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Abstract This paper studies the black hole shadow, absorp-
tion cross section, and Hawking radiation of a massless scalar
field in the background of a static spherically symmetric
black hole spacetime that is surrounded by a cloud of strings
in Rastall gravity. Specifically, the effects of the parameters a
and β on the photon sphere and shadow radii are investigated.
The results show that as the negative parameter β decreases,
the photon sphere and shadow radii change in an N-shape.
In addition, the absorption cross section obtained after solv-
ing the massless Klein–Gordon equation is calculated using
the sinc approximation and the partial waves method. We
compare the absorption cross section obtained by the sinc
approximation and the partial waves method, and find it to be
exceptionally consistent in the mid-to-high frequency region.
Furthermore, the effects of parameters a and β on absorp-
tion are examined in detail. Finally, we study in detail the
effects of the parameters a, β and l on the Hawking radia-
tion power emission spectrum of the considered black hole.
It turns out that the string parameter a always suppresses the
power emission spectrum, indicating that such black holes
live longer when the string parameter a is increased while
other parameters are fixed.

1 Introduction

General relativity, proposed by Einstein in 1915 [1,2], is by
far the most widely accepted theory of gravity. The predic-
tions made therein have been tested and verified under weak
or strong field conditions. Particularly, black holes, as one of
the predictions, are arguably the most interesting and mys-
terious celestial bodies in our universe. The mystery of a
black hole is that nothing, including light, can escape its
event horizon. For the past few decades, the existence of
black holes was only studied through indirect methods, until
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the first images of black holes appeared in 2019 [3]. This dis-
covery provides many inspiring answers for our exploration
of Einstein’s theory of general relativity and for testing other
revised theories of gravity, taking our understanding of black
hole physics a major step forward. However, the basic the-
ory proposed by Einstein cannot explain some phenomena
or solve certain fundamental problems, e.g., the singularity
problem and the conjecture that the covariant divergence of
the energy–momentum tensor may be non-zero.

To account for the special case where the covariant diver-
gence of the energy–momentum tensor does not vanish,
Rastall [4] proposed a special modification of general rel-
ativity where the field equation is Tμν

;μ = λR,ν and λ = 0
corresponds to the Einstein equation. An important feature
of Rastall’s gravity is that the field equation Tμν

;μ = λR,ν is
obtained directly by violating the normal conservation law,
which does not rely on the metric or palatini formalism [5].
Also, it is important to note that Rastall’s gravity appears to
be consistent with experimental observations in the context of
cosmology [6]. Specifically, the observational data include,
but are not limited to, the age of the universe, helium nucle-
osynthesis, and Hubble parameters. What is more interesting
is that the modified gravity gives us a lot of novel and interest-
ing results at the cosmological level. Besides, some attention
has been focused on a debate, namely, whether Rastall grav-
ity is equivalent to Einstein gravity. Visser [7] thought that
the modified gravity proposed by Rastall is a rearrangement
of the matter sector of Einstein gravity. In other words, the
geometrical part of the field equation is the same in both the-
ories, so we just need to construct a new energy–momentum
tensor to fulfill the ordinary conservation law. So the author
claimed there is nothing new, such as gravity description, in
Rastall proposal. Das et al. [8] had a conclusion that in the
framework of non-equilibrium thermodynamics (for homo-
geneous and isotropic FLRW black hole model), generalized
Rastall gravity theory is equivalent to Einstein gravity the-
ory. However, other researchers disagree with Visser’s ones,
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see for example the research of Darabi and his colleagues [9]
who support that Rastall theory is not equivalent to Einstein
gravity theory and give a simple example to prove that the
claim proposed by Visser is incorrect. Moreover, they indi-
cated that Rastall gravity theory is an “open” gravity theory in
comparison to basic general relativity and has more compat-
ible with observational cosmology. Hansraj et al. [10] also
discussed this dispute and their results are consistent with
Darabi et al. [9]. In this work, they showed that Rastall gravity
can satisfy the fundamental conditions for physically viable
model whereas Einstein gravity doesn’t fulfill its require-
ments (see [10] for more detailed discussion). Some works
[11–14] have shown the difference between Rastall gravity
and Einstein gravity from theoretical or cosmological per-
spectives. Finally, regardless of whether the Rastall gravity
is equivalent to Einstein gravity, Rastall gravity theory is
worth studying or discussing because it faces a challenge
from cosmological (astrophysical) observations.

String theory, on the other hand, holds that the fundamen-
tal unit of nature is not the point particle in particle physics,
but an extended one-dimensional string. Letelier [15] pro-
posed for the first time that the source of the gravitational
field could be a cloud of strings, and gave an exact solution
for a Schwarzschild black hole surrounded by a collection of
strings in the context of Einstein’s general relativity. In addi-
tion, black holes that treat a cloud of strings as the source of
the gravitational field in the modified gravity have been stud-
ied [16–20]. For instance, Cai and Miao proposed a black hole
solution in which a cloud of strings is the source of the grav-
itational field of a Schwarzschild black hole in the context
of Rastall gravity [21]. The authors also analyzed fundamen-
tal thermal properties, quasinormal modes of gravitational
perturbations, area spectra [22,23], and entropy spectra.

The experimental results reported by the Event Horizon
Telescope Collaboration [3] not only directly prove the exis-
tence of black holes, but also allow us to directly observe
the shadows of black holes. The theoretical analysis of
black hole shadows has a long history. For example, Synge
[24] discussed the shadows of Schwarzschild spacetime, and
Bardeen et al. [25] analyzed the shadows of Kerr black holes.
In addition to shadow analysis performed in basic general
relativity, it extends to various modified forms of gravity or
arbitrary-dimensional spacetime. Abbas and Sabiullah [26]
studied the structure of timelike as well as null geodesics
of regular Hayward black hole and found the massive parti-
cles, which move along timelike geodesics path, are dragged
toward the black hole. To the best of our knowledge, numer-
ous studies [27–37] have been devoted to studying the shad-
ows of black holes under various modified gravity. More con-
cretely, Gyulchev et al. [38–40] analyzed the shadows cast
by different rotating traversable wormholes. Interestingly, the
near horizon geometry is determined by the shadow cast by
the black hole. Instead, the trajectory of light is affected by

the plasma surrounding the black hole. This causes the geo-
metric size and shape of the shadow on the Kerr spacetime to
change [41]. In general, gravitational light deflection causes
black hole shadows, and the trajectory of a photon in a vac-
uum depends on its impact parameter [42]. Therefore, we
cannot ignore the role of the impact parameter in shadow
formation.

Due to the special properties of black holes, we cannot
directly study their internal structure. However, black hole is
not an isolated system because it interacts with its surround-
ing environment, such as absorption, scattering and Hawking
radiation. These interactions can convey information about
the interior of the event horizon. In particular, as one of the
interactions, the absorption cross section of black holes has
received extensive attention from researchers. That’s because
one of the most useful and efficient ways to understand the
properties of a black hole is to analyze the absorption of
matter waves and the test field around the black hole. This
series of studies began in the 1970s [43–49]. During that
period, Sanchez found that the absorption cross section of
Schwarzschild spacetime for scalar waves oscillates around
the geometric capture cross section. About twenty years later,
Das et al. [50] presented a key result that, in the low-energy
regime, the absorption cross section of a coupled massless
scalar field is equal to its event horizon area. Consequently,
the literature on this particular topic has proliferated over
the past few decades, covering various fields of research and
several revision theories [51–65].

Furthermore, Hawking predicted that black holes are ther-
mal systems, like black bodies, and then have associated
temperature and entropy. Based on the analysis of quantum
field dynamics in the context of curved space-time, Hawking
pointed out that black holes emit radiation, known as Hawk-
ing radiation, from their event horizons [66,67]. Intriguingly,
Hawking radiation depends on the type of particle and the
geometry of the black hole. This is because the Hawking

temperature TBH = f ′(r+)
4π

is one of the influencing factors.
Moreover, Yale [68] has analyzed the Hawking radiation of
particle scalars, fermions and bosons spin-1 using the tunnel-
ing method. In recent years, a large body of literature [69–79]
has emerged on Hawking radiation on various modified grav-
ity, including high-dimensional black holes.

This paper investigates the black hole shadow, absorption
cross section and Hawking radiation of the test scalar field of
a Schwarzschild black hole surrounded by a cloud of strings
in Rastall gravity. Specifically, Cai and Miao [21] presented
the corresponding quasinormal modes of odd parity gravita-
tional field by the WKB approximation. On this basis, our
research contributes to further understanding of this black
hole and its physical characteristics.

This paper is organized as follows. The second section out-
lines the basic information of the black hole solution, that is,
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a Schwarzschild black hole surrounded by a cloud of strings
in the context of Rastall gravity, and also gives the meaning
of the influencing parameters. The third part is devoted to
the derivation of massless scalar equations and the analysis
of related effective potentials. Section 4 analyzes the radius
of the photon sphere and the shadow radius of the black
hole in detail. Next, the absorption cross section of the scalar
field is calculated using the sinc approximation and the par-
tial wave method, and the effects of the parameters are also
investigated. Section 6 gives the expression of Hawking radi-
ation and the corresponding results for the Hawking radiation
power emission spectra. The last section contains the sum-
mary and conclusions. Besides, we use the natural unit that
c = G = h̄ = 1 in this paper.

2 The solution of a Schwarzschild black hole
surrounded by a cloud of strings in Rastall gravity

The field equations of the Rastall gravity [4] are as follows,

Gμν + βgμνR = κTμν, (1)

Tμν

;μ = λR,ν , (2)

where κ and λ represent the Rastall gravitational coupling
constant and the Rastall parameter, respectively. Moreover,
β is defined as the product of these two parameters, i.e.,
β ≡ κλ. From the above equations we have that

R = κ

4β − 1
T, (3)

Tμν

;μ = κ

4β − 1
T ,ν , (4)

where R, T denote the Ricci scalar and the trace of
the energy–momentum tensor, respectively. Besides, κ =
4β−1
6β−1 8π under the Newtonian limit [80]. It can be seen from
the above equations that, the Einstein gravity is recovered and
the energy–momentum tensor is conserved when the Rastall
gravity parameter λ vanishes, i.e., β = 0.

We consider the case where the metric is static and spher-
ically symmetric,

ds2 = − f (r)dt2 + f −1(r)dr2 + r2dθ2 + r2 sin2 θdφ2 (5)

with the metric [21]

f (r) = 1 − 2M

r
+ 4a(β − 1

2 )2

(8β2 + 2β − 1)r
4β

2β−1

. (6)

It is worth noting that the Rastall theory should satisfy
the Newtonian limit [80]. Therefore, the cases β = 1

6 and
β = 1

4 are not allowed. The parameter a needs to satisfy a
specific constraint, namely a ≡ κb where b is a constant of
integration associated with a cloud of strings. Specifically,
β and a represent the influence of the Rastall gravity and

the string, respectively. Consequently, the Rastall gravity is
converted to Einstein gravity when β = 0. Meanwhile, when
a equals to 0, the Schwarzschild spacetime is restored.

3 Scalar wave equation

The massless scalar field Ψ governed by the massless Klein–
Gordon equation in curved spacetime can be formulated as

1√−g
∂μ(

√−ggμν∂ν)Ψ = 0, (7)

and then the massless scalar field Ψ can be decomposed as
follows

Ψωlm = ψωl(r)

r
Pl(cos θ)e−iωt , (8)

where Pl(cos θ) denotes the Legendre polynomial, l and
m represent the corresponding angular quantum number
and magnetic quantum number, respectively. In addition,
the function Ψωl satisfies the following ordinary differential
equation,

f (r)
d

dr
[ f (r)dψωl

dr
] + [ω2 − Vef f (r)]ψωl = 0, (9)

where Vef f (r) stands for the corresponding effective poten-
tial that is defined as

Vef f (r) = f (r)

(
1

r

d f (r)

dr
+ l(l + 1)

r2

)
. (10)

Moreover, by substituting the metric in the effective poten-
tial, the specific potential is reformulated as

Vef f (r) =
(

1 − 2M

r
+ 4a(β − 1

2 )2

(8β2 + 2β − 1)r
4β

2β−1

)

×
(
l(l + 1)

r2 + 2M

r3 − 16a(− 1
2 + β2)r−2− 4β

−1+2β

(−1 + 2β)(−1 + 2β + 8β2)

)
.

(11)

Additionally, we define the following tortoise coordinate
change

r∗ =
∫

dr

f
. (12)

Consequently, the equation (9) is equivalent to

d2ψ

dr2∗
+ (ω2 − Vef f )ψ = 0. (13)

Note that both the metric f (r) and the effective potential
Vef f (r) are divergent when β is set to −0.5. Besides, to
satisfy the condition that the effective potential V (r) → 0
when r → ∞, we have β < 1

6 . Hence, the domain of β

should be in (−0.5, 1
6 ). Moreover, due to the condition a ≡

κb, the domain ofa strictly relies on the positivity (negativity)
of the parameter β. For β < 0, the barrier of the effective
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Fig. 1 The variation of the effective potential with r for l = 1, 2, 3, 4,
with the fixed a = 0.1, β = 1

10 and M = 1

potentialVef f (r) disappears as the parametera approaches to
1. Accordingly, the domain of the parameter a is set to [0, 1).
In contrast, for β > 0, when the parameter a is larger, a black
hole surrounded by a cloud of strings in Rastall gravity has
no event horizon. For instance, when β = 0.1, the domain
of a is set to [0, 0.3].

Figure 1 shows the behaviour of the effective potential
Vef f (r) with respect to r for different angular quantum num-
bers l when a = 0.1, β = 1

10 . We find that the peak value of
the effective potential increases when the angular quantum
number l is increased. Furthermore, the potential Vef f (r)
first increases, then decreases, and finally tends to zero at
r → ∞.

As shown in Fig. 2, to compare the effects of parameters
a and β on the effective potential Vef f (r), we depict the
behaviour of Vef f (r) with respect to a and β when β < 0 and
β > 0, respectively. Specifically, for β > 0, i.e., when the
parameter β is fixed to 1

10 , the barrier height of the effective
potential decreases as the string parameter a increases. It is
clear that the peak of the effective potential becomes smaller
and shifts to the right side as a increases. Next, we vary the
Rastall parameter β and fix a to 0.1. It can be seen that with
the increase of β, the peak value of the effective potential
decreases, and the position of the peak value does not change
much compared with the case where the string parameter a
changes.

Meanwhile, when β < 0, one can see that for the same
value of a, the barrier height of the potential first increases
and then decreases with decreasing β. Also, the peak position
firstly shifts to the left and then to the right. Furthermore,
when the parameter a is varied, at the same value of the
Rastall parameter β, the barrier height decreases and the peak
position shifts to the right as the parameter a increases.

We add some boundary conditions for the Schörding-like
Eq. (13) because we are interested in the absorption cross
section and Hawking radiation. Near the horizon regime and
at infinity, one can find that ψωl(r∗) need to satisfy the fol-
lowing boundary conditions

ψωl(r∗) ∼
{
Iωl e

−iωr∗ + Rωl e
iωr∗ , r∗ → +∞,

Tωl e
−iωr∗ , r∗ → −∞,

(14)

where Rωl and Tωl in the action denote reflection and trans-
mission coefficients, respectively. Due to the conservation of
flux, Rωl and Tωl satisfy the following constraint

|Rωl |2 + |Tωl |2 = |Iωl |2 . (15)

Furthermore, the phase shift δl can be defined as

e2iδl = (−1)l+1Rωl/Iωl . (16)

Next, we will discuss the black hole shadows, absorption
cross section and Hawking radiation based on the last two
sections.

4 Shadows

In this section, we investigate the role of the Rastall parameter
β and the string parameter a on the shadow radius of a black
hole enclosed by a cloud of strings in Rastall gravity. More-
over, the results will be compared to those of Schwarzschild
spacetime (i.e. a = 0) and Einstein gravity (i.e. β = 0),
respectively.

The photon trajectories of a black hole surrounded by a
cloud of strings in Rastall gravity can be represented by null
geodesics [26,81]. The Lagrangian of geodesic equations for
the curve spacetime have the following form

0 = − f (r)ṫ2 + 1

f (r)
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2, (17)

where the overdot symbol denotes the differentiation with
respect to the affine parameter τ . Without loss of generality,
we consider an analysis restricted to the equatorial plane, i.e.,
θ = π

2 . By using the Euler-Lagrange equation, the t and φ

coordinates are expressed as,

ṫ = E

f (r)
, (18)

φ̇ = L

r2 , (19)

where E , L are motion constants, representing the energy and
angular momentum of the massless test particle, respectively.

Hence, by substituting Eqs. (18) and (19) in the Lagrangian
equation (17), the Lagrangian expression can be written as

ṙ + f (r)

(
L2

r2

)
= E2, (20)

furthermore, we define

V = f (r)
L2

r2 , (21)
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Fig. 2 The effective potential for the different variables with M = 1,
l = 3. For β > 0, the picture in the upper left corner is that the param-
eter a is variable when β = 1

10 . The plot in the upper right corner is
that the parameter β is variable when a = 0.1. For β < 0, the picture

in the lower left corner is that the parameter β is variable with a = 0.6.
the figure in the lower right corner is that the parameter a is variable for
fixed β = − 1

3

where V stands for the effective potential of the massless
test particle. Besides, the null-like geodesics of the equato-
rial circular motion in static spherically symmetric space-
time should satisfy the conditions ṙ = 0 and r̈ = 0. Con-
sequently, we have V = E2 and dV

dr = 0, indicating the
stability of circular null geodesics. The equations V (rp) = 0
and V

′
(r)|r=rp = 0 [82] represent the circular orbit of the

photon, that is, the photon sphere radius rp.
Moreover, the critical impact parameterbc can be expressed

as

bc = L

E
= rp√

f (rp)
, (22)

f
′
(rp)(rp − 2 f (rp)) = 0. (23)

On the other hand, the black hole shadow radius rs is repre-
sented by the celestial coordinates (x, y) as follows

rs =
√
x2 + y2 = rp√

f (rp)
. (24)

Specifically, the effects of the parameters a and β on the
photon sphere and shadow radii are shown in Table 1. For
β > 0, from Table 1 one can see that for fixed a = 0.1
(β = 1

10 ), the photon sphere and shadow radii increase as the
parameter β (a) increases. Furthermore, as the string param-
eter a tends to 0.3 when β = 1

10 , the black hole shadow

radius increases rapidly. For β < 0, when we set a = 0.3,
we observe that the photon sphere and shadow radii first
increase, then decrease and finally increases as the parame-
ter β decreases. A possible reason is that the metric f (r) is
not a monotonic function of the Rastall parameter β in the
range −0.5 < β < 0. Therefore, when the parameter β is
set to − 1

3 , the photon sphere and shadow radii increase as a
approaches to its parameter maximum.

5 Absorption cross section

In this section, we calculate the absorption cross section using
two methods, viz., the sinc approximation method and the
partial waves method where the gray-body factor is calcu-
lated by sixth-order WKB method. Besides, we view the cap-
ture cross section as a reference. It is known that the absorp-
tion cross section at the low-frequency and high-frequency
limits can be calculated by different analytical approxima-
tions. The total absorption cross section of massless scalar
waves in an arbitrary-dimensional general spherically sym-
metric black hole inclines to its area [50] in the low-frequency
regime, which is the event horizon of the black hole. In the
high-frequency regime, the total absorption cross section of
the massless scalar field converges to the geometric capture
cross section, described by the following null geodesics
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Table 1 The photon sphere and
shadow radii with M = 1

β rp rs a rp rs

a = 0.1 β = 1
10

0 3.333 6.086 0 0.300 5.190

3/100 3.346 6.195 0.1 3.422 6.829

3/50 3.367 6.371 0.15 3.716 8.212

9/100 3.405 6.676 0.25 4.696 15.437

3/25 3.466 7.281 0.3 5.777 50.951

a = 0.3 β = − 1
3

−1/18 4.177 8.113 0.05 3.318 5.786

−1/8 4.179 7.810 0.15 3.989 7.035

−1/3 5.076 9.060 0.35 5.457 9.772

−2/5 6.313 11.162 0.65 7.916 14.362

−19/42 9.723 17.041 0.95 10.619 19.415

σgeo ≡ πb2
c , (25)

where bc denotes the above critical impact parameter.

5.1 Sinc approximation

Sanchez [49] proposed that in the high-frequency regime,
the total absorption cross-section oscillates near the above-
mentioned capture cross section (27/4)πr2

s , where r2
s = 2M ,

and has an interval of oscillation peaks, � = 2√
27M

. In addi-
tion, Sanchez also presented the following analytical approx-
imation of the absorption cross section

σSan = 27π

4
− A

ωrs
sin π(3

√
3)(ωrs + B), (26)

which has the best fit when A = 1.14 ∼ √
2 and B < 10−4.

Furthermore, the Sanchez approximation was generalized
by Décanini et al. to static spherically symmetric spacetimes
of arbitrary dimensions. Décanini et al. [83] showed that in
the eikonal state, the fluctuation of the absorption cross sec-
tion was completely and very simply described by the prop-
erties of the null unstable geodesics located on the photon
sphere. Important characteristics are the orbital period and
the Lyapunov exponent. Specifically, the sinc approximation
of the absorption cross section in a d-dimensional static and
spherically symmetric black hole is given by

σ ≈ σgeo + σ osc
abs , (27)

where the oscillation part of the absorption, i.e., σ osc
abs , is

expressed as

σ osc
abs ≡ (−1)d−34(d − 2)πηce

−πηc sinc

(
2πrcω√
f (rc)

)
σgeo,

(28)

with sinc(x) denoting the sine cardinal

sinc(x) ≡ sin x

x
, (29)

and d representing the dimension of the black hole. Besides
2π rc√

f (rc)
= 2πbc indicates the orbital period of the black

hole on the photon sphere [84]. The parameter ηc for measur-
ing the instability of the circular orbit on the photon sphere
is defined as

ηc = 1

2

√
4 f (rc) − 2r2

c f ′′
(rc), (30)

for instance, the sinc approximation of the absorption cross
section of a Schwarzschild black hole at the high-frequency
limit is written as

σ ≈ σgeo − 8πe−π sinc[2π(3
√

3M)ω]σgeo. (31)

5.2 Partial wave approach

We consider that the field Φ, which is purely ingoing waves at
the event horizon, is the sum of the monochromatic incident
plane wave Φ I and outgoing scattered wave ΦS in the far-
field, that is,

Φ ∼ Φ I + ΦS . (32)

Without loss of generality, we assume that the direction
of wave propagation is along the z-axis. Accordingly, the
monochromatic incident plane wave Φ I and the outgoing
scattered wave ΦS are respectively defined as

Φ I = e−iω(t−z), (33)

ΦS = 1

r
f̂ (θ)e−iω(t−r), (34)
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where f̂ (θ) denotes the scattering amplitude. Moreover, eiωz

can be decomposed as [85]

eiωz =
∞∑
l=0

(2l + 1)i l jl(ωr)Pl(cos θ), (35)

with jl(.) representing the spherical Bessel function.
Hence, Eq. (33) in the far-field can be rewritten as follows,

Φ I ∼ e−iωt

r

∞∑
l=0

Cωl
(
e−iωr + e−iπ(l+1)eiωr )Pl(cos θ), (36)

where Cωl is given by

Cωl = (2l + 1)

2iω
eiπ(l+1). (37)

The field solution Φ depends on the boundary conditions
(14). This means that the ingoing part of Φ should match the
incident plane wave Φ I . Therefore we obtain

Φ = e−iωt

r

∞∑
l=0

Cωlφωl(r)Pl(cos θ). (38)

The absorption cross section depends on the flux of parti-
cles that enter the black hole through the effective potential.
Hence, we can introduce the four-current density vector as
follows

Jμ = i

2
(Φ∗�μΦ − Φ�μΦ∗), (39)

and the above equation satisfies the conservation law, that is

�α J
α = 0. (40)

By substituting Eq. (38) into Eq. (39) under the boundary
condition Eq. (14), we obtain the four-current density vector
by surface integral as

N (r) = −
∫

�

r2 Jrd� = −π

ω

∞∑
l=0

(2l + 1)(1 − |e2iδl |2),

(41)

where N (r) is the flux that passes the surface � with a con-
stant radius r and d� = sin θdθdϕ. The flux is a constant,
and when we consider the stationary scenarios, N (minus)
represents the particles passing through the potential and
entering the black hole [86]. Besides, we have used the
orthogonality of Legendre polynomials, i.e.,
∫ 1

−1
Pl(x)Pl ′(x)dx = 2

(2l + 1)
δll ′ . (42)

where x = cos θ . Furthermore, the absorption cross section
σabs is defined as the ratio of the particle flux |N | to the plane
wave incident current ω. Hence, the absorption cross section
can be written as

σabs(ω) ≡ |N |
ω

= π

ω2

∞∑
l=0

(2l + 1)(1 − |e2iδl |2)

= π

ω2

∞∑
l=0

(2l + 1) |Tωl |2 , (43)

and the partial absorption cross section can be expressed as

σl(ω) = π

ω2 (2l + 1)(1 − |e2iδl |2) = π

ω2 (2l + 1) |Tωl |2 .

(44)

In order to study the effects of Rastall and string param-
eters on the absorption cross section of the scalar field, we
need to calculate the phase shift δl , that is, the transmission
coefficient. In this paper, we use the WKB approximation
to obtain the transmission coefficient Tω. Assuming that the
probability of the incident plane wave is equal to 1, Eq. (15)
can be expressed as

|Rωl |2 + |Tωl |2 = 1. (45)

The transmission probability of different multipole num-
bers l can be obtained with the help of the sixth-order WKB
method,

1 − |Rωl |2 = |Tωl |2 , (46)

with

Rωl = (1 + e2iπα)−
1
2 , (47)

where α is obtained by

α − i
(ω2 − V0)√

−2V
′′
0

−
i=6∑
i=2

�i (K ) = 0. (48)

In Eq. (48),V0 represents the maximum value of the poten-
tial at r = r0, and the prime denotes the derivative of the
potential at r = r0 with respect to r∗. Moreover, �i (K ) indi-
cates a higher-order correction of the WKB method, which
depends on K and the 2i order derivative of the potential at
its maximum position [87,88].

Specifically, we express the third-order method as follows,

�2 = 1√
−2V (2)

0

×
⎡
⎣1

8

⎛
⎝V (4)

0

V (2)
0

(
b2 + 1

4

)
− 1

288

(
V (3)

0

V (2)
0

)2

(7 + 60b2)

⎞
⎠

⎤
⎦

�3 = n + 1
2

−2V (2)
0

⎡
⎣ 5

6912

(
V (3)

0

V (2)
0

)4

(77 + 188b2)

− 1

384

(
(V (3)

0 )2V (4)
0

(V (2)
0 )3

)
(51 + 100b2) + 1

2304

(
V (4)

0

V (2)
0

)2

× (67 + 68b2) − 1

288

(
V (6)

0

V (2)
0

)
(5 + 4b2)
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Fig. 3 For β > 0 and M = 1, the partial absorption cross section for the variable a at β = 1
10 , l = 3 in the left panel and the variable β at a = 0.1,

l = 3 in the center panel. The right plot is that the partial absorption cross section changes with the multipole number l at a = 0.1, β = 1
10

Fig. 4 For β > 0 and M = 1, the total absorption cross section for the variable a at β = 1
10 , a = 0 recovers to the Schwarzschild black hole as

the contrast

+ 1

288

(
V (3)

0 V (5)
0

(V (2)
0 )2

)
(19 + 28b2)

]
. (49)

In Eq. (49), the superscripts (2, 3, 4, 5, 6) of the effec-
tive potential represent the corresponding differentials with
respect to the tortoise coordinate r∗, and b = n+ 1

2 . Besides,
since the specific expressions of �4(K ), �5(K ) and �6(K )

are overly cumbersome (see Ref. [88]), they will not be
described in detail here. In addition, during the calculation,
we find that when the Rastall parameter β is set as a fraction,
the results and figures of the WKB approximation calcula-
tion are more accurate than when β is set as a decimal [21].

This phenomenon can be attributed to the term r
4β

2β−1 in the
metric f (r). Hence, in order to maintain the consistency of
the data, we choose the fractional form of β throughout the
paper.

From Fig. 3, we can compare the effects of the Rastall
parameter and the string parameter on the partial absorption
cross section when the Rastall parameter is positive. The
results are shown in the left plot, where different values of
the string parameter a are chosen, the corresponding partial
absorption cross section first starts at zero, then reaches to
a maximum value, and finally decreases to almost the same
value with increasing ω. Furthermore, it is easy to see that
as the string parameter a increases, the partial absorption
increases and its peak position shifts to the left. When we fix
the string parameter and change the Rastall parameter, one

can get that the peak value of the partial absorption cross
section increases as the Ratall parameter β increases.

In Fig. 4 we present the total absorption cross section of
a Schwarzschild black hole surrounded by a cloud of strings
in Rastall gravity for different values of the string parameter,
where l goes from 0 to 10 and β = 1

10 . Specifically, the hori-
zontal solid line represents the geometric capture section. As
shown in Fig. 4, the dashed curve is the sinc approximation
result, and the solid curve is the partial wave result using
the sixth-order WKB approximation. We show that increas-
ing the parameter a results in incrementing the absorption
cross section. We also notice that the two curves are signifi-
cantly different at small values of frequency. Moreover, as the
string parameter increases, the difference is more pronounced
and the range of oscillation amplitudes is significantly wider.
However, in the high frequency regime, the total absorption
cross sections obtained by these two methods are in good
agreement and converge to the geometric capture cross sec-
tion. In Fig. 5, our results show that when we fix the value of
a and increase β, the absorption cross section increases. The
difference between the two curves also increases significantly
in the low frequency regime due to the Rastall parameter.

As shown in Fig. 6, we describe the behavior of the partial
absorption cross section for different parameters obtained by
the sixth-order WKB method when β < 0. From the left fig-
ure, where the Rastall parameter is treated as a variable and
the parametera is fixed, we observe that the partial absorption
cross section does not monotonically increase as the Rastall
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Fig. 5 For β > 0 and M = 1, the total absorption cross section for the variable β at a = 0.1, and β = 0 recovers to the Einstein gravity

Fig. 6 For β > 0 and M = 1, the partial absorption cross section for the variable a at β = 1
10 , l = 3 in the left panel and the variable is β at

a = 0.1, l = 3 in the center panel. The right plot is that the partial absorption cross section change with the multipole number l at a = 0.1, β = 1
10

parameter β decreases. The partial cross sections intersect
in the range of 0.2 < ω < 0.3 due to the effective poten-
tial. Therefore, the variation trend of the partial cross section
is ′N ′ type. We also observe in the middle plot that when
we increase the string parameter, the partial cross section
increases monotonically. Moreover, the peak position of the
partial cross section is evidently shifted to the left. Finally,
we observe that as the multipole number l increases, the par-
tial cross section decreases and its peak position shifts to the
right.

In Fig. 7 we give the total absorption cross sections of
the massless scalar field by varying the Rastall parameter β

(β < 0) and fixing the string parameter a = 0.6. We can

observe that the change of the total absorption cross section
as a function of β is similar to that of the partial absorption
cross section. This is because the higher the potential barrier,
the more particles are scattered back to the black hole by
the potential barrier. In addition, we can see that when we
reduce the Rastall parameter to −0.5, the difference between
the solid curve and the dashed curve gradually decreases.

In Fig. 8 we present the total absorption cross section of
the massless scalar field when β < 0, changing the string
parameters and fixing β = − 1

3 . It can be observed that
the difference between the two curves is the smallest at the
low-frequency limit compared to the above three cases. Fur-
thermore, when ω is large, the total absorption cross section
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Fig. 7 For β < 0 and M = 1, the total absorption cross section for the variable β with fixed string parameter a = 0.6

Fig. 8 For β < 0 and M = 1, the total absorption cross section for the variable a with fixed Rastall parameter β = − 1
3
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as a function of ω goes into the capture cross section. We
also notice that the total absorption cross section, as well
as the oscillation amplitude, increases with increasing string
parameters.

6 Hawking radiation

In this section, we employ the sixth-order WKB method to
calculate the Hawking radiation for massless scalar fields.
Furthermore, we analyze the effects of the string and the
Rastall parameters on Hawking radiation in the background
of a Schwarzschild black hole surrounded by a cloud of
strings in Rastall gravity.

A black hole behaves almost in the same way as a black
body, emitting particles when its temperature is proportional
to the surface gravity [66]. Hawking also presented that black
holes can radiate particles in the form of thermal. This is due
to the quantum tunneling effect created by the vacuum fluc-
tuations near the event horizon of the black hole. Therefore,
if we consider quantum effects and the laws of thermody-
namics are satisfied, black holes can produce radiation. This
phenomenon is known as Hawking radiation.

The Hawking radiation calculated by the gray-body factor
has the following expression [89,90]

dE

dt
=

∑
l

Nl |Tωl |2 ω

exp(ω/TBH ) − 1

dω

2π
, (50)

where Nl is the multiplicity that depends only on the black
hole dimension. Moreover, for the massless scalar field in a
four-dimensional black hole, l and Nl satisfy the condition
Nl = 2l + 1. Tωl denotes the above gray-body factor and
TBH represents the Hawking temperature. Specifically, the
Hawking temperature of static spherically symmetric space-
time can be written as

TBH = 1

4π
f ′(r)

∣∣∣∣
r=rh

. (51)

By substituting Eq. (6) into Eq. (51), we can obtain

TBH = 1

4πrh

(
1 + a(1 − 2β)r

4β
1−2β

h

4β − 1

)
, (52)

where f (rh) = 0 and rh is the radius of the event horizon.
Besides, the string and Rastall parameters need to satisfy the
previous parameter range, i.e., −0.5 < β < 1

6 and 0 ≤ a <

1. By substituting Eq. (52) and Nl = 2l+1 into Eq. (50), we
can further obtain the Hawking power emission spectrum

d2E

dtdω
= 1

2π

∑
l

(2l + 1)|Tωl |2ω
eω/TBH − 1

. (53)

Figure 9 compares the effects of parameters a and β on
the Hawking power emission spectrum of the massless scalar
wave when β is non-negative. We can clearly observe in the
left panel that for a given l and β, increasing the parameter a
depresses the power emission spectrum. Moreover, the peak
power emission spectrum gradually shifts to low frequencies
as a increases. It is clear from the middle panel that when
we fix l and a, but increase the parameter β, the peak power
emission spectrum gradually decreases and moves to low fre-
quencies. As the multipole number l increases, we can get
from the right panel that for a massless scalar field, the power
emission spectrum decreases and the peak position shifts
towards high frequencies. In conclusion, the parameters a,
β and l suppress the power emission spectrum. Besides, it is
easy to see that if the values of parameters a and b are chosen
larger, the lifespan of the black hole will be longer.

This trait is more easily observed in Fig. 10, which plots
the effects of parameters a, β and l on the power emission rate
(as a function of ω) for the scalar wave in the range β < 0.
From the left figure we can see that when we increase the
parameter a, the power emission spectrum decreases. That
is, under the condition that β is constant, the increase of the
string parameter a leads to a decrease in the energy emis-
sion rate, thus making the lifetime of the black hole longer.
Furthermore, we also observe in the center panel that with
decreasing Rastall parameter, for fixed l and a, the peak value

Fig. 9 For β > 0 and M = 1, the left-figure is the power emission
spectra taken a as the variable at β = 1

10 , l = 2. The center-figure is
the power emission spectra taken β as the variable at a = 0.1, l = 2.

The right-figure is the power emission spectra taken l as the variable at
a = 0.25 and β = 1

10
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Fig. 10 For β < 0 and M = 1, the left-figure is the power emission
spectra taken a as the variable at β = − 1

3 , l = 2. The center-figure is
the power emission spectra taken β as the variable at a = 0.6, l = 2.

The right-figure is the power emission spectra taken l as the variable at
a = 0.6 and β = − 1

3

of the power emission rate increases and then decreases, and
the peak position first shifts to high frequency and then moves
to low frequency. Finally, we fix the two parameters a = 0.6
and β = − 1

3 and analyze the effects of the multipole number
l in the right panel. It is clear that a larger multipole num-
ber results in a lower power emission spectrum. Besides, it
is worth noting that the low multipole number l dominates
the energy emission rate, while the contribution of the high
multipole number l is extremely small and thus negligible.

7 Conclusion and discussion

In the previous sections, we have comprehensively studied
the black hole shadow, absorption cross section and power
emission spectrum of Hawking radiation for the massless
scalar field in a Schwarzschild black hole surrounded by a
cloud of strings in Rastall gravity. The ranges of the string
parameter and Rastall parameter are chosen according to the
effective potential in the context of the scalar field. Notably,
we have calculated the absorption cross section and Hawking
radiation with the help of the sixth-order WKB method.

First, in Figs. 1 and 2, we carefully analyzed the effec-
tive potential for different values of parameters a, β and l.
For β > 0, the parameters a and β depress the barrier of the
effective potential, and the waves do not reflect. For β < 0, a
reduces the barrier height when β is fixed, whereas the effec-
tive potentials intersect when β varies. Moreover, we studied
the shadow and photon sphere radii caused by the curved
light ray. Because we consider the black hole to be static
spherically symmetric, the radii of the photon sphere and
shadow are constant. In other words, the black hole shadow
has spherical symmetry. Besides, the radius of the photon
sphere increases as the parametera increases. However, when
we consider β as a variable, the photon sphere and shadow
radii fluctuate abnormally. The reason is that when the Rastall
parameter is less than zero, the metric f (r) changes abnor-
mally.

Second, with the help of the sixth-order WKB method, we
calculated the absorption cross section of the scalar field in

detail. To compare the accuracy of the sixth-order WKB, we
also presented the results of the sinc approximation with the
geometric capture cross section as a reference. From Figs. 3,
4 and 5, we can clearly observe that larger values of the
parameters a and β enhance the partial or total absorption
cross section when β > 0. However, in the low frequency
range, when a or β is set to a larger value, the results calcu-
lated by the two methods are quite different. Furthermore, in
Figs. 6, 7 and 8, we plotted the partial and total absorption
cross sections when β < 0. Unlike the case where β is pos-
itive, the absorption cross section does not always grow as
the Rastall parameter decreases. Since the potential barrier
reflects waves, the change in the absorption cross section is
exactly the opposite of the change in the potential barrier.
Hence, as β decreases, the total absorption cross section first
increases, then decreases and finally increases again. It is
worth mentioning that the smaller the value of β, the smaller
the difference between the two approximations. Very impor-
tantly, in the mid-high frequency region, the total absorption
cross section and the sinc approximation are in good agree-
ment and in all cases oscillate around the geometric capture
cross section σgeo.

Finally, we investigated the energy emission rate of Hawk-
ing radiation. Specifically, the power emission rate is affected
by the string parameter, the Rastall parameter as well as the
multipole number. In Fig. 9, we found that both a and β sup-
press the power emission spectrum, and the peak position
shifts to a lower energy region. Moreover, the multipole num-
ber l also significantly depresses the power emission spec-
tra whereas the peak position shifts to the higher frequency
regime. The case of β < 0 is also similar to the case of β > 0
above, except the case where β varies and a is fixed. As the
Rastall parameter decreases, the power emission spectrum
first increases and then decreases, at the same time, the peak
position first moves to the higher frequency region and then
enters the lower energy region.

Acknowledgements This work was supported partly by the National
Natural Science Foundation of China (Grants no. 12065012, no.
12065013), Yunnan High-level Talent Training Support Plan Young

123



Eur. Phys. J. C (2022) 82 :658 Page 13 of 14 658

& Elite Talents Project (Grants no. YNWR-QNBJ-2018-360) and the
Fund for Reserve Talents of Young and Middle-aged Academic and
Technical Leaders of Yunnan Province (Grant no. 2018HB006).

DataAvailibility Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This present study
is a theoretical work.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.
) 1914, 1030-1085 (1914)

2. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.
) 1915, 831–839 (1915)

3. K. Akiyama et al., Event horizon telescope. Astrophys. J. Lett. 875,
L1 (2019)

4. P. Rastall, Phys. Rev. D 6, 3357–3359 (1972)
5. D.J. Gogoi, U.D. Goswami, Phys. Dark Univ. 33, 100860 (2021)
6. A.S. Al-Rawaf, M.O. Taha, Phys. Lett. B 366, 69–71 (1996)
7. M. Visser, Phys. Lett. B 782, 83–86 (2018)
8. D. Das, S. Dutta, S. Chakraborty, Eur. Phys. J. C 78, 810 (2018)
9. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur.

Phys. J. C 78, 25 (2018)
10. S. Hansraj, A. Banerjee, P. Channuie, Ann. Phys. 400, 320–345

(2019)
11. A.H. Ziaie, H. Moradpour, S. Ghaffari, Phys. Lett. B 793, 276–280

(2019)
12. H. Moradpour, A. Bonilla, E.M.C. Abreu, J.A. Neto, Phys. Rev. D

96, 123504 (2017)
13. R. Li, J. Wang, Z. Xu, X. Guo, Mon. Not. R. Astron. Soc. 486,

2407–2411 (2019)
14. G. Abbas, M.R. Shahzad, Eur. Phys. J. A 54, 211 (2018)
15. P.S. Letelier, Phys. Rev. D 20, 1294–1302 (1979)
16. E. Herscovich, M.G. Richarte, Phys. Lett. B 689, 192–200 (2010)
17. J.M. Toledo, V.B. Bezerra, Eur. Phys. J. C 79, 117 (2019)
18. J.P.M. Graça, I.P. Lobo, I.G. Salako, Chin. Phys. C 42, 063105

(2018)
19. Z. Li, T. Zhou, Phys. Rev. D 104, 104044 (2021)
20. S. Chen, L. Zhang, J. Jing, Eur. Phys. J. C 78, 981 (2018)
21. X.C. Cai, Y.G. Miao, Phys. Rev. D 101, 104023 (2020)
22. M.R. Setare, Phys. Rev. D 69, 044016 (2004)
23. M.R. Setare, E.C. Vagenas, Mod. Phys. Lett. A 20, 1923–1932

(2005)
24. J.L. Synge, Mon. Not. R. Astron. Soc. 131, 463–466 (1966)
25. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347

(1972)
26. G. Abbas, U. Sabiullah, Astrophys. Space Sci.352, 769–774 (2014)
27. L. Amarilla, E.F. Eiroa, G. Giribet, Phys. Rev. D 81, 124045 (2010)

28. M. Sharif, S. Iftikhar, Eur. Phys. J. C 76, 630 (2016)
29. M. Amir, A. Banerjee, S.D. Maharaj, Ann. Phys. 400, 198–207

(2019)
30. G.Z. Babar, A.Z. Babar, F. Atamurotov, Eur. Phys. J. C 80, 761

(2020)
31. R.A. Konoplya, Phys. Lett. B 804, 135363 (2020)
32. R.A. Konoplya, A.F. Zinhailo, Eur. Phys. J. C 80, 1049 (2020)
33. M.A. Anacleto, J.A.V. Campos, F.A. Brito, E. Passos, Ann. Phys.

434, 168662 (2021)
34. X.C. Cai, Y.G. Miao, Phys. Rev. D 103, 124050 (2021)
35. M. Zhang, J. Jiang, Phys. Lett. B 816, 136213 (2021)
36. F. Long, J. Wang, S. Chen, J. Jing, JHEP 10, 269 (2019)
37. F. Long, S. Chen, M. Wang, J. Jing, Eur. Phys. J. C 80, 1180 (2020)
38. G. Gyulchev, P. Nedkova, V. Tinchev, Y. Stoytcho, AIP Conf. Proc.

2075, 040005 (2019)
39. G. Gyulchev, P. Nedkova, V. Tinchev, S. Yazadjiev, Eur. Phys. J. C

78, 544 (2018)
40. P.G. Nedkova, V.K. Tinchev, S.S. Yazadjiev, Phys. Rev. D 88,

124019 (2013)
41. V. Perlick, O.Y. Tsupko, Phys. Rev. D 95, 104003 (2017)
42. W. Javed, A. Hamza, A. Övgün, Universe 7, 385 (2021)
43. R.A. Matzner, J. Math. Phys. 9, 163 (1968)
44. B. Mashhoon, Phys. Rev. D 7, 2807–2814 (1973)
45. A.A. Starobinskil, S.M. Churilov, Sov. Phys. JETP 65, 1–5 (1974)
46. R. Fabbri, Phys. Rev. D 12, 933–942 (1975)
47. L.H. Ford, Phys. Rev. D 12, 2963–2977 (1975)
48. D.N. Page, Phys. Rev. D 14, 3260–3273 (1976)
49. N.G. Sanchez, Phys. Rev. D 18, 1030 (1978)
50. S.R. Das, G.W. Gibbons, S.D. Mathur, Phys. Rev. Lett. 78, 417–419

(1997)
51. A. Higuchi, Class. Quantum Gravity 18, L139 (2001)
52. P. Kanti, J. March-Russell, Phys. Rev. D 66, 024023 (2002)
53. E. Jung, D.K. Park, Class. Quantum Gravity 21, 3717–3732 (2004)
54. J. Grain, A. Barrau, P. Kanti, Phys. Rev. D 72, 104016 (2005)
55. L.C.B. Crispino, E.S. Oliveira, A. Higuchi, G.E.A. Matsas, Phys.

Rev. D 75, 104012 (2007)
56. L.C.B. Crispino, S.R. Dolan, E.S. Oliveira, Phys. Rev. D79, 064022

(2009)
57. C.F.B. Macedo, L.C.B. Crispino, Phys. Rev. D 90, 064001 (2014)
58. H. Huang, M. Jiang, J. Chen, Y. Wang, Gen. Relativ. Gravit. 47, 8

(2015)
59. L.C.S. Leite, S. Dolan, L. Crispino, C.B., Phys. Rev. D 98, 024046

(2018)
60. H. Huang, J. Chen, Y. Wang, T. Lu, Gen. Relativ. Gravit. 51, 22

(2019)
61. M.A. Anacleto, F.A. Brito, J.A.V. Campos, E. Passos, Phys. Lett.

B 803, 135334 (2020)
62. R.B. Magalhães, L.C.S. Leite, L.C.B. Crispino, Eur. Phys. J. C 80,

386 (2020)
63. H.C.D. Lima, C.L. Benone, L.C.B. Crispino, Phys. Lett. B 811,

135921 (2020)
64. C.L. Benone, L.C.S. Leite, L.C.B. Crispino, S.R. Dolan, Int. J.

Mod. Phys. D 27, 1843012 (2018)
65. Q. Li, C. Ma, Y. Zhang, Z.W. Lin, P.F. Duan, Chin. J. Phys. 77,

1269–1277 (2022)
66. S.W. Hawking, Commun. Math. Phys. 43, 199–220 (1975)
67. S.W. Hawking, Phys. Rev. D 13, 191–197 (1976)
68. A. Yale, Phys. Lett. B 697, 398–403 (2011)
69. S. Chen, B. Wang, R. Su, Phys. Rev. D 77, 124011 (2008)
70. R.A. Konoplya, A.F. Zinhailo, Phys. Lett. B 810, 135793 (2020)
71. T. Harmark, J. Natario, R. Schiappa, Adv. Theor. Math. Phys. 14,

727–794 (2010)
72. P. Kanti, E. Winstanley, Fundam. Theor. Phys. 178, 229–265 (2015)
73. T. Pappas, P. Kanti, N. Pappas, Phys. Rev. D 94, 024035 (2016)
74. Y.G. Miao, Z.M. Xu, Phys. Lett. B 772, 542–546 (2017)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


658 Page 14 of 14 Eur. Phys. J. C (2022) 82 :658

75. W. Javed, R. Babar, A. Övgün, Mod. Phys. Lett. A 34, 1950057
(2019)

76. R.A. Konoplya, A.F. Zinhailo, Z. Stuchlik, Phys. Rev. D 102,
044023 (2020)

77. H. Guo, H. Liu, X.M. Kuang, B. Wang, Phys. Rev. D 102, 124019
(2020)

78. R. Ali, R. Babar, M. Asgher, S.A.A. Shah, Ann. Phys. 432, 168575
(2021)

79. P.I. Slavov, S.S. Yazadjiev, Phys. Rev. D 86, 084042 (2012)
80. H. Moradpour, I.G. Salako, Adv. High Energy Phys. 2016, 3492796

(2016)
81. M. Azam, G. Abbas, S. Sumera, A.R. Nizami, Int. J. Geom. Meth-

ods Mod. Phys. 14, 1750120 (2017)
82. M.R. Setare, D. Momeni, Int. J. Theor. Phys. 50, 106–113 (2011)

83. Y. Decanini, G. Esposito-Farese, A. Folacci, Phys. Rev. D 83,
044032 (2011)

84. Y. Decanini, A. Folacci, B. Raffaelli, Phys. Rev. D 81, 104039
(2010)

85. J.A.H. Futterman, F.A. Handler, R.A. Matzner, Cambridge (Cam-
bridge University Press, New York, 1988)

86. W.G. Unruh, Phys. Rev. D 14, 3251–3259 (1976)
87. S. Iyer, C.M. Will, Phys. Rev. D 35, 3621 (1987)
88. R.A. Konoplya, Phys. Rev. D 68, 024018 (2003)
89. M. Sharif, Q. Ama-Tul-Mughani, PTEP 2020, 033E01 (2020)
90. M. Sharif, S. Shaukat, Ann. Phys. 436, 168673 (2022)

123


	Shadow, absorption and Hawking radiation of a Schwarzschild black hole surrounded by a cloud of strings in Rastall gravity
	Abstract 
	1 Introduction
	2 The solution of a Schwarzschild black hole surrounded by a cloud of strings in Rastall gravity
	3 Scalar wave equation
	4 Shadows
	5 Absorption cross section
	5.1 Sinc approximation
	5.2 Partial wave approach

	6 Hawking radiation
	7 Conclusion and discussion
	Acknowledgements
	References




