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Abstract We present the first application of a Nested Sam-
pling algorithm to explore the high-dimensional phase space
of particle collision events. We describe the adaptation of the
algorithm, designed to perform Bayesian inference computa-
tions, to the integration of partonic scattering cross sections
and the generation of individual events distributed according
to the corresponding squared matrix element. As a first con-
crete example we consider gluon scattering processes into 3-,
4- and 5-gluon final states and compare the performance with
established sampling techniques. Starting from a flat prior
distribution Nested Sampling outperforms the VEGAS algo-
rithm and achieves results comparable to a dedicated multi-
channel importance sampler. We outline possible approaches
to combine Nested Sampling with non-flat prior distributions
to further reduce the variance of integral estimates and to
increase unweighting efficiencies.

1 Introduction

Realistic simulations of scattering events at particle collider
experiments play an indispensable role in the analysis and
interpretation of actual measurement data for example at the
Large Hadron Collider (LHC) [1,2]. A central component of
such event simulations is the generation of hard scattering
configurations according to a density given by the squared
transition matrix element of the concrete process under con-
sideration. This is needed both for the evaluation of corre-
sponding cross sections, as well as the explicit generation
of individual events that potentially get further processed,
e.g. by attaching parton showers, invoking phenomenolog-
ical models to account for the parton-to-hadron transition,
and eventually, a detector simulation. To adequately address
the physics needs of the LHC experiments requires the eval-
uation of a wide range of high-multiplicity hard processes
that feature a highly non-trivial multimodal target density
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that is rather costly to evaluate. The structure of the target
is thereby affected by the appearance of intermediate reso-
nances, quantum interferences, the emission of soft and/or
collinear massless gauge bosons, or non-trivial phase space
constraints, due to kinematic cuts on the final state particles.
Dimensionality and complexity of the phase space sampling
problem make the usage of numerical methods, and in partic-
ular Monte Carlo techniques, for its solution indispensable.

The most widely used approach relies on adaptive multi-
channel importance sampling, see for example [3—7]. How-
ever, to achieve good performance detailed knowledge of
the target distribution, i.e. the squared matrix element, is
needed. To this end information about the topology of scat-
tering amplitudes contributing to the considered process is
employed in the construction of individual channels. Alter-
natively, and also used in combination with importance sam-
pling phase space maps, variants of the self-adaptive VEGAS
algorithm [8] are routinely applied [9-12].

An alternative approach for sampling according to a
desired probability density is offered by Markov Chain
Monte Carlo (MCMC) algorithms. However, in the con-
text of phase space sampling in high energy physics these
techniques attracted rather limited attention, see in particu-
lar [13,14]. More recently a mixed kernel method combin-
ing multi-channel sampling and MCMC, dubbed (MC)?, has
been presented [15]. A typical feature of such MCMC based
algorithms is the potential autocorrelation of events that can
affect their direct applicability in typical use case scenarios
of event generators.

To meet the computing challenges posed by the upcom-
ing and future LHC collider runs and the corresponding event
simulation campaigns, improvements of the existing phase
space sampling and event unweighting techniques will be
crucial [16,17]. This has sparked renewed interest in the sub-
ject, largely driven by applications of machine learning tech-
niques, see for instance [18-36].

In this article we explore an alternative direction. We here
study the application of Nested Sampling [37] as imple-
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mented in POLYCHORD [38] to phase space integration and
event generation for high energy particle collisions. We
here assume no prior knowledge about the target and inves-
tigate the ability of the algorithm to adapt to the prob-
lem. Nested Sampling has originally been proposed to per-
form Bayesian inference computations for high dimensional
parameter spaces, providing also the evidence integral, i.e.
the integral of the likelihood over the prior density. This
makes it ideally suited for our purpose. In Sect. 2 we will
introduce Nested Sampling as a method to perform cross
section integrals and event generation, including a reliable
uncertainty estimation. In Sect. 3 we will apply the method
to gluon scattering to 3-, 4-, and 5-gluon final states as a
benchmark for jet production at hadron colliders, thereby
comparing results for total cross sections and differential dis-
tributions with established standard techniques. Evaluation
of the important features of the algorithm when applied in
the particle physics context is also discussed in this section.
In Sect. 4 we illustrate several avenues for future research,
extending the work presented here. Finally, we present our
conclusions in Sect. 5.

2 Nested sampling for event generation

The central task when exploring the phase space of scat-
tering processes in particle physics is to compute the cross
section integral, o. This requires the evaluation of the transi-
tion squared matrix element, | M |?, integrated over the phase
space volume, £2, where £2 is composed of all possible kine-
matic configurations, @, of the external particles. Up to some
constant phase space factors this amounts to performing the
integral,

o= fd<1>|./\/t|2(<l>). )

2

In practice rather than sampling the physical phase space vari-
ables, i.e. the particles’ four-momenta, it is typical to integrate
over configurations, 6 € [0, 112, from the D-dimensional
unit hypercube. Some mapping, IT : [0, 11° — £, is then
employed to translate the sampled variables to the physical
momenta. The mapping is defined as, ® = TI(#), and the
integral in Eq. (1) is written,

o= / dO| M (T1(0)) T (6) = f doL(®). @)

(0,117 [0,11?

A Jacobian associated with the change of coordinates
between 0 and ® has been introduced, 7, and then absorbed
into the definition of £(0) = |M|*>(I1(0))J(#). With no
general analytic solution to the sorts of scatterings considered
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at the high energy frontier, this integral must be estimated
with numerical techniques. Numerical integration involves
sampling from the |M|? distribution in a manner that gives
a convergent estimate of the true integral when the samples
are summed. As a byproduct this set of samples can be used
to estimate integrals of arbitrary sub-selections of the inte-
grated phase space volume, decomposing the total cross sec-
tion into differential cross section elements, do. Additionally
these samples can be unweighted and used as pseudo-data to
emulate the experimental observations of the collisions. The
current state of the art techniques for performing these tasks
were briefly reviewed in Sect. 1.

Importance Sampling (IS) is a Monte Carlo technique used
extensively in particle physics when one needs to draw sam-
ples from a distribution with an unknown farget probability
density function, P(®). Importance Sampling approaches
this problem by instead drawing from a known sampling dis-
tribution, Q(®) (A number of standard texts for inference
give more thorough exposition of the general sampling the-
ory used in this paper, see e.g. [39]). Samples drawn from
Q are assigned a weight, w = P(®)/Q(®P), adjusting the
importance of each sampled point. The performance of IS
rests heavily on how well the sampling distribution can be
chosen to match the target, and adaptive schemes like VEGAS
are employed to refine initial proposals. It is well estab-
lished that as the dimensionality and complexity of the target
increase, the task of constructing a viable sampling distribu-
tion becomes increasingly challenging.

Markov Chain based approaches fundamentally differ in
that they employ a local sampling distribution and define an
acceptance probability with which to accept new samples.
Markov Chain Monte Carlo (MCMC) algorithms are widely
used in Bayesian inference. Numerical Bayesian methods
have to be able to iteratively refine the prior distribution to
the posterior, even in cases where the two distributions are
largely disparate, making stochastic MCMC refinement an
indispensable tool in many cases. This is an important con-
ceptual point; in the particle physics problems presented in
this work we are sampling from exact theoretically derived
distributions. The lack of noise and a priori well known struc-
ture make methods with deterministic proposal distributions
such as IS more initially appealing, however at some point
increasing the complexity and dimensionality of the prob-
lem forces one to use stochastic methods. Lattice QCD cal-
culations are a prominent example set of adjacent problems
sampling from theoretical distributions that make extensive
use of MCMC approaches [40]. MCMC algorithms intro-
duce an orthogonal set of challenges to IS; a local proposal
is inherently simpler to construct, however issues with explo-
ration of multimodal target distributions and autocorrelation
of samples become new challenges to address.

Nested Sampling (NS) is a well established algorithm for
numerical evaluation of high dimensional integrals [37]. NS
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differs from typical MCMC samplers as it is primarily an
integration algorithm, hence by definition has to overcome
a lot of the difficulties MCMC samplers face in multimodal
problems. A recent community review of its various applica-
tions in the physical sciences, and various implementations
of the algorithm has been presented in [41].

At its core NS operates by maintaining a number, njjye, of
live point samples. This ensemble of live points is initially
uniformly sampled from 6 € [0, 1]1P — distributed in the
physical volume £2 according to the shape of the mapping
I1. These live points are sorted in order of £(#) evaluated at
the phase space point, and the point with the lowest £, Lin,
in the population is identified. A replacement for this point is
found by sampling uniformly under a hard constraint requir-
ing, £ > Lpin- The volume enclosed by this next iteration
of live points has contracted and the procedure of identifying
the lowest £ point and replacing it is repeated. An illustra-
tion of three different stages of this iterative compression on
an example two-dimensional function are shown in Fig. 1.
The example function used in this case has four identical
local maxima to find, practical exploration and discovery of
the modes is achieved by having a sufficient (O (10)) initial
samples in the basis of attraction of each mode. This can
either be achieved by brute force sampling a large number of
initial samples, or by picking an initial mapping distribution
that better reflects the multi-modal structure. By continually
uniformly sampling from a steadily compressing volume,
NS can estimate the density of points which is necessary for
computing an integral as given by Eq. (1). Once the itera-
tive procedure reaches a point where the live point ensemble
occupies a predefined small fraction of the initial volume,
Tc, the algorithm terminates. The fraction T¢ can be char-
acterised as the termination criterion. The discarded points
throughout the evolution are termed dead points which can
be joined with the remaining live points to form a represen-
tative sample of the function, that can be used to estimate the
integral or to provide a random sample of events.

To estimate the integral and generate (weighted) random
samples, Nested Sampling achieves this by probabilistically
estimating the volume of the shell between the two outermost
points as approximately ﬁ of the current live volume. The
volume X ; within the contour £ ; — defined by the point with
Lmin — at iteration j may therefore be estimated as,

X; = / do
LO)>L;

= Xo=1,
Nlive—1

_ X
P(XjlXj-1) = ——us

. Mlive
nhver_l

= logX;~

Fig. 1 Schematic of live point evolution (blue dots) in Nested Sam-
pling, over a two-dimensional function whose logarithm is the negative
Himmelblau function (contours). Points are initially drawn from the
unit hypercube (top panel). The points on the lowest contours are suc-
cessively deleted, causing the live points to contract around the peak(s)
of the function. After sufficient compression is achieved, the dead points
(orange) may be weighted to compute the volume under the surface and
samples from probability distributions derived from the function
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The cross section and probability weights can therefore
be estimated as,

o= /d@ﬁ(@) = /dXC(X)
N AXjﬂj
T

~ Y LiAXj w; ©)
j

Importantly, for all of the above the approximation signs indi-
cate errors in the procedure of probabilistic volume estima-
tion, which are fully quantifiable.

The method to sample new live points under a hard con-
straint can be realised in multiple ways, and this is one of the
key differences in the various implementations of NS. In this
work we employ the POLYCHORD implementation of Nested
Sampling [38], which uses slice sampling [42] MCMC steps
to evolve the live points. NS can be viewed as being an ensem-
ble of many short Markov Chains.

Much of the development and usage of NS has focused
on the problem of calculation of marginal likelihoods (or
evidences) in Bayesian inference, particularly within the field
of Cosmology [43-48]. We can define the Bayesian evidence,
Z, analogously to the particle physics cross section, o. NS
in this context evaluates the integral,

Z = /d@ﬁ(@)n(@), )

where the likelihood function, £, plays a similar role to | M |2.
In the Bayesian inference context, the phase space over which
we are integrating, 6, has a measure defined by the prior dis-
tribution, 7 (8), which without loss of generality under a suit-
able coordinate transformation can be taken to be uniform
over the unit hypercube. Making the analogy between the
evidence and the cross section explicit will allow us to apply
some of the information theoretic metrics commonly used
in Bayesian inference to the particle physics context [49],
and provide terminology used throughout this work. Among
a wide array of sampling methods for Bayesian inference,
NS possesses some unique properties that enable it to suc-
cessfully compute the high dimensional integral associated
with Eq. (4). These properties also bear a striking similar-
ity to the requirements one would like to have to explore
particle physics phase spaces. These are briefly qualitatively
described as follows:

— NS is primarily a numerical integration method that pro-
duces posterior samples as a by product. In this respect
it is comfortably similar to Importance Sampling as
the established tool in particle physics event generation.
It might initially be tempting to approach the particle
physics event generation task purely as a posterior sam-
pling problem. Standard Markov Chain based sampling
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tools cannot generically give good estimates of the inte-
gral, so are not suited to compute the cross section. Addi-
tionally issues with coverage of the full phase space from
the resulting event samples are accounted for by default
by obtaining a convergent estimate of the integral over
all of the phase space.

— NS naturally handles multimodal problems [45,46]. The
iterative compression can be augmented by inserting
steps that cluster the live points periodically throughout
the run. Defining subsets of live points and evolving them
separately allows NS to naturally tune itself to the modal-
ity of unseen problems.

— NS requires a construction that can handle sampling
under a hard likelihood constraint in order to perform
the compression of the volume throughout the run. Hard
boundaries in the physics problem, such as un-physical
or deliberately cut phase space regions, manifest them-
selves in the sampling space as a natural extension of
these constraints.

— NSislargely self tuning. Usage in Bayesian inference has
found that NS can be applied to a broad range of prob-
lems with little optimisation of hyper-parameters neces-
sary [50-52]. NS can adapt to different processes in parti-
cle physics without any prior knowledge of the underlying
process needed.

The challenge to present NS in this new context is to find
an even comparison of sampling performance between NS
and IS. It is typical in phase space sampling to compare the
difference between the target and the sampling distribution as
reducing the variation between these two distributions gives
a clear metric of performance for IS. For NS there is no such
global sampling distribution; the closest analogue being the
prior which is then iteratively refined with local proposals
to an estimate of the target. In Sect. 2.1 we attempt to com-
pare the sampling distribution between NS and IS using a
toy problem, however in the full physical gluon scattering
example presented in Sect. 3 we instead focus directly on the
properties of the estimated target distribution as this is the
most direct equitable point of comparison.

2.1 Illustrative example

To demonstrate the capabilities of NS we apply the algorithm
to an illustrative sampling problem in two dimensions. Fur-
ther examples validating POLYCHORD on a number of chal-
lenging sampling toy problems are included in the original
paper [38], here we present a modified version of the Gaus-
sian Shells scenario. An important distinction of the phase
space use case not present in typical examples is the empha-
sis on calculating finely binned differential histograms of the
total integral. As a comparison to NS, we sample the same
problem with a method that is well-known in high energy
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physics — adaptive Importance Sampling (IS), realised using
the VEGAS algorithm.

For our toy example we introduce a “stop sign” target
density, whose unnormalised distribution is defined by

Ar
(x,y)=7—
T =g (\/(x —x0)2+ (y — yo)* — ro)2 + (Ar)?
1

V& —x0)2 + (y — y0)?

n 1 Ar
2770 ((y — yo) — (x — x0))? + (Ar)?

-0 (Vo - \/(x —x0)% + (y - yo)2> ; ®)

where ® (x) is the Heaviside function. It is the sum of a ring
and a line segment, both with a (truncated) Cauchy profile.
The ring is centred at (xo, yo) = (0.5, 0.5) and has a radius
of ro = 0.4. The line segment is located in the inner part
of the ring and runs through the entire diameter. We set the
width of the Cauchy profile to Ar = 0.002. This distribution
can be seen as an example of a target where it makes sense to
tackle the sampling problem with a multi-channel distribu-
tion. One channel could be chosen to sample the ring in polar
coordinates and one to sample the line segment in Cartesian
coordinates. However, here we deliberately use VEGAS as a
single channel in order to highlight the limitations of the algo-
rithm. From the perspective of a single channel, there is no
coordinate system to factorise the target distribution. That
poses a serious problem for VEGAS, as it uses a factorised
sampling distribution where the variables are sampled indi-
vidually. Both algorithms are given zero prior knowledge of
the target, thus starting with a uniform prior distribution.
Our VEGAS grid has 200 bins per dimension. We train it
over 10 iterations where we draw 30k points from the current
VEGAS mapping and adapt the grid to the data. The distribu-
tion defined by the resulting grid is then used for IS without
further adaptation. This corresponds to the typical use in an
event generator, where there is first an integration phase in
which, among other things, VEGAS is adapted, followed by
a non-adaptive event generation phase. We note that VEGAS
gets an advantage in this example comparison as we do not
include the target evaluations from the training into the count-
ing. However, it should be borne in mind that in a realistic
application with a large number of events to be generated,
the costs for training are comparatively low. For NS we use
POLYCHORD with a number of live points njyye = 1000 and
a chain length nepeas = 4, more complete detail of POLY-
CHORD settings and their implication are given in Sect. 3.1.
Figure 2a shows the bivariate target distribution along with
the marginal x and y distributions of the target, VEGAS and
POLYCHORD. For this plot (as well as for Fig. 2c) we merged
70 independent runs of POLYCHORD to get a better visual

— target
-- VEGAS
POLYCHORD

wmmu i
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.

(a) target
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af :
2f :
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Fig. 2 A two-dimensional toy example: a Histogram of the target
function along with the marginal sampling distributions of VEGAS and
POLYCHORD. b Ratio of the target function and the probability density
function of VEGAS. ¢ Ratio of the target density to the sampling density
of POLYCHORD

@ Springer



678 Page 6 of 19

Eur. Phys. J. C (2022) 82:678

representation due to the larger sample size. It can be seen
that both algorithms reproduce the marginal distributions rea-
sonably well. There is some mismatch at the boundaries for
VEGAS. This can be explained by the fact that VEGAS, as a
variance-reduction method, focuses on the high-probability
regions, where it puts many bins, and uses only few bins for
the comparably flat low-probability regions. As a result, the
bins next to the boundaries are very wide and overestimate
the tails. POLYCHORD also oversamples the tails, reflecting
the fact that in this example the prior is drastically different
from the posterior, meaning the initial phase of prior sam-
pling in POLYCHORD is very inefficient. In addition it puts
too many points where the ring and the line segment join,
which is where we find the highest values of the target func-
tion. This is not a generic feature of NS at the termination
of the algorithm, rather it reflects the nature of having two
intersecting sweeping degenerate modes in the problem, a
rather unlikely scenario in any physical integral.

Figure 2b shows the ratio between the target distribution
and the sampling distribution of VEGAS, representing the IS
weights. It can be seen that the marginals of the ratio are
relatively flat, with values between 0.1 and 5.7. However,
in two dimensions the ratio reaches values up to 1 x 1072
By comparing Fig. 2a and b, paying particular attention to
the very similar ranges of function values, it can be deduced
that VEGAS almost completely misses to learn the structure
of the target. It tries to represent the peak structure from the
ring and the line segment by an enclosing square with nearly
uniform probability distribution.

The same kind of plot is shown in Fig. 2¢ for the POLY-
CHORD data. NS does not strictly define a sampling distribu-
tion, however a proxy for this can be visualised by plotting
the density of posterior samples. Here the values of the ratio
are much smaller, between 1 x 10~2 and 7. POLYCHORD
produces a flatter ratio function than VEGAS while not intro-
ducing additional artifacts that are not present in the original
function. The smallest/largest values of the ratio are found in
the same regions as the smallest/largest values of the target
function, implying that POLYCHORD tends to overestimate
the tails and to underestimate the peaks. This can be most
clearly explained by examining the profile of where poste-
rior mass is distributed throughout a run, an important diag-
nostic tool for NS runs [53]. It is shown in Fig. 3, where the
algorithm runs from left to right; starting with the entire prior
volume remaining enclosed by the live points, log X = 0, and
running to termination, when the live points contain a van-
ishingly small remaining prior volume. The posterior mass
profile, shown in blue, is the analogue to the sampling density
in VEGAS. To contextualise this against the target function,
a profile of the log-likelihood of the lowest live point in the
live point ensemble is similarly shown as a function of the
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Fig. 3 Likelihood (log £) and posterior mass (£ X) profiles for a run of
POLYCHORD on the example target density. The x-axis tracks the prior
volume remaining as the run progresses, with log X = 0 corresponding
to the start of the run, with the algorithm compressing the volume from
left to right, where the run terminates

remaining prior volume, X. Nested Sampling can be moti-
vated as a likelihood scanner, sampling from monotonically
increasing likelihood shells. These two profiles indicate some
features of this problem, firstly a phase transition is visible in
the posterior mass profile. This occurs when the degenerate
peak of the ring structure is reached, the likelihood profile
reaches a plateau where the iterations kill off the degenerate
points at the peak of the ring, before proceeding to scan up the
remaining line segment feature. An effective second plateau
is found when the peak of the line segment is reached, with
a final small detail being the superposition of the ring likeli-
hood on the line segment. Once the live points are all occu-
pying the extrema of the line segment, there is a sufficiently
small prior volume remaining that the algorithm terminates.
The majority of the posterior mass, and hence sampling den-
sity is distributed around the points where the two peaks are
ascended. This reflects the stark contrast between the prior
initial sampling density and the target, the samples are nat-
urally distributed where the most information is needed to
effectively compress the prior to the posterior.

We compare the efficiencies of the two algorithms for
the generation of equal-weight events in Table 1. It shows
that POLYCHORD achieves an overall efficiency of € =
0.0113(90) which is almost three times as high as the effi-
ciency of VEGAS. While for VEGAS the overall efficiency €
is identical to the unweighting efficiency €,y, determined
by the ratio of the average event weight over the maximal
weight in the sample, for POLYCHORD we also have to take
the slice sampling efficiency € into account, which results
from the thinning of the Markov Chain in the slice sampling
step. Here, the total efficiency € = egs€yy is dominated by the
slice sampling efficiency. We point out that it is in the nature
of the NS algorithm that the sample size is not determinis-
tic. However, the variance is not very large and it is easily
possible to merge several NS runs to obtain a larger sample.
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Table 1 Comparison of VEGAS and NS for the toy example in terms of
size of event samples produced. N, gives the number of target evalua-
tions, Ny the number of weighted events and Neguai the derived number
of equal weight events. A MC slice sampling efficiency, s, is listed for

NS. A total, €, and unweighting, €y, efficiency are listed for both algo-
rithms. We report the mean and standard deviation of ten independent
runs of the respective algorithm

Algorithm N, €ss Nw Euw Nequal €
VEGAS 300,000 300,000 0.004(2) 1267 (460) 0.004 (2)
NS 308,755 (17505) 0.041 (3) 12,669 (147) 0.273 (7) 3462 (96) 0.0113 (9)

Table 2 Comparison of integrals calculated in the toy example with
VEGAS and NS, along with the respective uncertainties

Algorithm 1 Aot Ay AnMc
VEGAS 1.71 0.02 0.02
NS 1.65 0.05 0.04 0.02

Table 2 shows the integral estimates along with the corre-
sponding uncertainty measures. While the pure Monte Carlo
errors are of the same size for both algorithms, there is an
additional uncertainty for NS. It carries an uncertainty on
the weights of the sampled points, listed as A,,. This arises
due to the nature of NS using the volume enclosed by the
live points at each iteration to estimate the volume of the
likelihood shell. The variance in this volume estimate can be
sampled, which is reflected as a sample of alternative weights
for each dead point in the sample. Summing up these alter-
native weight samples gives a spread of predictions for the
total integral estimate, and the standard deviation of these
is quoted as A,,. This additional uncertainty compounds the
familiar statistical uncertainty, listed as Apc for all calcu-
lations. In Appendix A, we present the procedure needed to
combine the two NS uncertainties to quote a total uncertainty,
Aoy, as naively adding in quadrature will overestimate the
true error.

3 Application to gluon scattering

As a first application and benchmark for the Nested Sam-
pling algorithm, we consider partonic gluon scattering pro-
cesses into three-, four- and five-gluon final states at fixed
centre-of-mass energies of /s = 1TeV. These channels
have a complicated phase space structure that is similar to
processes with quarks or jets, while the corresponding ampli-
tude expressions are rather straightforward to generate. The
fixed initial and final states allow us to focus on the under-
lying sampling problem. For regularisation we apply cuts
to the invariant masses of all pairs of final state gluons such
thatm;; > 30 GeV and on the transverse momenta of all final
state gluons such that pt; > 30 GeV. The renormalisation
scaleis fixedto ug = +/s. The matrix elements are calculated

using a custom interface between POLYCHORD and the matrix
element generator AMEGIC [5] within the SHERPA event gen-
erator framework [54]. Three established methods are used to
provide benchmarks to compare NS to. Principle comparison
is drawn to the HAAG sampler, optimised for QCD antenna
structures [55], illustrating the exploration of phase space
with the best a priori knowledge of the underlying physics
included. It uses a cut-off parameter of s = 900GeV?.
Alongside this, two algorithms that will input no prior knowl-
edge of the phase space, i.e. the integrand, are used; adaptive
importance sampling as realised in the VEGAS algorithm [8]
and a flat uniform sampler realised using the RAMBO algo-
rithm [56,57]. VEGAS remaps the variables of the RAMBO
parametrisation using 50, 70, 200 bins per dimension for the
three-, four-, and five-gluon case, respectively. The grid is
trained in 10 iterations using 100k training points each. Note,
the dimensionality of the phase space for n-gluon production
is D = 3n —4, where total four-momentum conservation and
on-shell conditions for the external particles are implicit.

As a first attempt to establish NS in this context, we treat
the task of estimating the total and differential cross sections
of the three processes starting with no prior knowledge of
the underlying phase space distribution. For the purposes of
running POLYCHORD we provide the flat RAMBO sampler as
the prior, and the likelihood function provided is the squared
matrix element. In contrast to HAAG, POLYCHORD performs
the integration without any decomposition into channels,
removing the need for any multichannel mapping. NS is a
flexible procedure, and the objective of the algorithm can
be modified to perform a variety of tasks, a recent example
has presented NS for computation of small p-values in the
particle physics context [58]. To establish NS for the task
of phase space integration in this study, a standard usage of
POLYCHORD is employed, mostly following default values
used commonly in Bayesian inference problems.

The discussion of the application of NS to gluon-scattering
processes is split into four parts. Firstly, the hyperparam-
eters and general setup of POLYCHORD are explained in
Sect. 3.1. In Sect. 3.2 a first validation of NS performing
the core tasks of (differential) cross-section estimation from
weighted events — against the HAAG algorithm — is pre-
sented. In Sect. 3.3 further information is given to contex-
tualise the computational efficiency of NS against the alter-
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Table 3 POLYCHORD hyperparameters used for this analysis, parame-
ters not listed follow the POLYCHORD defaults

Parameter POLYCHORD Value Description
name

Number of Ndim [5,8,11] Dimension of sampling
dimensions space

Number of live  njjye 10,000 Resolution of the
points algorithm

Number of Trep ngim X 2 Length of Markov
repeats chains

Number of prior  nprior Nlive Number of initial
samples samples from prior

Boost posterior Trep Write out maximum

number of posterior
samples

native established tools for these tasks. Finally a considera-
tion of unweighted event generation with NS is presented in
Sect. 3.4.

3.1 POLYCHORD hyperparameters

The hyperparameters chosen to steer POLYCHORD are listed
in Table 3. These represent a typical set of choices for a high
resolution run with the objective of producing a large num-
ber of posterior samples. The number of live points is one
of the parameters that is most free to tune, being effectively
the resolution of the algorithm. Typically njjye larger than
O (1000) gives diminishing returns on accuracy, Bayesian
inference usage in particle physics has previously employed
niive = 4000 [59] to provide some context for the choice
made in this work. The particular event generation use case,
partitioning the integral into arbitrarily small divisions (dif-
ferential cross sections), logically favours a large njjye (res-
olution). The number of repeats is a parameter that controls
the length of the slice sampling chains, the value chosen
is the recommended default for reliable posterior sampling,
whereas nep = ngim X 5 is recommended for evidence (total
integral) estimation. As this study aims to cover both differ-
ential and total cross sections, the smaller value is favoured
as there is a strong limit on the overall efficiency imposed
by how many samples are needed to decorrelate the Markov
Chains.

An important point to note is in how POLYCHORD treats
unphysical values of the phase space variables, e.g. if they
fall outside the fiducial phase space defined by cuts on the
particle momenta. This is not an explicit hyperparameter of
POLYCHORD, rather how the algorithm treats points with zero
likelihood. In both the established approaches and in POLY-
CHORD the sampling is performed in the unit hypercube,
which is then translated to the physical variables which can
be evaluated for consistency and rejected if they are not phys-
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ically valid. One of the strengths of NS is that the default
behavior is to consider points which return zero likelihood!
as being excluded at the prior level. During the initial prior
sampling phase, unphysical points are set to log-zero and the
sampling proceeds until npior initial physical samples have
been obtained. Provided each connected physical region con-
tains some live points after this initial phase, the iterative
phase of MCMC sampling will explore up to the unphysi-
cal boundary. This effect necessitates a correction factor to
be applied to the integral, derived as the ratio of total initial
prior samples to the physically valid prior samples. In prac-
tice the correction factor is found in the prior_info file
written out by POLYCHORD. An uncertainty on this correc-
tion can be derived from order statistics [60], however it was
found to be negligibly small for the purposes of this study so
is not included.

Another standout choice of hyperparameter is the chosen
value of npror. The number of prior samples is an impor-
tant hyperparameter that would typically be set to some
la