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Abstract In this work, we calculate the dynamic den-
sity correlations using Mori–Zwanzig–Nakajima projection
operator method. With a judicious choice of slow variables
we derive the evolution equations for these slow variables
starting from generalised Langevin equation. We get the
hydrodynamic form of density correlations function which
consist of two acoustic peaks: also called Brillouin peaks,
and one thermal peak: also called Rayleigh peak. We then
estimate the dynamic density correlations near the critical
point using critical exponents extracted from the statistical
bootstrap model of hadronic matter. We find that the bulk vis-
cosity contributes to the sound attenuation at leading order

∼ |t |− 5
4 while the thermal conductivity contribute at sub-

leading order ∼ |t |− 3
4 . On the other hand, only the thermal

conductivity contributes at leading order ∼ |t | 1
4 to the ther-

mal diffusivity. We discuss the implications of these results
in search for the QCD critical point in the heavy-ion collision
experiments.

1 Introduction

Understanding the quantum chromodynamics (QCD) phase
diagram is one of the major challenge in the high energy
particle physics and astrophysics today [1–3]. Main imped-
iments in this pursuit are practical and conceptual problems
of lattice quantum chromodynamics (LQCD) to understand
the phenomenologically relevant part of the phase diagram
at finite baryon density. LQCD suffers from so called sign
problem at finite chemical potential, however for small chem-
ical potentials there are few reliable results available [4–7].
So one has to resort to various effective models of QCD at
relatively high baryon density, vi z., Nambu–Jona–Lasinio
model (NJL) [8,9], Quark-Meson Coupling model (QMC)
[10], Hadron Resonance Gas model (HRG) [11], Relativis-
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tic Mean-Field model (RMF) [12–14], Statistical Bootstrap
Model (SBM) [15–17] etc. In the QCD phase diagram a par-
ticularly interesting point is the conjectured critical end point
(CEP) which is an end point of first order phase transition
line. A lot of theoretical studies has been carried out to find
the possible signatures of CEP [18–30] and on the experi-
mental side, the Beam Energy Scan (BES) program has been
devoted at the Super Proton Synchrotron (SPS) and at the
Relativistic Heavy Ion Collider (RHIC) to search for possi-
ble signatures of the CEP [31,32].

Fluid described by the theory of hydrodynamics belongs
to a class of systems in which non-equilibrium dynamics
can be described using only a small number of so-called
effective “slow” variables [33–35]. For instance, one can
describe the dynamics of a fluid with only few number of
equations of motion: conservation equations for energy den-
sity, momentum density, fluid velocity and, possibly, charge
density if there are any conserved charges, despite the micro-
scopic degrees of freedom are very large. It turns out that this
description can be accommodated into a non-equilibrium
transport equation which consist of reversible, irreversible
and noise parts. While the former two describes slow dynam-
ics, the noise term contain the information about leftover fast
degrees of freedom. Langevin equation is archetypal example
of this formalism [36–38].

A powerful way to study these aspects is Mori–Zwanzig–
Nakajima (MZN) projection operator formalism [39–41]. In
this formalism one can derive the non-equilibrium transport
equation by coarse-graining procedure. One first choose a
set of slow variables describing long-time dynamics of a sys-
tem under consideration. Operators corresponding to a set of
observables forms a Hilbert space with appropriately defined
scalar product. One then introduces the projection operator
which project onto subspace formed by the slow variables.
While the MZN formalism has been traditionally applied to
non-relativistic systems [42,43], it has recently attracted a lot
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of attention in high energy physics [44–47] and cosmology
research [48].

In present work we use the time-independent MZN pro-
jection operator method to study the dynamic density correla-
tions in a baryon rich fluid. In the theory of non-equilibrium
phenomena correlation functions are very important quan-
tities as they are directly measurable. In the linear response
theory the response functions are linearly related to the exter-
nal perturbations and the time-correlation functions express
the propagation of equilibrium fluctuations in the system.
Typically, for a fluid described by hydrodynamics the den-
sity correlation function consist of three peaks: two of them
corresponds to acoustic waves and one corresponds to ther-
mal fluctuations. It has been noted in previous study [49] that
for a relativistic fluid the width of acoustic peaks, also known
as Brillouin peaks, picks up a purely relativistic correction,
while the Rayleigh peak due to thermal fluctuations remains
unchanged. We shall discuss these aspects in this work. We
shall further discuss the impact of critical singularities in the
thermodynamic functions and transport coefficients on the
Brillouin and Rayleigh peaks. In particular, we shall con-
trast the critical behaviour of SBM with that of 3D Ising
model and compare the results for density correlations as
computed in these two models. One of the main advantage
of SBM, as we will see, is that one can naturally bring out crit-
ical behaviour of hadronic matter near the critical point [17].
Apart from that the exponentially rising density of states has
proven absolutely essential to explain the thermodynamics
of hadronic matter [50] as well as the small viscosity near Tc
[51]. We would like to mentioned that the dynamics near the
QCD critical point has been previously studied using gen-
eralised Langevin equation [52]. In this work, authors have
discussed the critical dynamics within the renormalization
group approach. Unlike our work, Ref. [52] have taken into
account the non-linear couplings between slow modes to cal-
culate the streaming terms. Such couplings play a crucial role
in determining the dynamic critical exponents.

We organize the paper as follows. In Sect. 2 we recapit-
ulate the MZN projection operator method. In Sect. 3 we
present the derivation of density correlation function using
MZN projection operator method. In Sect. 4 we discuss the
density correlation near the QCD critical point within ambit
of SBM and discuss the implications of our results in the
context of search of CEP in heavy-ion collision experiments.
Finally, in Sect. 5 we summarize and conclude.

2 Mori–Zwanzig–Nakajima projection operator
method

Mori–Zwanzig–Nakajima projection operator method is
based on coarse graining a system with large number of
microscopic degrees of freedom governed by hamiltonian

dynamics into fast degrees of freedom and relatively few
effective slow degrees of freedom using time independent
projection operator. This procedure leads to so called gener-
alised Langevin equation which describes the time evolution
of a slow operator. While the slow dynamics is captured by
so called memory function, the fast dynamics is contained
in the noise term. On the microscopic scale the time depen-
dence of an operator Ô is governed by Heisenberg equation
of motion:

∂Ô(t)

∂t
= i[Ĥ , Ô] ≡ iL̂Ô(t) (1)

where L̂ ≡ [Ĥ , . . .] is the Liouville operator. Ĥ is the hamil-
tonian operator. The formal solution of Eq. (1) is given as,

O(t) = eitL̂Ô(0), (2)

where Ô(0) corresponds to initial time operator. We define
inner product of two operators Â and B̂ as [40,53],

(Â, B̂) = 1

β

∫ β

0
dτ tr[ρ0e

τ(Ĥ−μN̂ )Âe−τ(Ĥ−μN̂ )B̂] (3)

= 1

β

∫ β

0
dτ 〈Â(−iτ)B̂〉0, (4)

where β = T−1. The equilibrium average is defined as,

〈Ô〉0 = tr(ρ̂0Ô). (5)

For a grand canonical ensemble the density matrix ρ0 is
given by,

ρ̂0(β, μ) ≡ e−β(Ĥ−μN̂ )

tr e−β(Ĥ−μN̂ )
. (6)

If it is possible to separate the time scale into long-time and
short-time scales then there exists a set of slowly varying
operators (corresponding to slow variables) which describes
the slow dynamics. Let {Ân} = {Â1, Â2, . . . , Ân} be set
of such slowly varying operators which are not necessarily
orthogonal. Using Kubo canonical relation given by Eq. (4)
with τ = 0 we define metric gnm as [54],

gnm(x − y) ≡ (Ân(0, x), Âm(0, y)). (7)

It is possible now to define quantity Ân orthogonal to Ân

as,

Ân(t, x) =
∫

d3y gnm(x − y)Âm, (8)

where gnm is the inverse of gnm which coincides with the
second derivative of the effective action β�eff, with respect
to Ân :

gnm(x − y) = δ2β�eff(An)

δAm(y)δAn(x)
(9)
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where the effective action is given by the Legendre transfor-
mation of the generating functional W (Jn):

�eff(An) = W (Jn) −
∫

d3x Jm(x)
δW (Jn)

δ Jm(x)
(10)

= W (Jn) + 1

β

∫
d3x Jn(x)An(0, x) (11)

where, An(x) = 〈Ân(x)〉0 = δ(−βW )
δ Jn(x) and Jn is the classical

source. W (Jn) = − 1
β

lnZ with the partition function Z is
given by,

Z(β; Jn) = tr

[
e−β(Ĥ−μN̂ )exp

( ∫
d3xÂn(0, x)Jn(x)

)]
.

(12)

The quantities with upper index and those with lower
indices satisfy following properties:

(Ân(0, x), Âm(0, y) = δmn δ(x − y), (13)∑
p

∫
d3z gmp(x − z)gpn(z − y) = δnmδ(x − y). (14)

We finally define the projection operator P̂ acting on any
arbitrary operator Ô(t, x) as,

P̂Ô(t, x) ≡
∫

d3z Ân(0, z)(Ô(t, x), Ân(0, z)). (15)

Operator P̂ project out the slowly varying part of Ô. Using
(7), (13) and (14) it can be easily shown that (15) satisfies
P̂2 = P̂ . It is also useful to define orthogonal projector Q̂ ≡
1 − P̂ . This project out the part of Hilbert space orthogonal
to subspace occupied by slowly varying operators.

Now consider an operator identity:

∂

∂t
eitL̂ = eitL̂P̂ iL̂ +

∫ t

0
ds ei(t−s)L̂P̂ iL̂ eitQ̂L̂ Q̂ iL̂

+eitQ̂L̂ Q̂ iL̂ (16)

Multiplying both sides of (16) by Ân(0) we get

∂

∂t
Ân(t, x) =

∫
d3y i K (s)m

n (x − y)Âm(t, y)

−
∫ ∞

0
ds

∫
d3y K (d)m

n (t − s, x − y)Âm(s, y)

+N̂n(t, x), (17)

where,

i K (s)m
n (x − y) ≡ (iL̂Ân(0, x), Âm(0, y)) (18)

K (d)m
n (t − s, x − y) ≡ −θ(t − s)(iL̂N̂n(t, x), Âm(s, y))

(19)

N̂n(t, x) ≡ eitQ̂L̂ Q̂ iL̂Ân(0, x). (20)

Equation (17) is called generalized Langevin equation
[40]. i K (s)m

n is called streaming term and it captures the time-
reversible change. While, K (d)m

n is called dynamic mem-
ory function and it captures the time-irreversible change and
hence the dissipation in the system. Note that K (d)m

n depends
on a past time value of Ân(s) for s < t . The last term in the
generalized Langevin equation N̂ is called the noise. It is
only the memory function terms that contribute to the slow
dynamics and hence we neglect the noise term hereafter.

Taking Fourier transform of (17) we get,

∂

∂t
Ân(t,k) = i K (s)m

n (k)Âm(t,k)

−
∫ ∞

0
ds K (d)m

n (t − s,k)Âm(s,k) + N̂n(t,k).

(21)

Equation (21) can we written in more compact form as,

∂

∂t
Â(t) = iK(s)Â(t) −

∫ ∞

0
ds K(d)(t − s)Â(s) + N̂ (t)

(22)

In the Eq. (22) Â is a column matrix of order n for a set of
’n’ slow variables. MatricesK(s) andK(d) are n×n matrices.

3 Density correlations for the equilibrium fluctuations

We shall now calculate the density correlations for the fluctu-
ations about the thermal equilibrium. Near the thermal equi-
librium any thermodynamic quantity at an arbitrary space-
time point (t, x) can be written as,

A(t, x) = A0 + δA(t, x), (23)

where A0 is the equilibrium value and δA(t, x) is the fluctu-
ation about equilibrium. For a baryon-rich fluid the relevant
slow variables are fluctuations in baryon number density δn̂b,
energy density δε̂, pressure δ P̂ , entropy density δŝ and fluid
velocity δv̂. However, as we will see, not all of these are inde-
pendent and we can remove two of them. So we are left with
five independent slow variables. For our purpose we choose
δn̂b, δε̂ and the fluid velocity δv̂ as slow variables. As we
will see this choice of slow variables leads to Landau form
of hydrodynamic equations. This also implies that the fluid
velocity is defined with respect to Landau frame.

The generalised Langevin equation for δn̂b reads:

∂

∂t
δn̂b(t, x) =

∫
d3y i K (s)m

nb (x − y)Âm(t, x)

−
∫ ∞

0
ds

∫
d3y K (d)m

nb (t − s, x − y)Âm(s, x).

(24)
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Using memory matrices calculated in the Appendix A we
get,

∂δn̂b
∂t

+ n̂b,0∇ · δv̂ − κ

(
n̂b,0T0

h0

)2

∇2δ(β̂μ̂b) = 0, (25)

where, h0 is the equilibrium enthalpy density. A similar cal-
culation for δv̂ and δε̂ respectively gives,

h0
∂δv̂
∂t

+ ∇δ P̂ − η∇2δv̂ −
(

ζ + 1

3
η

)
∇(∇ · δv̂) = 0,

(26)
∂δε̂

∂t
+ h0∇ · δv̂ = 0. (27)

Using following thermodynamic relations:

δε = T0δ(nbs) + μb,0δnb, (28)

δP = nb,0s0δT + nb,0δμB, (29)

h0 = T0nb,0s0 + nb,0μb,0, (30)

and choosing δn̂b and δT̂ as independent variables, we can
rewrite Eqs. (25)–(27) in the form:
[

∂

∂t
− κ

(
T0C2

s C̃n

h0C̃P

)
∇2

]
δn̂b

+κ

[
1 − C̃nC2

s αPT0

C̃P

]
∇2δT̂ + nb,0∇ · δv̂ = 0, (31)

(
h0C̃nC2

s

nb,0C̃P

)
∇δn̂b +

(
h0C̃nC2

s αP

C̃P

)
∇δT̂

+
(
h0

∂

∂t
− η∇2

)
δv̂ −

(
ζ + 1

3
η

)
∇(∇ · δv̂) = 0, (32)

[(
h0C2

s αPC̃n

nb,0C̃P

)
∂

∂t
− κ

(
C̃nC2

s C̃n

nb,0C̃P

)
∇2

]
δn̂b

−
[
nb,0C̃n

T0

∂

∂t
+ κ

(
αPC2

s C̃n

C̃P
− 1

T0

)
∇2

]
δT̂ = 0, (33)

where we have used following relations:

δP =
(

∂P

∂nb

)
T
δnb +

(
∂P

∂T

)
nb

δT,

δs =
(

∂s

∂nb

)
T
δnb +

(
∂s

∂T

)
nb

δT, (34)

together with the thermodynamic identities [49]:

(
∂P

∂nb

)
T

= h0C2
s C̃nb

C̃Pnb,0
, (35)

(
∂P

∂T

)
nb

= h0αPC2
s C̃n

C̃P
, (36)

(
∂s

∂nb

)
T

= −h0αPC2
s C̃nb

n2
b,0C̃P

, (37)

(
∂s

∂T

)
nb

= C̃n

T0
, (38)

where,C2
s = ( ∂P

∂ε
)s is the speed of sound, C̃nb = T0(

∂s
∂T )nb is

the specific heat at constant number density, C̃P = T0(
∂s
∂T )P

is the specific heat at constant pressure, αP = − 1
nb,0

(
∂nb
∂T )P

is the thermal expansivity at constant pressure.
It is convenient to transform Eqs. (31)–(33) using Laplace–

Fourier transform:

f̃ (z,k) =
∫ +∞

−∞
dx eik·x

∫ ∞

0
dt e−zt f (t, x). (39)

Equations (31)–(33) can now be written in a matrix form:

X

⎡
⎢⎢⎣

δn̂b(z,k)

δT̂ (z,k)

δv̂‖(z,k)

δv̂⊥(z,k)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

δn̂b(0,k)

nb,0C̃n
T0h0

δT̂ (0,k) − αP C̃nC2
S

nb,0C̃P
δn̂b(0,k)

δv̂‖(0,k)
h0

zh0+k2η
δv̂⊥(0,k)

⎤
⎥⎥⎥⎥⎦

(40)

or

X Ân(z,k) = Ân(t = 0,k), (41)

where,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

z + κ
T0C2

s C̃n

h0C̃P
k2

[
− κ

nb,0
h0

(1 − αP C̃nC2
ST0

C̃P
)k2

]
inb,0k 0

i C̃nC2
s

nb,0C̃P
k i C̃nC2

s αP

C̃P
k z + �l k2 0[

−
(

h0C2
s αP C̃n

nb,0C̃P

)
z − κ

(
C̃nC2

s C̃n

nb,0C̃P

)
k2

]
nb,0C̃n
h0T0

[
z + h0C̃P

nb,0C̃n
DT

(
1 − T0αPC2

s C̃n

C̃P

)
k2

]
0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(42)

where we have decomposed the fluid velocity parallel (v̂‖)
and perpendicular (v̂⊥) to the wave vector k. The quantities
DT and �l are given by,

DT = κ

h0C̃P
, (43)

�l = 1

h0

(
ζ + 4

3
η

)
. (44)

Quantities DT and �l are, respectively, called thermal
diffusivity and longitudinal viscosity. Note that the transverse
velocity fluctuation is decoupled from the density fluctuation.
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So we shall ignore this mode in present analysis. We Replace
four-dimensional matrix equation (41) by three-dimensional
matrix equation as,

XÂn(z,k) = Ân(t = 0,k), (45)

which can be obtained from (40) by deleting bottom row.
Dynamical density correlation function is defined as,

Cnbnb (ω,k) ≡ 〈δn̂b(ω,k)δn̂b(t = 0,k)〉, (46)

where δn̂b(ω,k) is the Fourier transform of δn̂b(t,k)

whereas later can be obtained by taking inverse Laplace’s
transform of δn̂b(z,k) as,

δn̂b(t,k) = 1

2π i

∫ δ−i∞

δ−i∞
dz eztδn̂b(z,k). (47)

We first calculate δn̂b(z,k) by inverting matrix equation
(45) as,

Ân(z,k) = X−1Ân(t = 0,k). (48)

The Fourier–Laplace space density function δn̂b(z,k) is
the (1,1) component of Ân .

δn̂b(z,k) = (Ân(z,k))11 =
4∑
j=1

X−1
1 j Ân(t = 0,k) j1. (49)

The inverse of X can be easily obtained one we know its
determinant. At the leading order the determinant of X is,

detX

= nb,0C̃n

h0T0

{
z3 + z2k2

[(
h0C̃P

n0C̃n
+ C̃PC

2
s T0 − 2C2

s αPT0

)

DT + �l

]
+ zk2C2

s + O(k4)

}
. (50)

The Fourier–Laplace coefficient of density correlation
(49) at the order O(k2) becomes,

δn̂b(z,k)

δn̂b(0,k)



(z + �Sk2 + iCsk)(z + �Sk2 − iCsk) + zk2DT C̃nC2
s − k2C2

s
C̃n

C̃P

(z + �Sk2 + iCsk)(z + �Sk2 − iCsk)(z + h0
nb,0

DT k2)
, (51)

where,

�T = h0

nb,0
DT , (52)

�S = 1

2

{
�l + DT

[(
C̃P

C̃n
− 1

)
+ C2

s T0(C̃P − 2αP )

]}
.

(53)

In Eq. (51) we have neglected the dependence of δn̂b
on δv̂ and δε̂ because the definition of density correla-
tion function innvolve the thermal averaging and averages,
〈δn̂b(k, 0)δε̂(k, 0)〉 and 〈δnb(k, 0)δv̂(k, 0)〉 vanish [55]. Tak-
ing inverse Fourier–Laplace transform and then averaging

over thermal equilibrium we finally obtain the dynamical
density correlation function as,

Cnbnb(ω,k) = 〈(δn̂b(t = 0,k))2〉
[(

1 − C̃n

C̃P

)
2�T k2

ω2 + �2
T k

4

+ C̃n

C̃P

(
�Sk2

(ω − Csk)2 + �2k4

+ �Sk2

(ω + Csk)2 + �2
Sk

4

)]
. (54)

One can derive similar form using linearised hydrody-
namic equations in the Landau frame [49]. The density cor-
relation function has three peaks as in the non-relativistic
case [38]. The peak around ω = 0 is called Rayleigh peak
which corresponds to thermally induced density fluctuations.
We note that the width of Rayleigh peak �T (Eq. (52)) is the
same as that of non-relativistic case except for the pre-factor
h0
nb,0

. The two peaks at ω = ±Csk corresponds to the acous-
tic waves and they are called Brillioun peaks. Note that there
are additional terms (see the discussion below) in the width
of Brillioun peaks �S (Eq. (53)) which are purely relativistic
[49]. These terms are proportional to the thermal diffusivity.
The origin of additional terms appearing in the relativistic
expression for density correlation function (54) as compared
to the non-relativistic one lies in the hydrodynamic equations
(25)–(27). Being relativistic generalisation of non-relativistic
hydrodynamic equations, the mass density appearing in the
non-relativistic hydrodynamic equations is replaced enthalpy
density h0 and there are additional pressure gradient terms
which are absent in the non-relativistic case.

To bring out the genuine relativistic effects in the den-
sity correlations consider a gas of massless particles. In the
massless limit ζ = 0. Thus only shear viscosity and thermal
conductivity terms contribute to the sound attenuation as,

�S = 1

2

[
h0

n0
DT

(
C̃P

C̃n
− 1

)

+4

3

η

h0
+ C2

s T0

(
κ

h0
− 2αPh0

n0
DT

)]

= �S,R + δ�S,R, (55)

where,

�S,R = 1

2

[
h0

n0
DT

(
C̃P

C̃n
− 1

)
+ 4

3

η

h0

]
, (56)

δ�S,R = C2
s T0

(
κ

h0
− 2αPh0

n0
DT

)
, (57)
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where �S,R is the relativistic counterpart of sound attenua-
tion. δ�S,R is a purely relativistic correction. In the extreme
relativistic limit, i.e when T0 is very large or when the kinetic
energy dominates the rest-mass energy, we can approximate
the gas by its ideal limit. For a massless ideal classical gas,
we have C̃P = 4, C̃n = 3, αP = 1/T0,C2

s = 1/3. In this
limit, δ�S,R 
 − κ

24nb,0
. On the other hand, δ�S,R → 0 in

the non-relativistic limit (T0 → 0 or when the rest-mass
energy dominates the kinetic energy). Thus the relativistic
correction to the sound attenuation is always negative. This
implies that for a relativistic fluid the Brillouin peaks are
enhanced and its width reduced by an amount δ�R as com-
pared to non-relativistic counterpart. On the other hand, the
width Rayleigh peak is practically remain unaltered for the
relativistic systems. Reason for this is twofold. First, there are
no relativistic corrections to �T . Second, albeit the thermal
diffusivity of the relativistic system (DT = κ

h0C̃P
) is differ-

ent from its non-relativistic counterpart (DNR
T = κ

nb,0C̃P
),

the expression for Rayleigh peak, �T = κ

nb,0C̃P
= DT

exactly matches its non-relativistic counterpart. Hence the
the strength and the width of the Rayleigh peak is not affected
by the relativistic effects.

Finally, for a massless ideal classical gas case, the width
of Brillouin peak reduces to �S,R = η

6nb,0T0
. Thus, the bulk

viscosity and the thermal conductivity does not have a net
effect on the Brillouin peaks. This is because of the cancel-
lation of terms involving thermal conductivity and because
ζ = 0 for the massless gas.

4 Density correlations near the critical point

In the T → Tc limit, any relevant thermodynamic quantity
can be separated into a regular part and a singular part. The
singular part show power law behaviour. This behaviour is
universal and characterized by the critical exponents, α̂, β̂,
γ̂ and ν̂. They are defined through the following power laws
[56] (in the limit t → 0−):

CV = C− |t |−α̂, (58)

ñb = N− |t |β̂ , (59)

kT = K− |t |−γ̂ , (60)

ξ = �− |t |−ν̂ , (61)

where, ñb = 1 − nb
nb,c

is the order parameter with nb,c being
critical density. CV , kT and ξ respectively denote the spe-
cific heat, the isothermal compressibility and the correlation
length. C−, N−, K− and �− are the corresponding ampli-
tudes from the hadronic side (T < Tc). Note that the correla-
tion length ξ in Eq. (61) is the typical length scale of hadronic
interactions. So away from the critical point �− ∼ 1 fm.

In the Statistical Bootstrap Model (SBM) the strong inter-
actions are assumed to be simulated by the presence of
hadronic clusters [15,16]. The hadronic states of this clus-
ter are described by exponentially rising density of states.
The thermodynamic properties of SBM can be derived using
following partition function [57]:

lnZH (T, V, zb) = AV zb

(
T

2π

)3/2

×
∫ ∞

M
dm ma+3/2e

(
1
Tc

− 1
T

)
m
. (62)

where, zb = eμb/T is the fugacity. The exponent plays a very
important role in determining the thermodynamic behaviour
of hadronic matter near the critical point. It can be shown that
for a < − 7

2 SBM shows critical behaviour [17]. It turns out
that the energy density and entropy remains finite as T →
Tc whereas all the higher order derivatives show singular
behaviour. In fact, it is straightforward to extract the power
law behaviour given by Eqs. (58)–(60).

Approaching the critical point the functional dependence
of transport coefficients on various thermodynamic quanti-
ties can be obtained by dimensional analysis. We assume
following ansatz (in the natural units) for the shear viscosity
(η), bulk viscosity (ζ ) [58] and thermal conductivity (κ):

η = T

ξ2Cs
F (η)

(
C̃ p

C̃n

)
, (63)

ζ = hξCs F (ζ )

(
C̃ p

C̃n

)
, (64)

κ = hξT 2Cs

ñB
F (κ)

(
C̃ p

C̃n

)
. (65)

Substituting power law behaviour of the thermodynamic
quantities given by Eqs. (58)–(61) in Eq. (63) one can obtain
the singular behaviour of the transport coefficients. The lead-
ing term is

η ∼ |t |−γ̂+2ν̂+α̂/2, (66)

ζ ∼ |t |−γ̂−ν̂+3α̂/2, (67)

κ ∼ |t |−β̂−γ̂−ν̂+3α̂/2. (68)

Note that not all the critical exponents are independent but
are related via. scaling laws:

2 − α̂ = ν̂d (69)

α̂ + 2β̂ + γ̂ = 2, (70)

where d is the number of space dimensions. For the choice
a = −4 [57,59] we get the critical exponents of SBM as:

α̂ = 1

2
, β̂ = 0, γ̂ = 3

2
, ν̂ = 1

2
. (71)
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Substituting these critical exponents in (66)–(68), we get

η = η− |t |− 1
4 ,

ζ = ζ− |t |− 5
4 ,

κ = κ− |t |− 5
4 , (72)

where η−, ζ−, κ− are constants. Thus the bulk viscosity and
thermal conductivity dominates the dissipation near the crit-
ical point. The thermal diffusivity behaves near the critical
point as

DT ∼ κ−
K−T0

|t |β̂−ν̂+3α̂/2. (73)

Thus,

DT ∼ |t | 1
4 , (74)

where we have substituted the critical exponents (71) of SBM
mode. This shows that the width of Rayleigh peak becomes
narrow as the QCD critical point is approached from the
hadronic side. Similarly, the the leading order behaviour of
the sound attenuation coefficient is:

� ∼ K1κ−|t |−β̂−γ̂−ν̂+ 5
2 α̂ + K2ζ−|t |−γ̂−ν̂+ 3

2 α̂

+K3η−|t |−γ̂+2ν̂+ α̂
2 , (75)

where K1, K2, K3 contains quantities which are not singular.
Substituting the critical exponents of SBM we see that the
leading order behaviour of the singularity near the critical
point is dominated by the bulk viscosity while the thermal
conductivity contributes at sub-leading order.

� ∼ ζ−|t |− 5
4 + κ−|t |− 3

4 . (76)

Thus the width of Brillouin peaks must diverge near at
the critical point. However, the strengths of the Rayleigh and
Brillouin peaks is governed by the ratio of two specific heats

γ = C̃P

C̃n
which behave in the limit T → Tc as

γ ∼ |t |−γ̂+α̂ . (77)

In the limit T → Tc, γ → ∞ and the density correlation
behaves as,

Cnbnb(k, ω)

〈(δn(k, t = 0))2〉 = 2�T k2

ω2 + �2
T k

4
, ]. (78)

Thus the strength of the Brillouin peaks is attenuated and
only the Rayleigh peak governs the density correlations near
the critical point.

Figure 1 shows the density correlation function near the
QCD critical point. Red curve represents the results of [49]
in which the correlation function has been estimated based
on the critical exponents of 3-d Ising model and the singular
behaviour of the transport coefficients based on arguments of
Ref. [60]. The blue curve represents the results corresponding
to the critical exponents of SBM and the singular behaviour
of the transport coefficients given by Eqs. (66)–(68). We note
that there is quantitative difference but the qualitative sim-
ilarity between results obtained using critical exponents of
SBM and that of critical exponents of 3-d Ising model. It
has been argued that near the QCD critical point, the bulk
viscosity may show singular behaviour as ζ ∼ |t |−aζ , where
aζ ∼ 1.8 [60]. Similarly, the thermal conductivity may show
singular behaviour κ ∼ |t |−aκ , where aκ ∼ 0.63. Thus, the
singular part of Rayleigh peak may behaves as,

�T ∼ |t |γ̂−ακ

With the critical exponents of 3-d Ising model: γ̂ = 1.2
and ακ = 0.63, we get �T ∼ |t |0.57. In our case, we have

�T ∼ |t |β̂−ν̂+3/2α̂

Using critical exponents of SBM, we get �T ∼ |t |0.25.
This quantitative difference and qualitative similarity can
also be seen in Brillouin peak. Using Ising critical exponents

(a)
(b)

Fig. 1 Correlation function near the QCD critical point for k = 0.1 fm−1. We choose two representative vales of t = T−Tc
Tc

, namely t = 0.5 (left
panel) and t = 0.1 (right panel). Red curve represents the results of Ref. [49] whereas the blue curve represents the results of this work
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of 3-d Ising model we get �S ∼ |t |−aζ = |t |−1.8, whereas
in our case �S ∼ |t |−1.25. This qualitative similarity and
quantitative differences could be attributed to the value of
specific heat critical exponent α̂. In case of universality class
of 3-d Ising model α̂ ∼ 0.11 which is positive, and it is
largely responsible for the rapid rise (in fact, divergence) of
the bulk viscosity near the QCD critical point. In case of
SBM, α = 1

2 which is again positive. So it turns out that the
qualitative behaviour of the bulk viscosity and hence the cor-
relation function is not different from that of 3-d Ising model
universality class.

Let us discuss the implications of these results in the search
for CP in heavy-ion collision experiments. Near the critical
point the width and the strength of these modes depends
on the singularities in static thermodynamic quantities and
the transport coefficients. The critical exponents calculated
within ambit of SBM are given by Eq. (71), while the dynam-
ical critical exponents can be read out from (72). We note that
both the bulk viscosity (ζ ) and thermal conductivity (κ) rise
very rapidly near the critical point. Such rapid rise in the bulk
viscosity has been estimated in previous studies [57,58,61].
This rapid rise in both ζ and κ render divergence in the width
of the Brillouin peaks. However, as we have seen above, the
strengths of the Rayleigh and Brillouin peaks is governed

by the ratio of two specific heats γ = C̃P

C̃n
which diverge as

T → Tc. Thus, the acoustic mode loose its strength near the
critical point and the divergent behaviour of the bulk viscos-
ity may not be observed in the density correlations.

One of the phenomenological consequence of the disap-
pearance of sound mode near the critical point may be seen
in the three-particle correlation due to the Mach-cone for-
mation in the HIC. Such three particle correlation has been
observed in the RHIC experiment [62–65]. If such three par-
ticle correlations are indeed due to Mach-cone formation,
then the suppression or its disappearance altogether would
signal the existence of the critical point. In this context a study
carried out in Ref. [30] is very interesting. This this work,
authors have studied the effect of critical singularity in the
thermal conductivity on two-particle correlation in the boost-
invariant hydrodynamical model. It is found that the growth
of the thermal conductivity near the critical point implies the
existence of two-particle correlations over 2 units of rapid-
ity. The strength of this correlation increases as the trajectory
pass close to the critical point. One can carry out similar stud-
ies with the three-particle correlations related to Mach-cone
formation in which the critical singularities in both the bulk
viscosity and thermal conductivity are included the hydro-
dynamical simulations.

The critical singularities observed in the transport coef-
ficients have some other phenomenological consequences
as well. In Ref. [66], authors have discussed the effect of
enhanced bulk viscosity near the critical point on the bulk

hydrodynamical evolution of the matter created in heavy-
ion collision. They incorporated critical expected behaviour
of the bulk viscosity of the dynamical universality class of
model H, namely ζ ∼ |t |−2, within non-boost-invariant, lon-
gitudinally expanding 1 + 1 dimensional causal relativistic
hydrodynamical evolution at non-zero baryon density. They
found, at forward rapidity, a sizeable increase in the quanti-
ties, dNB/dY and dNch/dY , where NB, Nch and Y respec-
tively corresponds to the net-baryon multiplicity, charged
particle multiplicity and momentum rapidity. In our case,
since ζ ∼ |t |−5/4 we may expect the similar conclusion.
However, the deviation from non-CP behaviour won’t be as
sizeable as that of observed in [66]. Since the thermal con-
ductivity also behaves, in our model, as κ ∼ |t |−5/4, we
expect that dNB/dY and dNch/dY will be strongly affected.
Rapid growth of bulk viscosity will also leads to softening of
effective pressure which, in term, can lead to non-monotonic
behaviour in the slope of the directed flow of net protons or
that in the triangular flow.

5 Summary and conclusion

To summarise, we have calculated the density correlations
in a baryon rich relativistic fluid from Mori–Zwanzig–
Nakajima projection operator formalism. The hydrodynamic
form of density correlation can be obtained, with a judicious
choice of slow variables, using this formalism. The spectral
function of density correlation is found to consist of usual
three peaks: two acoustic modes at ω = ±Csk and one ther-
mal mode at ω = 0. The width of the Rayleigh peak is found
to be the same as that in the non-relativistic case, whereas the
width of Brillouin peak consist of extra relativistic correction
which is negative and hence reduces its width.

We further discussed the behaviour of Rayleigh and Bril-
louin peaks near the critical point. We extracted the singu-
lar behaviour of thermodynamic quantities using statistical
bootstrap model. The singular behaviour of transport coeffi-
cient, shear and bulk viscosity as well as thermal conductiv-
ity can be extracted using the ansatz for this quantities given
by Eq. (63). We found that the bulk viscosity contributes to

the sound attenuation at leading order ∼ |t |− 5
4 while the ther-

mal conductivity contribute at sub-leading order ∼ |t |− 3
4 . On

the other hand, only the thermal conductivity contributes at

leading order ∼ |t | 1
4 to the thermal diffusivity. We noted that

the acoustic mode loose its strength near the critical point
and the divergent behaviour of the bulk viscosity may not
be observed in the density correlations. However, it can be
inferred from the average transverse momenta and multiplic-
ities of produced particles in heavy ion collisions.

It is important to note that SBM is just an effective model
of QCD. The critical exponents extracted within ambit of
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SBM are different from that of 3-d Ising model. One of the
reason for this discrepancy would be that SBM does not take
into account effective glueball degrees of freedom. It would
be interesting to explore this extension of SBM and study the
critical properties within its ambit. Further, we have com-
pletely ignored the non-linear terms in Eqs. (31)–(33) which
plays an important role in determining the dynamical crit-
ical exponents [67]. Inclusion of such terms would be an
interesting improvement in our calculations. Work in these
directions is under progress and will appear somewhere else.

In conclusion, density correlations may not be suitable
observable to search for the QCD critical point. However,
as noted in Ref. [49] suppression or disappearance of Mach
cone, which is related to the existence of sound mode in
a fluid, may indicate that system have passed close to the
critical point.
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Appendix A: Calculation of the memory matrices

We shall briefly discuss the calculation of the memory matri-
ces. The details can be found in Refs. [38,47].

A.1: Streaming matrix

The streaming matrix can be written as,

iK(s) ≡
⎡
⎢⎣
K (s),n
n K (s),e

n K (s),p
n

K (s),n
ε K (s),ε

ε K (s),p
ε

K (s),n
p K (s),ε

p K (s),p
p

⎤
⎥⎦ (A1)

where p = h0v. From Eq. (18) we can write,

i K (s)nb
nb (k) = (iLδn̂b(k), Ânb (0))

= (iLδn̂b(k), Âl(0))glnb(k)

= (iLδn̂b(k), δn̂b(0))gnbnb(k)

+(iLδn̂b(k), δε̂(0))gεnb(k)

+(iLδn̂b(k), δp̂(0))gpnb(k)

= −ikl
[
g jlbnb

(k)gnbnb (k) + g jlbε
(k)gεnb(k)

+g jlb p
j (k)gp j nb (k)

]
(A2)

where jb is the baryon current. If we assume that the equi-
librium density matrix ρ̂0 is time-translational invariant then
δn̂b and δε̂ are even functions of time while δ p̂i and δ ĵ ib are
odd. Hence the time reversal symmetry implies that δn̂b and
δT̂ do not mix with δ p̂i and δ ĵ ib. Thus Eq. (A2) implies that

i K (s)nb
nb = 0. This further implies that i K (s)ε

nb also vanishes

and only i K (s)p
nb (k) survives.

i K (s)pi
nb (k) = (iLδn̂b(k), δv̂l(0))gpl pi (k)

= −ik j (δ ĵ jb (k), δv̂l(0))gpl pi (k)

= −ik j g
j jb p

l (k)gpl pi (k) (A3)

In the low energy limit k → 0 we can expand gmn(k)

around k = 0 as a power series as,

gmn(k) = gmn(0) + k · ∇kgmn(k) + O(k2) (A4)

At linear order only the leading term gmn(0) contributes
in (A4). Further, gmn(0) satisfy following relations []:

gpi p j (0) =
∫

d3x(T̂ 0i (0, x), T̂ 0 j (0, 0)) = δi j T0h0 (A5)

g
pi j jb

(0) =
∫

d3x(T̂ 0i (0, x), ĵ jb (0, 0)) = δi j T0n0 (A6)

Using Eqs. (A5) and (A6), Eq. (A3) reduces to

i K (s)pi
nb (k) 
 −iki T0n0 (A7)

We can similarly calculate i K (s)m
ε and i K (s)m

vi
. The stream-

ing matrix is finally written as

iK(s) ≡
⎡
⎣ 0 0 −iki n0T0

0 0 −iki

−iki n0T0 −iki n0T0 0

⎤
⎦ (A8)

A.2: Dynamic memory matrix

The dynamic memory matrix can be written as,

iK(d) ≡
⎡
⎢⎣
K (d),n
n K (d),ε

n K (d),p
n

K (d),n
ε K (d),ε

ε K (d),p
ε

K (d),n
p K (d),ε

p K (d),p
p

⎤
⎥⎦ (A9)

From Eq. (19) we write

K (d)m
nb (t − s,k)

≡ −θ(t − s)
(
iL̂eitQ̂L̂ Q̂ iL̂δn̂b(0,k), Âm(s, 0)

)
(A10)
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In this case, since δp̂ is a slow variable there will not be
dissipative terms in the generalized Langevin equation for
δε̂. Hence we get iL̂δε̂ = −k · δp̂. Further, since δp̂ is a
slow variable, its orthogonal projection should vanish. Thus
Q̂ iL̂δε̂ = 0 and hence K (d)ε

nb vanishes. Further, K (d)p
nb 


O(k3), which we neglect. Thus, only only K (d)nb
nb survives.

It can be easily calculated in the Markov approximation. The
final expression is written as:

K (d)nb
nb (k) 
 k2

(
n0T0

h0

)2

κ (A11)

where we have define the thermal conductivity coefficient as,

κ =
(

h0

n0T0

)2 ∫ ∞

0
dt

∫
d3z

(
δjq(t, x), δjq(0, 0)

)
(A12)

with the heat current defined as δjq ≡ δjb − n0
h0

δp. One can
similarly carry out the calculation of other elements in the
iK(d). The final result is:

iK(d) ≡
⎡
⎣

k2κ̃ 0 O(k3)

K (d),n
ε K (d),ε

ε K (d),p
ε

O(k3) 0 T0ν̃ki k j + T0ηk2δi j

⎤
⎦ (A13)

where κ̃ =
(

n0T0
h0

)2

κ and ν̃ =
(

ζ + 1
3η

)
. κ is the ther-

mal conductivity, η is the shear viscosity and ζ is the bulk
viscosity.
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