across all the available bins in each
process, a test to see if the two algorithms are convergent
within their quoted uncertainties can be performed. Since
over 500 bins are populated and considered in each process,
it is expected that the rate of these χ deviations should be
approximately normally distributed. This indeed appears to
hold, and these summed density estimates across all observ-
ables are shown in Fig. 4, alongside an overlaid normal distri-
bution with mean zero and variance one,N (0, 1), to illustrate
the expected outcome. Two example variables that were used
to build this global deviation are also shown; the leading jet

pT in Fig. 5a and �R12, the distance of the two leading jets
in the (η, φ) plane, in Fig. 5b.

The composition of the quoted uncertainty for the two
algorithms differs, demonstrating an important feature of an
NS calculation. For HAAG, and IS in general, it is conven-
tional to quote the uncertainty as the standard error from the
effective number of fills in a bin. Nested Sampling on the
other hand introduces an uncertainty on the weights used
to fill the histograms themselves, effectively giving rise to
multiple weight histories that must be sampled to derive the
correct uncertainty on the NS calculation. Details on this cal-
culation are supplied in Appendix A. In summary the alter-
native weight histories give an overlapping measure of the
statistical uncertainty, so this effect must be accounted for
in situ alongside taking the standard deviation of the weight
histories. To contextualise this, the middle panels in Fig. 5
show the correct combined uncertainty (using the recipe from
Appendix A) as a grey band, against the bands derived from
the standard error of each individual algorithm (henceforth
�MC) as dashed lines, and the complete NS error treatment
as a dotted line. The standard error (dashed) NS band in these
panels is a naive estimation of the full NS uncertainty (dot-
ted), however this illustrates an important point; at the level
of fine grained differential observables the NS uncertainty is
dominated by statistics and is hence reducible as one would
expect by repeated runs. Based on the example observables
we can initially conclude that whilst both algorithms appear
compatible, when using weighted events NS generally has a
larger uncertainty than HAAG across most of the range (given
a roughly equivalent computational overhead). However, fur-
ther inspection of the resulting unweighted event samples
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Fig. 4 Global rate of occurrence of per bin deviation, χ , between HAAG and NS, for each considered scattering process. A normally distributed
equivalent deviation rate is shown for comparison

derived from these weighted samples in the remaining sec-
tions reveals a more competitive picture between the two
algorithms.

The estimates of the total cross sections, derived from
the sum of weighted samples, provided in Table 4, give an
alternative validation that NS is sufficiently exploring the
phase space by ensuring that compatible estimates of the
cross sections are produced between all the methods reviewed
in this study. The central estimates of the total cross sections
are generally consistent within the established error sources
for all calculations considered. In this table the components
of the error calculation for NS are listed separately; �w being
the standard deviation resulting from the alternative weight
histories and �MC being the standard error naively taken
from the mean of the alternative NS weights. In contrast to
the differential observables, the naive counting uncertainty
is small so has negligible effect at the level of total cross
sections. In summary, for a total cross section the spread of
alternative weight histories gives a rough estimate of the total
error, whereas for a fine grained differential cross section the
standard error dominates. The way to correctly account for
the effect of counting statistics within the weight histories is
given in Appendix A.

Repeated runs of NS will reduce these uncertainties. The
anesthetic package [63] is used to analyse the NS runs
throughout this paper, and contains a utility to join samples.
Once samples are joined consistently into a larger sample, the
uncertainties can be derived as already detailed. The result of
joining 10 equivalent NS runs with the previously motivated
hyperparameters is also listed in Table 4. Joining 10 runs
affects the �σtot for NS in two ways; reducing the spread
of weighted sums composing �w (i.e. reducing �MC), and
reducing the variance of distribution for each weight itself

(i.e. the part of �w that does not overlap with �MC). The
former is reduced by simply having an increased size of sam-
ples produced, increasing the number of effective fills by a
factor of ∼10 in this case, with the latter reduced due to the
increased effective number of live points used for the volume
estimation.

3.3 Efficiency of event generation

An example particle physics workflow on this gluon scat-
tering problem would be to take HAAG as an initial map-
ping of the phase space (effectively representing the best
prior knowledge of the problem), and using VEGAS to refine
the proposal distribution to optimally efficiently generate
weighted events. Of the three existing tools presented in this
study for comparison (HAAG, RAMBO, and VEGAS), NS bears
most similarity to VEGAS, in that both algorithms learn the
structure of the target integrand. To this end an atypical usage
of VEGAS is employed, testing how well VEGAS could learn
a proposal distribution from an uninformed starting point
(RAMBO). This is equivalent to how NS was employed, start-
ing from an uninformed prior (RAMBO) and generating pos-
terior samples via Nested Sampling. It was motivated so far
that roughly similar computational cost was used for the pre-
vious convergence checks, and that the hyperparameters of
PolyChord were chosen to emphasise efficient generation
of unweighted events. In what follows, we analyse more pre-
cisely this key issue of computational efficiency.

The statistics from a single run of the four algorithms for
the three selected processes is listed in Table 5. NS is non
deterministic in terms of number of matrix element evalua-
tions (NL), instead terminating from a pre determined con-
vergence criterion of the integral. HAAG, VEGAS, RAMBO
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(a)

(b)

Fig. 5 Two example physical differential observables computed with
weighted events using the HAAG and NS algorithms. The top panels
show the physical distributions, the middle panels display the relative
component error sources, and the bottom panel displays the normalised

deviation. The deviation plot has been normalised such that χ = 1
corresponds to an expected 1σ deviation of a Gaussian distribution.
Note that for illustrative purposes the cross sections for the four- and
five-gluon processes have been scaled by global factors
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Table 5 Comparison of the four algorithms for the three processes
in terms of size of event samples produces. NL gives the number of
matrix element evaluations, NW the number of weighted events, NW,eff
the effective number of weighted events and Nequal the derived number

of equal-weight events. A MC slice sampling efficiency, εss, is listed
for NS. A total, ε, and an unweighting, εuw, efficiency are listed for all
algorithms

Process Algorithm NL (×106) εss NW
(×106) εuw Nequal

(×106) ε

3-jet RAMBO 10.00 10.00 0.0001 0.001 0.0001

VEGAS 10.00 10.00 0.02 0.20 0.02

NS 6.43 0.03 0.17 0.37 0.06 0.01

HAAG 10.00 10.00 0.03 0.29 0.03

4-jet RAMBO 10.00 10.00 0.00003 0.0003 0.00003

VEGAS 10.00 10.00 0.005 0.049 0.005

NS 7.94 0.02 0.19 0.43 0.08 0.01

HAAG 10.00 10.00 0.02 0.23 0.02

5-jet RAMBO 10.00 10.00 0.00004 0.0004 0.00004

VEGAS 10.00 10.00 0.001 0.013 0.001

NS 9.17 0.02 0.19 0.44 0.08 0.01

HAAG 10.00 10.00 0.03 0.25 0.03

are all used to generate exactly 10M weighted events. The
chosen PolyChord hyperparameters roughly align the NS
method with the other three in terms of computational cost.
One striking difference comes from the Markov Chain nature
of NS. Default usage only retains a fraction of the total L
evaluations, inversely proportional to nrep. This results in a
smaller number of retained weighted events, NW , than the
number of L evaluations, NL, for NS. However the retained
weighted events by construction match the underlying dis-
tribution much closer than the other methods, resulting in
a higher unweighting efficiency, εuw, for the NS sample.
Exact equal-weight unweighting can be achieved by accept-
ing events with a probability proportional to the share of the
sample weight they carry, this operation is performed for
all samples of weighted events and the number of retained
events is quoted as Nequal. NS as an unweighted event gen-
erator has some additional complexity due to the uncertainty
in the weights themselves, this is given more attention in
Sect. 3.4.

Due to differences in NL between NS and the other
methods, it is most effective to compare the total effi-
ciency in producing unweighted events, ε = Nequal/NL.
RAMBO as the baseline illustrates the performance one would
expect, inputting no prior knowledge and not adapting to
any acquired knowledge. As such RAMBO yields a tiny ε.
HAAG represents the performance using the best state of prior
knowledge but without any adaptation, in these tests this
represents the best attainable ε. VEGAS and NS start from
a similar point, both using RAMBO as an uninformed state
of prior knowledge, but adapting to better approximate the
phase space distribution as information is acquired. VEGAS

starts with a higher efficiency than NS for the 3-gluon pro-
cess, but the VEGAS efficiency drops by approximately an

order of magnitude as the dimensionality of phase space is
increased to the 5-gluon process. NS maintains a consistent
efficiency of approximately a percent, competitive with the
consistent approximately three percent efficiency obtained
by HAAG.

As the key point of comparison for this issue is the effi-
ciency, ε, this is highlighted with an additional visualisation
in Fig. 6. The scaling behavior of the efficiency of each algo-
rithm as a function of the number of outgoing gluons (cor-
responding to an increase in phase space dimensionality) is
plotted for NS, HAAG and VEGAS. From the same starting
point, NS and VEGAS can both learn a representation of the
phase space, and do so in a way that yields a comparable effi-
ciency to the static best available prior knowledge in HAAG.
As the dimensionality of the space increases it appears that
VEGAS starts to suffer in how accurately it can learn the map-
ping, however NS is still able to learn the mapping in a con-
sistently efficient manner.

3.4 Unweighted event generation

The fact that NS leads to a set of alternative weight his-
tories poses a technical challenge in operating as a gener-
ator of unweighted events in the expected manner. Exact
unweighting, compressing the weighted sample to strictly
equally weighted events leads to a different set of events
being accepted for each weight history. Representative yields
of unweighted events can be calculated as shown in Table 5
using the mean weight for each event, but the resulting dif-
ferential distributions will underestimate the uncertainty if
this is quoted simply as the standard error in the bin, as
described in Appendix A. The correct uncertainty recipe
can be propagated through naively, by separately unweight-
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Fig. 6 Visualisation of the efficiencies listed in Table 5

ing each weight history, however this requires saving as
many event samples as required weight variations. Partial
unweighting is commonly used in HEP event generation to
allow a slight deviation from strict unit weights, to increase
efficiency in practical settings. A modification to the partial
unweighting procedure could be used to propagate the spread
of weights to variations around accepted, approximate unit
weight, events.

To conclude the exploration of the properties of NS as
a generator for particle physics, a representative physical
distribution calculated from a sample of exact unit-weight
events is shown in Fig. 7. This sample is derived from the
same weighted sample described in Table 5 and previously
presented as a weighted event sample in Fig. 5a. The full
set of NS variation weights is used to calculate the mean
weight for each event, which is used to unweight the sample,
for the chosen observable this is a very reasonable approx-
imation as the fine binning means the standard error is the
dominant uncertainty. The range of the leading jet transverse
momenta has been extended into the tail of this distribution
by modifying the default Rivet routine. This distribution
largely reflects the information about the total efficiency pre-
viously illustrated in Fig. 6, projected onto a familiar differ-
ential observable. The total efficiency, ε, was noted as being
approximately one percent from NS, compared to approxi-
mately three percent from HAAG across all processes. If the
total number of matrix element evaluations, NL, were to be
made equal across all algorithms and processes, the perfor-
mance would be further consistent.

4 Future research directions

Throughout Sect. 3, the performance of Nested Sampling
in the context of particle physics phase space sampling and
event generation was presented. A single choice of hyperpa-

rameters was made, effectively performing a single NS run
as an entire end-to-end event generator; starting from zero
knowledge of the phase space all the way through to gener-
ating unweighted events. Simplifying the potential options
of NS to a single version of the algorithm was a deliberate
choice to more clearly illustrate the performance of NS in
this new context, using the same settings for multiple tasks
gives multiple orthogonal views on how the algorithm per-
forms. However this was a limiting choice, NS has a number
of variants and applications that could more effectively be
tuned to a subset of the tasks presented. Some of the possi-
ble simple alterations – such as increasing nprior to improve
weighted event generation at the expense of unweighting effi-
ciency – were motivated already in this paper. In this section
we outline four broad topics that extend the workflow pre-
sented here, bringing together further ideas from the worlds
of Nested Sampling and phase space exploration.

4.1 Physics challenges in event generation

The physical processes studied in this work, up to 5-gluon
scattering problems, are representative of the complexity
of phase space calculation needed for the current precision
demands of the LHC experiment collaborations [64]. How-
ever part of the motivation for this work, and indeed the
broader increased interest in phase space integration meth-
ods, is due to the impending breaking point current pipelines
face under the increased precision challenges of the HL-LHC
programme. Firstly we observe that the phase space dimen-
sionality of the highest multiplicity process studied here is
11. In broader Bayesian inference terms this is rather small,
with NS being typically used for problemsO (10) toO (100)

dimensions, where it is uniquely able to perform numerical
integration without approximation or strictly matching prior
knowledge. The PolyChord implementation is styled as
next-generation Nested Sampling, designed to have polyno-
mial scaling with dimensionality aiming for robust perfor-
mance as inference is extended to O (100) dimensions. Ear-
lier implementations of NS, such as MultiNest [46], whilst
having worse dimensional scaling properties, may be a useful
avenue of investigation for the lower dimensional problems
considered in this paper.

This work validated NS in a context where current tools
still can perform the required tasks, albeit at times at immense
computational costs. Requirements from the HL-LHC strain
the existing LHC event generation pipeline in many ways
and pushing the sampling problem to higher dimensions is
no exception [2]. Importance Sampling becomes exponen-
tially more sensitive to how close the proposal distribution
matches the target in higher dimensions, a clear challenge for
particle physics in two directions; multileg processes rapidly
increasing the sampling dimension [65] and corresponding
radiative corrections (real and virtual) make it increasingly

123



678 Page 14 of 19 Eur. Phys. J. C (2022) 82 :678

Fig. 7 The equivalent leading jet transverse momentum observable as calculated in Fig. 5a, using an exact unit weight compression of the same
samples. A modified version of the default MC_JETS routine has been used to extend the pT range shown

hard to provide an accurate proposal, e.g. through the sheer
number of phase space channels needed and by having to
probe deep into singular phase space regions [66]. We pro-
pose that NS is an excellent complement to further investiga-
tion on both these fronts. The robust dimensional scaling of
NS illustrated against VEGAS in Fig. 6 encapsulates both solid
performance with increasing dimension, and the adherence
to an uninformed prior whilst still attaining this scaling is
promising for scenarios where accurate proposals are harder
to construct.

4.2 Using prior knowledge

Perhaps the most obvious choice that makes the application
here stylised is in always starting from an uninformed prior
state of knowledge. Using Equations (2) and (4), the cross
section integral with a phase space mapping was motivated
as being exactly the Bayesian evidence integral with a choice
of prior. To that end there is no real distinction between tak-
ing the non-uniform HAAG distribution as the prior instead
of the flat RAMBO density that was used in this study. In this
respect NS could be styled as learning an additional compres-
sion to the posterior distribution, refining the static proposal
distributions typically employed to initiate the generation of
a phase space mapping (noting that this is precisely what
VEGAS aims to do in this context).

Naively applying a non-flat mapping exposes the conflict-
ing aims at play in this set of problems however; efficiently
generating events from a strongly peaked distribution, and
generating high statistics estimates of the tails of the same
distribution. Taking a flat RAMBO prior is well suited to the
latter problem, whereas taking a HAAG prior is better suited
to the former. One particular hyperparameter of PolyChord
that was introduced can be tuned to this purpose; the num-
ber of prior samples, nprior. If future work is to use a non flat,
partially informed starting point, increasing nprior well above
the minimum (equal to the number of live points required)
used in this study would be needed. A more complete direc-
tion for further work would be to investigate the possibility
of mixing multiple proposal distributions [67,68].

As a demonstration, we again apply NS to the toy example
of Sect. 2.1 but this time using a non-uniform prior distribu-
tion. While a good prior would be an approximation of the
target distribution, we choose to purposely miss an impor-
tant feature of the target, the straight line segment, that the
sampler still has to explore. Considering that in HEP appli-
cations the prior knowledge may be encoded in the mixture
distributions of a multi-channel importance sampler, this is
an extreme version of a realistic situation. As typically the
number of channels grows dramatically with increasing final-
state particle multiplicity, e.g. factorially when channels cor-
respond to the topologies of contributing Feynman diagrams,
one might choose to disable some sub-dominant channels in
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order to avoid a prohibitively large set of channels. However,
this would lead to a mis-modelling of the target in certain
phase-space regions.

Here we use only the ring part of the target, truncated on
a circle that covers the unit hypercube, as our prior. With-
out an additional coordinate transformation this prior would
not be of much use for VEGAS as the line part remains on
the diagonal. To sample from the prior, we first transform to
polar coordinates. Then we sample the angle uniformly and
the radial coordinate using a Cauchy distribution truncated to
the interval (0, 1/

√
2]. In order to have good coverage of the

tails, despite the strongly peaked prior, we increase nprior to
50 × nlive. This results in a total efficiency of ε = 0.037(4),
more than three times the value obtained with a uniform
prior, cf. Table 1. While the unweighting efficiency reduces
to εuw = 0.17(2), the slice sampling efficiency increases to
εss = 0.216(7). In Fig. 8 we show the ratio between the
target function and the PolyChord sampling distribution.
Compared to Fig. 2c, the ratio has a smaller range of values.
Along the peak of the ring part of the target function, the
ratio is approximately one. The largest values can be found
around the line segment with PolyChord generating up to
ten times less samples than required by the target distribution.
It can be concluded that even with an intentionally poor prior
distribution, PolyChord benefits from the prior knowledge
in terms of efficiency and still correctly samples the target
distribution including the features absent from the prior.

4.3 Dynamic nested sampling

In addition to using a more informed prior to initiate the
Nested Sampling process, a previous NS run can be used to
further tune the algorithm itself to a particular problem. This
is an existing idea in the literature known as dynamic Nested
Sampling [69]. Dynamic NS uses information acquired about
the likelihood shells in a previous NS run to varying the num-
ber of live points dynamically throughout the run. This results
in a more efficient allocation of the computation towards
the core aim of compressing the prior to the posterior. We
expect that this would only increase the efficiency of the
unweighting process, as the density of weighted events would
be trimmed to even more closely match the underlying phase
space density. Dynamic Nested Sampling naturally combines
with the proposal of using prior knowledge to make a more
familiar generator chain, however one that is driven primarily
by NS. This mirrors the current established usage of VEGAS

in this context; using VEGAS to refine the initial mapping
by a redistribution of the input variables, to more efficiently
generate from the acquired mapping.

Fig. 8 The ratio of the target function of the two-dimensional toy
example and the probability density function of PolyChord using
a non-uniform prior distribution. Black histogram bins have not been
filled by any data due to limited sample size

4.4 Connection to modern machine learning techniques

There has been a great deal of recent activity coincident to
this work, approaching similar sets of problems in particle
physics event generation using modern Machine Learning
(ML) techniques [70]. Much of this work is still exploratory
in nature, and covers such a broad range of activity that com-
prehensively reviewing the potential for combining ML and
NS is beyond the scope of this work. It is however clear
that there is strong potential to include NS into a pipeline
that modern ML is already aiming to optimise. To that aim,
we identify a particular technique that has been studied pre-
viously in the particle physics context; using Normalising
Flows to train phase space mappings [29–31]. In spirit a flow
based approach, training an invertible probabilistic mapping
between prior and posterior, bears a great deal of similarity
to the core compression idea behind Nested Sampling. The
potential in dovetailing Nested Sampling with a flow based
approach has been noted in the NS literature [71], further
motivating the potential for synergy here.

The ability of NS to construct mappings of high dimen-
sional phase spaces without needing any strong prior knowl-
edge, can be motivated as being an ideal forward model with
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which to train a Normalising Flow. In effect this replaces the
generator part of the process with an importance sampler,
whilst still using NS to generate the mappings. This is par-
ticularly ideal in this context, as the computational overhead
required to decorrelate the Markov Chains imposes a harsh
limit on the efficiency of a pure NS based approach. Com-
bining these techniques in this way could retain the desirable
features of both and serve to mitigate the ever increasing
computational demands of energy frontier particle physics.

We close by noting that also in the area of lattice field
theory Normalising Flows have recently attracted attention,
see e.g. [72,73], to address the sampling of multimodal target
function. We envisage that also in these applications Nested
Sampling could be applied.

5 Conclusions

The establishing study presented here had two main aims.
Firstly to introduce the technique of Nested Sampling,
applied to a realistic problem, to researchers in the particle
physics community. Secondly to provide a translation back
to researchers working on Bayesian inference techniques,
presenting an important and active set of problems in parti-
cle physics that Nested Sampling could provide a valuable
contribution to. The physical example presented used Poly-
Chord to perform an end-to-end generation of events with-
out any input prior knowledge. This is a stylised version of the
event generator problem, intended to validate Nested Sam-
pling in this new context and demonstrate some key features.
For the considered multi-gluon production processes Nested
Sampling was able to learn a mapping in an efficient manner
that exhibits promising scaling properties with phase space
dimension. We have outlined some potential future research
directions; highlighting where the strengths of this approach
could be most effective, and how to embed Nested Sam-
pling in a more complete event generator workflow. Along
these lines, we envisage an implementation of the Nested
Sampling technique for the SHERPA event generator frame-
work [54], possibly also supporting operation on GPUs [74].
This will provide additional means to address the computing
challenges for event generation posed by the upcoming LHC
runs.
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Appendix: Uncertainties in nested sampling

Typical Nested Sampling literature focuses on two main
sources of uncertainty; an uncertainty on the weights of the
dead points due to the uncertainty in the volume contraction
at each iteration, and an uncertainty on the overall volume
arising from the path the Markov Chain takes through the
space to perform each iteration. The former source is what
we consider in this work, and can be calculated as a sam-
ple of weights for each dead point using anesthetic. The
latter source can be estimated using the nestcheck pack-
age [75], the method presented here uses combinations of
multiple runs to form integral estimates meaning the best
strategy to minimise this effect is already baked in. Further
use cases would benefit from more thorough cross checks
using nestcheck.

The usual source of uncertainty in a binned histogram in
particle physics comes from the standard error. Importance
Sampling draws sample events with associated weights wi ,
with the sum of these sample weights giving the estimated
cross section in a bin. The effective number of fills in a bin
using weighted samples is,

N =
( ∑

i wi
)2

∑
i w

2
i

. (7)

The inverse square root of N then constitutes the standard
error on the cross section in the bin. In practice this means that
the standard deviation of an integral estimated with Impor-

tance Sampling can be quoted as �MC =
√∑

i (w
2
i ). In typ-

ical NS applications this is significantly smaller than the pre-
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viously mentioned sources, and thus often not considered.
However, when using NS as a phase space event genera-
tor for finely binned differential observables, the statistical
uncertainty can become a significant effect so must be taken
into account. Adding the standard error to the weight uncer-
tainty in quadrature is a suitable upper bound for the NS
uncertainty but is found to overestimate the uncertainty in
some bins. While the standard error gives a measure of the
spread of weights around the mean weight in a bin, alterna-
tive weights from the sampling history in NS also give an
overlapping measure of this.

To correctly account for the statistical error in this context
a revised recipe is needed. The following proposed procedure
reweights the alternative weight samples to account for the
spread of the resulting effective fills in each bin. The effective
number of entries in a bin arising from a NS run can be written
as,

N j =
( ∑

i w j,i
)2

∑
i w

2
j,i

, (8)

where i indexes the number of weighted samples in each
bin, and j indexes the alternative weights. The result of the
j sampled weight variations is a set of j different effective
counts in each bin. These counts can be modelled as j trials
of a multinomial distribution with j categories, written as,

P(N | α) = j !∏
j N j !

∏
j

α
N j
j , (9)

where a probability of sampling each category, α j , has been
introduced. The desired unknown distribution of α j can be
found using Bayes theorem to invert the arguments. If an
uninformative conjugate prior to the multinomial distribu-
tion is used, the Dirichlet distribution, the desired inverted
probability can also be written in the form of a Dirichlet
distribution,

P(α | N ) = Γ

⎛
⎝∑

j

N j

⎞
⎠ ∏

j

α
N j−1
j

Γ (N j )
. (10)

A sample vector of α j from this Dirichlet distribution, will
give a probability of observing each category N j . This prob-
ability can be used to weight the categories giving a weighted
set of effective number of fills, {α j N j }. This considers each
alternative weight sample as a discrete sample from an under-
lying continuous distribution N j is sampled from. The set of
weighted effective fills can be used to quote a weighted set of
samples of the bin cross section by multiplying by the square
of the sum of the weights, {σ j } = {α j N j

∑
i (w

2
j,i )}. The esti-

mated cross section in the bin is then the expected value of this

set, σ = E[σ j ], and the total standard deviation on this cross
section is derived from the variance, �σtot = (Var[σ j ])2.

References

1. A. Buckley et al., General-purpose event generators for LHC
physics. Phys. Rep. 504, 145 (2011). https://doi.org/10.1016/j.
physrep.2011.03.005. arXiv:1101.2599

2. J.M. Campbell et al., Event Generators for High-Energy Physics
Experiments, in 2022 Snowmass Summer Study, 3, (2022).
arxiv:2203.11110

3. R. Kleiss, R. Pittau, Weight optimization in multichannel Monte
Carlo. Comput. Phys. Commun. 83, 141 (1994). https://doi.org/10.
1016/0010-4655(94)90043-4. arXiv:hep-ph/9405257

4. C.G. Papadopoulos, PHEGAS: a phase space generator for auto-
matic cross-section computation. Comput. Phys. Commun. 137,
247 (2001). https://doi.org/10.1016/S0010-4655(01)00163-1.
arXiv:hep-ph/0007335

5. F. Krauss, R. Kuhn, G. Soff, AMEGIC++ 1.0: a matrix element
generator in C++. JHEP 02, 044 (2002). https://doi.org/10.1088/
1126-6708/2002/02/044. arXiv:hep-ph/0109036

6. F. Maltoni, T. Stelzer, MadEvent: automatic event generation
with MadGraph. JHEP 02, 027 (2003). https://doi.org/10.1088/
1126-6708/2003/02/027. arXiv:hep-ph/0208156

7. T. Gleisberg, S. Hoeche, Comix, a new matrix element generator.
JHEP 12, 039 (2008). https://doi.org/10.1088/1126-6708/2008/
12/039. arXiv:0808.3674

8. G.P. Lepage, A new algorithm for adaptive multidimensional inte-
gration. J. Comput. Phys. 27, 192 (1978). https://doi.org/10.1016/
0021-9991(78)90004-9

9. T. Ohl, Vegas revisited: adaptive Monte Carlo integration beyond
factorization. Comput. Phys. Commun. 120, 13 (1999). https://doi.
org/10.1016/S0010-4655(99)00209-X. arXiv:hep-ph/9806432

10. S. Jadach, Foam: multidimensional general purpose Monte
Carlo generator with selfadapting symplectic grid. Com-
put. Phys. Commun. 130, 244 (2000). https://doi.org/10.1016/
S0010-4655(00)00047-3. arXiv:physics/9910004

11. T. Hahn, CUBA: a Library for multidimensional numerical inte-
gration. Comput. Phys. Commun. 168, 78 (2005). https://doi.org/
10.1016/j.cpc.2005.01.010. arXiv:hep-ph/0404043

12. A. van Hameren, PARNI for importance sampling and density esti-
mation. Acta Phys. Pol. B Ser 40, 259 (2009). arXiv:0710.2448

13. H. Kharraziha, S. Moretti, The Metropolis algorithm for on-shell
four momentum phase space. Comput. Phys. Commun. 127,
242 (2000). https://doi.org/10.1016/S0010-4655(99)00504-4.
arXiv:hep-ph/9909313

14. S. Weinzierl, A general algorithm to generate unweighted events
for next-to-leading order calculations in electron positron annihi-
lation. JHEP 08, 028 (2001). https://doi.org/10.1088/1126-6708/
2001/08/028. arXiv:hep-ph/0106146

15. K. Kröninger, S. Schumann, B. Willenberg, (MC)**3: a multi-
channel Markov chain Monte Carlo algorithm for phase-space sam-
pling. Comput. Phys. Commun. 186, 1 (2015). https://doi.org/10.
1016/j.cpc.2014.08.024. arXiv:1404.4328

16. H.S.F. Physics Event Generator, WG collaboration, Challenges in
Monte Carlo event generator software for high-luminosity LHC.
Comput. Softw. Big Sci. 5, 12 (2021). https://doi.org/10.1007/
s41781-021-00055-1. arxiv:2004.13687

17. HSF Physics Event Generator WG collaboration, E. Yazgan et al.,
HL-LHC Computing Review Stage-2, Common Software Projects:
Event Generators, 9 (2021)

18. J. Bendavid, Efficient Monte Carlo Integration Using Boosted
Decision Trees and Generative Deep Neural Networks, 6 (2017)

123

https://doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/10.1016/j.physrep.2011.03.005
http://arxiv.org/abs/1101.2599
http://arxiv.org/abs/2203.11110
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1016/0010-4655(94)90043-4
http://arxiv.org/abs/hep-ph/9405257
https://doi.org/10.1016/S0010-4655(01)00163-1
http://arxiv.org/abs/hep-ph/0007335
https://doi.org/10.1088/1126-6708/2002/02/044
https://doi.org/10.1088/1126-6708/2002/02/044
http://arxiv.org/abs/hep-ph/0109036
https://doi.org/10.1088/1126-6708/2003/02/027
https://doi.org/10.1088/1126-6708/2003/02/027
http://arxiv.org/abs/hep-ph/0208156
https://doi.org/10.1088/1126-6708/2008/12/039
https://doi.org/10.1088/1126-6708/2008/12/039
http://arxiv.org/abs/0808.3674
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/S0010-4655(99)00209-X
https://doi.org/10.1016/S0010-4655(99)00209-X
http://arxiv.org/abs/hep-ph/9806432
https://doi.org/10.1016/S0010-4655(00)00047-3
https://doi.org/10.1016/S0010-4655(00)00047-3
http://arxiv.org/abs/physics/9910004
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
http://arxiv.org/abs/hep-ph/0404043
http://arxiv.org/abs/0710.2448
https://doi.org/10.1016/S0010-4655(99)00504-4
http://arxiv.org/abs/hep-ph/9909313
https://doi.org/10.1088/1126-6708/2001/08/028
https://doi.org/10.1088/1126-6708/2001/08/028
http://arxiv.org/abs/hep-ph/0106146
https://doi.org/10.1016/j.cpc.2014.08.024
https://doi.org/10.1016/j.cpc.2014.08.024
http://arxiv.org/abs/1404.4328
https://doi.org/10.1007/s41781-021-00055-1
https://doi.org/10.1007/s41781-021-00055-1
http://arxiv.org/abs/2004.13687


678 Page 18 of 19 Eur. Phys. J. C (2022) 82 :678

19. M.D. Klimek, M. Perelstein, Neural network-based approach to
phase space integration. SciPost Phys. 9, 053 (2020). https://doi.
org/10.21468/SciPostPhys.9.4.053. arXiv:1810.11509

20. S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks,
C. van Leeuwen et al., Event generation and statistical sampling
for physics with deep generative models and a density information
buffer. Nat. Commun. 12, 2985 (2021). https://doi.org/10.1038/
s41467-021-22616-z. arXiv:1901.00875

21. R. Di Sipio, M.F. Giannelli, S.K. Haghighat, S. Palazzo, DijetGAN:
a generative-adversarial network approach for the simulation of
QCD Dijet Events at the LHC. JHEP 08, 110 (2019). https://doi.
org/10.1007/JHEP08(2019)110. arxiv:1903.02433

22. A. Butter, T. Plehn, R. Winterhalder, How to GAN LHC Events.
SciPost Phys.7, 075 (2019). https://doi.org/10.21468/SciPostPhys.
7.6.075. arXiv:1907.03764

23. Y. Alanazi et al., Simulation of electron–proton scattering events
by a Feature-Augmented and Transformed Generative Adversarial
Network (FAT-GAN), 1 (2020)

24. Y. Alanazi et al., AI-based Monte Carlo event generator for
electron-proton scattering, 8. (2020)

25. S. Diefenbacher, E. Eren, G. Kasieczka, A. Korol, B. Nachman ,
D. Shih, DCTRGAN: Improving the Precision of Generative Mod-
els with Reweighting. JINST 15 (2020). https://doi.org/10.1088/
1748-0221/15/11/P11004. arXiv:2009.03796

26. A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman, T. Plehn,
GANplifying event samples. SciPost Phys. 10, 139 (2021). https://
doi.org/10.21468/SciPostPhys.10.6.139. arXiv:2008.06545

27. A. Butter, S. Diefenbacher, G. Kasieczka, B. Nachman, T. Plehn,
GANplifying Event Samples. SciPost Phys. 10, 139 (2021). https://
doi.org/10.21468/SciPostPhys.10.6.139. arXiv:2008.06545

28. K.T. Matchev, A. Roman, P. Shyamsundar, Uncertainties associ-
ated with GAN-generated datasets in high energy physics. SciPost
Phys. 12, 104 (2022). https://doi.org/10.21468/SciPostPhys.12.3.
104. arXiv:2002.06307

29. E. Bothmann, T. Janßen, M. Knobbe, T. Schmale, S. Schumann,
Exploring phase space with neural importance sampling. Sci-
Post Phys. 8, 069 (2020). https://doi.org/10.21468/SciPostPhys.
8.4.069. arXiv:2001.05478

30. C. Gao, J. Isaacson, C. Krause, i-flow: high-dimensional inte-
gration and sampling with normalizing flows. Mach. Learn.
Sci. Tech. 1, 045023 (2020). https://doi.org/10.1088/2632-2153/
abab62. arXiv:2001.05486

31. C. Gao, S. Höche, J. Isaacson, C. Krause, H. Schulz,
Event generation with normalizing flows. Phys. Rev. D 101,
076002 (2020). https://doi.org/10.1103/PhysRevD.101.076002.
arXiv:2001.10028

32. B. Stienen, R. Verheyen, Phase space sampling and inference
from weighted events with autoregressive flows. SciPost Phys.
10, 038 (2021). https://doi.org/10.21468/SciPostPhys.10.2.038.
arXiv:2011.13445

33. K. Danziger, T. Janßen, S. Schumann , F. Siegert, Accelerating
Monte Carlo event generation—rejection sampling using neural
network event-weight estimates, 9 (2021)

34. M. Backes, A. Butter, T. Plehn, R. Winterhalder, How to GAN
event unweighting. SciPost Phys. 10, 089 (2021). https://doi.org/
10.21468/SciPostPhys.10.4.089. arXiv:2012.07873

35. M. Bellagente, M. Haußmann, M. Luchmann , T. Plehn, Under-
standing event-generation networks via uncertainties, 4 (2021)

36. A. Butter, T. Heimel, S. Hummerich, T. Krebs, T. Plehn, A. Rous-
selot et al., Generative networks for precision enthusiasts, 10 (2021)

37. J. Skilling, Nested sampling for general Bayesian computation.
Bayesian Anal. 1, 833 (2006). https://doi.org/10.1214/06-BA127

38. W.J. Handley, M.P. Hobson, A.N. Lasenby, polychord: next-
generation nested sampling. Mon. Not. R. Astron. Soc. 453, 4385
(2015). https://doi.org/10.1093/mnras/stv1911. arXiv:1506.00171

39. D.J.C. MacKay, Information Theory. Inference & Learning Algo-
rithms (Cambridge University Press, Cambridge, 2002)

40. Particle Data Group collaboration, Review of Particle Physics.
PTEP 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

41. G. Ashton et al., Nested sampling for physical scientists.
Nature 2 (2022). https://doi.org/10.1038/s43586-022-00121-x.
arXiv:2205.15570

42. R.M. Neal, Slice sampling. Ann. Stat. 31, 705 (2003). https://doi.
org/10.1214/aos/1056562461

43. P. Mukherjee, D. Parkinson, A.R. Liddle, A nested sam-
pling algorithm for cosmological model selection. Astro-
phys. J. Lett. 638, L51 (2006). https://doi.org/10.1086/501068.
arXiv:astro-ph/0508461

44. R. Shaw, M. Bridges, M.P. Hobson, Clustered nested sampling:
efficient Bayesian inference for cosmology. Mon. Not. R. Astron.
Soc. 378, 1365 (2007). https://doi.org/10.1111/j.1365-2966.2007.
11871.x. arXiv:astro-ph/0701867

45. F. Feroz, M.P. Hobson, Multimodal nested sampling: an efficient
and robust alternative to MCMC methods for astronomical data
analysis. Mon. Not. R. Astron. Soc. 384, 449 (2008). https://doi.
org/10.1111/j.1365-2966.2007.12353.x. arXiv:0704.3704

46. F. Feroz, M.P. Hobson, M. Bridges, MultiNest: an efficient and
robust Bayesian inference tool for cosmology and particle physics.
Mon. Not. R. Astron. Soc. 398, 1601 (2009). https://doi.org/10.
1111/j.1365-2966.2009.14548.x. arXiv:0809.3437

47. F. Feroz, M.P. Hobson, E. Cameron, A.N. Pettitt, Importance
nested sampling and the MultiNest algorithm. Open J. Astro-
phys. 2, 10 (2019). https://doi.org/10.21105/astro.1306.2144.
arXiv:1306.2144

48. W.J. Handley, M.P. Hobson, A.N. Lasenby, PolyChord: nested sam-
pling for cosmology. Mon. Not. R. Astron. Soc. 450, L61 (2015).
https://doi.org/10.1093/mnrasl/slv047. arXiv:1502.01856

49. W. Handley, P. Lemos, Quantifying dimensionality: Bayesian cos-
mological model complexities. Phys. Rev. D 100, 023512
(2019). https://doi.org/10.1103/PhysRevD.100.023512.
arXiv:1903.06682

50. S.S. AbdusSalam et al., Simple and statistically sound recommen-
dations for analysing physical theories, 12 (2020)

51. GAMBIT collaboration, Comparison of statistical sampling
methods with ScannerBit, the GAMBIT scanning module.
Eur. Phys. J. C 77, 761 (2017). https://doi.org/10.1140/epjc/
s10052-017-5274-y. arXiv:1705.07959

52. A. Fowlie, W. Handley, L. Su, Nested sampling with plateaus. Mon.
Not. R. Astron. Soc. 503, 1199 (2021). https://doi.org/10.1093/
mnras/stab590. arXiv:2010.13884

53. E. Higson, W. Handley, M. Hobson, A. Lasenby, Sampling errors
in nested sampling parameter estimation. Bayesian Analysis series
13 (2018). https://doi.org/10.1214/17-ba1075

54. Sherpa collaboration, Event Generation with Sherpa 2.2. Sci-
Post Phys. 7, 034 (2019). https://doi.org/10.21468/SciPostPhys.
7.3.034. arXiv:1905.09127

55. A. van Hameren, C.G. Papadopoulos, A hierarchical phase
space generator for QCD antenna structures. Eur. Phys. J.
C 25, 563 (2002). https://doi.org/10.1007/s10052-002-1000-4.
arXiv:hep-ph/0204055

56. R. Kleiss, W.J. Stirling, S.D. Ellis, A new Monte Carlo
treatment of multiparticle phase space at high-energies. Com-
put. Phys. Commun. 40, 359 (1986). https://doi.org/10.1016/
0010-4655(86)90119-0

57. S. Plätzer, RAMBO on diet, 8 (2013). arXiv:1308.2922
58. A. Fowlie, S. Hoof, W. Handley, Nested sampling for frequentist

computation: fast estimation of small p values. Phys. Rev. Lett. 128,
021801 (2022). https://doi.org/10.1103/PhysRevLett.128.021801.
arXiv:2105.13923

59. E. Carragher, W. Handley, D. Murnane, P. Stangl, W. Su, M.
White et al., Convergent Bayesian global fits of 4D compos-

123

https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.21468/SciPostPhys.9.4.053
http://arxiv.org/abs/1810.11509
https://doi.org/10.1038/s41467-021-22616-z
https://doi.org/10.1038/s41467-021-22616-z
http://arxiv.org/abs/1901.00875
https://doi.org/10.1007/JHEP08(2019)110
https://doi.org/10.1007/JHEP08(2019)110
http://arxiv.org/abs/1903.02433
https://doi.org/10.21468/SciPostPhys.7.6.075
https://doi.org/10.21468/SciPostPhys.7.6.075
http://arxiv.org/abs/1907.03764
https://doi.org/10.1088/1748-0221/15/11/P11004
https://doi.org/10.1088/1748-0221/15/11/P11004
http://arxiv.org/abs/2009.03796
https://doi.org/10.21468/SciPostPhys.10.6.139
https://doi.org/10.21468/SciPostPhys.10.6.139
http://arxiv.org/abs/2008.06545
https://doi.org/10.21468/SciPostPhys.10.6.139
https://doi.org/10.21468/SciPostPhys.10.6.139
http://arxiv.org/abs/2008.06545
https://doi.org/10.21468/SciPostPhys.12.3.104
https://doi.org/10.21468/SciPostPhys.12.3.104
http://arxiv.org/abs/2002.06307
https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.21468/SciPostPhys.8.4.069
http://arxiv.org/abs/2001.05478
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1088/2632-2153/abab62
http://arxiv.org/abs/2001.05486
https://doi.org/10.1103/PhysRevD.101.076002
http://arxiv.org/abs/2001.10028
https://doi.org/10.21468/SciPostPhys.10.2.038
http://arxiv.org/abs/2011.13445
https://doi.org/10.21468/SciPostPhys.10.4.089
https://doi.org/10.21468/SciPostPhys.10.4.089
http://arxiv.org/abs/2012.07873
https://doi.org/10.1214/06-BA127
https://doi.org/10.1093/mnras/stv1911
http://arxiv.org/abs/1506.00171
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1038/s43586-022-00121-x
http://arxiv.org/abs/2205.15570
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1214/aos/1056562461
https://doi.org/10.1086/501068
http://arxiv.org/abs/astro-ph/0508461
https://doi.org/10.1111/j.1365-2966.2007.11871.x
https://doi.org/10.1111/j.1365-2966.2007.11871.x
http://arxiv.org/abs/astro-ph/0701867
https://doi.org/10.1111/j.1365-2966.2007.12353.x
https://doi.org/10.1111/j.1365-2966.2007.12353.x
http://arxiv.org/abs/0704.3704
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://doi.org/10.1111/j.1365-2966.2009.14548.x
http://arxiv.org/abs/0809.3437
https://doi.org/10.21105/astro.1306.2144
http://arxiv.org/abs/1306.2144
https://doi.org/10.1093/mnrasl/slv047
http://arxiv.org/abs/1502.01856
https://doi.org/10.1103/PhysRevD.100.023512
http://arxiv.org/abs/1903.06682
https://doi.org/10.1140/epjc/s10052-017-5274-y
https://doi.org/10.1140/epjc/s10052-017-5274-y
http://arxiv.org/abs/1705.07959
https://doi.org/10.1093/mnras/stab590
https://doi.org/10.1093/mnras/stab590
http://arxiv.org/abs/2010.13884
https://doi.org/10.1214/17-ba1075
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.21468/SciPostPhys.7.3.034
http://arxiv.org/abs/1905.09127
https://doi.org/10.1007/s10052-002-1000-4
http://arxiv.org/abs/hep-ph/0204055
https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1016/0010-4655(86)90119-0
http://arxiv.org/abs/1308.2922
https://doi.org/10.1103/PhysRevLett.128.021801
http://arxiv.org/abs/2105.13923


Eur. Phys. J. C (2022) 82 :678 Page 19 of 19 678

ite Higgs models. JHEP 05, 237 (2021). https://doi.org/10.1007/
JHEP05(2021)237. arXiv: 2101.00428

60. A. Fowlie, W. Handley, L. Su, Nested sampling cross-checks using
order statistics. Mon. Not. R. Astron. Soc.497, 5256 (2020). https://
doi.org/10.1093/mnras/staa2345. arXiv:2006.03371

61. C. Bierlich et al., Robust independent validation of experiment and
theory: rivet version 3. SciPost Phys. 8, 026 (2020). https://doi.org/
10.21468/SciPostPhys.8.2.026. arXiv:1912.05451

62. M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algo-
rithm. JHEP 04, 063 (2008). https://doi.org/10.1088/1126-6708/
2008/04/063. arXiv:0802.1189

63. W. Handley, anesthetic: nested sampling visualisation. J. Open
Sour. Softw. 4, 1414 (2019). https://doi.org/10.21105/joss.01414.
arXiv:1905.04768

64. ATLAS collaboration, Modelling and computational improve-
ments to the simulation of single vector-boson plus jet processes
for the ATLAS experiment, 12 (2021). arXiv:2112.09588

65. S. Höche, S. Prestel, H. Schulz, Simulation of vector boson plus
many jet final states at the high luminosity LHC. Phys. Rev.
D 100, 014024 (2019). https://doi.org/10.1103/PhysRevD.100.
014024. arXiv:1905.05120

66. T. Gleisberg, F. Krauss, Automating dipole subtraction for QCD
NLO calculations. Eur. Phys. J. C 53, 501 (2008). https://doi.org/
10.1140/epjc/s10052-007-0495-0. arXiv: 0709.2881

67. A. Petrosyan , W. Handley, SuperNest: accelerated nested sam-
pling applied to astrophysics and cosmology, Maximum Entropy
(accepted for Oral presentation) (2022)

68. “SuperNest.” https://gitlab.com/a-p-petrosyan/sspr. https://
pypi.org/project/supernest/

69. E. Higson, W. Handley, M. Hobson, A. Lasenby, Dynamic nested
sampling: an improved algorithm for parameter estimation and evi-
dence calculation. Stat. Comput. 29, 891–913 (2018). https://doi.
org/10.1007/s11222-018-9844-0

70. S. Badger et al., Machine Learning and LHC Event Generation, in
2022 Snowmass Summer Study, A. Butter, T. Plehn and S. Schu-
mann, eds., 3 (2022). arxiv:2203.07460

71. J. Alsing, W. Handley, Nested sampling with any prior you like.
Mon. Not. R. Astron. Soc. 505, L95 (2021). https://doi.org/10.
1093/mnrasl/slab057. arXiv:2102.12478

72. L. Del Debbio, J.M. Rossney, M. Wilson, Efficient modeling of
trivializing maps for lattice φ4 theory using normalizing flows: a
first look at scalability. Phys. Rev. D 104, 094507 (2021). https://
doi.org/10.1103/PhysRevD.104.094507. arXiv:2105.12481

73. D.C. Hackett, C.-C. Hsieh, M.S. Albergo, D. Boyda, J.-W. Chen,
K.-F. Chen et al., Flow-based sampling for multimodal distributions
in lattice field theory, 7 (2021)

74. E. Bothmann, W. Giele, S. Höche, J. Isaacson, M. Knobbe, Many-
gluon tree amplitudes on modern GPUs: a case study for novel
event generators, 6 (2021)

75. E. Higson, W. Handley, M. Hobson, A. Lasenby, Nestcheck: diag-
nostic tests for nested sampling calculations. Mon. Not. R. Astron.
Soc. 483, 2044 (2019). https://doi.org/10.1093/mnras/sty3090.
arXiv:1804.06406

123

https://doi.org/10.1007/JHEP05(2021)237
https://doi.org/10.1007/JHEP05(2021)237
http://arxiv.org/abs/2101.00428
https://doi.org/10.1093/mnras/staa2345
https://doi.org/10.1093/mnras/staa2345
http://arxiv.org/abs/2006.03371
https://doi.org/10.21468/SciPostPhys.8.2.026
https://doi.org/10.21468/SciPostPhys.8.2.026
http://arxiv.org/abs/1912.05451
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
http://arxiv.org/abs/0802.1189
https://doi.org/10.21105/joss.01414
http://arxiv.org/abs/1905.04768
http://arxiv.org/abs/2112.09588
https://doi.org/10.1103/PhysRevD.100.014024
https://doi.org/10.1103/PhysRevD.100.014024
http://arxiv.org/abs/1905.05120
https://doi.org/10.1140/epjc/s10052-007-0495-0
https://doi.org/10.1140/epjc/s10052-007-0495-0
http://arxiv.org/abs/0709.2881
https://gitlab.com/a-p-petrosyan/sspr
https://pypi.org/project/supernest/
https://pypi.org/project/supernest/
https://doi.org/10.1007/s11222-018-9844-0
https://doi.org/10.1007/s11222-018-9844-0
http://arxiv.org/abs/2203.07460
https://doi.org/10.1093/mnrasl/slab057
https://doi.org/10.1093/mnrasl/slab057
http://arxiv.org/abs/2102.12478
https://doi.org/10.1103/PhysRevD.104.094507
https://doi.org/10.1103/PhysRevD.104.094507
http://arxiv.org/abs/2105.12481
https://doi.org/10.1093/mnras/sty3090
http://arxiv.org/abs/1804.06406

	Exploring phase space with nested sampling
	Abstract 
	1 Introduction
	2 Nested sampling for event generation
	2.1 Illustrative example

	3 Application to gluon scattering
	3.1 PolyChord hyperparameters
	3.2 Exploration and integrals
	3.3 Efficiency of event generation
	3.4 Unweighted event generation

	4 Future research directions
	4.1 Physics challenges in event generation
	4.2 Using prior knowledge
	4.3 Dynamic nested sampling
	4.4 Connection to modern machine learning techniques

	5 Conclusions
	Acknowledgements
	Appendix: Uncertainties in nested sampling
	References




