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Abstract Recently it has been proposed that the consis-
tency with T-duality requires the effective action of string
theory at order α′n to satisfy the least action principle pro-
vided that the values of the massless fields and their deriva-
tives up to order n are known on the boundary. In this paper
we speculate that this boundary condition constrains the field
redefinitions and the corrections to the T-duality transforma-
tions in the presence of boundary, e.g., at order α′, the metric
does not change, and all other massless fields should change
to include only the first derivative of the massless fields.
Using the above restricted field redefinitions, we write all
gauge invariant bulk and boundary couplings in the bosonic
string theory at order α′ in a minimal scheme. Then using the
assumption that the effective action of string theory at the crit-
ical dimension is background independent, we fix the coeffi-
cients of the tree-level gauge invariant couplings by imposing
O(1, 1) symmetry when the background has a circle and by
imposing O(d, d) symmetry when the background has T d .
These constraints fix the bulk action up to an overall factor,
and the boundary action up to two parameters. By requiring
the gravity couplings in the boundary action to be consistent
with those in the Chern-Simons gravity, the two boundary
parameters are also fixed. Up to a restricted field redefini-
tion, the bulk and boundary couplings are exactly those in
the K.A. Meissner action and its corresponding boundary
action.

1 Introduction

string theory is expected to be a background independent
theory of quantum gravity. The spectrum of the free string at
the critical dimension which is 26 for the bosonic string the-
ory and 10 for the superstring and heterotic string theories,
includes a finite number of massless and a tower of infinite
number of massive excitations. In the interacting theory and
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at low energies, however, the massive modes are integrated
out to produce an effective action which includes only the
massless fields. The effective action of string theory on an
arbitrary background has a double expansions: the genus-
expansion and the stringy-expansion. The genus-expansion
includes the classical sphere-level and a tower of quantum
loop-level corrections. The stringy-expansion is an expan-
sion in terms of higher derivative couplings at each loop-
level. The classical effective action of string theory on an
arbitrary open manifold has both bulk and boundary cou-
plings, i.e., Seff + ∂Seff . At the critical dimension, it has the
following higher-derivative or α′-expansion:

Seff =
∞∑

m=0

α′mSm = S0 + α′S1 + α′2S2 + α′3S3 + · · ·

∂Seff =
∞∑

m=0

α′m∂Sm = ∂S0 + α′∂S1 + α′2∂S2

+α′3∂S3 + · · ·
(1)

The leading order bulk actionS0 includes the Hilbert-Einstein
term in the critical dimension and the boundary action ∂S0

includes the corresponding Hawking-Gibbons term [1,2].
These actions and their appropriate higher derivative exten-
sions may be found by requiring the effective actions to be
invariant under the gauge symmetries corresponding to the
massless fields and by imposing various constraints from the
global symmetries/dualities of string theory.

The Einstein action is background independent in the
sense that only the gauge symmetry corresponding to the
metric is required to specify the theory. We expect that string
theory effective action at the critical dimension which is a
higher-derivative extension of the Einstein term, to be back-
ground independent too. Unlike the Einstein action which
has only one coupling, however, there are many gauge invari-
ant couplings in the effective action of string theory at each
order of α′. The background independence requires the coef-
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ficients of all gauge invariant couplings to be independent of
the geometry of the spacetime. At the higher orders of α′,
there is also the complication that the effective action has
the freedom of the higher-derivative field redefinitions [3]. If
one could fix the parameters, up to field redefinitions, for a
specific compact geometry in which the lower-dimensional
action enjoys a specific global symmetry, then those param-
eters would be valid for any other geometry in which the
effective action may have no compact sub-manifold and no
symmetry.

One of the most exciting discoveries in the perturbative
string theory is T-duality [4,5] which appears when one com-
pactifies the theory on a torus, e.g., the spectrum of the free
string on torus T d is invariant under O(d, d, Z) transfor-
mations. In the interacting theory and after integrating out
the massive modes, T-duality should appear as symmetry in
the dimensional reduction of the effective actions. For the
closed spacetime manifolds, it has been shown in [6,7] that
the dimensional reduction of the classical effective actions of
the bosonic and heterotic string theories on a torus T d are in
fact invariant under O(d, d, R) transformations. We expect
there should be such symmetry even when the string lives in
an open spacetime manifold which has boundary. Using the
background independent assumption, then one may consider
the background which has the torus T n for 1 ≤ n ≤ d, to
study the allowed gauge invariant couplings in the effective
action at the critical dimension. That is, the requirement that
the dimensional reduction of the classical effective action
to have the symmetry O(n, n, R), strongly constrains the
parameters of the gauge invariant couplings in both bulk and
boundary actions.

For the closed spacetime manifolds, if one considers a
background which includes only one circle S(1), then the
requirement that the dimensional reduction of the classi-
cal effective action of the bosonic string theory to have the
O(1, 1) symmetry, fixes all couplings in the critical dimen-
sion up to, at most, one parameter at each order of α′. In
fact, the constraints from the Z2-subgroup of O(1, 1) have
been used in [8,9] to fix the classical effective actions of the
bosonic string theory at orders α′ , α′2 up to one parameter,
i.e., couplings at orders α′ and α′2 have the overall factors a1

and a2
1 , respectively. The Z2-constraints also fix the NS-NS

couplings of the type II superstring theories at order α′3 up
to another parameter a2 ∼ ζ(3) [10–13]. The background
independence then indicates that the couplings found in this
way are valid for any other geometry. In fact, it has been
observed in [12,13] that the NS-NS couplings are fully con-
sistent with the sphere-level S-matrix element of four NS-
NS vertex operators in flat spacetime. Moreover, it has been
shown in [14,15] that the above couplings are fully consis-
tent with the O(d, d) symmetry when the background has
torus T d .

The reason that the O(1, 1) symmetry can not fully fix
all couplings in the classical effective action of the bosonic
string theory up to one overall factor is that the full T-duality
transformations are the Buscher rules [16,17] plus derivative
corrections at all orders of α′ [18]. Even though the O(1, 1)

symmetry can fix all couplings at orders α′, α′2 up to one
parameter, however, it can not fix the couplings at order α′3,
up to the same parameter. In fact, if one extends the calcula-
tions in [9] to the order α′3, one would find that the couplings
at orders α′0, α′ and α′2 are related to some of the couplings
at order α′3 by the T-duality transformations at orders α′3, α′2
and α′, respectively. These couplings carry the same param-
eter a1 which appears in the couplings at orders α′, α′2. In
other words, they all belong to one T-dual multiplet. How-
ever, there are couplings at this order that are not connected
to the couplings at order α′, α′2 by the T-duality transforma-
tions. They are connected only to the couplings at order α′0 by
the T-duality transformations at order α′3. These couplings
belong to another T-dual multiplet with a different parameter
a2.

In other words, if one tries to find the classical effective
action of the bosonic string theory at order α′3 by the S-
matrix method, instead of the T-duality method, one would
find it has two factors a1, a2, i.e., S3 = a3

1S
1
3 + a2S2

3. One
factor which is resulted from the expansion of the tachy-
onic pole in the amplitude, should be the same as the one
appearing in the couplings at order α′, α′2, and another one
which is resulted from the expansion of the massive poles in
the amplitude, is proportional to ζ(3) [19]. Hence, there are
two T-dual multiplets in the bosonic string theory at order
α′3: one with coefficient a3

1 and another one with coefficient
a2 ∼ ζ(3). The multiplet with coefficient ζ(3) appears also
in the type II supersting theory. At order α′4, there are non-
zero couplings in the bosonic string theory. However, there
are no couplings at this order in the superstring theory [20].
Hence, there are still two T-dual multiplets at this order: one
with coefficient a4

1 and another one with coefficient a1ζ(3).
There is no new parameter at order α′4 in this case. At order
α′5, there are couplings R6 in the superstring theory with
coefficient ζ(5) [20], hence, there are three T-dual multiplets
at order α′5 in the bosonic string: one with coefficient a5

1 , one
with coefficient a2

1ζ(3) and another one with coefficient ζ(5).
This means that the O(1, 1) symmetry can fix the couplings
at order α′5 up to three parameters. Two of them already
appeared at the lower orders of α′ and one new parameter
appears at order α′5.

In general, there is no coupling in the superstring the-
ory with coefficient ζ(2k) [20] which can be seen by
studying the α′-expansion of the sphere-level four point
functions. As a result, the T-dual multiplets in the effec-
tive action of the bosonic string theory should have an
expansion in terms of powers of (am1

1 ζ(2k + 1)m2ζ(2k +
3)m3 · · · )α′m1+m2(2k+1)+m3(2k+3)+··· where k = 1, 2, . . . and
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m1,m2, · · · = 0, 1, 2, . . . For m2 = m3 = · · · = 0 there is
one T-dual multiplet with parameter a1. For m1 = m3 =
· · · = 0 and k = 1, there is one T-dual multiplet with param-
eter proportional to ζ(3). Similarly for other values of k,mi .
Schematically, the bulk action (1) has the following expan-
sion in terms of the T-dual multiplets:

Seff =
∞∑

n=0

Tn = T0 + T1 + T2 + T3 + T4 + T5 · · · (2)

The T-dual multiplets in the bosonic string theory on a closed
manifold have the following structures:

T0 = S0

T1 = a1α
′S1 + a2

1α′2S2 + a3
1α′3S1

3 + a4
1α′4S1

4 + a5
1α′5S1

5

+ · · ·
T2 = ζ(3)α′3S2

3 + ζ(3)2α′6S2
6 + ζ(3)3α′9S2

9

+ζ(3)4α′12S2
12

+ · · ·
T3 = a1ζ(3)α′4S3

4 + a2
1ζ(3)2α′8S3

8 + a3
1ζ(3)3α′12S3

12

+a4
1ζ(3)4α′16S3

16 + · · ·
T4 = a2

1ζ(3)α′5S4
5 + a4

1ζ(3)2α′10S4
10 + a6

1ζ(3)3α′15S4
15

+a8
1ζ(3)4α′20S4

20 + · · ·
T5 = ζ(5)α′5S5

5 + ζ(5)2α′10S5
10 + ζ(5)3α′15S5

15

+ζ(5)4α′20S5
20 + · · ·

... (3)

where a1 ∼ 1. In the type II superstring theory, a1 = 0
and there are T-dual multiplets which include the R-R cou-
plings. If the background has no boundary in which the
total derivative terms can be ignored, then each of the above
multiplets should be invariant under the full T-duality trans-
formations. We expect that the O(1, 1)-constraint to fix all
couplings in the above T-dual multiplets, up to the overall
factors a1, ζ(3), a1ζ(3), a2

1ζ(3), ζ(5), . . . The couplings in
the multiplet T1 at orders α′ and α′2 in a particular minimal
scheme have been found in [8,9]. The couplings in the mul-
tiplet T2 at order α′3 in a particular minimal scheme have
been also found in [12,13]. At the present time, the higher
derivative terms in the full T-duality transformations are not
known. They depend on the scheme of the gauge invariant
couplings [8]. They can be found at each order of α′, up
to overall factors, by imposing the effective action at that
order to be invariant under the O(1, 1) symmetry. Hence,
the T-duality constraint can not predict the overall factors
a1, ζ(3), a1ζ(3), a2

1ζ(3), ζ(5), . . . which appear in the full
T-duality transformations and in the above T-dual multiplets.
Since each multiplet includes four-field couplings, however,
these factors may be found from the α′-expansion of the
sphere-level S-matrix element of four graviton vertex oper-
ators.

When the background has boundary, one should keep the
total derivative terms before and after reduction and use the
Stokes’s theorem to transfer them to the boundary. They dic-
tate that the invariance under the T-duality transformations
requires some couplings on the boundary as well [21]. Hence,
the bulk T-dual multiplets (3) should be accompanied with
appropriate boundary couplings to be fully invariant under
the T-duality. Schematically, the boundary action (1) should
have the following expansion in terms of the boundary T-dual
multiplets:

∂Seff =
∞∑

n=0

∂Tn = ∂T0 + ∂T1 + ∂T2 + ∂T3 + ∂T4

+∂T5 + · · · (4)

The boundary mutiplets corresponding to the bulk multiplets
(3) have the following structures:

∂T0 = ∂S0

∂T1 = a1α
′∂S1 + a2

1α′2∂S2 + a3
1α′3∂S1

3 + a4
1α′4∂S1

4

+a5
1α′5∂S1

5

+ · · ·
∂T2 = ζ(3)α′3∂S2

3 + ζ(3)2α′6∂S2
6 + ζ(3)3α′9∂S2

9

+ζ(3)4α′12∂S2
12 + · · ·

∂T3 = a1ζ(3)α′4∂S3
4 + a2

1ζ(3)2α′8∂S3
8 + a3

1ζ(3)3α′12∂S3
12

+a4
1ζ(3)4α′16∂S3

16 + · · ·
∂T4 = a2

1ζ(3)α′5∂S4
5 + a4

1ζ(3)2α′10∂S4
10 + a6

1ζ(3)3α′15∂S4
15

+a8
1ζ(3)4α′20∂S4

20 + · · ·
∂T5 = ζ(5)α′5∂S5

5 + ζ(5)2α′10∂S5
10 + ζ(5)3α′15∂S5

15

+ζ(5)4α′20∂S5
20 + · · ·

... (5)

The combination of the bulk and the boundary multiplets,
i.e., Ti + ∂Ti , are then invariant under the T-duality trans-
formations. In other words, neither the bulk multiplets nor
the boundary multiplets are invariant separately under the T-
duality transformations. Their anomalies cancel each other
in the T-dual multiplets Ti + ∂Ti . This constrains the param-
eters in the general gauge invariant couplings in the bound-
ary action (5). However, there are boundary couplings in (5)
which are invariant under the T-duality transformations with
no anomaly. They form T-dual boundary multiplets which
have no bulk partner. To constrain these multiplets, one may
use the background which has torus T d for which the cos-
mological reduction of the effective action should have the
O(d, d) symmetry [6,7].

To impose the O(1, 1)-constraint on the gauge invariant
couplings in the closed spacetime manifold, one should first
use the most general field redefinitions to find the indepen-
dent couplings in a minimal scheme [3] in which the number
of independent gauge invariant couplings is minimum, and
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then should use the most general corrections to the Buscher
rules [16,17] to fix the T-dual multiplets in (3) at order α′n
up to the overall factors at each order of α′. It turns out that
in the presence of boundary, however, if one uses the most
general field redefinitions and the most general corrections
to the T-duality transformations, then the couplings in the
minimal scheme are not invariant under the T-duality trans-
formations! It may indicate that in the present of boundary,
one is not allowed to use the most general field redefinitions
and the most general corrections to the Buscher rules.

It has been observed in [22] that only the gravity couplings
in the Euler characters satisfy the least action principle with
the usual boundary condition that the values of the metric
are known on the boundary. On the other hand, it has been
shown in [23] that the Euler character at order α′ is not con-
sistent with O(1, 1) nor with O(d, d) symmetries. Hence,
the T-duality dictates that in the least action principle, not
only the values of the massless fields but also the values of
some derivatives of the massless field must be known on the
boundary. In fact, as it has been argued in [22], the least action
principle in the bosonic string field theory produces the cor-
rect string field equations of motion with the usual boundary
condition that the values of the string field are known on the
boundary. The string field includes the massless fields and
infinite tower of the massive fields. Hence, in the least action
the values of the massless fields an all massive fields are
known on the boundary. When the massive fields are inte-
grated out to produce the effective action, the values of the
massive fields on the boundary should appear in the effective
action as the values of the derivatives of the massless fields
on the boundary. It has been proposed in [23] that to extrem-
ize the effective action at order α′n for n > 0, not only the
massless fields � but also their derivatives up to order n, i.e.,
∇�, . . . ,∇n� must be known on the boundary. It means that
in the least action principle δ(Se f f +∂Se f f ) = 0, the variation
of the massless fields and the variation of the derivatives of
the massless fields up to order n must be zero on the bound-
ary, i.e., δ� = δ∇� = · · · = δ∇n� = 0 on the bound-
ary. However, the variation of the derivatives of the massless
fields at the higher orders are not zero on the boundary, i.e.,
δ∇n+1� �= 0, δ∇n+2� �= 0, and so on. These boundary
values do not constrain the couplings in the bulk effective
action. They, however, constrain the couplings in the bound-
ary actions. In fact, using the Stokes’s theorem to remove
the total derivative terms in the bulk action to the boundary
and using the appropriate Bianchi identities, one can show
that the gauge invariant bulk couplings at order α′n have no
derivative terms ∇n+2� and higher. Then in extremizing the
bulk action, using the Stokes’s theorem, one finds no term
with variation δ∇n+1� and higher. Hence, the extremization
δ(Se f f ) = 0 produces equations of motion with no constraint
on the parameters in the bulk effective action. However, in
extremizing the boundary action δ(∂Se f f ) = 0, the variations

δ∇n+1�, δ∇n+2� and higher may appear on the boundary
which are not zero. The extremization δ(∂Se f f ) = 0 then
constrains the parameters in the boundary action (5).

Therefore, when the background has boundary, because of
the above boundary conditions, one is allowed to use only a
restricted field redefinitions in which the values of the mass-
less fields and their derivatives to order α′n on the boundary
remain invariant under the field redefinitions. The field redef-
initions should not change the known values to the unknown
values. In other words, the least action principle forces the
variations of fields and their derivatives up to order n to be
zero on the boundary, i.e., δ� = δ∇� = · · · = δ∇n� = 0
and δ∇n+1� �= 0, δ∇n+2� �= 0, . . ., on the boundary. The
field redefinitions should not change δ�, δ∇� , . . . , δ∇n�

which are zero, to δ∇n+1� , δ∇n+2� , · · · which are non-
zero on the boundary. For example, for the effective action
at order α′, the values of the massless fields and their first
derivatives are known on the boundary and the values of their
higher derivatives are not known. The field redefinitions at
order α′ are applied on the effective action at order α′0 to
produce couplings at order α′. At order α′0, only the values
of the massless fields are known on the boundary. Using the
fact that the first derivative of dilaton and B-field appear in
the leading order effective action, one realizes that in the least
action, using the Stokes’s theorem, only the variation of the
dilaton and B-field appears on the boundary. These variations
are zero on the boundary at the leading order. The field redef-
inition of these fields which includes only the first derivative
of the massless fields, are then allowed because they produce
the variations for the first derivative of the massless fields.
Such variations are allowed for the effective action at order
α′ because they are zero at this order. On the other hand,
the second derivative of metric appears in the leading order
effective action. In the variation of the action, the variation
of the second derivative of the metric appears. Then upon the
use of the Stokes’s theorem, it produces the variation of the
first derivative of metric on the boundary. If one uses a field
redefinition for the metric which includes the first deriva-
tive of the massless fields, then it would produce variation of
the second derivative of the massless field on the boundary
which are not allowed because the variation of the second
derivative of the massless fields are not zero on the boundary
for the effective action at order α′. Hence, the correct field
redefinitions at order α′ do not allow to change the metric
and allow to change the dilaton and B-field to include only
the first derivative of the massless fields. Similarly for the
field redefinition for the effective actions at higher orders of
α′. Using the above restricted field redefinitions, we will find
that there are 17 independent bulk couplings at order α′.

If the background has boundary and a compact sub-
manifold independent of the boundary, then the dimension-
ally reduced action at order α′n should satisfy the least action
principle in the base space with the boundary conditions that
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the values of the base space massless fields and their deriva-
tives up to order n are known on the boundary. Hence, the
higher-derivative field redefinitions in the base space should
be restricted as those specified in the previous paragraph,
i.e., they should not change the data on the boundary. If the
compact manifold is a circle, then the T-duality transforma-
tions in the presence of boundary should be the Buscher rules
[16,17] plus some restricted higher derivative corrections,
e.g., at order α′, the base space metric receives no correc-
tions, and all other massless fields, except the torsion, should
receive corrections which include only the first derivative
of the massless fields. The torsion 3-form in the base space
however is not the exterior derivative of a 2-form. Hence its
variation is not the derivative of the variation of a 2-form.
As a result, the corrections to the torsion 3-form may involve
the second derivative of the massless fields without chang-
ing the boundary conditions on the massless fields and their
first derivative. Similarly for the corrections at the higher
orders of α′. Hence, in applying the O(1, 1)-constraint on
the independent gauge invariant couplings in the presence of
the boundary, one should use the above restricted T-duality
transformations.

When one uses the cosmological reduction on the classi-
cal bulk effective action (1), the resulting one-dimensional
effective action has O(d, d) symmetry provided that the
O(d, d) transformations receive higher derivative correc-
tions [24]. Using the most general corrections for the
O(d, d)-transformations including corrections for the lapse
function, and using the integration by parts, it has been shown
in [25,26] that the cosmological reduction of the bulk action
(1) at order α′ and higher, can be written in a scheme in
which only the first time-derivative of the generalized metric
S appears, i.e., the nonlocal cosmological action becomes
local in the new variables. It has been shown in [12,13] that
the cosmological reduction of the couplings at order α′2, α′3
that have been found by the O(1, 1)-constraint, can be writ-
ten in terms of only traces of Ṡ. In the presence of boundary,
however, the lapse function is the unite vector orthogonal
to the boundary. Hence, one should not use corrections for
the laps function any more. Moreover, in the presence of the
boundary the higher derivative corrections to the O(d, d)-
transformations should be restricted to those which do not
change the data on the boundary, e.g., the corrections at order
α′ should include only the first time-derivative of the mass-
less fields.

In studying the O(d, d) symmetry of the cosmological
reduction of the boundary action in (1), one has to take into
account the one-dimensional total derivative terms that are
needed to write the cosmological bulk couplings in O(d, d)-
invariant form. The total derivative terms, in general, are
not invariant under the O(d, d) transformations, hence, they
put some constraints on the parameters in the cosmologi-
cal reduction of the boundary couplings. In other words,

the cosmological reduction of the boundary couplings are
anomalous under the O(d, d)-transformations such that their
anomalies are canceled with the anomalies of the total deriva-
tive terms. In this case also there are boundary couplings that
their cosmological reduction are invariant under the O(d, d)

symmetry with no anomaly. It has been speculated in [23]
that in the scheme that the O(d, d)-invariant couplings are
in terms of the first derivative of the generalized metric and
dilaton, the cosmological boundary action should be zero,
i.e.,

∂Sck = 0 (6)

The above discussion is valid not only for the cosmological
reduction whose boundary is spacelike, i.e., n2 = −1, but
also for any one-dimensional reduction whose boundary is
timelike, i.e., n2 = 1. At the leading order which has no field
redefinitions freedom, the explicit calculation confirms the
above constraint. The above equation constrains the param-
eters in the gauge invariant couplings in the boundary action
∂Sk in (5).

The remainder of the paper is as follows: in Sect. 2,
using the restricted field redefinitions, removing the total
derivative terms from the bulk to the boundary and using
the Bianchi identities, we find that there are at least 17
independent gauge invariant couplings at order α′ in the
bulk. We write them in a specific minimal scheme which
includes 17 bulk couplings, and write the 38 independent
gauge invariant boundary couplings at order α′ which have
been found in [23]. In Sect. 3, using the background indepen-
dence assumption, we consider the background which has a
boundary and one circle, and use the dimensional reduction to
find the corresponding couplings in the base space. We then
impose the O(1, 1) symmetry with the above restricted T-
duality transformations, on the reduced actions to constrain
the parameters in the actions. In Sect. 4, we consider the
background which has a boundary and the torus T d , and use
the cosmological/one-dimensional reduction to find the one-
dimensional bulk action and the zero-dimensional boundary
action. We then impose the O(d, d) symmetry with the above
restricted corrections to the O(d, d) transformations, on the
resulting bulk action and the constraint (6) on the boundary
action to further constrain the remaining parameters. The
above constraints fix the bulk action up to an overall factor,
and the boundary action up to two parameters. The gravity
couplings in the bulk action are those in the Gauss–Bonnet
gravity. By requiring the gravity couplings on the boundary
action to be consistent with those in the Chern–Simons form,
the two boundary parameters are also fixed. In Sect. 6, we
compare the bulk and boundary actions that we have found
in this paper with the Meissner action and its corresponding
boundary action that has been recently found by the similar
constraints. We show that they are related by a restricted field
redefinitions. In Sect. 7, we briefly discuss our results.
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2 Gauge invariance couplings at order α′

The classical effective action of the bosonic string theory on
an open manifold has both bulk and boundary actions. At the
leading order these actions in the string frame are

S0 + ∂S0 = − 2

κ2

[ ∫

M
d26x

√−Ge−2� (R

+4∇μ�∇μ� − 1

12
H2

)
+ 2

∫

∂M
d25σ

√|g|e−2�K

]

(7)

where G is determinant of the bulk metric Gμν and boundary
is specified by the functions xμ = xμ(σ μ̃). In the boundary
term, g is determinant of the induced metric on the boundary

gμ̃ν̃ = ∂xμ

∂σ μ̃

∂xν

∂σ ν̃
Gμν (8)

and K is the trace of the extrinsic curvature. The normal
vector to the boundary is nμ. It is outward-pointing (inward-
pointing) if the boundary is spacelike (timelike).

At order α′ these actions in terms of their Lagrangians are

S1 = − 2

κ2

∫

M
d26x

√−Ge−2�L1;

∂S1 = − 2

κ2

∫

∂M
d25σ

√|g|e−2�∂L1 (9)

The Lagrangians must be invariant under the coordinate
transformations and under the B-field gauge transformations.
Using the package “xAct” [27], one finds there are 41 cou-
plings in the bulk Lagrangian. As we have clarified in the
Introduction section, one is free to use the restricted field
redefinitions, i.e.,

gμν → gμν

Bμν → Bμν + α′δB(1)
μν

� → � + α′δ�(1) (10)

where the tensors δB(1)
μν and δ�(1) include all possible odd-

and even-parity, respectively, gauge invariant terms at two-
derivative level which involve only the first derivative of the
massless fields, i.e., ,

δB(1)
μν = α1Hμνα∇α�

δ�(1) = α2Hαβγ H
αβγ + α3∇α�∇α� (11)

The coefficients α1, α2, α3 are arbitrary parameters. When
the field variables inS0 are changed according to the above
field redefinitions, the following couplings at order α′ are
produced:

δS0 = − 2

κ2

∫
d26x

√−Ge−2�
[

− 1

2
Hαβγ ∇γ δB(1)

αβ

+8∇α�∇αδ�(1) − 2(R + 4∇α�∇α�

− 1

12
Hαβγ H

αβγ )δ�(1)
]

(12)

No integration by parts has been used in finding the above
equation.

The couplings in the bulk action S1 which are total deriva-
tive terms can be transferred to the boundary action ∂S1 by
using the Stokes’s theorem. Moreover, the independent cou-
plings should not be related to each other by the Bianchi
identities

Rα[βγ δ] = 0

∇[μRαβ]γ δ = 0

∇[μHαβγ ] = 0

[∇,∇]O − RO = 0 (13)

Removing the above freedoms from the most general gauge
invariant couplings in the bulk, one finds that there are
17 independent couplings. In fact, if one does not use the
field redefinition, it has been shown in [3] that there are 20
independent couplings. There are three parameters in the
restricted field redefinition (11), which reduces these cou-
plings to 17 independent couplings. These couplings in a
specific scheme are

L1 = a1Hα
δεHαβγ Hβδ

εHγ εε + a2Hαβ
δHαβγ Hγ

εεHδεε

+a3Hα
γ δHβγ δR

αβ + a4Rαβ R
αβ

+a5Hαβγ H
αβγ R + a6R

2 + a7Rαβγ δR
αβγ δ

+a8Hα
δεHαβγ Rβγ δε + a9R∇α�∇α�

+a10R
αβ∇β∇α� + a11Rαβ∇α�∇β�

+a12∇α�∇α�∇β�∇β� + a13∇α�∇β∇α�∇β�

+a14∇β∇α�∇β∇α� + a15∇αH
αβγ ∇δHβγ

δ

+a16Hα
βγ ∇α�∇δHβγ

δ + a17∇δHαβγ ∇δHαβγ

(14)

where a1, . . . , a17 are 17 parameters. The background inde-
pendent assumption dictates that these parameters are inde-
pendent of the geometry of the spacetime. They may be
fixed by considering the background which has a circle or
a torus T 25. Then the dimensional reduction of the above
couplings should have the symmetry O(1, 1) or O(25, 25),
respectively. These symmetries constraint the parameters in
the above action. Note that as we have anticipated in the Intro-
duction section, the independent couplings have no term with
three derivatives. Hence, the least action principle does not
constrain the bulk parameters a1, . . . , a17.

The boundary of the spacetime has a unite normal vector
nμ, hence, the boundary Lagrangian ∂L1 should include this
vector and its derivatives as well as the other tensors. Since
the field redefinition freedom has been already used in the
bulk action, one is not allowed to use any field redefinition
in the boundary action. Removing the total derivative terms
from the most general gauge invariant boundary couplings,

123
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and using the Bianchi identities and the identities correspond-
ing to the unit vector, it has been shown in [23] that there are
38 independent couplings in the boundary action. They are

∂L1 = b1Hβγ δH
βγ δK α

α + b2Hα
γ δHβγ δK

αβ

+b3Kα
γ K αβKβγ + b4K

α
αKβγ K

βγ

+b5K
α

αK
β

βK
γ

γ + b6Hα
δεHβδεK

γ
γ n

αnβ

+b7Hαγ
εHβδεK

γ δnαnβ + b8K
αβ Rαβ

+b9K
γ

γ n
αnβ Rαβ + b10K

α
αR

+b11K
γ δnαnβ Rαγβδ

+b12H
βγ δnα∇αHβγ δ

+b13K
βγ nα∇αKβγ + b14K

β
βn

α∇αK
γ

γ

+b15n
α∇αR + b16Hβγ δH

βγ δnα∇α�

+b17Kβγ K
βγ nα∇α�

+b18K
β

βK
γ

γ n
α∇α�

+b19Hβ
δεHγ δεn

αnβnγ ∇α�

+b20n
αnβnγ Rβγ ∇α� + b21n

αR∇α�

+b22K
β

β∇α�∇α� + b23n
αnβ∇α�∇βK

γ
γ

+b24K
γ

γ n
αnβ∇α�∇β� + b25n

αnβ∇β∇αK
γ

γ

+b26K
αβ∇β∇α�

+b27K
γ

γ n
αnβ∇β∇α� + b28Hα

γ δHβγ δn
α∇β�

+b29n
αRαβ∇β� + b30Kαβ∇α�∇β�

+b31n
α∇α�∇β�∇β� + b32n

α∇β∇α�∇β�

+b33Hα
δεnαnβnγ ∇γ Hβδε

+b34n
αnβnγ ∇α�∇β�∇γ �

+b35n
αnβnγ ∇α�∇γ ∇β� + b36n

αnβnγ ∇γ ∇β∇α�

+b37n
αnβ∇βKαγ ∇γ � + b38n

αnβnγ nδ∇δ∇γ Kαβ

(15)

where b1, . . . , b38 are 38 background independent parame-
ters. In the above couplings, the first derivative of the unit
vector appears in the extrinsic curvature of boundary as

Kμν = ∇μnν ∓ nμn
ρ∇ρnν (16)

where the minus (plus) sign is for timelike (spacelike) bound-
ary in which nμnμ = 1 (nμnμ = −1). It is symmetric and
satisfies nμKμν = 0 and nμnν∇αKμν = 0 which can easily
be seen by writing the unit normal vector of the boundary as

nμ = ±(|∇α f ∇α f |)−1/2∇μ f (17)

where plus (minus) sign is for timelike (spacelike) bound-
ary and the function f specifies the boundary. Note that the
metric in the curvatures in the boundary couplings (15) is the
bulk metric Gμν and the metric that rises the indices is the
inverse bulk metric Gμν .

The parameters in the boundary action (15) may be fixed
by imposing the O(1, 1) and O(25, 25) symmetries when
the background has a circle and a torus T 25, respectively,

and by imposing the least action principle. Note that, unlike
the bulk couplings, the above boundary couplings do have
terms with two and three derivatives, hence, in extremizing
the above Lagrangian one encounters with the variation of
the second and third derivatives of massless fields on the
boundary which are non-zero. As a result, the least action
principle constrains the parameters b1, . . . , b38. However, as
we will see there would be no constraint on top of the T-
duality constraints.

3 Constraint from O(1, 1) symmetry

We now try to fix the parameters in the actions (14) and
(15). The assumption that the effective action at the critical
dimension is background independent, means that the param-
eters in these actions are independent of the background.
Hence, to fix them we consider a specific background which
has a circle. That is, the open manifold has the structure
M (26) = M (25) × S(1), ∂M (26) = ∂M (25) × S(1). The man-
ifold M (26) has coordinates xμ = (xa, y) and its boundary
∂M (26) has coordinates σ μ̃ = (σ ã, y) where y is the coor-
dinate of the circle S(1). The dimensionally reduced action
then should have the O(1, 1) symmetry. To simplify the cal-
culation, we consider the Z2-subgroup of the O(1, 1)-group.

The reduction of the effective actions on the circle S(1)

should then be invariant under the Z2-transformations [21],
i.e.,

Seff(ψ) + ∂Seff(ψ) = Seff(ψ
′) + ∂Seff(ψ

′) (18)

where Seff and ∂Seff are the reductions of the bulk action Se f f
and boundary action ∂Seff , respectively. In above equation ψ

represents all the massless fields in the base space which are
defined in the following reductions:

Gμν =
(
ḡab + eϕgagb eϕga

eϕgb eϕ

)
,

Bμν =
(
b̄ab + 1

2bagb − 1
2bbga ba

− bb 0

)
,

� = φ̄ + ϕ/4 , nμ = (na, 0) (19)

and ψ ′ represents its
transformation under the Z2-transformations or the T-duality
transformations.

In [23], it has been shown that the constraint (18) can be
written as two separate constraints. One for the bulk cou-
plings and the other one for the boundary couplings. These
constraints for the couplings at order α′ are [23]

S1(ψ) − S1(ψ
′
0) − �S0 − 2

κ2

∫
d25x

√−ḡ∇a(A
a
1e

−2φ̄ )

= 0

∂S1(ψ) − ∂S1(ψ
′
0) − �∂S0 + T1(ψ)

123
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+ 2

κ2

∫
d24σ

√|̃g|na Aa
1e

−2φ̄ = 0 (20)

where ḡ is the determinant of the base space metric ḡab and
g̃ is the determinant of the induced base space metric on its
boundary, i.e.,

g̃ãb̃ = ∂xa

∂σ ã

∂xb

∂σ b̃
ḡab (21)

In Eq. (20), ψ ′
0 is the transformation of the base space field ψ

under the Buscher rules, Aa
1 is a vector made of the massless

fields in the base space at order α′ with arbitrary coefficients,
and T1(ψ) is the most general total derivative terms in the
boundary, i.e.,

T1(ψ) = − 2

κ2

∫

∂M
dD−2σ

√|̃g|na∂b(e−2φ̄Fab
1 ) (22)

where Fab
1 is an antisymmetric tensor constructed from the

massless fields in the base space at order α′ with arbitrary
coefficients. In the Eq. (20), �S0, �∂S0 are defined in the
following α′-expansions of the reduction of the leading order
actions:

S0(ψ
′
0 + α′ψ ′

1) − S0(ψ
′
0) = α′�S0 + · · ·

∂S0(ψ
′
0 + α′ψ ′

1) − ∂S0(ψ
′
0) = α′�∂S0 + · · · (23)

where dots represent some terms at higher orders of α′ in
which we are not interested in this paper. In the above equa-
tion, S0 and ∂S0 are the reduction of the leading order actions
(7). The reduction of these actions are [18,23]

S0(ψ) = − 2

κ2

∫
dD−1xe−2φ̄

√−ḡ
[
R̄ − ∇a∇aϕ

−1

4
∇aϕ∇aϕ − 1

4
(eϕV 2 + e−ϕW 2)

+4∇a φ̄∇a φ̄ + 2∇a φ̄∇aϕ − 1

12
H̄abc H̄

abc
]

∂S0(ψ) = − 4

κ2

∫
dD−2σ e−2φ̄

√|̃g|
[
ḡab K̄ab + 1

2
na∇aϕ

]

(24)

In the first equation, Vab is field strength of the U (1) gauge
field ga , i.e., Vab = ∂agb −∂bga , and Wμν is field strength of
the U (1) gauge field ba , i.e., Wab = ∂abν − ∂bba . The three-
form H̄ is defined as H̄abc = Ĥabc − 3

2g[aWbc] − 3
2b[aVbc]

where the three-form Ĥ is field strength of the two-form b̄ab
in (19). Our notation for making the antisymmetry is such
that e.g., g[aWbc] = 1

3 (gaWbc − gbWac − gcWba). Since H̄
is not exterior derivative of a two-form, it satisfies anoma-
lous Bianchi identity, whereas the W, V satisfy the ordinary
Bianchi identity, i.e.,

∂[a H̄bcd] = −3

2
V[abWcd]

∂[aWbc] = 0

∂[aVbc] = 0 (25)

In the second equation in (24), the extrinsic curvature K̄ab

is made of the covariant derivative of the base space normal
vector na .

In (23), ψ ′
1 represents the corrections to the Buscher rules

at order α′, i.e.,

ϕ′ = −ϕ + α′�ϕ , g′
a = ba + α′eϕ/2�ga , b′

a = ga

+α′e−ϕ/2�ba ,

ḡ′
ab = ḡab , H̄ ′

abc = H̄abc + α′�H̄abc , φ̄′ = φ̄

+α′�φ̄ , n′
a = na (26)

As we have clarified in the Introduction section, the met-
ric has no correction at order α′, and the corrections
�ϕ,�ba,�ga,�φ̄ contain all contractions of the massless
fields in the base space at order α′ which involve only the
first derivative of the massless fields. The correction �H̄abc

is related to the corrections �ga , �ba through the following
relation which is resulted from the Bianchi identity (25):

�H̄abc = H̃abc − 3e−ϕ/2W[ab�bc] − 3eϕ/2�g[aVbc] (27)

where H̃abc is a U (1) ×U (1) gauge invariant closed 3-form
at order α′ which is odd under parity. It has the following
terms:

H̃abc = e1∂[aWb
dVc]d + e2∂[a H̄bc]d∇dϕ (28)

where e1, e2 and the coefficients in the corrections �ϕ,�ba,
�ga,�φ̄ are parameters that the Z2-symmetry of the effec-
tive action should fix them. The above transformations should
also form the Z2-group [8].

It is important to note that the torsion in the base space
is H̄abc which is not a field strength of a two-form. Hence,
in the least action principle, this field and its first derivative
are known on the boundary. In the variation of the leading
order bulk action (24), the variation δ H̄abc appears. The field
redefinitions of H̄abc that involve the second derivatives of the
massless fields, produce the variation of the second deriva-
tive of the massless fields. Under the use of the Stokes’s
theorem, it produces the variation of the first derivative of
the massless fields on the boundary which is zero. Hence,
the corrections (28) which involve the second derivative of
the massless fields ba are consistent with our proposal for the
restricted corrections to the Buscher rules which should not
change the data on the boundary in the base space.

Using the reduction (24), then one can calculate �S0 and
�∂S0 from the expansion (23) in terms of ψ ′

1, i.e.,

�S0 = − 2

κ2

∫
d25xe−2φ̄

√−ḡ
[

− 4
(1

2
R̄ + 2∂cφ̄∂cφ̄

−1

8
∂cϕ∂cϕ − 1

24
H̄2 − 1

8
eϕV 2

−1

8
e−ϕW 2 + 1

2
∇c∇cϕ − ∂cφ̄∂cϕ

)
�φ̄

+1

4

(
eϕV 2 − e−ϕW 2

)
�ϕ

123
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+1

2
e−ϕ/2∂bϕW

ab�ga − 1

2
eϕ/2∂bϕV

ab�ba

−1

6
H̄abc�H̄abc

+1

2
(∂aϕ + 4∂a φ̄)∇a(�ϕ) − ∇a∇a(�ϕ)

−2(∂aϕ − 4∂a φ̄)∇a(�φ̄)

+e−ϕ/2Wab∇b(�ga) + eϕ/2Vab∇b(�ba)
]

�∂S0 = − 2

κ2

∫
d24σ e−2φ̄

√|̃g|
[
na∇a(�ϕ) − 4(∇an

a

−1

2
na∇aϕ)�φ̄

]
(29)

where no integration by parts has been used. Note that if one
would like to find the equations of motion in the base space,
the variation of the leading order action is the same as the
above equation in which � should be replaced by δ. In partic-
ular, the variation of the bulk action against δ H̄abc is given by
the last term in the third line above. As we have pointed out
in the previous paragraph, unlike the other massless fields, it
does not involve derivative of δ H̄abc.

Following the same steps as those in [23], one finds that
the Z2-symmetry fixes the bulk Lagrangian (14) as

L1 = a1Hα
δεHαβγ Hβδ

εHγ εε +
(

3a1 + 1

64
a10

+ 1

64
a11

)
Hαβ

δHαβγ Hγ
εεHδεε

− 1

16
a11Hα

γ δHβγ δR
αβ

+
(

1

4
a10 + 1

4
a11

)
Rαβ R

αβ + 1

192
a11Hαβγ H

αβγ R

− 1

16
a11R

2 + 24a1Rαβγ δR
αβγ δ

+(−36a1 − 1

8
a10 − 1

16
a11)Hα

δεHαβγ Rβγ δε

−1

4
a11R∇α�∇α� + a10R

αβ∇β∇α�

+a11Rαβ∇α�∇β� + a10∇β∇α�∇β∇α�

− 1

16
a10∇αH

αβγ ∇δHβγ
δ

+1

8
a10Hα

βγ ∇α�∇δHβγ
δ +

(
8a1 + 1

24
a10

+ 1

48
a11

)
∇δHαβγ ∇δHαβγ (30)

and the boundary Lagrangian (15) for timelike boundary as

∂L1 = b1Hβγ δH
βγ δK α

α + 1

16
(−2a10 − a11)Hα

γ δHβγ δK
αβ

+b11Kα
γ K αβKβγ

+1

4
(a11 + 96b1 − 2b17)K

α
αKβγ K

βγ +
(

− 1

12
a11

−8b1 − 1

6
b18

)
K α

αK
β

βK
γ

γ

−1

2
b19Hα

δεHβδεK
γ

γ n
αnβ +

(
a10 + 1

2
a11

+12b12

)
K αβ Rαβ

+1

2
(−a10 + 48b1 − 24b12 − b17 + 4b19)

×K γ
γ n

αnβ Rαβ

+
(

− 1

8
a11 − 12b1

)
K α

αR

+b11K
γ δnαnβ Rαγβδ + b12H

βγ δnα∇αHβγ δ

+
(

1

48
a11 − 2b1

)
Hβγ δH

βγ δnα∇α�

+b17Kβγ K
βγ nα∇α� + b18K

β
βK

γ
γ n

α∇α�

+b19Hβ
δεHγ δεn

αnβnγ ∇α�

+
(
a10 + 1

2
a11 + 24b12 + b17 − 4b19

)

×nαnβnγ Rβγ ∇α�

+
(

− 1

4
a11 + 24b1

)
nαR∇α�

−48b1K
β

β∇α�∇α� + (96b1 − 2b18)

×K γ
γ n

αnβ∇α�∇β�

+1

2

(
4a10 + a11 + 48(−2b1 + b12)

)
K αβ∇β∇α�

+
(

− a10 − 1

2
a11 − 24b12 − b17 + 4b19

)

×K γ
γ n

αnβ∇β∇α�

+1

8
a10Hα

γ δHβγ δn
α∇β�

+1

2
(a11 − 96b1)n

αRαβ∇β� + a11Kαβ∇α�∇β�

+(−a11 + 96b1)n
α∇α�∇β�∇β�

+(a11 − 96b1)n
α∇β∇α�∇β�

+1

8

(−2a10 − a11 − 2(b11 + 24b12)
)

×Hα
δεnαnβnγ ∇γ Hβδε

+2

3

(
a11 + 2(−96b1 + b18)

)
nαnβnγ ∇α�∇β�∇γ �

+2(a10 + 48b1 + 24b12 + b17 − 4b19)

×nαnβnγ ∇α�∇γ ∇β�

+b38n
αnβnγ nδ∇δ∇γ Kαβ

(31)

The bulk Lagrangian has three parameters a1, a10, a11 and
the boundary Lagrangian has two bulk parameters a10, a11

and 7 boundary parameters b1, b11, b12, b17, b18, b19, b38.
Note that the parameter b38 appears in only one term,
hence, its corresponding couplings is invariant under the Z2-

123
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transformations. Note also that the Z2-symmetry does not
constrain the gravity couplings in the bulk Lagrangian to be
the Gauss-Bonnet combination.

The corrections to the T-duality transformation (26) cor-
responding to the above Lagrangians are

�φ̄ = − 1

128
a11e

ϕVabV
ab + 1

128
a11e

−ϕWabW
ab

−1

8
a11∇aϕ∇a φ̄

�ϕ = 24a1e
ϕVabV

ab + 24a1e
−ϕWabW

ab

+48a1∇aϕ∇aϕ

�ga = 24a1e
ϕ/2 H̄abcV

bc + 1

4
(a10 + a11)e

−ϕ/2Wab∇bφ̄

+ 1

16
(768a1 + a10 + a11)e

−ϕ/2Wab∇bϕ

�ba = −24a1e
−ϕ/2 H̄abcW

bc

−1

4
(a10 + a11)e

ϕ/2Vab∇bφ̄

+ 1

16
(768a1 + a10 + a11)e

ϕ/2Vab∇bϕ

�H̄abc = −144a1∂[aWb
dVc]d +

(
− 3

8
a10 − 3

8
a11

)

×∂[a H̄bc]d∇dϕ

−3eϕ/2V[ab�gc] − 3e−ϕ/2W[ab�bc] (32)

which involve the three bulk parameters a1, a10, a11. In [23],
the field redefinition (11) has not been used to write the bulk
couplings in the minimal scheme, and a particular correction
to the Buscher rules has been used that does not include �φ̄,
as in [18]. Note that if one sets a11 to zero, then as we will
see in the next section, the bulk couplings would not be con-
sistent with the O(25, 25) symmetry whereas the couplings
in [23] are consistent with the O(25, 25) symmetry. Hence,
as expected, the corrections to the Buscher rules depend on
the scheme that one uses for the gauge invariant couplings.

4 Constraint from O(25, 25) symmetry

In the previous section we have considered the background
which has a boundary and a circle independent of it. For
this background the circle reduction of the effective actions
should have the symmetry O(1, 1). For the simplicity of the
calculations we have considered only the Z2-subgroup of
O(1, 1). The constraint from this Z2-symmetry, fixes the
17 bulk parameters and 38 boundary parameters in terms
of three bulk and 7 boundary parameters. One may expect if
one imposes the full O(1, 1)-symmetry, then the remaining
parameters would be fixed. Or one may consider the back-
ground which has a boundary and a torus T 2, then the dimen-
sional reduction of the effective actions should have the sym-
metry O(2, 2). Imposing this symmetry, one may be able to

fix all parameters in (14), (15) in terms of one overall factor.
We leave this calculation for the future works, however, in
this section we consider a simpler calculation. We consider
the background which depends only on one coordinate ζ ,
i.e., all other coordinates are assumed to be the torus T 25.
If ζ = t in which the boundary is spacelike, then all circles
in T (25) are spacial coordinates, and if ζ = x in which the
boundary is timelike, then one of the circle is along the time
direction. Then the cosmological/one-dimensional reduction
of the bulk and boundary couplings in (30), (31) should have
the symmetry O(25, 25). This symmetry should constrain
the parameters in (30), (31). Furthermore, in this case the
lower-dimensional boundary action should be zero. This fur-
ther constrains the parameters in the boundary action.

When fields depend only on one coordinate ζ , using the
gauge symmetries it is possible to write the metric, B-field
and dilaton as

Gμν =
(∓n2(ζ ) 0

0 Gi j (ζ )

)
, Bμν =

(
0 0

0 Bi j (ζ )

)
, 2�

= φ + 1

2
log | det(Gi j )| (33)

where minus (plus) sign is when ζ = t (ζ = x), and the
lapse function n(ζ ) can also be fixed to n = 1 (n = −1) when
ζ = t (ζ = x). This function at the boundary is the unit vector
orthogonal to the boundary. Using the above reduction, then
the cosmological reduction of the bulk action in (7) in terms
of the generalized metric S which is defined as

S ≡ η

(
G−1 −G−1B

BG−1 G − BG−1B

)
(34)

where η is the metric of the O(25, 25) group, i.e.,

η =
(

0 1
1 0

)
, (35)

becomes [28,29]

Sc0 = − 2

κ2n

∫
dζe−φ

[
− φ̇2 − 1

8
tr(Ṡ2)

]
(36)

where dot represents the ζ -derivative. The above action is
invariant under the global O(25, 25) transformations because
the one-dimensional dilaton is invariant and the generalized
metric transforms as

S → �TS� (37)

where � belong to the O(25, 25) group, i.e., �T η� = η.
The cosmological/one-dimensional reduction of the bound-
ary action in (7) becomes zero [23], i.e., ∂Sc0 = 0.

Using the reductions (33), one finds the following
cosmological/one-dimensional reduction for the bulk action
(30):
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Sc1 = − 2

κ2n

∫
dζe−φ

[
1

16
(240a1 + a10 + a11)

×Ḃi
k Ḃi j Ḃ j

l Ḃkl

+ 1

64
(192a1 + a10 + a11)Ḃi j Ḃ

i j Ḃkl Ḃ
kl

+
(

30a1 + 1

16
a11

)
Ḃi j Ḃkl Ġik Ġ jl

+
(

− 36a1 − 1

4
a10 − 1

8
a11

)
Ḃi

k Ḃi j Ġ j
l Ġkl

+ 1

16
(48a1 + a10 + a11)Ġi

k Ġi j Ġ j
l Ġkl

− 1

16
a11Ġ

i
i Ġ j

l Ġ jk Ġkl

+
(

6a1 + 1

256
(8a10 + 3a11)

)
Ḃi j Ḃ

i j Ġkl Ġ
kl

+
(

3a1 + 1

256
(4a10 − 5a11)

)
Ġi j Ġ

i j Ġkl Ġ
kl

+ 11

256
a11Ġ

i
i Ġ

j
j Ġkl Ġ

kl

+ 1

32
(2a10 + a11)Ḃi

k Ḃi j Ġ jk Ġ
l
l

− 1

256
a11 Ḃi j Ḃ

i j Ġk
k Ġ

l
l

−1

8
a10 Ḃi

k Ḃi j Ġ jk φ̇ + 1

8
a10Ġi

k Ġi j Ġ jk φ̇

+ 1

64
a11Ġ

i
i Ġ jk Ġ

jk φ̇ + 1

32
a10 Ḃi j Ḃ

i j Ġk
k φ̇

+ 1

64
a11Ġ

i
i Ġ

j
j Ġ

k
k φ̇ + 1

64
(4a10 + a11)Ġi j Ġ

i j φ̇2

+ 1

64
a11Ġ

i
i Ġ

j
j φ̇

2 − 1

32
a10 Ḃ

i j Ġk
k B̈i j

+ 1

16
a10 Ḃ

i j φ̇ B̈i j + 1

16
(384a1 + a10 + a11)B̈i j B̈

i j

+
(

48a1 + 1

8
a11

)
Ḃi j Ġi

k B̈ jk − 1

8
a10Ġ

i j φ̇G̈i j

− 1

16
a11φ̇

2G̈i
i + 1

16
(384a1 + a10 + a11)G̈i j G̈

i j

+
(

72a1 + 1

4
a10 + 3

16
a11

)
Ḃi

k Ḃi j G̈ jk

−
(

24a1 + 1

8
a10 + 1

8
a11

)
Ġi

k Ġi j G̈ jk

+ 1

16
a11Ġ

i
i Ġ

jk G̈ jk − 1

16
a11Ġ

i
i φ̇G̈

j
j

+ 1

64
a11 Ḃi j Ḃ

i j G̈k
k + 1

32
a11Ġi j Ġ

i j G̈k
k

− 3

64
a11Ġ

i
i Ġ

j
j G̈

k
k − 1

8
a10Ġi j Ġ

i j φ̈ + 1

4
a10φ̈

2
]

(38)

This action is not invariant under O(25, 25) transformations.
Some of the non-invariant terms are total derivative terms

which should be transferred to the boundary by using the
Stokes’s theorem. Moreover, the action in terms of the vari-
ables Gi j , Bi j ,� is not invariant. As we have clarified in
the Introduction section, it should be invariant in terms of
some other variables which involve the first derivatives of
Gi j , Bi j ,�.

To find the total derivatives terms in (38), we add all total
derivative terms at order α′ with arbitrary coefficients to (38).
We add the following total derivative terms:

− 2

κ2n

∫
dζ

d

dζ
(e−φI1) = − 2

κ2n
e−φI1 (39)

where I1 is all possible terms at three-derivative level with
even parity which are constructed from the derivatives of φ,
Bi j , Gi j . Using the package “xAct”, one finds there are 18
such terms. One can also change the field variables in the
bulk action (38) as

Gi j → Gi j + α′δG(1)
i j

Bi j → Bi j + α′δB(1)
i j

φ → φ + α′δφ(1) (40)

where the matrices δG(1)
i j , δB(1)

i j and δφ(1) are all possible

terms at 2-derivative level constructed from φ̇, Ḃ, Ġ. The per-
turbations δG(1)

i j , δφ(1) contain even-parity terms and δB(1)
i j

contains odd-parity terms.
When the field variables are changed according to the

above restricted field redefinitions, then Sc0 produces some
couplings at order α′ and higher. In this section we are inter-
ested in the resulting couplings at order α′, i.e.,

δSc0 = − 2

κ2n

∫
dζe−φ

[
δφ(1)

(
−1

4
Ḃi j Ḃ

i j − 1

4
Ġi j Ġ

i j + φ̇2
)

−2φ̇
d

dζ
δφ(1)

+δG(1)
i j

(
−1

2
Ḃk

j Ḃki − 1

2
Ġk

j Ġki
)

+ 1

2
Ġi j d

dζ
δG(1)

i j

+1

2
Ḃi j d

dζ
δB(1)

i j

]
(41)

We use the field redefinitions and the total derivative terms
to remove all terms in the bulk action except the couplings
which have only the first derivative of Gi j , Bi j , φ.

Using the following field redefinitions:

δφ(1) = −6a1 Ḃi j Ḃ
i j + 6a1Ġ

i
i Ġ

j
j + 24a1Ġ

i
i φ̇ + 24a1φ̇

2

δG(1)
i j = −24a1 Ḃi

k Ḃ jk − 24a1Ġi
k Ġ jk

δB(1)
i j = 24a1 Ḃ j

k Ġik − 24a1 Ḃi
k Ġ jk + 24a1 Ḃi j Ġ

k
k

+48a1 Ḃi j φ̇ (42)

and the following total derivative terms:

I1 = 24a1 Ḃi
k Ḃi j Ġ jk + 12a1Ġ

i
i Ġ jk Ġ

jk − 6a1 Ḃi j Ḃ
i j Ġk

k
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−6a1Ġ
i
i Ġ

j
j Ġ

k
k − 24a1 Ḃi j Ḃ

i j φ̇ + 24a1Ġ
i
i φ̇

2

+32a1φ̇
3 (43)

one finds the cosmological action (38) becomes invariant
under the O(25, 25)-transformations when there is the fol-
lowing relation between the bulk parameters a1, a10, a11:

a11 =−384a1, a10 = 0 (44)

Note that a11 is not zero. Hence, in the minimal scheme that
we have chosen for the bulk couplings (14), the correction
�φ̄ to the Buscher rules, i.e., (32), can not be zero.

The O(25, 25)-invariant form of the action is

Sc1 =Sc1 + δSc0 = − 2

κ2n
24a1

∫
dte−φ

[
1

16
tr(Ṡ4)

− 1

64
(tr(Ṡ2))2 + 1

2
tr(Ṡ2)φ̇2 − 1

3
φ̇4

]
(45)

where

tr(Ṡ2) = 2Ḃi j Ḃ
i j + 2Ġi j Ġ

i j

tr(Ṡ4) = 2Ḃi
k Ḃi j Ḃ j

l Ḃkl − 4Ḃi j Ḃkl Ġik Ġ jl

+8Ḃi
k Ḃi j Ġ j

l Ġkl

+2Ġi
k Ġi j Ġ j

l Ġkl (46)

The cosmological boundary action (45) is the one considered
in [24].

Since the lower-dimensional boundary action at the lead-
ing order is zero, the field redefinitions (42) produce no term
at order α′. However, the total derivative terms (43) appear
in the cosmological/one-dimensional reduction of the bound-
ary terms at order α′. Note that most of the terms in the total
derivative terms are not consistent with the O(25, 25) sym-
metry. They must be cancelled with the anomalous terms in
the cosmological reduction of the boundary couplings.

The one-dimensional reduction of the timelike boundary
couplings (31) is the following:

∂Sc1 = − 2

κ2n
e−φ

[1

4

(
96a1 − (b11 + 12b12)

)
Ḃi

k Ḃi j Ġ jk

+1

4

(
192a1 − (b11 + 12b12)

)
Ġi

k Ġi j Ġ jk

−12a1Ġ
i
i Ġ jk Ġ

jk + 6a1 Ḃi j Ḃ
i j Ġk

k

+6a1Ġ
i
i Ġ

j
j Ġ

k
k

+1

2
(24a1 + 6b1 − b19)Ḃi j Ḃ

i j φ̇ + 1

2
(−24a1

+6b1 − b19)Ġi j Ġ
i j φ̇

−24a1Ġ
i
i φ̇

2 + 1

6
(−96a1 + 24b1 − b18)φ̇

3

+1

4
(−192a1 + b11 + 12b12)Ḃ

i j B̈i j

+1

4
(−192a1 + b11 + 12b12)Ġ

i j G̈i j

+1

2
(192a1 − 24b12 − b17 + 4b19)φ̇φ̈

]

(47)

where we have also used the relations (44). The above action
is not invariant under the O(25, 25) transformations. Note
that the boundary parameter b38 does not appear in the above
action which indicates that its corresponding couplings is
invariant under the O(25, 25) transformations. This cou-
pling is also invariant under the O(1, 1) transformations. The
boundary couplings in (31) which have the coefficient b1 are
also invariant under the O(25, 25) because this parameter
does not appear in the above cosmological action. If one adds
to the above action the total derivative term (39) in whichI1 is
given in (43), one can choose the boundary parameters such
that the result becomes invariant. For the following relations
between the parameters:

b11 = 96a1 − 24b1, b12 = 8a1 + 2b1, b19 = 12b1
1

4
b17

(48)

The boundary action becomes O(25, 25)-invariant which
involves the first derivative of the dilaton. The assumption
that the boundary action must be zero, i.e., (6), also implies
the following relations for the parameters:

b17 = −96a1 − 24b1, b18 = 96a1 + 24b1 (49)

That is, for the above relations one has ∂Sc1 = 0. The above
relations, reduce the 7 boundary parameters in (31) to 2
parameters b1, b38. In the next section we show that the
couplings satisfy the least action principle with no further
constraint on the parameters, however, the condition that the
boundary couplings should include the Chern–Simons form
fully constrains the parameters.

5 Constraint from the Chern–Simons form

For the spacetime manifolds which have boundary, both the
bulk and boundary actions should satisfy the least action prin-
ciple, i.e., δ(S1 + ∂S1) = 0 with the appropriate boundary
condition on the massless fields. For the effective action at
order α′, the massless fields and their first derivative must
be known on the boundary [23]. The couplings in the bulk
action (30) contain terms which have at most two derivative
on the massless fields. The variation of the bulk action then
produces at most the variation of second derivative of the
massless fields in the bulk. Using the Stokes’s theorem, they
appear on the boundary as the variation of the first deriva-
tive of the massless fields which are zero on the boundary.
Hence, the least action does not constrain the couplings in
(30). The boundary couplings (31), however, contain terms
which have second derivative of the massless fields. In the
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least action, they produce the variation of the second deriva-
tive of the massless fields on the boundary which are not
zero. To have no variation of the second derivative of the
massless fields, the parameters in the boundary action may
satisfy some constraints.

Inserting the relations (44), (48) and (49) into the bound-
ary action (31), one finds that the variation of the resulting
boundary action against the metric variation produces the
following terms in the local frame in which the first partial
derivative of metric is zero:

24(4a1 + b1)∂
α� f 1β Pγ δ∂α∂βδGγ δ

24(4a1 + b1)∂
α� f 1α f 1β f 1γ Pδε∂β∂γ δGδε (50)

where f 1α = ∂α f . We have used the assumption that the
variation of metric and its first derivative, and their tan-
gent derivatives are zero, i.e., δGαβ = ∂μδGαβ = 0 and
Pμν∂μ∂γ δGαβ = 0. The above variations must be zero, up
to some total derivative terms on the boundary. One finds
that , up to some total derivative terms, the above variation
becomes zero with no relation between b1, a1. We also find
that the variation of the boundary action against the dilaton
and the B-field variations produces zero result, up to some
total derivative terms. Hence, the least action principle pro-
duces no constraint on the parameters on top of the constraints
that are found by the T-duality.

Inserting the relations (44) into the bulk action (30), one
finds the bulk action is fixed up to one overall parameter, i.e.,

L1 = a1

[
Hα

δεHαβγ Hβδ
εHγ εε − 3Hαβ

δHαβγ Hγ
εεHδεε

+24Hα
γ δHβγ δR

αβ

−96Rαβ R
αβ − 2Hαβγ H

αβγ R + 24R2

+24Rαβγ δR
αβγ δ

−12Hα
δεHαβγ Rβγ δε + 96R∇α�∇α�

−384Rαβ∇α�∇β�
]

(51)

The gravity part of the above couplings is the Gauss–Bonnet
gravity. However, inserting the relations (44), (48) and (49)
into the boundary action, one finds that the boundary action
is not fixed up to the bulk parameter a1, i.e., it has two bound-
ary parameters b1, b38 which should be fixed by some other
constraints. One may consider other backgrounds to fix the
remaining parameters. For example, one may consider the
background which has a boundary and a torus T 2. Then the
dimensional reduction of the effective actions on this torus
should have the symmetry O(2, 2). The bulk couplings (51)
should satisfy this symmetry automatically because there is
only one overall parameter in the bulk action, however, the
boundary couplings may satisfy this symmetry for some spe-
cific relations between the parameters a1, b1, b38. We leave
this calculation for the future works.

Here we fix the remaining parameters in the boundary
action by noting that the boundary couplings include the
structures as those in the Chern–Simons form. Hence, we fix
the remaining parameters in the boundary action such that the
gravity couplings in the boundary include the Chern–Simons
form. The Chern–Simons form has the following gravity cou-
plings for timelike boundary [22]:

Q2 = 4

[
Kμ

μ R̃ − 2Kμν R̃μν + 1

3
(3K α

αKμνK
μν

−Kμ
μK

ν
νK

α
α − 2Kμ

νKναK
αμ)

]
(52)

where R̃μν and R̃ are curvatures that are constructed from
the induced metric (8). In terms of the spacetime metric and
curvature, it is

Q2 = 4

[
Kμ

μR − 2KμνRμν − 2Kα
αnμnνRμν

+2Kμνnαnβ Rαμβν

−1

3
(6K α

αKμνK
μν − 2Kμ

μK
ν
νK

α
α

−4Kμ
νKναK

αμ)

]
(53)

Using the following identity [23]:

nαnβnγ nδ∇δ∇γ Kαβ = −2Kα
γ K αβKβγ + nαnβ∇γ ∇γ Kαβ

(54)

one finds that the gravity couplings in the boundary action
become the same as the couplings in Q2 for the following
relations:

b1 = −4a1, b38 = 32a1 (55)

In fact, inserting the relations (44), (48), (49) and (55) into
the boundary action (31), one finds

∂L1 = a1

[
24Q2 + 32nαnβ∇γ ∇γ Kαβ − 4Hβγ δH

βγ δK α
α

+24Hα
γ δHβγ δK

αβ

+24Hα
δεHβδεK

γ
γ n

αnβ

−48Hβ
δεHγ δεn

αnβnγ ∇α�

+192K β
β∇α�∇α�

−384K γ
γ n

αnβ∇α�∇β� − 384Kαβ∇α�∇β�

+256nαnβnγ ∇α�∇β�∇γ �

]
(56)

Hence, the boundary couplings are also fixed up to the overall
bulk parameter a1.

123



645 Page 14 of 17 Eur. Phys. J. C (2022) 82 :645

6 Comparing with Meissner action

We have used the restricted field redefinitions to find the inde-
pendent bulk couplings in the minimal scheme (14). Then
using the assumption that the effective action is background
independent, we considered the backgrounds in which the
effective actions have symmetries O(1, 1) and O(25, 25)

to fix the parameters. We have also used the assumption
that the gravity couplings on the boundary should include
the Chern–Simons form. Then we have found the bulk and
boundary couplings up to an overall factor. Similar calcula-
tions have been done in [23] in which no field redefinition
has been used and a particular T-duality transformations has
been used which produces the bulk action to be the Meissner
action [24]. The Meissner bulk action and its corresponding
timelike boundary actions are

SM
1 = −48a1

κ2

∫

M
d26x

√−Ge−2�
[
R2
GB

+ 1

24
Hα

δεHαβγ Hβδ
εHγ εε

−1

8
Hαβ

δHαβγ Hγ
εεHδεε

+ 1

144
Hαβγ H

αβγ HδεεH
δεε + Hα

γ δHβγ δR
αβ

−1

6
Hαβγ H

αβγ R − 1

2
Hα

δεHαβγ Rβγ δε

−2

3
Hβγ δH

βγ δ∇α∇α� + 2

3
Hβγ δH

βγ δ∇α�∇α�

+8R∇α�∇α� + 16∇α�∇α�∇β∇β�

−16Rαβ∇α�∇β� − 16∇α�∇α�∇β�∇β�

+2Hα
γ δHβγ δ∇β∇α�

]

∂SM
1 = −48a1

κ2

∫

∂M
d25σ

√−ge−2�

[
Q2

+4

3
nαnβ∇γ ∇γ Kαβ

+2

3
Hβγ δH

βγ δnα∇α�

−2Hβ
δεHγ δεn

αnβnγ ∇α� − 1

3
Hβγ δH

βγ δK α
α

+Hα
γ δHβγ δK

αβ + Hα
δεHβδεK

γ
γ n

αnβ

−16K γ
γ n

αnβ∇α�∇β�

+16K β
β∇α�∇α� − 16Kαβ∇α�∇β�

−16nα∇α�∇β�∇β�

+32

3
nαnβnγ ∇α�∇β�∇γ �

]
(57)

where R2
GB is the Gauss–Bonnet bulk couplings and Q2 is

the Chern-Simons boundary couplings (53).
In this section we are going to show that the above cou-

plings and the couplings (51) and (56) are identical up to a

particular restricted field redefinition. In general, under the
field redefinition � → � ′, the form of actions are changes.
However, up to some total derivative terms, the sum of the
bulk and boundary actions in terms of variable � should be
the same as the new actions in terms of new field � ′, i.e.,

Seff(�) + ∂Seff(�) = S′
eff(�

′) + ∂S′
eff(�

′) (58)

Using the α′-expansion (1) for the couplings and the α′-
expansion for the new field variable � ′, i.e.,

� ′ =
∞∑

m=0

α′m� ′
m (59)

where � ′
0 = �, one finds the following relations for the bulk

and boundary couplings at order α′ which are similar to the
relations (20) in the base space:

S1(�) − S′
1(�) − δS0 − 2

κ2

∫
d26x

√−G∇α(Jα
1 e

−2�)

= 0

∂S1(�) − ∂S′
1(�) − δ∂S0 + T1(�)

+ 2

κ2

∫
d25σ

√|g|nα J
α
1 e

−2� = 0 (60)

where δS0 and δ∂S0 are the variations of the leading order
bulk and boundary actions, respectively. T1 is arbitrary total
derivative terms on the boundary at order α′ and Jα

1 is arbi-
trary vector at order α′ in the bulk.

The difference between the bulk couplings in the Meissner
action (57) and the bulk couplings (51) are the following
terms:

a1

[
1

6
Hαβγ H

αβγ HδεεH
δεε − 2Hαβγ H

αβγ R

−16Hβγ δH
βγ δ∇α∇α� + 16Hβγ δH

βγ δ∇α�∇α�

+96R∇α�∇α� + 384∇α�∇α�∇β∇β�

−384∇α�∇α�∇β�∇β� + 48Hα
γ δHβγ δ∇β∇α�

]

Using the variation (12), one finds that the above terms are
removable by the following field redefinitions:

δ�(1) = a1

[
Hαβγ H

αβγ − 48∇α�∇α�

]

δB(1)
αβ = −96a1Hαβγ ∇γ � (61)

and by the total derivative terms with the following vector:

Jα
1 = a1

[
16Hβγ δH

βγ δ∇α� − 384∇α�∇β�∇β�

]
(62)

When the field redefinition (61) is imposed on the boundary
coupling (7) at the leading order, it produces the following
boundary couplings order α′:

δ∂S0 = − 2

κ2

∫
d25σ

√−ge−2�(−4a1)K
μ

μ

[
Hαβγ H

αβγ
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−48∇α�∇α�

]
(63)

One the other hand, the difference between the boundary
couplings in (57) and the boundary couplings (56) are

a1

[
− 4Hβγ δH

βγ δK α
α + 16Hβγ δH

βγ δnα∇α�

+192K β
β∇α�∇α� − 384nα∇α�∇β�∇β�

]

which are removed by the variation (63) and the vector (62).
No total derivative term on the boundary, i.e., T1(�), is
needed to satisfy the second equation in (60). Therefore, the
bulk and boundary action that we have found in this paper are
the same as the couplings in (57) up to the field redefinition
(61)

7 Discussion

It is known that the classical effective actions in string theory
have the gauge invariant couplings at all orders of α′. Hence,
one is free to use the higher-derivative field redefinitions.
When there is no boundary, the field redefinition is to write
the massless fields in terms of the derivatives of the massless
fields at all orders of α′ with arbitrary coefficients [3]. In this
paper we have proposed that in the presence of boundary,
the higher-derivative field redefinitions should be restricted
to those which do not change the data on the boundary. It has
been proposed in [23] that in the least action principle in the
presence of the boundary, the massless fields and their deriva-
tives up to order n must be known on the boundary for the
effective action at order α′n . The field redefinitions should not
change this information on the boundary. For example, for
the effective action at order α′, the massless fields and their
first derivatives are known on the boundary. The field redefi-
nition that does not change these data, requires that the metric
does not change, and all other massless fields include only
the first derivative of the massless fields. Using this restricted
field redefinition for the effective action of the bosonic string
theory at order α′, we find there are 17 independent bulk
couplings, i.e., (14). There are also 38 independent bound-
ary couplings.

We then use the assumption that the effective action of
string theory at each order of α′ and at the critical dimension
is background independent, i.e., the assumption that coeffi-
cients of the above 55 independent couplings are constant.
We choose the background which has a boundary and a cir-
cle. The dimensional reduction of the effective action should
then have the O(1, 1) symmetry. We constrain the 55 con-
stants such that the couplings become invariant under the
Z2-subgroup of the O(1, 1)-group. The Z2-transformations
are the Buscher rules plus some corrections that involve

only the first derivative of the massless fields in the base
space. This constraint does not fully fix all the constants. We
then choose another background in which all fields depend
only on one coordinate. In this case the cosmological/one-
dimensional reduction of the effective action should have
O(25, 25) symmetry. We constrain the remaining parame-
ters such that the one-dimensional actions become invari-
ant under the O(25, 25)-transformations after using some
one-dimensional field redefinitions which involve only the
first derivative of the massless fields in the one-dimensional
base space. We then impose the constraint that the boundary
action is zero in the scheme in which the one-dimensional
bulk action involves only the first derivative terms, to fur-
ther fix the coefficients of the couplings. We find that these
three set of constraints fixed the 17 bulk parameters up to one
overall factor. However, 2 of the boundary parameters remain
unfixed. When B-field and dilaton are zero, the resulting bulk
couplings are exactly the bulk couplings in the Gauss-Bonnet
gravity. Imposing the constraint that the gravity couplings in
the boundary action should be consistent with the Chern-
Simons form, the 2 boundary parameters are also fixed in
terms of the overall factor of the bulk couplings. We have
found the following effective actions at order α′ for the space-
time with timelike boundary:

S1 = −48a1

κ2

∫

M
d26x

√−Ge−2�

[
R2

GB

+ 1

24
Hα

δεHαβγ Hβδ
εHγ εε − 1

8
Hαβ

δHαβγ Hγ
εεHδεε

+RαβHα
γ δHβγ δ − 1

12
RHαβγ H

αβγ

−1

2
Hα

δεHαβγ Rβγ δε

+4R∇α�∇α� − 16Rαβ∇α�∇β�

]

∂S1 = −48a1

κ2

∫

∂M
d25σ

√−ge−2�

[
Q2

+4

3
nαnβ∇γ ∇γ Kαβ

−1

6
Hβγ δH

βγ δK α
α + Hα

γ δHβγ δK
αβ

+Hα
δεHβδεK

γ
γ n

αnβ − 2Hβ
δεHγ δεn

αnβnγ ∇α�

+8K β
β∇α�∇α�

−16K γ
γ n

αnβ∇α�∇β� − 16Kαβ∇α�∇β�

+32

3
nαnβnγ ∇α�∇β�∇γ �

]

(64)

where R2
GB is the Gauss–Bonnet gravity couplings and Q2

is the Chern–Simons couplings (53). We have shown that
the above couplings are the same as the Meissner action and
its corresponding timelike boundary couplings (57) up to
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the restricted field redefinition (61). Unlike in the Meissner
action, in the bulk action (64) all fields except the metric
carry only the first derivative.

It has been observed in [23] that the consistency of the
effective action at order α′ with the T-duality requires not
only the values of the massless fields but also the values of
their first derivatives must be known on the boundary. This
makes us to use the restricted field redefinition which involves
only the first derivative of the massless fields. On the other
hand, if one uses the field redefinitions at order α′ which
involve the second derivatives of the massless fields, then
one would find 8 independent couplings in (14). We have
checked it explicitly that the bulk and boundary couplings
are not consistent with the T-duality in this case. Hence, the
T-duality does not allow the values of the second derivatives
of the massless fields on the boundary to be known for the
effective action at order α′.

The cosmological action (38) in terms of the functions φ,
Bi j , Gi j which appear in the cosmological reduction of �,
Bμ , Gμν have second derivatives of the functions φ, Bi j ,
Gi j , i.e., the cosmological action (38) is nonlocal. Then in
the variation of the action, the first derivative of δφ, δBi j ,
δGi j appear on the boundary which are zero according to the
boundary condition proposed in [23] for the nonlocal effec-
tive action at order α′ that the massless fields and their first
derivative should be known on the boundary. However, after
the field redefinition (40), (42), the action (45) involves only
the first derivatives of the generalized metric S and dila-
ton φ, i.e., the cosmological action (45) becomes local in
the new variables. Then in the least action, only variation of
these new variables appear on the boundary. Hence, in terms
of the new variables, the boundary condition should be the
usual boundary condition for the local actions that only the
massless fields are known on the boundary. In this case, then
there should be no cosmological boundary action, i.e., (6).
In other words, the usual boundary condition for the local
cosmological actions in terms of the variables S, φ requires
the constraint (6).

We have found the effective actions (64) for timelike
boundary by requiring that the dimensional reduction of the
effective action on a circle and on a torus T 25 to be invari-
ant under the Z2-transformations, and under the O(25, 25)

transformations, respectively. Moreover, we have imposed
the constraint from requiring the boundary action to have the
Chern–Simons form. The assumption that effective actions
at the critical dimensions are background independent then
requires that if one considers the background which has a
boundary and a compact sub-manifold T 2, then the dimen-
sional reduction of the couplings in (64) should have the
O(2, 2) symmetry, up to some restricted field redefinitions.
It would be interesting to perform this calculations to check
if the couplings (64) are consistent with the O(2, 2) symme-
try. The dimensional reduction of the bulk actions at orders

α′0, α′ on torus T 2 have been studied in [30,31]. It would be
also interesting to find the boundary couplings for the space-
like boundary for which the Chern–Simons form is given by
(52) with different sign for the first two terms [22]. It would
be also interesting to extend the calculations in this paper to
the order α′2 to find the boundary couplings at this order, i.e.,
∂S2 in (5).
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