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Abstract Three singlet new Higgs superfields and right-
handed neutrinos are added to MSSM to obtain U (1)XSSM
model. Its local gauge group is SU (3)C×SU (2)L×U (1)Y ×
U (1)X . In the framework of U (1)XSSM, we study muon
anomalous magnetic moment and lepton flavor violating
decays l j → liγ ( j = 2, 3; i = 1, 2) within the mass inser-
tion approximation (MIA). Through the MIA method, we can
find the parameters that directly affect the analytical result
of the lepton flavor violating decays l j → liγ , which make
our work more convenient. We want to provide a set of sim-
ple analytic formulas for the form factors and the associated
effective vertices, that may be very useful for future phe-
nomenological studies of the lepton flavor violating decays.
According to the accuracy of the numerical results which the
influence of different sensitive parameters, we come to the
conclusion that the non-diagonal elements which correspond
to the generations of the initial lepton and final lepton are
main sensitive parameters and lepton flavor violation (LFV)
sources. This work can provide a clear signal of new physics
(NP).

1 Introduction

Lepton has unitary matrix similar to Cabibbo–Kobayashi–
Maskawa (CKM) mixed matrix. The breaking theory of
electric weak symmetry and neutrino oscillation experiment
show that lepton flavor violation (LFV) exists both theoret-
ically and experimentally [1–3]. The standard model (SM)
is already a mature theory. However, the lepton number is
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conserved in the SM, so there is no LFV process in the SM
[4]. Through research, it is necessary to expand the SM. Any
sign of LFV can be regarded as evidence of the existence of
new physics (NP) [5].

Physicists have extended SM and obtained a large number
of extended models, among which the minimum supersym-
metric standard model (MSSM) is the most concerned model.
However, it is gradually found that MSSM also has problems:
μ problem [6] and zero mass neutrinos [7]. To solve these
problems, we pay attention to the U(1) expansions of MSSM.
We extend the MSSM withU (1)X gauge group, whose sym-
metry group is SU (3)C × SU (2)L ×U (1)Y ×U (1)X [8–10].
It adds three Higgs singlet superfields and right-handed neu-
trino superfields beyond MSSM [11]. There are five neutral
CP-even Higgs component fields in the model, which come
from two Higgs doublets and three Higgs singlets respec-
tively. Therefore, the mass mixing matrix is 5 × 5, and the
125.1 GeV Higgs particle [12,13] corresponds to the lightest
mass eigenstate.

To improve the corrections to LFV processes of l j → liγ ,
people discuss different SM extended models [14], for exam-
ple minimal R-symmetric supersymmetric standard model
[15], MSSM extension with gauged baryon and lepton num-
bers [16], SM extension with a hiddenU (1)X gauged symme-
try [17] and lepton numbers and supersymmetric low-scale
seesaw models [18]. It is worth noting that in our previ-
ous work, we have studied lepton flavor violating decays
l j → liγ in the U (1)XSSM model [19]. The above works
and most of the research on LFV are studied with the mass
eigenstate method. Using this method to find sensitive param-
eters is often not intuitive and clear enough, which depends
on the mass eigenstates of the particles and rotation matrixes.
It will lead us to pay too much attention to many unimportant
parameters. Now we use a novel calculation method called
as mass insertion approximation (MIA) [20–23], which uses
the electroweak interaction eigenstate and treats perturba-
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tively the mass insertions changing slepton flavor. By means
of mass insertions inside the propagators of the electroweak
interaction sleptons eigenstates, at the analytical level, we
can find many parameters that have direct impact on LFV. It
is worth noting that these parameters are considered between
all possible flavor blends among SUSY partner of leptons,
in which their particular origin has no assumption and is
independent of the model [21]. In addition, the MIA method
has been applied to other works related to LFV, including
the h, H, A → τμ decays induced from SUSY loops [21],
effective lepton flavor violating H�i� j vertex from right-
handed neutrinos [22], one-loop effective LFV Zlklm vertex
from heavy neutrinos [23] and so on. This method provides
very simple and intuitive analytical formula, and is also clear
about the changes of the main parameters affecting lepton
taste destruction, which provides a new idea for other work
of LFV in the future.

In the process of LFV, because the mass of τ lepton is
much greater than μ and e, there are more LFV decay chan-
nels [24]. The decay processes of l j → liγ are the most
interesting. This work is to study the LFV of the l j → liγ
processes under the U (1)XSSM model. The effects of dif-
ferent reasonable parameter spaces on the branching ratio
Br(l j → liγ ) are compared. The latest upper limits on the
LFV branching ratio of μ → eγ , τ → μγ and τ → eγ at
90% confidence level (CL) [25] are

Br(μ → eγ ) < 4.2 × 10−13, Br(τ → μγ ) < 4.4 × 10−8,

Br(τ → eγ ) < 3.3 × 10−8. (1)

The paper is organized as follows. In Sect. 2, we mainly
introduce the U (1)XSSM including its superpotential and
the general soft breaking terms. In Sect. 3, we give analytic
expressions for muon anomalous magnetic moment and the
branching ratios of l j → liγ decays in the U (1)XSSM. In
Sect. 4, we give the numerical analysis, and the summary is
given in Sect. 5.

2 The U(1)XSSM

U (1)XSSM is the U(1) extension of MSSM, whose local
gauge group is SU (3)C ⊗ SU (2)L ⊗ U (1)Y ⊗ U (1)X
[7,20,26]. On the basis of MSSM, U (1)XSSM has new
superfields such as three Higgs singlets η̂, ˆ̄η, Ŝ and right-
handed neutrinos ν̂i . Through the seesaw mechanism, light
neutrinos obtain tiny masses at the tree level. The neutral
CP-even parts of Hu, Hd , η, η̄ and S mix together and form
a 5 × 5 mass squared matrix, whose lightest mass eigen-
value corresponds to the lightest CP-even Higgs. The parti-
cle content and charge assignments for U (1)XSSM can be
found in our previous work [7]. To get 125.1 GeV Higgs mass
[27,28], the loop corrections should be taken into account.

The sneutrinos are disparted into CP-even sneutrinos and
CP-odd sneutrinos, and their mass squared matrixes are both
extended to 6 × 6.

In U (1)XSSM, the concrete form of the superpotential is:

W = lW Ŝ + μĤu Ĥd + MS ŜŜ − Ydd̂ Q̂ Ĥd − YeêL̂ Ĥd

+λH Ŝ Ĥu Ĥd + λC Ŝη̂ ˆ̄η + κ

3
Ŝ Ŝ Ŝ

+Yuû Q̂ Ĥu + YX ν̂ ˆ̄ην̂ + Yν ν̂ L̂ Ĥu . (2)

We collect the explicit forms of two Higgs doublets and three
Higgs singlets here

Hu =
(

H+
u

1√
2

(
vu + H0

u + i P0
u

))
,

Hd =
(

1√
2

(
vd + H0

d + i P0
d

)
H−
d

)
,

η = 1√
2

(
vη + φ0

η + i P0
η

)
,

η̄ = 1√
2

(
vη̄ + φ0

η̄ + i P0
η̄

)
,

S = 1√
2

(
vS + φ0

S + i P0
S

)
. (3)

The vacuum expectation values(VEVs) of the Higgs super-
fields Hu , Hd , η, η̄ and S are denoted by vu, vd , vη, vη̄ and
vS respectively. Two angles are defined as tan β = vu/vd and
tan βη = vη̄/vη.

The soft SUSY breaking terms of this model are shown as

Lso f t = LMSSM
sof t − BSS

2 − LSS

−Tκ

3
S3 − TλC Sηη̄ + εi j TλH SH

i
d H

j
u

−T I J
X η̄ν̃∗I

R ν̃∗J
R + εi j T

I J
ν Hi

u ν̃
I∗
R L̃ J

j − m2
η|η|2 − m2

η̄|η̄|2 − m2
S S

2

−(m2
ν̃R

)I J ν̃ I∗
R ν̃ J

R − 1

2

(
MXλ2

X̃
+ 2MBB′λB̃λX̃

)
+ h.c. (4)

We have proven that U (1)XSSM is anomaly free in our
previous work [26]. Two Abelian groups U (1)Y and U (1)X
produce a new effect called as the gauge kinetic mixing in
the U (1)XSSM, which is MSSM never before.

In general, the covariant derivatives of U (1)XSSM can be
written as [29–32]

Dμ = ∂μ − i
(
Y, X

) (
gY , g′

Y X

g′
XY , g′

X

) (
A′Y

μ

A′X
μ

)
, (5)

with A′Y
μ and A′X

μ representing the gauge fields ofU (1)Y and
U (1)X respectively.

Under the condition that the two Abelian gauge groups
are unbroken, we use the rotation matrix R [29,31,32] to
perform a change of the basis
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Dμ =∂μ − i
(
YY , Y X

) (
gY , g′

Y X

g′
XY , g′

X

)
RT R

(
A′Y

μ

A′X
μ

)
,

(6)

with the redefinitions(
gY , g′

Y X

g′
XY , g′

X

)
RT =

(
g1, gY X

0, gX

)
and

R

(
A′Y

μ

A′X
μ

)
=

(
AY

μ

AX
μ

)
. (7)

Then the covariant derivatives of U (1)XSSM are changed as

Dμ = ∂μ − i
(
YY , Y X

) (
g1, gY X

0, gX

) (
AY

μ

AX
μ

)
. (8)

At the tree level, three neutral gauge bosons AX
μ , AY

μ and
V 3

μ mix together, whose mass matrix is shown in the basis
(AY

μ, V 3
μ, AX

μ) [20]

⎛
⎜⎝

1
8g

2
1v2 − 1

8g1g2v
2 1

8g1(gY X + gX )v2

− 1
8g1g2v

2 1
8g

2
2v2 − 1

8g2gY Xv2

1
8g1(gY X + gX )v2 − 1

8g2(gY X + gX )v2 1
8 (gY X + gX )2v2 + 1

8g
2
Xξ2

⎞
⎟⎠ , (9)

with v2 = v2
u + v2

d and ξ2 = v2
η + v2

η̄ .
We use two mixing angles θW and θ ′

W to get mass eigen-
values of the matrix in Eq. (9). θW is the Weinberg angle
and the new mixing angle θ ′

W is defined from the following
formula

sin2 θ ′
W = 1

2
− [(gY X + gX )2 − g2

1 − g2
2]v2 + 4g2

Xξ2

2
√

[(gY X + gX )2 + g2
1 + g2

2]2v4 + 8g2
X [(gY X + gX )2 − g2

1 − g2
2]v2ξ2 + 16g4

Xξ4
. (10)

It appears in the couplings involving Z and Z ′. The exact
eigenvalues of Eq. (9) are deduced [20]

m2
γ = 0,

m2
Z ,Z ′ = 1

8

(
[g2

1 + g2
2 + (gY X + gX )2]v2 + 4g2

Xξ2

∓
√

[g2
1 + g2

2 + (gY X + gX )2]2v4 + 8[(gY X + gX )2 − g2
1 − g2

2]g2
Xv2ξ2 + 16g4

Xξ4
)
. (11)

The used mass matrixes can be found in the work [7,19].
Here, we show some needed couplings in this model. We
deduce the vertexes of l̄i − χ−

j − ν̃R
k (ν̃ I

k )

Ll̄χ−ν̃R = 1√
2
l̄i
{
ν̃R
L Y

i
l PL H̃

−
1 − g2ν̃

R
L PRW̃

−}
,

Ll̄χ−ν̃ I = i√
2
l̄i
{
ν̃ I
LY

i
l PL H̃

−
1 − g2ν̃

I
L PRW̃

−}
. (12)

We deduce the vertex couplings of neutralino-lepton-
slepton

L
χ̄0l L̃ =

{( 1√
2
(g1λB̃ + g2W̃

0 + gY XλX̃ )L̃ L − H̃0
d Y

j
l L̃

R
)
PL

−
[ 1√

2

(
2g1λB̃ + (2gY X + gX )λX̃

)
L̃ R + H̃0

d Y
j
l L̃

L
]
PR

}
l j .

(13)

3 Formulation

In this section, we study the LFV of the l j → liγ ( j =
2, 3; i = 1, 2) and muon anomalous magnetic moment under
the U (1)XSSM model [16] with the MIA. The simplified
form is discussed.

3.1 Using MIA to calculate l j → liγ in U (1)XSSM model

If the external lepton is on shell, the amplitude of l j → liγ
is

M = eεμūi (p + q)[q2γμ(CL
1 PL + CR

1 PR)

+ml j iσμνq
ν(CL

2 PL + CR
2 PR)]u j (p), (14)

where p is the injecting lepton momentum, q is the photon
momentum, andml j is the mass of the j th generation charged
lepton. ūi (p) and u j (p) are the wave functions for the exter-
nal leptons. The final Wilson coefficients CL

1 , CR
1 , CL

2 , CR
2

are obtained from the sum of these diagrams’ amplitudes.
The Feynman diagrams of l j → liγ under theU (1)XSSM

model are obtained by MIA [33] in Fig. 1. The sneutrinos are
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Fig. 1 Feynman diagrams for
l j → liγ in the MIA
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li

disparted into CP-even sneutrinos ν̃R and CP-odd sneutrinos
ν̃ I . After our analysis, in Fig. 1f since right-handed sneutrinos
are strongly depressed by Yν , the situation of right-handed
sneutrinos here is neglected. In other words, there are only
two cases of left-handed CP-even sneutrinos ν̃R

L and left-
handed CP-odd sneutrinos ν̃ I

L in Fig. 1f. In order to more
directly express the influencing factors of LFV of l j → liγ ,

we use C f
2 = CL f

2 = CR f
2 ( f = 1 · · · 6) to express the one-

loop corrections by MIA.

1. The one-loop contributions from B̃(λX̃ )-L̃ L
j -L̃ R

i .

C1
2(L̃ L

j , L̃
R
i , B̃) = −1

2ml j �
3 �LR

i j g2
1
√
x1[I1(xL̃L

j
, x1)

+I1(xL̃ R
i
, x1) − 2I2(xL̃L

j
, x1) − I2(xL̃ R

i
, x1)], (15)

C1
2(L̃ L

j , L̃
R
i , λX̃ ) = −1

2ml j�
3 �LR

i j (g2
Y X

+1

2
gY X gX )

√
xλX̃

[I1(xL̃L
j
, xλX̃

) + I1(xL̃ R
i
, xλX̃

)

−2I2(xL̃L
j
, xλX̃

) − I2(xL̃ R
i
, xλX̃

)], (16)

here, m is the particle mass, with x = m2

�2 . The functions
I1(x, y) and I2(x, y) are

I1(x, y)

= 1

32π2

{
1

x(x − y)
− 2 + 2 log x

(x − y)2 + 2x log x − 2y log y

(x − y)3

}
,

(17)
I2(x, y)

= 1

96π2

{
2

x(x − y)
− 9 + 6 log x

(x − y)2 + 6x + 12x log x

(x − y)3

−6x2 log x − 6y2 log y

(x − y)4

}
. (18)

2. The one-loop contributions from B̃(λX̃ )-H̃0-L̃ R
j -L̃ R

i .

C2
2 (L̃ R

j , L̃
R
i , B̃, H̃0)

= 1

2�4 g
2
1 tan β

√
x1xμ′

H
�RR

i j [2I4(xL̃ R
i
, x1, xμ′

H
)

+3I3(xL̃ R
j
, x1, xμ′

H
)], (19)

C2
2 (L̃ R

j , L̃
R
i , λX̃ , H̃0)

= 1

2�4

1

2
(2gY X + gX )(gY X + gX ) tan β

√
xλX̃

xμ′
H
�RR

i j

×[2I4(xL̃ R
i
, xλX̃

, xμ′
H
) + 3I3(xL̃ R

j
, xλX̃

, xμ′
H
)], (20)

here μ′
H = λH vS√

2
+μ and xμ′

H
= μ′2

H
�2 . The specific forms

of I3(x, y, z) and I4(x, y, z) are

123



Eur. Phys. J. C (2022) 82 :639 Page 5 of 15 639

I3(x, y, z) = 1

32π2

{ 6x + 12x log x

(x − y)(x − z)3

+ 6x + 12x log x

(x − y)2(x − z)2 + 6x + 12x log x

(x − y)3(x − z)

− 9 + 6 log x

(x − y)(x − z)2 − 9 + 6 log x

(x − y)2(x − z)

+ 2

x(x − y)(x − z)

+ 6x2 log x

(x − y)(x − z)4 + 6x2 log x

(x − y)4(x − z)

− 6x2 log x

(x − y)2(x − z)3

− 6x2 log x

(x − y)3(x − z)2 + 6y2 log y

(x − y)4(y − z)

− 6z2 log z

(y − z)(x − z)4

}
,

(21)

I4(x, y, z) = 1

32π2

{
− 2 + 2 log x

(x − y)(x − z)2

− 2 + 2 log x

(x − y)2(x − z)
+ 1

x(x − y)(x − z)

+ 2x log x

(x − y)(x − z)3 + 2x log x

(x − y)2(x − z)2

+ 2x log x

(x − y)3(x − z)

− 2y log y

(x − y)3(y − z)
+ 2z log z

(x − z)3(y − z)

}
. (22)

3. The one-loop contributions from B̃(λX̃ )-H̃0-L̃ L
j -L̃ L

i .

C3
2 (L̃ L

j , L̃
L
i , H̃0, B̃)

= −mli

4ml j �
4 g

2
1 tan β

√
x1xμ′

H
�LL

i j [2I4(xL̃L
i
, x1, xμ′

H
)

+3I3(xL̃L
j
, x1, xμ′

H
)], (23)

C3
2 (L̃ L

j , L̃
L
i , H̃0, λX̃ )

= −mli

4ml j �
4 gY X (gY X + gX ) tan β

√
xλX̃

xμ′
H
�LL

i j

×[2I4(xL̃L
i
, xλX̃

, xμ′
H
) + 3I3(xL̃L

j
, xλX̃

, xμ′
H
)]. (24)

4. The one-loop contributions from W̃ 0-H̃0-L̃ L
j -L̃ L

i .

C4
2(L̃ L

j , L̃
L
i , H̃0, W̃ 0)

= mli

4ml j �
4 g

2
2 tan β

√
x2xμ′

H
�LL

i j

×[2I4(xL̃L
i
, x2, xμ′

H
) + 3I3(xL̃L

j
, x2, xμ′

H
)]. (25)

5. The one-loop contributions from B̃ − λX̃ − L̃ L
j − L̃ R

i .

C5
2 (L̃ L

j , L̃
R
i , B̃, λX̃ )

= −1

2ml j �
3 �LR

i j g1gY X
√
xBB′ x1xλX̃

[I4(xL̃L
j
, x1, xλX̃

)

+I4(xL̃ R
i
, x1, xλX̃

) + I5(xL̃L
j
, x1, xλX̃

) + 2I5(xL̃ R
i
, x1, xλX̃

)]

+ 1

2ml j �
3 �LR

i j g1gY X
√
xBB′ [I6(xL̃L

j
, x1, xλX̃

)

+I6(xL̃ R
i
, x1, xλX̃

) + I7(xL̃L
j
, x1, xλX̃

) + 2I7(xL̃ R
i
, x1, xλX̃

)].
(26)

We show the one-loop functions I5(x, y, z) and I6(x, y, z)
in the following form

I5(x, y, z) = −1

32π2

{ 3 + 2 log x

(x − y)(x − z)

− 2x + 4x log x

(x − y)(x − z)2 − 2x + 4x log x

(x − y)2(x − z)

+ 2x2 log x

(x − y)(x − z)3 + 2x2 log x

(x − y)2(x − z)2 + 2x2 log x

(x − y)3(x − z)

− 2y2 log y

(x − y)3(y − z)
+ 2z2 log z

(x − z)3(y − z)

}
, (27)

I6(x, y, z)= 1

96π2

{ 6x2(3x2+y2+z2+yz−3xy−3xz)(1+3 log x)

(x−y)3(x−z)3

− (6x2 − 3xy − 3xz)(5 + 6 log x)

(x − y)2(x − z)2 + 6y3 log y − 6x3 log x

(x − y)4(y − z)

+ 11 + 6 log x

(x − y)(x − z)
+ 6x3 log x − 6z3 log z

(x − z)4(y − z)

}
. (28)

6. The one-loop contributions from chargino and left-
handed CP-even(odd) sneutrino.

C6
2 (ν̃ I

L j , ν̃
I
Li , H̃

±, W̃±)

= 1

2�4 g
2
2�LL

i j tan β{(√x2xμ′
H

+ xμ′
H
)I8(xμ′

H
, x2, xν̃ I

Li
)

+(
√
x2xμ′

H
+ x2)I8(x2, xμ′

H
, xν̃ I

L j
)

+√
x2xμ′

H
I9(x2, xμ′

H
, xν̃ I

Li
) − I10(x2, xμ′

H
, xν̃ I

L j
)},

(29)
C6

2 (ν̃R
L j , ν̃

R
Li , H̃

±, W̃±)

= 1

2�4 g
2
2�LL

i j tan β{(√x2xμ′
H

+ xμ′
H
)I8(xμ′

H
, x2, xν̃R

Li
)

+(
√
x2xμ′

H
+ x2)I8(x2, xμ′

H
, xν̃R

L j
)

+√
x2xμ′

H
I9(x2, xμ′

H
, xν̃R

Li
) − I10(x2, xμ′

H
, xν̃R

L j
)}.

(30)

The one-loop functions I7(x, y, z),I8(x, y, z) and
I9(x, y, z) read as

I7(x, y, z) = −1

32π2

[ 8x log x − 4x

(x − y)(x − z)3

− 2x + 4x log x

(x − y)2(x − z)2 + 3 + 2 log x

(x − y)(x − z)2
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+ 2z + 4z log z

(x − z)3(y − z)
+ 4x2 log x

(x − y)2(x − z)3

− 2x2 log x

(x − y)3(x − z)2

+ 2z3 log z

(x − z)3(y − z)2 − 2y2 log y

(x − y)3(y − z)2

+ 6x2 log x

(x − y)(x − z)4 + 6z2 log z

(x − z)4(y − z)

]
, (31)

I8(x, y, z) = −1

16π2

[ x + 2x log x

(x − y)2(x − z)2

+ y + 2y log y

(x − y)2(y − z)2 + z + 2z log z

(x − z)2(y − z)2

− 2x2 log x

(x − y)2(x − z)3 − 2x2 log x

(x − y)3(x − z)2

− 2y2 log y

(x − y)2(y − z)3

+ 2y2 log y

(x − y)3(y − z)2 + 2z2 log z

(x − z)2(y − z)3

+ 2z2 log z

(x − z)3(y − z)2

]
, (32)

I9(x, y, z) = 1

96π2

[ x2 + 3x2 log x

(x − y)(x − z)2

+ 3z2 log z − z2

(x − z)2(y − z)
− 2x3 log x

(x − y)(x − z)3

− 2z3 log z

(x − z)3(y − z)
− x3 log x

(x − y)2(x − z)2

+ y3 log y

(x − y)2(y − z)2 − z3 log z

(x − z)2(y − z)2

]
. (33)

From the above formulas, we can find that C f
2 ( f =

1 · · · 6) are mostly affected by tan β and �AB
i j (A, B =

L , R) and there is a positive correlation. �AB
i j have the

lepton flavor violating sources. It provides a reference
for our subsequent work. Finally, we get the final Wilson
coefficient and decay width of l j → liγ ,

C2 =
i=1···6∑

i

Ci
2, �(l j → liγ )= e2

8π
m5

l j |C2|2. (34)

The branching ratio of l j → liγ is

Br(l j → liγ ) = �(l j → liγ )/�l j . (35)

3.2 Degenerate result

In order to more intuitively analyze the factors affecting
lepton flavor violating processes l j → liγ , we suppose
that all the masses of the superparticles are almost degener-
ate. In other words, we give the one-loop results (chargino-
sneutrino, neutralino-slepton) in the extreme case, where the
masses for superparticles (M1, M2, μ′

H , mL̃L
,mL̃R

, MλX̃
,

MBB′ ) are equal to MSUSY [20]:

M1 = |M2| = μ′
H = mL̃L

= mL̃R
= MλX̃

= |MBB′ | = MSUSY .

The functions Ii (i = 1 · · · 9) and �AB
i j (A, B = L , R) are

much simplified as

I1(1, 1) = −1

96π2 , I2(1, 1) = −1

192π2 , I3(1, 1, 1) = −1

480π2 ,

I4(1, 1, 1) = 1

192π2 , I5(1, 1, 1) = 1

192π2 , I6(1, 1, 1) = −1

320π2 ,

I7(1, 1, 1) = −1

480π2 , I8(1, 1, 1) = −1

480π2 ,

I9(1, 1, 1) = 1

384π2 , (36)

�LR
i j = ml j mL̃L

δLRi j , �LL
i j = m2

L̃ L
δLLi j ,

�RR
i j = m2

L̃ R
δRRi j . (37)

Then, we obtain the much simplified one-loop results of
C2

C2 = (2g2
1sign[M1μ

′
H ] + (2g2

Y X + 3gY X gX + g2
X )sign[MλX̃

μ′
H ]) tan βδRRi j

960π2M2
SUSY

+ (−g2
1sign[M1μ

′
H ] − (g2

Y X + gY X gX )sign[MλX̃
μ′
H ] + g2

2sign[M2μ
′
H ])mli tan βδLLi j

960π2M2
SUSYml j

+ (−4g2
2sign[M2

2 ] − 4g2
2sign[μ′2

H ] − 12g2
2sign[μ′

HM2] + 5g2
2) tan βδLLi j

3840π2M2
SUSY

+ 1

1920π2M2
SUSY

× {(5g2
1sign[M1] + 5(g2

Y X + 1

2
gY X gX )sign[MλX̃

]

−4g1gY Xsign[MBB′M1MλX̃
] + g1gY Xsign[MBB′ ])δLRi j }. (38)
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In the above formula, after simple approximation, we
can find that in the formula of the second line, due to
the existence of

mli
ml j

, the result is 2–3 orders of mag-

nitude smaller than other terms. Therefore, we will not
consider the term with

mli
ml j

here. It can be found that

sign[M1],sign[M2],sign[MλX̃
],sign[μ′

H ] and
sign[MBB′ ] have a certain impact on the correction of
C2. According to 1 > gX > gY X > 0, we assume
sign[M1] = sign[MλX̃

] = sign[μ′
H ] = 1 and

sign[M2] = sign[MBB′ ] = −1, and get the larger value
of C2

C2 = (5g2
1 + 5(g2

Y X + 1
2gY X gX ) + 3g1gY X )δLRi j

1920π2M2
SUSY

+ 3g2
2 tan βδLLi j

1280π2M2
SUSY

+ (2g2
1 + (2g2

Y X + 3gY X gX + g2
X )) tan βδRRi j

960π2M2
SUSY

. (39)

Due to the different orders of magnitude of branching
ratios, we set tan β = 9, MSUSY = 1000 GeV and discuss
in two cases:

1. μ → eγ
We take gY X , gX , δLRi j , δLLi j and δRRi j as variables to study

the effect on Br(μ → eγ ). In Fig. 2, it can be found that
both δLRi j and δRRi j have great influence on Br(μ → eγ ) and

they are all increasing trend. The larger the values of δLRi j

and δRRi j , the easier it is to approach the upper limit of the
experiment.

Similar to the above, in Fig. 3, with the increase of
δLLi j , the value of Br(μ → eγ ) gradually increases, and
when gX increases, Br(μ → eγ ) also increases. When
δLLi j = 9 × 10−4 and gX = 0.65, Br(μ → eγ ) reaches
the experimental upper limit. But in numerical terms, the
effect of δLLi j is greater than gX .

2. τ → μ(e)γ
Since the numerical results of Br(τ → μγ ) and Br(τ →

eγ ) are close and have similar characteristic, we take τ →
μγ as an example. In Fig. 4, when the values of δRRi j and gX
enlarger, the value of Br(τ → μγ ) also increases, which
can well reach the experimental measured value.

In Fig. 5, we analyze δLLi j and gY X on the Br(τ → μγ ).
The value of Br(τ → μγ ) also increases with the increasing
δLLi j and gY X , but the effect from gY X is greater than δLLi j . So
the correction of gY X to Br(τ → μγ ) is greater than that of
δLLi j .

All in all, we can find that gY X , gX , δLRi j , δLLi j and

δRRi j all have direct impact on the correction to Br(μ →
eγ ), Br(τ → μγ ) and Br(τ → eγ ).

3.3 Muon anomalous magnetic moment

The one-loop corrections to muon anomalous magnetic
moment are obtained with MIA. Here, we show the one-loop
contributions from chargino and CP-even(odd) sneutrino as
[20]

aμ(ν̃R
L , H̃±, W̃±)

= g2
2

2
xμ

√
x2xμ′

H
tan β[2I(xμ′

H
, xν̃R

L
, x2) − J (x2, xμ′

H
, xν̃R

L
)

+2I(x2, xν̃R
L
, xμ′

H
) − J (xμ′

H
, x2, xν̃R

L
)], (40)

aμ(ν̃ I
L , H̃±, W̃±)

= g2
2

2
xμ

√
x2xμ′

H
tan β[2I(xμ′

H
, xν̃ I

L
, x2) − J (x2, xμ′

H
, xν̃ I

L
)

+2I(x2, xν̃ I
L
, xμ′

H
) − J (xμ′

H
, x2, xν̃ I

L
)]. (41)

The concrete forms of the one-loop functions I(x, y, z)
and J (x, y, z) are

J (x, y, z) = 1

16π2

[ x(x2 + xz − 2yz) log x

(x − y)2(x − z)3

− y2 log y

(x − y)2(y − z)2 + z[x(z − 2y) + z2] log z

(z − x)3(y − z)2

− x(y − 2z) + yz

(x − y)(x − z)2(y − z)

]
. (42)

I(x, y, z) = 1

16π2

[ 1

(x − z)(z − y)
+ (z2 − xy) log z

(x − z)2(y − z)2

− x log x

(x − y)(x − z)2 + y log y

(x − y)(y − z)2

]
. (43)

The other one-loop contributions are obtained from
B̃(λX̃ )-L̃ L -L̃ R , B̃(λX̃ )-H̃0-L̃ R , B̃(W̃ 0, λX̃ )-H̃0-L̃ L and B̃−
λX̃ − L̃ R − L̃ L . To save space in the text, we do not show
their concrete forms here, which can be found in Ref. [20]. In
our previous work [20], the one-loop contributions of muon
anomalous magnetic moment in the degenerate form are get
with the supposition M1 = M2 = μ′

H = mL̃L
= mL̃R

=
|MλX̃

| = |MBB′ | = MSUSY

a1L
μ � 1

192π2

m2
μ

M2
SUSY

tan β(5g2
2 + g2

1)

+ 1

960π2

m2
μ

M2
SUSY

tan β
[
5(g2

Y X − gY X gX − g2
X )sign[MλX̃

]

+g1(4gY X + gX )sign[MBB′ ]
(

1 − 4sign[MλX̃
]
)]

. (44)

4 Numerical results

In this section, we study the numerical results and consider
the constraints from lepton flavor violating processes l j →
liγ . In addition, we have considered the following conditions:
1. the lightest CP-even Higgs mass mh0 = 125.1 GeV [34,
35]. 2. The latest experimental results of the mass of the heavy
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Fig. 2 Under the condition that
gY X = 0.2, gX = 0.3 and
δLLi j = 1 × 10−3, the effect of

δLRi j and δRRi j on Br(μ → eγ ).
The x-axis representing the
range of δLRi j is from 1 × 10−5

to 1 × 10−2, and the y-axis
represents 1 × 10−5 < δRRi j <

1 × 10−3. The rightmost icon is
the color corresponding to the
value of Br(μ → eγ )

Fig. 3 Under the condition that
gY X = 0.2, δRRi j = 1 × 10−6

and δLRi j = 1 × 10−2, δLLi j
versus gX about Br(μ → eγ ).
The abscissa is
1 × 10−5 < δLLi j < 1 × 10−3

and the ordinate represents
0.2 < gX < 0.7. The icon on
the right shows the value of
Br(μ → eγ )

vector boson Z ′ is MZ ′ > 5.1 TeV [36]. 3. The limits for the
masses of other particles beyond SM. 4. The bound on the
ratio between MZ ′ and its gauge coupling gX is MZ ′/gX ≥ 6
TeV at 99% CL [37,38]. 5. The constraint from LHC data,
tan βη < 1.5 [39]. 6. The scalar lepton masses larger than
700 GeV and chargino masses larger than 1100 GeV [40].

Considering the above constraints in the front paragraph,
we use the following parameters

MS = 2.7 TeV, Tκ = 1.6 TeV, M1 = 1.2 TeV,

M2 = MBL = 1 TeV, gY X = 0.2,

ξ = 17 TeV, YX11 = YX22 = YX33 = 1, gX = 0.3,

κ = 1, λC = −0.08, vS = 4.3 TeV,

MBB′ = 0.4 TeV, TλH = 0.3 TeV, M2
L̃11

= M2
L̃22

= M2
L̃33

= M2
L̃

= 0.5 TeV2, lW = 4 TeV2,

λH = 0.1, Te11 = Te22 = Te33 = 5 TeV, tan βη = 0.8,

Bμ = BS = 1 TeV2, μ = 0.5 TeV,

TλC = −0.1 TeV, M2
Ẽ11

= M2
Ẽ22

= M2
Ẽ33

= M2
Ẽ

= 3.6 TeV2. (45)
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Fig. 4 Under the condition that
δLRi j = 0.1, gY X = 0.2 and

δLLi j = 0.1, the effect of δRRi j and
gX on Br(τ → μγ ). The x-axis
representing the range of δRRi j is

from 10−5 to 1, and the y-axis
represents 0.2 < gX < 0.7. The
rightmost icon is the color
corresponding to the value of
Br(τ → μγ )

Fig. 5 Under the condition that
δRRi j = 0.2, gX = 0.3 and

δLRi j = 0.5, δLLi j versus gY X
about Br(τ → μγ ). The
abscissa is
1 × 10−5 < δLLi j < 0.5 and the
ordinate represents
0.1 < gY X < 0.5. The icon on
the right shows the value of
Br(τ → μγ )

To simplify the numerical research, we use the relations for
the parameters and they vary in the following numerical anal-
ysis

M2
L̃12

= M2
L̃21

, M2
L̃13

= M2
L̃31

, M2
L̃32

= M2
L̃23

,

M2
Ẽ12

= M2
Ẽ21

, M2
Ẽ13

= M2
Ẽ31

, M2
Ẽ23

= M2
Ẽ32

,

Te12 = Te21, Te13 = Te31, Te23 = Te32, tan β. (46)

Without special statement, the non-diagonal elements of the
parameters are supposed as zero.

4.1 Muon anomalous magnetic moment

In this subsection, we study the one-loop g−2 inU (1)XSSM
model by MIA and expect to get some inspiration about using
MIA to find LFV. The new experiment data of muon g − 2
is reported by the workers at Fermilab National Accelerator
Laboratory (FNAL) [41–44]. Combined with the previous
Brookhaven National Laboratory (BNL) E821 result [45],
we get the new averaged experiment value of muon anomaly
is aexp

μ = 116592061(41)×10−11(0.35 ppm). The departure
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(b)(a)

Fig. 6 aμ versus gX (a) and gY X (b). The dotted line, dashed line and solid line in a correspond to tan β equal to 50, 40 and 30 respectively. In b,
the solid (dashed, dotted) line corresponds to the results with gX = 0.3 (0.4, 0.5)

from the SM prediction is �aμ = aexp
μ − aSMμ = 251(59) ×

10−11, which is about 4.2σ . We set the particle masses as:
M1 = 800 GeV, μ = 350 GeV, m ν̃R

L
= 150 GeV, m ν̃ I

L
=

140 GeV, mL̃L
= 800 GeV, mL̃R

= 850 GeV and mλX̃
=

450 GeV to get Fig. 6. When gY X = 0.2 in Fig. 6a, we can see
that from bottom to top are solid line (tan β = 30), dashed
line (tan β = 40) and dotted line (tan β = 50) and the overall
trend of the three lines is downward. That is to say, tan β is
a sensitive parameter and larger tan β leads to larger aμ.

We set tan β = 50 in Fig. 6b. It is obvious that three lines
with the same tendency to decrease and then increase. The
dotted line (gX = 0.5) is below the dashed line (gX = 0.4),
and the dashed line is below the solid line (gX = 0.3). When
gX increases, aμ decreases. The influence of gY X on aμ

mainly depends on its own value: when gY X is less than 0.3,
gY X increases and aμ decreases, but when gY X > 0.3, the sit-
uation is just the opposite. The value of aμ can reach 2×10−9

at most, it can reach about 80% of the departure(�aμ), which
better meets the experimental limitations. The above conclu-
sion is the same as Eq. (44), so we can find other sensitive
parameters more intuitively through formula Eq. (44).

4.2 The processes of μ → eγ

In order to study the parameters affecting LFV, we need
to study some sensitive parameters. To show the numeri-
cal results clearly, we draw the relation diagrams and scatter
diagrams of Br(μ → eγ ) with different parameters.

The gray area is current limit on LFV decay μ → eγ in
Fig. 7. With the parameters M2

L̃12
= 0, M2

Ẽ12
= 0 and Te12 =

0, we plot Br(μ → eγ ) versusm ν̃L in the Fig. 7a. The dashed
curve corresponds to M2

L̃12
= 500 GeV2 and the solid line

corresponds to M2
L̃12

= 200 GeV2. On the whole, both lines
show a downward trend. m ν̃L and Br(μ → eγ ) are inversely
proportional. The smaller m ν̃L is, the greater the value of
Br(μ → eγ ) is. Separately, the dashed line is larger than
the solid line, and the ranges consistent with the experimental

value are 1400 GeV−4000 GeV and 900 GeV−1400 GeV
respectively. m2

L̃12
and Br(μ → eγ ) are positively corre-

lated. If the value of M2
L̃12

gets smaller, the value of m ν̃L can
be less than 1000 GeV.

We show Br(μ → eγ ) varying with M2
L̃

by the solid
curve (Te12 = 100 GeV) and dashed curve (Te12 = 50 GeV)
in the Fig. 7b. We can see that the overall values meet the
limit, and the trend is a subtractive function, and the solid
line is greater than the dotted line. So we can conclude that
as Te12 increases, Br(μ → eγ ) also increases. When M2

L̃
increases, Br(μ → eγ ) decreases. The numerical results
are tiny and at the order of 10−19.

Finally, we analyze the effects of the parameter Te12 on
branching ratio of μ → eγ . The numerical results are shown
in the Fig. 7c by the dashed curve (tan β = 9) and solid curve
(tan β = 20). The value of the solid line is greater than that
of the dashed line, and both show an upward trend. There-
fore, The relationship between tan β and Br(μ → eγ ), Te12

and Br(μ → eγ ) is the similar, and they are all positively
correlated.

For more multidimensional analysis of sensitive parame-
ters, we scatter points according to Table 1 (part of μ → eγ )
to get Fig. 8. We set the range of � (0 < Br(μ → eγ ) <

1.5×10−13), � (1.5×10−13 ≤ Br(μ → eγ ) < 3.5×10−13)
and • (3.5×10−13 ≤ Br(μ → eγ ) < 4.2×10−13) to repre-
sent the results in different parameter spaces for the process
of μ → eγ .

The relationship between M2
L̃12

and mL̃ is shown in
Fig. 8a. � are mainly concentrated in the upper left corner,
then the outer layer are � and finally •. When M2

L̃12
is near 0

and mL̃ is near 2500 GeV, Br(μ → eγ ) gets the minimum
value. Figure 8b is plotted in the plane of mL̃ versus m ν̃L .
We can clearly find that the points are mainly concentrated
in the right, and the color gradually deepens from lower left
to upper right. The effects of M2

L̃12
and m ν̃L on Br(μ → eγ )

are shown in the Fig. 8c. All points are mainly concentrated
in the upper left corner and on both sides of axis M2

L̃12
= 0
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(a) (b)

(c)

Fig. 7 Br(μ → eγ ) schematic diagrams affected by different param-
eters. The gray area is reasonable value range, where Br(μ → eγ ) is
lower than the upper limit. As Te12 = 0, the dashed and solid lines in a
correspond to M2

L̃12
= 500 GeV2 and M2

L̃12
= 200 GeV2. The dashed

line and solid line respectively represent Te12 = 50 GeV and 100 GeV
in b. We set M2

L̃
= 5 × 105 TeV2, the dashed line (tan β = 9) and solid

line (tan β = 20) in c are generated

and axis m ν̃L = 3000 GeV. From the inside to the outside,
they are �, � and •. When M2

L̃12
becomes larger and m ν̃L

becomes smaller, the value of Br(μ → eγ ) increases to
reach the experimental measurement. Figure 8d shows the
effect of tan β and M2

L̃12
on Br(μ → eγ ). All points are

mainly concentrated near the x-axis, and the value increases
from bottom to top.

4.3 The processes of τ → μγ

To study the influence of parameters M2
L̃23

and M2
Ẽ23

on

Br(τ → μγ ) in Fig. 9, we suppose the parameters M2
L̃12

=
0, M2

Ẽ12
= 0 and Te12 = 0 and plot the solid line (tan β = 9)

and dashed line (tan β = 20). In Fig. 9a, we can see that M2
L̃23

corresponds to Br(τ → μγ ). We plot M2
Ẽ23

varying with
Br(τ → μγ ) in the Fig. 9b. Both figures show an upward
trend within the experimental limit, and the dashed line is
larger than the solid line, so we can draw a conclusion: when
M2

L̃23
or M2

Ẽ23
increases, Br(τ → μγ ) also increases. In the

whole, the numerical results in Fig. 9 are very tiny.
We scatter points according to the parameters given in

Table 1 (part of τ → μγ ) to obtain Fig. 10. Where �, �
and • represent (0 < Br(τ → μγ ) < 1.0 × 10−10), (1.0 ×

10−10 ≤ Br(τ → μγ ) < 9.0 × 10−10) and (9.0 × 10−10 ≤
Br(τ → μγ ) < 4.4 × 10−8) respectively.

M2
L̃23

corresponds to mL̃ in Fig. 10a. Horizontally, � are

mainly concentrated in 0 < M2
L̃23

< 1500 GeV2, � are in

1500 GeV2 < M2
L̃23

< 3200 GeV2, and • are distributed

in 3200 GeV2 < M2
L̃23

< 5000 GeV2. Vertically, � and •
are concentrated near mL̃ = 500 GeV, and there are obvious
stratification, from bottom to top are •, �, �. So we can know
that as M2

L̃23
increases, Br(τ → μγ ) increases, and when

mL̃ increases, Br(τ → μγ ) decreases. We plot mL̃ varying
with Te23 in the Fig. 10b. The three types of points are almost
symmetrical about Te23 = 0. The smaller the mL̃ is, the
greater the value of Br(τ → μγ ). The farther away the value
of Te23 from the 0 axis, the greater the value of Br(τ → μγ ).
Figure 10c is shown in the plane of Te23 versus m ν̃L , where
the centralized distributions of the three types of points are
distributed in a “U” shape on both sides of the Te23 = 0
axis. � distribute on the innermost side, followed by � and
• on the outermost side. So as m ν̃L increases, Br(τ → μγ )

decreases. Finally, we analyze the effects from parameters
tan β and mL̃ in Fig. 10d. All points are �, � and • from top
to bottom. The smaller the value of mL̃ , the larger the value
of Br(τ → μγ ).
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Table 1 Scanning parameters for Figs. 8, 10 and 11. Without special statement, the non-zero values of non-diagonal elements m2
L̃i j

,m2
Ẽi j

, Tei j
corresponding to l j → liγ are shown in the column

Parameters/range/processes μ → eγ ( j = 2, i = 1) τ → μγ ( j = 3, i = 2) τ → eγ ( j = 3, i = 1)

tan β 0.5 ∼ 50 0.5 ∼ 50 0.5 ∼ 50

M2
L̃i j

/GeV2 0 ∼ 5000 0 ∼ 5000 0 ∼ 5000

M2
Ẽi j

/GeV2 0 ∼ 104 0 ∼ 104 0 ∼ 104

Tei j/GeV −1 ∼ 1 −50 ∼ 50 −50 ∼ 50

m ν̃L /GeV 100 ∼ 3000 100 ∼ 3000 100 ∼ 3000

mL̃/GeV 400 ∼ 2500 400 ∼ 2500 400 ∼ 2500

(a) (b)

(d)(c)

Fig. 8 Under the premise of lower current limit on lepton flavor vio-
lating decay μ → eγ , reasonable parameter space is selected to scatter
points, where � mean the value of Br(μ → eγ ) less than 1.5 × 10−13,

� mean Br(μ → eγ ) in the range of 1.5 × 10−13 to 3.5 × 10−13, •
show 3.5 × 10−13 ≤ Br(μ → eγ ) < 4.2 × 10−13

(a) (b)

Fig. 9 Below the experimental limit, the line diagram of parameters and Br(τ → μγ ). In a, b solid lines and dotted lines represent tan β = 9 and
tan β = 20
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(a) (b)

(c) (d)

Fig. 10 Scatter points under the restriction of the upper limit of Br(τ → μγ ). � represent 0< Br(τ → μγ ) < 1 × 10−10, � represent
1 × 10−10 ≤ Br(τ → μγ ) < 9 × 10−10 and 9 × 10−10 ≤ Br(τ → μγ ) < 4.4 × 10−8 are represented by •

4.4 The processes of τ → eγ

Based on the Table 1 (part of τ → eγ ), we analyze τ → eγ
to study the possibility of LFV in Fig. 11. The branching ratio
of τ → eγ process is denoted by: � (0 < Br(τ → eγ ) <

1.0×10−10), � (1×10−10 ≤ Br(τ → eγ ) < 8.0×10−10)

and • (Br(τ → eγ ) from 8.0 × 10−10 to 3.3 × 10−8).
The Fig. 11a shows the effects from m ν̃L and M2

L̃13
. Most

points are concentrated in lower right quarter. • are on the
innermost side of the whole region. � are in the middle and �
are on the outermost side. The numerical performance is that
the larger the M2

L̃13
and the smaller the m ν̃L , the larger the

Br(τ → eγ ). In Fig. 11b, we analyze the effects of m ν̃L and
mL̃ on Br(τ → eγ ). In the whole figure, • are mainly close
to both sides of the x-axis and y-axis, and then � with the
same trend, and the rest is �. Br(τ → eγ ) decreases with
the increase of m ν̃L and mL̃ . Figure 11c has two axes m2

L̃13
versus Te13. All three points show “⊃” shaped distribution,
from left to right are �, �, •. So Br(τ → eγ ) increases with
the increase of Te13.

5 Discussion and conclusion

The U (1)XSSM has new superfields including right-handed
neutrinos and three Higgs superfields η̂, ˆ̄η, Ŝ, and its local

gauge group is SU (3)C ×SU (2)L ×U (1)Y ×U (1)X . We use
MIA to study muon anomalous magnetic moment. Combined
with the latest experimental data, our numerical results can
reach about 2 × 10−9, which can better fit the measurement
result, and play a certain role in promoting the study of LFV.
We use the method of MIA to study lepton flavor violating
decays l j → liγ in theU (1)XSSM model. From the order of
magnitude of branching ratio and data analysis, we can find
that the restriction on lepton flavor violation in the process
of μ → eγ is stronger. This provides a reference for other
lepton flavor violation work in the future.

We take into account the constraints from the upper lim-
its on LFV branching ratios of l j → liγ . In the numerical
calculation, we take many parameters as variables including
tan β, gX , gY X , M2

L̃
, M2

L̃i j
, M2

Ẽ
, M2

Ẽi j
, δABi j , mL̃ , m ν̃L

and Tei j . Through the analysis of the numerical results, we
find that M2

L̃i j
, M2

Ẽi j
, gY X , δABi j , mL̃ , m ν̃L and Tei j are sen-

sitive parameters. Br(l j → liγ ) is an increasing function of
M2

L̃i j
, M2

Ẽi j
, Tei j , gY X , δABi j , and decreasing function ofmL̃

and m ν̃L . gX can also give influence on the numerical results
but not very large. That is to say they give mild influences on
the numerical results. Finally, we come to the conclusion that
the non-diagonal elements which correspond to the genera-
tions of the initial lepton and final lepton are main sensitive
parameters and LFV sources.
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(a) (b)

(c)

Fig. 11 For the scatter diagrams of the parameters below the experimental limit Br(τ → eγ ), different points represent the different ranges of
Br(τ → eγ ). � represent less than 1.0 × 10−10. � represent the range of 1.0 × 10−10 to 8.0 × 10−10, and • represent the range of 8.0 × 10−10 to
3.3 × 10−8

Acknowledgements This work is supported by National Natural Sci-
ence Foundation of China (NNSFC) (no. 11535002, no. 11705045),
Natural Science Foundation of Hebei Province (A2020201002). Post-
graduate’s Innovation Fund Project of Hebei University
(HBU2022ss028).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: All data included
in this manuscript are available upon request by contacting with the
corresponding author.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. K. Abe et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801
(2011)

2. J. Ahn et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802
(2012)

3. F. An et al. (DAYABAY Collaboration), Phys. Rev. Lett. 108,
171803 (2012)

4. S.T. Petcov, Sov. J. Nucl. Phys. 25, 340 (1977). JINR-E2-10176
5. K.S. Sun, J.B. Chen, X.Y. Yang et al., Chin. Phys. C 43, 043101

(2019)
6. U. Ellwanger, C. Hugonie, A.M. Teixeira, Phys. Rep. 496, 1–77

(2010)
7. B. Yan, S.M. Zhao, T.F. Feng, Nucl. Phys. B 975, 115671 (2022)
8. F. Staub, arXiv:0806.0538
9. F. Staub, Comput. Phys. Commun. 185, 1773 (2014)

10. F. Staub, Adv. High Energy Phys. 2015, 840780 (2015)
11. J. Rosiek, Phys. Rev. D 41, 3464 (1990)
12. C.M.S. Collaboration, Phys. Lett. B 716, 30 (2012)
13. ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)
14. V. Cirigliano, K. Fuyuto, C. Lee, et al., JHEP 03, 256 (2021).

arXiv:2102.06176
15. K.S. Sun, T. Guo, W. Li et al., Eur. Phys. J. C 80, 1167 (2020)
16. S.M. Zhao, T.F. Feng, H.B. Zhang et al., Phys. Rev. D 92, 115016

(2015)
17. T. Nomura, H. Okada, Y. Uesaka, Nucl. Phys. B 962, 115236 (2021)
18. A. Ilakovac, A. Pilaftsis, L. Popov, Phys. Rev. D 87, 053014 (2013)
19. T.T. Wang, S.M. Zhao, X.X. Dong et al., JHEP 04, 122 (2022)
20. S.M. Zhao, L.H. Su, X.X. Dong et al., JHEP 03, 101 (2022)
21. E. Arganda, M.J. Herrero, R. Morales et al., JHEP 03, 055 (2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0806.0538
http://arxiv.org/abs/2102.06176


Eur. Phys. J. C (2022) 82 :639 Page 15 of 15 639

22. E. Arganda, M.J. Herrero, X. Marcano et al., Phys. Rev. D 95,
095029 (2017)

23. M.J. Herrero, X. Marcano, R. Morales et al., Eur. Phys. J. C 78,
815 (2018)

24. G. Haghighat, M.M. Najafabadi, arXiv:2204.04433 [hep-ph]
25. Particle Data Group, Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
26. S.M. Zhao, T.F. Feng, M.J. Zhang et al., JHEP 02, 130 (2020)
27. M. Carena, J.R. Espinosaos, C.E.M. Wagner et al., Phys. Lett. B

355, 209 (1995)
28. M. Carena, S. Gori, N.R. Shah et al., JHEP 1203, 014 (2012)
29. G. Belanger, J.D. Silva, H.M. Tran, Phys. Rev. D 95, 115017 (2017)
30. V. Barger, P.F. Perez, S. Spinner, Phys. Rev. Lett. 102, 181802

(2009)
31. P.H. Chankowski, S. Pokorski, J. Wagner, Eur. Phys. J. C 47, 187

(2006)
32. J.L. Yang, T.F. Feng, S.M. Zhao et al., Eur. Phys. J. C 78, 714

(2018)

33. T. Moroi, Phys. Rev. D 53, 6565–6575 (1996)
34. C.M.S. Collaboration, Phys. Lett. B 716, 30 (2012)
35. ATLAS Collaboration, Phys. Lett. B 716, 1 (2012)
36. G. Aad et al. (ATLAS), Phys. Lett. B 796, 68–87 (2019)
37. G. Cacciapaglia, C. Csaki, G. Marandella et al., Phys. Rev. D 74,

033011 (2006)
38. M. Carena, A. Daleo, B.A. Dobrescu et al., Phys. Rev. D 70, 093009

(2004)
39. L. Basso, Adv. High Energy Phys. 2015, 980687 (2015)
40. P. Athron, C. Balázs, D.H.J. Jacob et al., JHEP 09, 080 (2021)
41. T. Albahri et al. (Muon g-2), Phys. Rev. D 103, 072002 (2021)
42. M. Endo, K. Hamaguchi, S. Iwamoto et al., JHEP 07, 075 (2021)
43. M. Chakraborti, L. Roszkowski, S. Trojanowski, JHEP 05, 252

(2021)
44. F. Wang, L. Wu, Y. Xiao et al., Nucl. Phys. B 970, 115486 (2021)
45. G.W. Bennett et al. (Muon g-2), Phys. Rev. D 73, 072003 (2006)

123

http://arxiv.org/abs/2204.04433

	Lepton flavor violating decays ljrightarrowliγ in the U(1)XSSM model within the mass insertion approximation
	Abstract 
	1 Introduction
	2 The U(1)XSSM
	3 Formulation
	3.1 Using MIA to calculate ljrightarrowliγ in U(1)XSSM model
	3.2 Degenerate result
	3.3 Muon anomalous magnetic moment

	4 Numerical results
	4.1 Muon anomalous magnetic moment
	4.2 The processes of µrightarroweγ
	4.3 The processes of τrightarrowµγ
	4.4 The processes of τrightarroweγ

	5 Discussion and conclusion
	Acknowledgements
	References




