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Abstract We present a systematic study of N = (2, 2)

supersymmetric non-linear sigma models on S2 with the tar-
get being a Kähler manifold. We discuss their reformulation
in terms of cohomological field theory. In the cohomological
formulation we use a novel version of 2D self-duality which
involves aU (1) action on S2. In addition to the generic model
we discuss the theory with target space equivariance corre-
sponding to a supersymmetric sigma model coupled to a non-
dynamical supersymmetric background gauge multiplet. We
discuss the localization locus and perform a one-loop calcu-
lation around the constant maps. We argue that the theory
can be reduced to some exotic model over the moduli space
of holomorphic disks.
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1 Introduction

Starting from the work of Pestun [1] numerous exact cal-
culations for supersymmetric gauge theories on spheres and
other curved backgrounds in different dimensions have been
performed (see [2] for the review of the subject). In this work
we are interested in two dimensional theories on S2. Super-
symmetricN = (2, 2) gauge theories coupled to matter were
constructed on S2 and localization calculations were carried
out in [3,4]. Many N = (2, 2) two dimensional non-linear
sigma models with Calabi–Yau spaces as target admit a UV
description in terms of N = (2, 2) gauge theories, the so
called the gauged linear sigma models (GLSM), and thus
the partition function ZS2 for GLSM should carry the rele-
vant information about the corresponding non-linear sigma
model. In [5] it has been conjectured that ZS2 for GLSM com-
putes the quantum corrected Kähler potential for the Kähler
moduli space of the corresponding Calabi–Yau. This con-
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jecture led to a prescription on how to deduce the Gromov–
Witten invariants from ZS2 for GLSM and some non-trivial
checks were performed. Later in [6–8] arguments were pro-
vided to prove this conjecture. For a review of the subject
the reader may consult [9,10] (and references therein). It is
also possible to construct GLSM models on S2 that flow
to a Calabi–Yau nonlinear sigma model and whose parti-
tion function computes the Kähler potential for the complex
structure moduli space of the Calabi–Yau [11]. In this work
we concentrate on N = (2, 2) supersymmetric non-linear
sigma models on S2 with the target being a Kähler manifold
parametrized by chiral fields, we study these theories in the
context of localization. Our main goal is to understand the
formulation of these theories and find on which maps they
localize. Equivariance with respect to a rotation of the S2

plays a crucial role in the formalism. If the target Kähler
manifold admits a toric action we also formulate a version
of the sigma model with target space equivariance and we
study it on S2. These models are closely related to GLSM
since some of the parameters in a GLSM can be interpreted
as the equivariant parameters for the non-linear sigma model
in IR. Thus the relation between GLSM and non-linear sigma
model is subtle and, as we argue, the non-linear sigma model
is not simply a product of an A-model and a Ā-model, but
contains more information.

Let us briefly sketch the idea behind our construction. The
formulation of the standard A-model is based on the notion on
2D self-duality defined on one forms �1(�, X∗(T M)) with
values in X∗(T M). In 2D the Hodge star � on one forms
satisfies �2 = −1 and if we introduce a (almost) complex
structure J on M then on �1(�, X∗(T M)) we can define
the operation J� such that (J�)2 = 1. In the A-model the
projector 1

2 (1 + J�) (or with minus sign) is used to define
some fields and the model is localized on the holomorphic
maps 1

2 (1 + J�)dX = 0. Our main observation is that on
S2 using the vector field corresponding to the standard U (1)

rotation of S2 one can modify the notion of self-duality on
�1(�, X∗(T M)) and, roughly speaking, define a smooth
interpolation between 1

2 (1 + J�) over north pole of S2 and
1
2 (1− J�) over south pole of S2. Our present 2D construction
is similar to the generalization of self-duality on two-forms
in 4D suggested in [12,13] in the attempt to explain the orig-
inal work [1]. This novel 2D self-duality condition appears
naturally from supersymmetry considerations on S2, as we
will explain later. Thus using this new self-duality we can
formulate a modification of the A-model on S2 and relate it
to N = (2, 2) non-linear supersymmetric sigma models on
S2. We present the details of this construction and we discuss
the localization of this model. Although this model is formu-
lated on S2, supersymmetry will force the model to localize
on holomorphic disks.

The model we consider interpolates between the equiv-
ariant extension of the A and the Ā models around oppo-
site poles of the S2. Starting from a nonlinear sigma model
parametrized by twisted (anti)chiral fields and placing it on
the same supergravity background considered here we can
build models that interpolate between the equivariant exten-
sion of the B and the B̄ models. This construction is directly
related to that of [11]. The cohomological description of these
models and the corresponding localization are an interesting
problem [14].

The paper is organized as follows: in Sect. 2 we review
some basic facts about N = (2, 2) non-linear sigma mod-
els on R

2 to set some ideas and conventions. In Sect. 3
we go through the construction of N = (2, 2) non-linear
sigma model on S2 with the target being a Kähler manifold.
We also describe the supersymmetric sigma model coupled
to supersymmetric background gauge multiplets when the
target space admits some isometries. These supersymmetric
models can be reformulated in terms of a cohomological field
theory as we present in Sect. 4. We review the standard A-
model and explain how to modify the notion of self-duality
for one forms in the context of the sigma model. We present
the cohomological description of the supersymmetric sigma
model both without and with target space equivariance. In
Sect. 5 we analyze the observables of the new cohomological
theory. Section 6 deals with the localization locus and prob-
lems related to the interpretation of the corresponding PDEs.
In this section we suggest the interpretation of the localization
locus and discuss potential problems. In Sect. 7 we derive the
one-loop result around the constant maps, both for the model
with only S2 equivariance and for the model with S2 and tar-
get space equivariance. For the case of Calabi–Yau it agrees
with the previously conjectured answer. In Sect. 8 we give
a summary of the results, we conjecture the full answer and
outline the open problems within our present understanding
of the localization calculation on S2.

2 N = (2, 2) nonlinear sigma model on R
2

In this section we review standard facts about N = (2, 2)

non-linear sigma models and set the conventions for further
discussion. We are interested in two dimensional non-linear
sigma models which are defined on the space of maps X :
� → M from a two dimensional manifold � to a target
manifold M with the following action

S =
∫

�

dXμ ∧ �dXνgμν(X), (1)

where M is equipped with a metric g and � with Hodge
star (which on one-forms requires only a complex struc-
ture). The non-linear sigma model and its different exten-
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sions/generalizations play a prominent role in string theory
and in mathematical physics, in particular through their rela-
tion to geometry. Here we are interested in the supersym-
metric extensions of the non-linear sigma model which are
sensitive to a choice of � equipped with additional geomet-
rical structures.

The standard discussion of N = (1, 1) and N = (2, 2)

supersymmetric sigma models is performed on � = R
1,1

equipped with flat Lorentz metric. This choice allows to deal
with real (Majorana) two-component spinors. The best way
to encode the supersymmetric sigma models is to introduce
superfields, see [15]1 for a review of supersymmetric sigma
models and their relation to the geometry of the target space
M . Here we are interested inN = (2, 2) sigma models which
require M to be a Kähler manifold [16]. A Kähler manifold
M is equipped with a metric g, a closed Kähler form ω and
a complex structure J that satisfy: gi j̄ = ∂i∂ j̄ K , ω = gJ

and ω = i ∂̄∂K where K is a locally defined Kähler potential
on M . Here we use Latin indices (i, ī) to denote complex
coordinates. Because the manifold is Kähler the form ω is
covariantly constant with respect to the Levi-Civita connec-
tion. Hence the Levi-Civita connection coincides with the
Chern connection and its only nonzero Christoffel symbols
are

�i
jk = gi j̄∂ j gk j̄ , � ī

j̄ k̄
= g j ī∂ j̄ g j k̄ . (2)

In the following we will be interested in manifolds M with
isometries which preserve the Kähler structure. Let such an
isometry be generated by a vector field k (or collection of the
vector fields ka which are commuting in our setting). Because
k preserves the complex structure, that is Lk J = 0, then in
complex coordinates

∂i k
j̄ = 0, ∂ī k

j = 0.

Because k is a Killing vector for the Kähler metric addition-
ally we have that

∂i k j̄ + ∂ j ki = 0.

Locally this implies the existence of a function D such that

gi j̄ k
i = −i∂ j̄D, g j ī k

ī = i∂ jD. (3)

We assume that the function D also exists globally and we
refer to D as Hamiltonian for k.

Introducing the N = (2, 2) superspace for R1,1 we can
write the action as a superspace integral

S =
∫

d2x d4θ K (�, �̄), (4)

where � is a chiral superfield and its complex conjugate
�̄ is an anti-chiral superfield. For detailed conventions and

1 Although the paper formally deals with 3-dimensional sigma models,
all formalism is identical for 2-dimensional models.

more general sigma models one may consult [17]. In the
next section we discuss the extension of this model to S2 for
a general Kähler manifold M .

If the Kähler manifold M admits a torus actionTk preserv-
ing the Kähler structure then we can discuss another version
of supersymmetry. The vector fields ka corresponding to the
torus action generate a global symmetry of the sigma model
(4)

δ�i = εakia(�), δ�̄
ī = εakīa(�̄) (5)

for any constants εa since

kia∂i K (�, �̄) + kīa∂ī K (�, �̄) = f (�) + f̄ (�̄), (6)

which follows from Lkω = Lk(i ∂̄∂K ) = 0. The RHS van-
ishes under integration over superspace. These global sym-
metries can be gauged by introducing a real vector superfield
Va and postulating the transformations

δ�i = i�akia(�), δ�̄
ī = −i�̄

a
kīa(�̄),

δVa = i(�̄
a − �a) (7)

where �a and �̄
a

are gauge parameters promoted to chiral
and anti-chiral superfields. There exists a canonical way of
constructing a model that is invariant under the gauge trans-
formations (7)

S =
∫

d2x d4θ K̂ (�, �̄,V). (8)

Here we will treatVa as a background field specified in Wess–
Zumino gauge. The Wess–Zumino gauge does not preserve
supersymmetry, but it preserves a combination of supersym-
metry and super-gauge transformations [18]. We will refer
to such combination as the supersymmetry transformation
in the background gauge field. This is a nice way to encode
target space equivariance into the supersymmetry transfor-
mations of the sigma model.

We want to extended these two types of supersymmetric
models to S2. For this we need to work in Euclidean sig-
nature. Let us discuss first the model on R

2 equipped with
the flat Euclidean metric. Now we have to deal with the Weyl
spinors (R2 does not admit the real Majorana spinor represen-
tation). We summarize the spinor and superspace conventions
in Appendix A. The superfield action has the form

S =
∫

d2x d4θ K (�, �̃) (9)

where � is a chiral superfield and �̃ is an anti-chiral super-
field. In Euclidean signature � and �̃ are not related by com-
plex conjugation and reality conditions are subtler. In the next
section we provide a detailed construction of N = (2, 2)

sigma models on S2, both for general M and for M with
isometries coupled to background gauge fields.
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3 N = (2, 2) nonlinear sigma model on S2

Here we first review how to place a N = (2, 2) theory on
a round two sphere preserving all four supercharges. This is
accomplished by coupling the theory to an appropriate rigid
supergravity background. In case the theory possesses an
Abelian flavor symmetry we show how to turn on background
gauge multiplets preserving supersymmetry. We comment on
the possibility of breaking some of the supercharges in order
to deform the round sphere while maintaining a U (1) isome-
try. Finally we write down the Lagrangian of an N = (2, 2)

non linear sigma model with Kähler target space coupled to
background supergravity. In case the target space admits an
isometry we show how to introduce the coupling to a super-
symmetric background gauge multiplet.

3.1 Killing spinors

In order to preserve supersymmetry in curved space we cou-
ple the theory to background supergravity. For the case of a
N = (2, 2) theory the supergravity multiplet includes sev-
eral bosonic fields in addition to the metric [19]. These are a
connection a(R) for the U (1) R-symmetry, and two auxiliary
scalars H and H̃. Setting to zero the gravitino variation we
obtain the Killing spinor equations

(∇m − ia(R)
m )ζ = −1

4
Hγm(1 − γ 3)ζ − 1

4
H̃γm(1 + γ 3)ζ,

(∇m + ia(R)
m )ζ̃ = −1

4
Hγm(1 + γ 3)ζ̃ − 1

2
H̃γm(1 − γ 3)ζ̃ .

(10)

Each solution to these equations corresponds to a supercharge
acting via supersymmetry variations δζ and δζ̃ . For two solu-

tions ζ and ζ̃ we can define the spinor bilinears:

vm = −2ζγm ζ̃ , s = ζ̃ (1 − γ3)ζ, s̃ = ζ̃ (1 + γ3)ζ.

(11)

On any field2 φ of R-charge r the algebra satisfied by the
variations δζ and δζ̃ is

{δζ , δζ̃ }φ = i(Lv − irvma(R)
m )φ − i

2
rsHφ − i

2
r s̃H̃φ,

{δζ , δζ }φ = 0, {δζ̃ , δζ̃ }φ = 0. (12)

On a round two-sphere of radius RS2 with the standard choice
of orthonormal frame:

ds2 = e1e1̄, e1 = 2RS2

1 + zz̄
dz (13)

2 We set the central charges of φ to zero. The case with nonzero central
charges is considered in [19].

consider the spinors

ζ∗ =
(

ζ−
ζ+

)
= 1√

(1 + zz̄)

(
Ã + i Bz̄
B + i Ãz

)
,

ζ̃∗ =
(

ζ̃−
ζ̃+

)
= 1√

(1 + zz̄)

(−B̃ + i Az̄
A − i B̃z

)
, (14)

where A, B, Ã, B̃ are complex constants.
The spinors in (14) are solutions of the Killing spinor equa-

tions (10) provided that the background U (1)R connection
vanishes while the two scalars H and H̃ are constant.

H = i

RS2
, H̃ = i

RS2
. (15)

In the following we will single out two supercharges corre-
sponding to ζ and ζ̃ with A = Ã = 1 and B = B̃ = 0. The
spinors bilinears (11), built from ζ and ζ̃ are then

v = i

RS2
(z∂z − z̄∂z̄), s = zz̄

1 + zz̄
, s̃ = 1

1 + zz̄
. (16)

Near the z = 0 pole the spinors and the supercharge corre-
sponding to δQ = δζ + δζ̃ approach those corresponding to

the Ā topological twist. Similarly near the z = ∞ pole the
supercharge approaches that corresponding to the A topo-
logical twist. More precisely δ2

Q ⊃ εM, where M is the
generator of the U(1) isometry i(z∂z − z̄∂z̄). Hence near the
poles we have an equivariant deformation of the correspond-
ing topological supercharge. By making use of (12) and the
expression for v we fix the equivariant parameter ε to be

ε = 1

RS2
.

We can squash the two sphere maintaining theU (1) isometry
generated by i(z∂z − z̄∂z̄). The maximum number of super-
charges is then reduced to two corresponding to two Killing
spinors ζ and ζ̃ . This squashing is explored in more detail in
Appendix D.

3.2 Supersymmetric background U (1) gauge multiplet

A two dimensional N = (2, 2) vector multiplet in Wess–
Zumino gauge comprises two scalars σ and σ̃ , a gauge con-
nection Am , an auxiliary field D and spinors λ and λ̃. We will
consider a background gauge multiplet and setλ = 0, λ̃ = 0.
In the presence of a background gauge multiplet the algebra
satisfied by the susy variations on any field φ of R-charge r
and U (1) charge q is modified from (12)

{δζ̃ , δζ }φ = i(Lv − iqvm Am − irvma(R)
m )φ

− i

2
s(rH + 2qσ)φ − i

2
s̃(rH̃ + 2qσ̃ )φ,

{δζ , δζ }φ = 0, {δζ̃ , δζ̃ }φ = 0.
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On the round sphere we can turn on a background gauge mul-
tiplet that preserves all four supercharges [19]. This requires
that σ and σ̃ are constant and:

D = −1

2
(H̃σ + Hσ̃ ), F11̄ = i

4
(H̃σ − Hσ̃ ). (17)

where Fmn is the field strength of Am and F11̄ are the corre-
sponding frame components. We will select

Am = 0, σ = i
u

RS2
, σ̃ = i

u

RS2
, D = u R−2

S2 (18)

where u is a complex constant. More general choices with
nonzero flux threading the S2 may also be interesting. The
anticommutator of δζ̃ and δζ reduces to

{δζ̃ , δζ }φ = iLvφ + s + s̃

2RS2
(r + 2qu) φ. (19)

The background gauge multiplet is less constrained if we
want to preserve only the two supercharges we singled out
setting A = Ã = 1 and B = B̃ = 0. Introducing a function
f (zz̄) we can then set

A = − iu

2
(1 − f )

(
dz

z
− dz̄

z̄

)
,

σ = i
u f

RS2
, σ̃ = i

u f

RS2
, D = u f

R2
S2

− u
(1 − z2 z̄2)

2R2
S2

f ′,

(20)

where u is a complex constant as above. The anticommutator
of δζ̃ and δζ reduces to

{δζ̃ , δζ }φ = iLvφ + 1

2RS2
(r + 2qu) φ. (21)

Hence the function f (zz̄)does not appear in the superalgebra.
By exploiting the freedom in the choice of f (zz̄) we can set

A = − iu

2

(
dz

z
− dz̄

z̄

)
(22)

almost everywhere except at the poles of the sphere where
f = 1 to ensure smoothness. In this limit the scalar field D
is zero except for two dimensional delta functions supported
at the poles of the sphere

D = 2πδnp + 2πδsp. (23)

3.3 Chiral and antichiral multiplets

We consider a chiral multiplet of R-charge r and vanishing
central charges. The multiplet is composed of a scalar X of
R-charge r a spinor ψ of R-charge r − 1 and an auxiliary
scalar field F of R-charge r −2. For later use we give charge
q to the chiral multiplet under a background U (1) gauge
multiplet. For r = 0, which is the case of our interest, the

susy transformations of the components are [19]:

δX = √
2ζψ,

δψ = √
2ζ F − i

√
2γm ζ̃DmX + i√

2
q(σ + σ̃ )ζ̃ X

+ i√
2
q(σ − σ̃ )γ3ζ̃ X,

δF = −i
√

2Dm(ζ̃ γmψ) + i√
2
(H + H̃ − q(σ + σ̃ ))ζ̃ψ

− i√
2
(H − H̃ − q(σ − σ̃ ))ζ̃ γ3ψ. (24)

The covariant derivatives in the expression above include the
U (1) connection Am and the U (1)R connection a(R)

m .
Similarly an anti-chiral multiplet comprises of a scalar X̃

of R-charge −r a spinor ψ̃ of R-charge 1−r and an auxiliary
scalar field F̃ of R-charge 2−r . For later use we give charge
−q to the antichiral multiplet under a backgroundU (1)gauge
multiplet. The susy transformations of the components for
r = 0 are [19]:

δ X̃ = √
2ζ̃ F̃ + i

√
2γmζDm X̃ − i√

2
q(σ + σ̃ )ζ X̃

+ i√
2
q(σ − σ̃ )γ3ζ X̃ ,

δ F̃ = −i
√

2Dm(ζγmψ̃) + i√
2
(H + H̃ − q(σ + σ̃ ))ζ ψ̃

+ i√
2
(H − H̃ − q(σ − σ̃ ))ζγ3ψ̃. (25)

3.3.1 Chiral multiplet with gauged isometries

The scalar fields at the bottom of chiral and anti-chiral mul-
tiplets parametrize a sigma model with Kähler target space.
If the target space admits a holomorphic Killing vector k
we can gauge the corresponding isometry by coupling to a
vector multiplet. The gauging considered in the previous sec-
tion corresponds to the Killing vector ki = iqi Xi . The gauge
transformation parameters can be promoted to a chiral super-
field �. The gauge transformation of a chiral superfield �i

is then given by (7):

δ�i = i�ki (�),

Letting ε be the lowest component of i� this results in the
following:

δεX
i = ε ki ,

δεψ
i = ε ∂ j k

iψ j ,

δεF
i = ε ∂ j k

i F j + 1

2
ε ∂ j∂kk

i ψ jψk . (26)

The auxiliary fields Fi do not transform homogeneously
under gauge transformations. We can however define new
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fields

F̂ i = Fi − 1

2
�i

jkψ
jψk, (27)

which transform homogeneously

δε F̂
i = ε∂ j k

i F̂ j . (28)

Note that F̂ is a function both of Xi and X̄ ī through �i
jk .

A second property of the F̂ i is that, like the ψ i , they
transform tensorially under holomorphic coordinate changes
Xi → f i (X).

Specializing to a supersymmetric background gauge field
and letting the R-charges of the chiral multiplets be 0 super-
symmetry acts as follows

δXi = √
2ζψ i ,

δψ i = √
2ζ Fi − i

√
2γm ζ̃ (∂mXi − Amk

i )

+ 1√
2
(σ + σ̃ )ζ̃ki + 1√

2
(σ − σ̃ )γ3ζ̃k

i ,

δFi = −i
√

2(δij∇m − Am∂ j k
i )(ζ̃ γmψ j )

+ i√
2
((H + H̃)δij + i(σ + σ̃ )∂ j k

i )ζ̃ψ j

− i√
2
((H − H̃)δij + i(σ − σ̃ )∂ j k

i )ζ̃ γ3ψ
j . (29)

3.4 Lagrangian

Here we write the Lagrangian of a supersymmetric nonlinear
sigma model with Kähler target space coupled to background
supergravity. We consider the Kähler potential to depend on
the bottom components Xi , X̃ ī of chiral and antichiral super-
fields of R-charge 0. When the target space admits a U (1)

isometry generated by a holomorphic Killing vector field k
we couple the model to a background gauge multiplet.

The Lagrangian, written in terms of the Kähler metric gi j̄ ,
the curvature Ri j̄kl̄ of the target space and the Hamiltonian
D defined in (3), is

LK (�̃,�) = 2gi j̄

(
DmXi Dm X̄ j̄ + σ σ̃ki k̃ j̄ − F̂ i ̂̃F j̄ − iψ̃ j̄γmDmψ i

)

−2DD − 1

2

(
(σ + σ̃ )ψ̃ j̄ψ i − (σ − σ̃ )ψ̃ j̄γ3ψ

i )

×
(
∇i k j̄ − ∇ j̄ ki

)

−1

2
Ri j̄kl̄ (ψ

iψk)(ψ̃ j̄ ψ̃ l̄ ), (30)

where we defined

DmX
i = ∂mX

i − Amk
i ,

∇i k
j = ∂i k

j + �
j
ikk

k,

Dmψ i = (∇m + iaR
m)ψ i − Am∂ j k

iψ j + �i
jkψ

j Dm X
k

F̂i = Fi − 1

2
�i

jkψ
jψk, ̂̃Fī = F̃ ī − 1

2
� ī

j̄ k̄
ψ j̄ψ k̄ . (31)

When the coupling to the background gauge multiplet is
turned off, the Lagrangian is a special case of that written
in [19] for general R-charge and central charge assignments
of the chiral fields. On a round S2 and when the background
gauge multiplet is maximally supersymmetric (30) coincides
with the Lagrangian derived in [20]. When the space-time is
flat the Lagrangian can be compared to that in [21].

4 Cohomological description

In this section we introduce the cohomological description
of the N = (2, 2) supersymmetric non-linear sigma models
presented in the previous section. We first review the descrip-
tion of the A-model and then introduce its different equivari-
ant modifications.

4.1 A-model

To start we define the A-model (topological sigma model).
We follow closely the original works [22,23]. We consider
only the case when the target manifold M is Kähler.

The A-twist of a N = (2, 2) sigma model can be for-
mulated in terms of the following set of fields: the map
X : � → M and �μ which is an odd zero form with values
in X∗(T M). We also introduce an odd one form χμ valued in
X∗(T M). These one forms χμ are constrained as we describe
below to reduce the number of their components. Let J be a
complex structure on M . The Hodge star operation � on �

requires only a complex structure on � and has the property
�2 = −1 when acting on �1(�). Thus on one forms with
values in X∗(T M) (here we assume the complexified T M)
the operation �J has the property (�J )2 = 1. Assuming the
conventions �dz = −idz and �dz̄ = id z̄ the action of �J on
�1(�, X∗(T M)) is

(�J )χ i
z dz = χ i

z dz, (�J )χ ī
z dz = −χ ī

z dz,

(�J )χ i
z̄ d z̄ = −χ i

z̄ d z̄, (�J )χ ī
z̄ d z̄ = χ ī

z̄ d z̄. (32)

We can introduce two projectors

1

2
(1 ± �J ), (33)

which define the notion of (anti) self-duality for �1(�, X∗
(T M)). Let us keep only the fields in the kernel of
1/2(1 + �J ): χ i

z̄ d z̄ ∈ �0,1(�, X∗(T 1,0M)) and χ ī
z dz ∈

�1,0(�, X∗(T 0,1M)). We define the cohomological theory
by the following odd transformations which can be inter-
preted as the de Rham differential on the space of fields

δXμ = �μ, δ�μ = 0, δχ i
z̄ = hiz̄, δhiz̄ = 0,

δχ ī
z = hīz, δhīz = 0. (34)

123



Eur. Phys. J. C (2022) 82 :766 Page 7 of 25 766

Here we introduced a one form hμ in the kernel of 1/2(1 +
�J ). The field hμ transforms non-tensorially under target
space diffeomorphism. Namely if we perform the change of
coordinates

χ̃ i
z̄ = ∂ x̃ i

∂x j
χ

j
z̄ (35)

we have

h̃iz̄ = δ
( ∂ x̃ i

∂x j
χ

j
z̄

)
= ∂ x̃ i

∂x j
h j
z̄ + ∂2 x̃ i

∂x j∂xk
� jχk

z̄ . (36)

The field Hi
z̄ is related to hiz̄ as follows

hiz̄ = Hi
z̄ − �i

jk�
jχk

z̄ , (37)

where we used the Levi-Civita connection � for the Kähler
metric g (similarly for Hī

z ). The field Hμ is also in the kernel
of 1/2(1 + �J ) and transforms tensorially under a target
space diffeomorphism, Hi

z̄ d z̄ ∈ �0,1(�, X∗(T 1,0M)) and

Hī
z dz ∈ �1,0(�, X∗(T 0,1M)).
Finally combining (34) with the definition (37) we obtain

the standard formulas for the A-twist of the sigma model

δXμ = �μ

δ�ν = 0

δχ i
z̄ = Hi

z̄ − �i
jk�

jχk
z̄ ,

δχ ī
z = Hī

z − � ī
j̄ k̄

� j̄χ k̄
z

δHi
z̄ = −�i

jk�
j Hk

z̄ + Ri
jkl̄

�k� l̄χ
j
z̄ ,

δHī
z = −� ī

j̄ k̄
� j̄ H k̄

z + Rī
j̄kl̄

�k� l̄χ
j̄
z

(38)

The action of the A-model is defined as the following BRST
exact term

SA = 8
∫

δ
(
χ i
z̄ (H

j̄
z − ∂z X

j̄ )gi j̄ + χ
j̄
z (Hi

z̄ − ∂z̄ X
j̄ )gi j̄

)
dz

∧dz̄. (39)

If we integrate out the H -field we arrive at the action

SA =
∫ (

gμν dXμ ∧ �dXν + ωμν dXμ ∧ dXν + · · ·
)
,

(40)

where dots stand for fermionic terms. The model localizes on
the holomorphic maps ∂z̄ X i = 0. The interesting observables
are labelled by the de Rham cohomology HdR(M). If, as an
example, we take a closed two form ω then we can define the
following objects

O0 = 1

2
ωμν(X)�μ�ν,

O1 = ωμν(X)dXμ�ν,

O2 = −1

2
ωμν(X)dXμ ∧ dXν, (41)

which satisfy the following relations

δO0 = 0,

δO1 = dO0,

δO2 = dO1. (42)

This allows us to define the following BRST invariant observ-
ables

O0,

∫

γ

O1,

∫

�

O2. (43)

Moreover if in the definition (41) we shift the two form ω

by an exact form the observables (43) get shifted by δ-exact
terms and thus the deformation will vanish under the path
integral. These observables can be generalized to any closed
form and up to δ-exact terms they depend only on the cor-
responding class in HdR(M) (see [22–24] for further expla-
nation). The correlators in the A-model are related to the
deformation of the ring structure of HdR(M) and this coho-
mological model is the physical counterpart of the Gromov–
Witten theory.

In what follows we use the following terminology: the
A-model is defined as above with the χ and H fields in the
kernel of 1

2 (1 + �J ). The model is localized on holomorphic

maps ∂z X ī = 0. We refer to the Ā-model with the χ and H
fields in the kernel of 1

2 (1−�J ). The model is then localized
on anti-holomorphic maps ∂z Xi = 0.

4.2 New self-duality on S2

As we reviewed in the previous subsection, the construc-
tion of the A-model uses the notion of (anti)self-duality on
�1(�, X∗(T M)) which is based on the operator �J satisfy-
ing (�J )2 = 1. In 4D it has been pointed out in [12] that if a
manifold is equipped with a vector field v then one can gener-
alize the notion of (anti)self-duality for two forms. Formally
we can repeat this construction for the 2D case on one-forms.
Assume that � has a vector field v and a metric g such that
κ = g(v) (with ||v||2 = ιvκ). Away from the fixed points of
v we can define the following operation on �1(�, X∗(T M))

m =
(

− 1 + 2
κ ∧ ιv

||v||2
)
, (44)

which acts on target space indices as the identity. This oper-
ation has the following property

m2 = 1, � m + m� = 0. (45)

Thus away from the fixed point of v we can define a new
operation α � J + βm such that

(α � J + βm)2 = 1, (46)

with α2 + β2 = 1. Choosing α = cos 2ρ and β = sin 2ρ

with ρ being a suitably chosen function on � (see section
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2.1 in [12] for other formal considerations which are equally
applicable here) we can construct a new projector

P+ = 1

2
(1 + cos 2ρ � J + sin 2ρ m), (47)

which can be smoothly extended to the fixed points v. There
are further generalizations where in front of m instead of the
identity tensor we put another tensor on M squaring to 1.

Consider specifically the case of S2 (see Appendix B for
our conventions on S2). On S2 we choose the vector field v

associated with a U (1) rotation of S2. In what follows we
use two sets of coordinates: the spherical coordinates (θ, φ)

and the stereographic coordinates (z, z̄) (or (z′, z̄′) in another
patch). If we choose the function ρ such that

1 − sin 2ρ = 2

1 + cos2 θ
(48)

then we get the following projector3

P+ = 1

1 + cos2 θ
(1 − cos θ � J − κ ∧ ιv)

= 1

1 + cos2 θ
(1 − cos θ � J − sin2 θ dφ ∧ ι∂φ ), (49)

where we have used ||v||2 = sin2 θ . This concrete form of
the projector is motivated by supersymmetry considerations.
The projector P+ simplifies to 1

2 (1 + �J ) at the north pole
θ = π and to to 1

2 (1 − �J ) at the south pole θ = 0. We
also define the complementary projector P− = 1 − P+ and
decompose one forms with values in X∗(T M) as follows

�1(S2, X∗(T M)) = �1+(S2, X∗(T M))

⊕ �1−(S2, X∗(T M)) (50)

where

�1±(S2, X∗(T M)) = P±(
�1(S2, X∗(T M))

)
.

Some explicit formulas for this decomposition are as follows.
In (z, z̄) coordinates the projector (49) is written as

P+ = 1

2(1 + |z|4)
×

(
1 + |z|4 + (1 − |z|4) � J + 2(z2dz̄ ∧ ι∂z + z̄2dz ∧ ι∂z̄ )

)
.

(51)

Consider

χμ = χμ
z dz + χ

μ
z̄ d z̄ ∈ �1(S2, X∗(T M)).

If χ ∈ �1−(S2, X∗(T M)) then

P+χ = 0 → χ i
z + z̄2χ i

z̄ = 0, χ ī
z̄ + z2χ ī

z = 0 (52)

3 There exists another set of projectors based on 1
1+cos2 θ

(1 + cos θ �

J − κ ∧ ιv).

and the basis for �1−(S2, X∗(T M)) is given by

χ i
z̄ (dz̄ − z̄2dz), χ ī

z (dz − z2dz̄). (53)

Let us consider the differential equation

P+dXi = 0 → Xi
( z̄

1 + |z|2
)

(54)

where Xi is an holomorphic map from the disk to M . We
will elaborate on this point later on.

On the other hand for χ ∈ �1+(S2, X∗(T M))

P−χ = 0 → χ i
z̄ − z2χ i

z = 0, χ ī
z − z̄2χ ī

z̄ = 0 (55)

and the basis for �1+(S2, X∗(T M)) is given by

χ i
z (dz + z2dz̄), χ ī

z̄ (dz̄ + z̄2dz). (56)

The PDE with P− projector can be reduced to

P−dXi = 0 → Xi
( z

1 − |z|2
)

(57)

where Xi is a holomorphic map from the disk to M .

4.3 New model on S2

In this subsection we present a new cohomological field the-
ory on S2 which is a reformulation of the supersymmetric
theory in terms of differential forms. There are two novel
aspects of our construction: we introduce equivariance with
respect to the rotation of S2 and we use the exotic projector
P+ defined in the previous subsection.

As for the A-model we define the space of maps X : S2 →
M , an odd zero form �μ with values in X∗(T M) and χμ

an odd element of �1+(S2, X∗(T M)). The cohomological
transformations are defined as

δXμ = �μ

δ�ν = LvX
ν

δχμ = hμ

δhμ = Lvχ
μ

(58)

where we introduced hμ as partner for χμ. The transforma-
tions are such that δ2 = Lv . In front of v we assume the
equivariant parameter4 ε. However in most of the formulas
we will not write ε to avoid unreadable expressions unless it
is crucial for the discussion like in Sect. 7. As before the new
field hμ does not transform tensorially under target space
diffeomorphism and to fix it we introduce

hμ = Hμ − �μ
νρ�ρχν, (59)

4 Please note that we use ε for the equivariant parameter on S2 and εa

as equivariant parameters for a target manifold.
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where Hμ is an even element of �1+(S2, X∗(T M)). Next
we calculate

δHμ = Lvχ
μ + δ(�μ

νρ�ρχν) = Lvχ
μ + �μ

νρLvX
ρχν

−�μ
νρ�νHρ + 1

2
Rμ

νρσ �ρ�σ χν

We define the covariant version of the Lie derivative

L�
v χμ = Lvχ

μ + �μ
νρLvX

ρχν,

which transforms tensorially under target space diffeomor-
phism and rewrite the transformations as follows

δXμ = �μ

δ�ν = LvX
ν

δχμ = Hμ − �μ
νρ�ρχν

δHμ = L�
v χμ − �μ

νρ�νHρ + 1

2
Rμ

νρσ �ρ�σ χν

(60)

Here we prescribe that the fields χ and H are in the image
of P+. This cohomological description is a reformulation of
N = (2, 2) theory on S2 described in Sect. 3. An explicit
map between N = (2, 2) fields and the cohomological vari-
ables (58) is presented in (203).

An important feature of this model derives from the fol-
lowing property of the BRST-exact term

S =
∫

δ
(

4(1 + cos2 θ)χμ ∧ �(dXν − H ν)gμν

+�μ ∧ �LvX
νgμν

)
(61)

which can be rewritten as follows

S =
∫ [

(1 + cos2 θ)(P+dX)μ ∧ �(P+dX)νgμν

+ LvX
μ ∧ �LvX

μgμν + · · ·
]

=
∫ [

dXμ ∧ �dXνgμν + cos θ ωμνdX
μ ∧ dXν + · · ·

]
.

(62)

Here we used �1 = �2 and the dots stand for fermionic terms.
Thus the supersymmetric sigma model action is BRST-exact
up to the term cos θ X∗(ω) which can be thought of as an
equivariant analog of the topological term X∗(ω). We will
discuss this term and its generalizations when we consider
observables in Sect. 5. To clarify the meaning of our the-
ory we can rewrite the bosonic integrand in (62) in mixed
coordinates (using both (z, z̄) and (θ, φ)) as follows

dXμ ∧ �dXνgμν + cos θ ωμνdX
μ ∧ dXν

= 4i
(

cos2 θ

2
∂z̄ X

i∂z X
j̄ + sin2 θ

2
∂z X

i∂z̄ X
j̄
)
gi j̄ dz ∧ dz̄.

(63)

This form is very reminiscent of the formulas in the 4D theory
of Pestun on S4 [1]. We see that holomorphic maps domi-

nate around θ = 0 while anti-holomorphic maps dominate
around θ = π .

4.4 New model with target-space equivariance

If the target space M admits a torus action then there exists
a natural extension of the model introduced in the previous
section. Let the holomorphic vector fields kμ

a generate a torus
action on Kähler manifold M and preserve the Kähler struc-
ture, i.e. Lka g = 0, Lkaω = 0 and Lka J = 0. Moreover we
require that this action is Hamiltonian

kμ
a ωμν + ∂νDa = 0. (64)

As before we define the space of maps X : S2 → M , an odd
zero form �μ with values in X∗(T M) and χμ an odd element
of �1+(S2, X∗(T M)). The cohomological transformations
are now defined as follows

δXμ = �μ

δ�ν = LvX
ν + εakμ

a

δχμ = hμ

δhμ = Lvχ
μ + εa∂νk

μχν

(65)

where we introduce the equivariant parameters εa which we
assume to be real for the moment. By construction δ2 is given
by a rotation of S2 plus a rotation generated by ka on the target
space M . Using the same logic as before we define the new
field

hμ = Hμ − �μ
νρ�ρχν, (66)

so that Hμ is even element of �1+(S2, X∗(T M)). Calculat-
ing its transformation results in

δHμ = Lvχ
μ + εa∂νk

μ
a χν + δ(�μ

νρ�ρχν)

= Lvχ
μ + εa∂νk

μχν + �μ
νρLvX

ρχν − εa�μ
νρk

ρ
aχν

−�μ
νρ�νHρ + 1

2
Rμ

νρσ �ρ�σ χν (67)

so that we obtain the final result

δXμ = �μ

δ�ν = LvX
ν + εakμ

a

δχμ = Hμ − �μ
νρ�ρχν

δHμ = L�
v χμ + εa(∇νk

μ
a )χν − �μ

νρ�νHρ

+ 1

2
Rμ

νρσ �ρ�σ χν,

(68)

with

∇νk
μ
a = ∂νk

μ
a + �μ

νρk
ρ
a .

As before the fields χ and H are in the image of P+. In
Appendix C we show that this cohomological description
is a reformulation of the N = (2, 2) theory coupled to a
background gauge field on S2 described in Sect. 3.
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We can study the BRST-exact term

S =
∫

δ
(

4(1 + cos2 θ)χμ ∧ �(dXν + εakν
a A − H ν)gμν

+�μ ∧ �(LvX
ν + εakν

a )gμν

)
(69)

where we have introduced a flat background connection

A = − idz

2z
+ id z̄

2z̄
(70)

with singularities at the poles of S2 and the property ιvA = 1.
We concentrate our attention only on the bosonic terms of this
BRST-exact action. Upon the integration of Hμ we obtain
the following bosonic action

(1 + cos2 θ)[P+(dXμ + εakμ
a A) ∧

× � P+(dXν + εbkν
b A)gμν]

+(LvX
μ + εakμ

a ) ∧ �(LvX
μ + εbkν

b )gμν

= (dXμ + εakμ
a A) ∧ �(dXν + εbkν

b A)gμν + cos θ ωμν

×(dXμ + εakμ
a A) ∧ (dXν + εbkν

b A), (71)

where we have suppressed the integral sign. The last term
can be simplified using (64)

cos θ ωμν(dX
μ + εakμ

a A) ∧ (dXν + εbkν
b A)

= cos θ ωμνdX
μ ∧ dXν + 2 cos θ ωμνε

akμ
a A ∧ dXν

= cos θ ωμνdX
μ ∧ dXν − 2 cos θ εa A ∧ dDa . (72)

We can rewrite the second as follows

2 cos θ εa A ∧ dDa = −d(2 cos θ AεaDa) − 2ιv�2 ∧ AεaDa

+2 cos θ d AεaDa, (73)

where �2 is defined in (194), in Appendix. Under the integral
the first term on the RHS vanishes due to Stokes theorem (the
singularity for A does not spoil Stokes theorem). Remember
that A = dφ and thus we have

d A = 2πδnp − 2πδsp, (74)

where on the RHS we have delta function contributions from
the north and south poles. Combing everything together we
obtain∫

2 cos θ εa A ∧ dDa

=
∫

2�2ε
aDa + 4πεa[Da(Xnp) + Da(Xsp)] (75)

where Xn.p and Xs.p are the values of a map X at north and
south poles. Thus to summarize we get the following relation

S = ||dX + εaka A||2

−
∫ (

(cos θ + �2)(−ωμνdX
μ ∧ dXν + 2εaDa)

)

−4πεa[Da(Xnp) + Da(Xsp)] + · · · (76)

where the dots stand for the fermionic part. The second term
corresponds to the bosonic part of a cohomological observ-
able which we will discuss in detail in the next section. This
identity can be used to rewrite the Lagrangian (30) in coho-
mological variables for the special case where the function
f specifying the background gauge field configuration (20)
is taken to vanish except at the poles. In this case the back-
ground field D vanishes except for delta functions at the poles
as seen in (23). These delta functions then cancel the third
term in (76). The rewriting of the action stemming from (30)
using cohomological variables is considered for generic f in
Appendix C.

Let us stress one important point. In A-model considera-
tions in Sect. 4.1 we could introduce the equivariance in the
transformations (38), however it will lead to the modification
in the kinetic term (it will not have a canonical form). While
in the model described in this subsection and in the previ-
ous subsection we have canonical kinetic term and this is
due to the natural compatibility properties between the new
projector P+ and the equivariance.

5 Observables in new model

In this section we study observables in the supersymmetric
sigma model on S2. For this discussion we use the coho-
mological variables although the results can be restated in
terms of the original supersymmetry fields from Sect. 3. Our
present discussion is a generalization of standard A-model
considerations from [22–24]. In Sect. 4.1 we reviewed the
A-model transformations and the A-model observables (41)-
(43) which are naturally associated with the de Rham coho-
mology HdR(M) of the target space manifold M .

5.1 With equivariance on S2

We start by analyzing the observables in the model presented
in Sect. 4.3 where only the equivariance on S2 is present.
Using the transformations (60) we know that δ2 = Lv = d2

v

on all fields, where dv = d+ ιv is the equivariant differential
on S2. To be concrete let us pick up an equivariantly closed
form dv(�0 + �2) = 0 on S2 and a closed two form ω on
M . We can then introduce the following objects

O0 = 1

2
�0 ωμν(X)�μ�ν,

O1 = �0 ωμν(X)dXμ�ν,

O2 = −1

2
�0 ωμν(X)dXμ ∧ dXν + 1

2
�2 ωμν�

μ�ν. (77)
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Using the transformations (60) we get

δO0 = ιvO1,

δO1 = dO0 + ιvO2,

δO2 = dO1, (78)

which can be written more compactly as

δ(O0 + O1 + O2) = dv(O0 + O1 + O2). (79)

Thus we conclude that the zero form O0 is a local observable
if it is placed either on the north pole Onp

0 or the south pole
Osp

0 of S2 where v vanishes and δOnp
0 = 0, δOsp

0 = 0.
The one dimensional integral of the one form O1∫

γ

O1, (80)

is an observable (i.e., it is annihilated by δ) if γ is a closed
1-dimensional U (1) orbit on S2 (e.g., the equator of S2).
Moreover if we change γ within homology class∫

γ

O1 −
∫

γ̃

O1 = δ

∫

�

O2 (81)

such that ∂� = γ − γ̃ . Thus on S2 there are no non-trivial
observables associated the above integral over γ . Finally the
integral over the two form∫

S2

O2 (82)

is an observable in our theory. These observables depend on
the choice of equivariantly closed form �0 + �2 on S2 and
a closed form ω on M . If we shift the equivariantly closed
form �0 + �2 as follows

�0 + �2 → �0 + �2 + dv�1 (83)

for some U (1)-invariant one form �1 on S2 we obtain the
shifts

O0 → O0 + ιv

(1

2
�1 ωμν�

μ�ν
)
,

O1 → O1 + δ
(1

2
�1 ωμν�

μ�ν
)

+ ιv

(
�1ωμνdX

μ�ν
)
,

O2 → O2 + δ
(1

2
�1ωμνdX

μ�ν
)

+ d
(1

2
�1ωμν�

μ�ν
)
,

(84)

that imply the following shifts for the local observables

Onp
0 → Onp

0 , Osp
0 → Osp

0 , (85)

while for the non-local observables∫

γ

O1 →
∫

γ

O1 + δ
( ∫

γ

1

2
�1 ωμν�

μ�ν
)
, (86)

and∫

S2

O2 →
∫

S2

O2 + δ
( ∫

S2

1

2
�1ωμνdX

μ�ν
)
. (87)

Thus these observables depend only on the class of (�0+�2)

within the equivariant cohomology Hequiv(S2).
If instead we shift ω by an exact form: ω → ω + dν we

get the following shifts

O0 → O0 + δ(�0νμ�μ) − ιv(�0νμdX
μ),

O1 → O1 + d(�0νμ�μ) + ιv(�2νμ�μ)

−δ(�0νμdX
μ),

O2 → O2 − d(�0νμdX
μ) + δ(�2νμ�μ), (88)

Thus under such shift the local observables are shifted by
δ-exact terms

Onp
0 → Onp

0 + δ(�0νμ�μ)np,

Osp
0 → Osp

0 + δ(�0νμ�μ)sp, (89)

where np/sp indicates that the expression is evaluated either
on the north pole or the south pole. Non-local observables
are shifted as follows∫

γ

O1 →
∫

γ

O1 − δ
( ∫

γ

�0νμdX
μ
)

(90)

and∫

S2

O2 →
∫

S2

O2 + δ
( ∫

S2

�2νμ�μ
)
. (91)

Hence these observables depend only on the class of ω within
HdR(M) cohomology. The discussion above can be general-
ized to any class in Hequiv(S2) and HdR(M) and analyzed in
similar fashion and the result is that the cohomology classes
of the observables under the operator δ depend only on the
equivariant cohomology on S2, H•

equiv(S
2) and the de Rham

cohomology on M , H•
dR(M). If we focus on the degree two

part of H•
equiv(S

2), which is two dimensional for S2, we can
say that our set of observables corresponds to two copies
of HdR(M), one copy is associated with the north pole and
another with the south pole.

As we show in Appendix C the partition function on S2 can
be understood as the evaluation of the non-local observable
(82) with the following data: a Kähler form ω on M and a
concrete choice of the equivariantly closed form of degree 2

�0 + �2 = cos θ + sin θ dφ ∧ dθ, (92)

which is an equivariant extension of the Fubini-Study volume
form. Within the cohomology class in Hequiv(S2) we can
change the representative as

�0 + �2 + dv�1 = (cos θ + f (θ))

+d(cos θ + f (θ)) ∧ dφ, (93)
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where �1 = f (θ)dφ is an invariant one form. Since dφ is
not well defined at the poles we have to require that f (0) = 0
and f (π) = 0 in order for �1 to be well-defined. From (93)
we see that within the cohomology class we can set both zero
and two forms to zero everywhere except at the poles of S2.
Thus cohomologically we can represent (92) as

�0 + �2 = �N
0 + �N

2 + �S
0 + �S

2 (94)

with �N
0 = 1 on north pole and zero elsewhere, �S

0 = −1
and zero elsewhere. The partition function on S2 corresponds
to the evaluation of the following observable

ZS2 =
〈
exp

[∫
(�0 + �2)(−X∗(ω) + ωμν�

μ�ν) − i
∫

X∗(b)
]〉

(95)

where under the integral we put 2(O0 + O2) and we added a
b-field contribution where db = 0. The term with the b-field
∫

X∗(b) (96)

can be interpreted as a cohomological observable fitting the
description (82) for the choice of �0 = 1 (the trivial ele-
ment in Hequiv(S2)). Under the integral we can perform the
following substitution

−
∫

X∗(b) =
∫

(�N
0 − �S

0 + �N
2 − �S

2 )

×(−X∗(b) + bμν�
μ�ν) (97)

since we can change the class in Hequiv(S2)without changing
the result of integration. After some more manipulations we
can rewrite the partition function as the expectation value of
the following observables

ZS2 =
〈
exp

[
i
∫

(�N
0 + �N

2 )(−X∗(−iω + b) + (−iω + b)μν�μ�ν)−

−i
∫

(�S
0 + �S

2 )(−X∗(iω + b) + (iω + b)μν�μ�ν)

]〉
. (98)

Hence we see that formally the partition function “factorizes”
in two contributions, one coming from north hemisphere
responsible for the (b − iω) dependence and another com-
ing from the south hemisphere responsible for the (b + iω)

dependence. So far we did not analyze actual localization
locus but it should comprise two disks, weighted differently,
one going to the north hemisphere and one going to the south
hemisphere. At this point this argument is formal and we can-
not say that the model simply factorizes in two copies of the
A-model and the Ā-model for two disks. The equivariance
of S2 plays non-trivial role and we will see this even at the
level of the constant map contribution.

5.2 Target space equivariance

Here we consider the model with both equivariance on S2

and equivariance on M . This model has been described in
Sect. 4.4 and it is defined by the cohomological transforma-
tions (68). For the sake of clarity let us focus on specific
observables related to the Kähler form ω and its equivariant
extension on M given by

ιkaω + dDa = 0, (99)

where Da is a Hamiltonian for ka . Picking an equivariant
closed form (�0 + �2) on S2 we can define

O0 = 1

2
�0 ωμν�

μ�ν + �0ε
aDa,

O1 = �0 ωμνdX
μ�ν,

O2 = −1

2
�0 ωμνdX

μ ∧ dXν + �2ε
aDa

+1

2
�2 ωμν�

μ�ν. (100)

Using the transformations (68) we derive the relations

δO0 = ιvO1,

δO1 = dO0 + ιvO2,

δO2 = dO1. (101)

Following the logic described previously we can define the
local observables: Onp

0 and Osp
0 (O0 evaluated at either at the

north pole or at the south pole) and non-local observables:
the integral of O1 over a closed invariant U (1) orbit and the
integral of O2 over S2. If in the definition (100) we shift

�0 + �2 → �0 + �2 + dv�1 (102)

with �1 being a U (1) invariant form on S2 we obtain

O0 → O0 + ιv

(1

2
�1 ωμν�

μ�ν + �1ε
aDa

)
,

O1 → O1 + δ
(1

2
�1 ωμν�

μ�ν + �1ε
aDa

)

+ιv

(
�1ωμνdX

μ�ν
)
,

O2 → O2 + δ
(1

2
�1ωμνdX

μ�ν
)

+d
(1

2
�1ωμν�

μ�ν + �1ε
aDa

)
. (103)

Hence the observables get shifted only by δ-exact terms. Thus
the correlators of our observables depend only on the class in
Hequiv(S2). Next let us study the dependence on (εaDa +ω)

within Hequiv(M). Consider the shift

εaDa + ω → εaDa + ω + εaιkaω1 + dω1 + εaιkaω3

(104)
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assuming that dω3 = 0 and ω1 is an invariant form (Lkaω1 =
0). This leads to

O0 → O0 + δ
(
�0 ω1μ�μ + 1

6
�0 ω3ρμν�

ρ�μ�ν
)

−ιv

(
�0 ω1μdX

μ + 1

2
�0 ω3ρμνdX

ρ�μ�ν
)
,

O1 → O1 + d
(
�0 ω1μ�μ + 1

6
�0 ω3ρμν�

ρ�μ�ν
)

−δ
(
�0 ω1μdX

μ + 1

2
�0 ω3ρμνdX

ρ�μ�ν
)

+ιv

(
�2 ω1μ�μ + 1

6
�2 ω3ρμν�

ρ�μ�ν

−1

2
�0 ω3ρμνdX

ρ ∧ dXμ�ν
)
,

O2 → O2 − d
(
�0 ω1μdX

μ + 1

2
�0 ω3ρμνdX

ρ�ρ�μ
)

+δ
(
�2 ω1μ�μ + 1

6
�2 ω3ρμν�

ρ�μ�ν

−1

2
�0 ω3ρμνdX

ρ ∧ dXμ�ν
)
, (105)

from which we conclude that the observables get shifted by
δ-exact term. Thus the correlators of our observables depend
only on the corresponding class in Hequiv(M). These argu-
ments continue to hold for more general observables that will
depend only on Hequiv(S2) and Hequiv(M).

The partition function on S2 corresponds to the following
observable

2
∫

S2

(O0 + O2) =
∫

S2

(�0 + �2)(−ωμνdX
μ ∧ dXν

+2εaDa + ωμν�
μ�ν), (106)

where �0 + �2 is given by (92) and we conveniently com-
bined O0 + O2. As we discussed in the previous subsection
�0 + �2 can be decomposed into contributions of the north
pole and of south pole. Thus we can argue the formal factor-
ization in two contributions: one from the north hemisphere
responsible for the dependence on (b− iω) and one from the
south hemisphere responsible for the dependence on (b+iω).

We can also observe another property. From (101) we
know that

dv(O0 + O2) = δO1. (107)

We can set � = 0 and obtain

dv

(
(�0 + �2)(−ωμνdX

μ ∧ dXν + 2εaDa)
)

= 0 (108)

provided that LvXμ + εakμ
a = 0 (formal equivariance of

a map X ). Thus the bosonic part of the observable can be

evaluated on such equivariant maps∫

S2

(�0 + �2)(−ωμνdX
μ ∧ dXν + 2εaDa)

= 4πεa[Da(Xnp) + Da(Xsp)], (109)

where Xnp, Xsp are the values of a map X at the north/south
poles which should coincide with the fixed points of ka due to
the condition LvXμ + εakμ

a = 0. Thus we should be careful
with the implementing condition LvXμ + εakμ

a = 0 directly
since it tends to kill all non-trivial topology related to non-
trivial maps. If we restore the equivariant parameter ε for v

on S2 then in front of RHS we get the ratio εa/ε.

6 Localization locus revisited

In this section we discuss the localization locus in some
detail. At the moment we are unable to furnish a fully coher-
ent mathematical description of the localization locus space
and thus we limit ourselves to present some partial obser-
vations. Some of the PDEs which we discuss below have
appeared previously in [25,26] although in slightly different
context.

6.1 Model with equivariance on S2

In this subsection we analyze the model with equivariance
on S2, with the target space being any Kähler manifold. We
use the cohomological description given in Sect. 4.3 of the
supersymmetric theory from Sect. 3.

As follows from rewriting of the formulas (61) and (62)
the supersymmetric action for the sigma model can be writ-
ten as a sum of a BRST-exact term and the supersymmetric
observable described in previous section

S =
∫

S2

(
dXμ ∧ �dXνgμν + · · ·

)

=
∫ [

δ(· · · ) + (cos θ + �2)(−ωμνdX
μ ∧ dXν

+ ωμν�
μ�ν)

]
,

(110)

where the δ-exact term is given by (61). Due to standard
arguments the path integral localizes on the solutions of the
following PDEs

(P+dX)μ = 0, (111)

LvX
μ = 0. (112)

On these solutions we should evaluate the observables and
calculate the corresponding one-loop determinant. Here we
want to analyze these PDEs. It is impossible to find smooth
solutions that satisfy all equations, hence we have to separate
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our analysis of the Eqs. (111) and (112). We first look in
detail to the Eq. (111). Using the conventions from Sect. 4.2
we have the following identity for our projector

P+dXi = z2dz̄ + dz

1 + |z|4
(
∂z X

i + z̄2∂z̄ X
i
)

(113)

which implies the following PDEs

∂z X
i + z̄2∂z̄ X

i = 0, ∂z̄ X
ī + z2∂z X

ī = 0. (114)

These PDEs are not elliptic. At the south pole z = 0 these
equations reduce to ∂z Xi = 0 and at the north pole z′ = 0
the equations reduce to ∂z̄′ Xi = 0. As we move from the
north pole to the south pole the Eq. (114) smoothly transition
between the two limits. We can solve the Eq. (114) using the
following trick. Let us define the map from S2 to the disk D

i : S2 → D (115)

with by the following explicit relations

y = z

1 + |z|2 , ȳ = z̄

1 + |z|2 , (116)

where (y, ȳ) are the coordinates on the disk D = {|y|2 ≤ 1
4 }

and (z, z̄) are the standard stereographic coordinates on S2.
Alternatively on another patch we can write

y = z̄′

1 + |z′|2 , ȳ = z′

1 + |z′|2 , (117)

where we use the conventions from Appendix B. In polar
coordinates this map is

y = 1

2
sin θ eiφ, ȳ = 1

2
sin θ e−iφ. (118)

From these formulas we see that the map (115) describes the
double cover of D by S2 with the equator of S2 (|z| = 1)
being mapped to the boundary of the disk D (|y| = 1

2 ). Using
the map (115) we can push forward the differential operators
from S2 to D. It is straightforward to derive the following
relations for the derivatives

∂

∂z
= 1

(1 + |z|2)2

∂

∂y
− z̄2

(1 + |z|2)2

∂

∂ ȳ

= 1

4

(
1 + √

1 − 4y ȳ
)2 ∂

∂y
− ȳ2 ∂

∂ ȳ
(119)

and its complex conjugate. Here we use the relation

1 − 4y ȳ = (|z|2 − 1)2

(1 + |z|2)2 , (120)

and thus we had to make a choice for taking a square root.
The differential operator which appears in the Eq. (114) has
the following simple form on the disk

(∂z + z̄2∂z̄) = 1 − |z|2
1 + |z|2 ∂y = √

1 − 4y ȳ ∂y . (121)

Thus away from the equator |z| = 1 the Eq. (114) are mapped
to ∂y Xi = 0 and ∂ȳ X ī = 0 on the disk D. In other words
one can check explicitly that

Xi (ȳ) = Xi
( z̄

1 + |z|2
)
, Xī (y) = Xī

( z

1 + |z|2
)

(122)

solve the Eq. (114). Hence we have reduced the non-elliptic
system (114) to anti-holomorphic maps from the disk D to
M without specification of any boundary conditions. Let us
evaluate the bosonic part of the observable on the solutions
of (114). We start from the pull back of the symplectic form
on the solutions of (114)

ωμν(X) dXμ ∧ dXν = (1 − |z|4) ∂z X
ī∂z̄ X

j gī j
×(X) 2idz ∧ dz̄. (123)

Assuming that 2idz∧dz̄ is positive, we see that the pull-back
of ω takes a different sign on the upper and lower hemispheres
and on the equator it becomes zero. With our conventions
(z = 0, θ = π for the south pole and z′ = 0, θ = 0 for the
north pole) we see that(

− cos θ ωμν(X) dXμ ∧ dXν
)

≥ 0. (124)

We can push to the disk D also the second equation (112).
The vector field v = i(z∂z − z̄∂z̄) pushed to the disk D has
the following form

i∗(v) = i(y∂y − ȳ∂ȳ), (125)

hence the Eq. (112) becomes

i(y∂y − ȳ∂ȳ)X
μ = 0. (126)

If we impose this equation on the solutions (122) we can see
that the only smooth solutions are constant. However for-
mally we may allow point like solutions, with holomorphic
point like maps on the north pole and anti-holomorphic point
like maps on the south pole. We need better tools and better
analytical control to enumerate such solutions and perform
any reliable calculation.

One can suggest a different treatment of the problem. If
the Eq. (114) would give rise to some good moduli space then
another equation LvXμ = 0 can be used to further localize
on this moduli space with the U (1)-action coming from the
rotation of S2. In this picture the point-like solutions will
be interpreted as fixed points under this U (1)-action in this
good moduli space. The main problem is that the the Eq. (114)
can be converted to anti-holomorphic disk equations which
do not give rise to a good moduli space unless appropriate
boundary conditions are specified. For the (anti)holomorphic
disks the good boundary conditions are when the bound-
ary of the disk is mapped to a Lagrangian submanifold. Let
us suggest a possible logic which may lead to Lagrangian
boundary conditions. If we take our localization argument
(110) and split the sphere in two hemispheres S2 = S2+ ∪ S2−
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with the boundary for each hemisphere along the equator
γeq = ∂S2+ = −∂S2− then we can try to run the localization
argument for each hemisphere. For the localization to work
on each hemisphere we have to impose appropriate bound-
ary conditions on the equator and in the path integral we sum
over all allowed boundary conditions. We can argue for the
correct boundary conditions in the following fashion. From
our previous discussion about the observables we know that
δO2 = dO1. The integral over the north hemisphere S2+ of
O2 is not BRST invariant since

δ

∫

S2+

O2 =
∫

γeq

O1 =
∫

γeq

(cos θ + f (θ)) ωμν(X)dXμ�ν

(127)

unless we require that X maps the equator to Lagrangian
submanifold. Here in the observable O1 we have inserted
(cos θ + f (θ)) following our discussion around Eq. (93).
We want that our observable defined over the hemisphere
still depends only on the class in the equivariant cohomol-
ogy of S2 and not on a concrete representative. In this case
O1 restricted to γeq is identically zero and the integral of O2

over S2+ is good observable. We can apply the same argument
for the other hemisphere S2−. If we accept this logic then the
Eq. (114) get supplemented by Lagrangian boundary con-
ditions and we can reduce the problem to anti-holomorphic
disks with Lagrangian boundary conditions. Thus in the path
integral we have to further localize in each moduli space and
then sum up over all allowed boundary conditions. At the
moment this is a rather speculative logic and one needs to
study problem further in order to perform some non-trivial
checks.

6.2 Model with target space equivariance

In this subsection we study the localization locus when the
target space admits some torus action compatible with the
Kähler structure. The corresponding cohomological field the-
ory was described in Sect. 4.4. As follows from the BRST
exact term (69) the localization locus is given by the follow-
ing PDEs

(P+(dX + εaka A))μ = 0, (128)

ιv

(
dXμ + εakμ

a A
)

= LvX
μ + εakμ

a (X) = 0, (129)

where we introduce the singular flat connection

A = − idz

2z
+ id z̄

2z̄
(130)

such that

ιvAv = 1. (131)

As before we analyze these two equations separately. We
start from the Eq. (128) which in complex coordinates can

be written explicitly as follows

∂z X
i + z̄2∂z̄ X

i = i

2
(z−1 − z̄)εakia, (132)

and its complex conjugate. Here (z, z̄) are the stereographic
coordinates on S2. Following the discussion from the previ-
ous subsection we can introduce the map i : S2 → D with
(y, ȳ) defined in (116). Using (116) and (119) the above
equations become

(1 − |z|2)
(
y∂y X

i − i

2
εakia

)
= 0 (133)

on the disk D. Thus we obtain the following PDEs on for the
interior of D

y∂y X
i = i

2
εakia, ȳ∂ȳ X

ī = − i

2
εakīa . (134)

Since we deal with the Hamiltonian action kμ
a = ωμν∂νDa on

a Kähler manifold we can rewrite these equations as follows

y∂y X
i = 1

2
gi j̄∂ j̄ (ε

aDa), ȳ∂ȳ X
ī = 1

2
gī j∂ j (ε

aDa). (135)

Our goal is to understand how to solve these equations. Let
us look at a very simple example when we consider the maps
from the disk to C. In complex coordinates we have X and
X̄ with kμ∂μ = i(X∂X − X̄∂X̄ ). Hence the above equations
are

y∂y X = −1

2
εX, ȳ∂ȳ X̄ = −1

2
ε X̄ . (136)

These equations have the following simple solutions

X ∼ |y|− 1
2 ε ȳn, X̄ ∼ |y|− 1

2 ε yn, (137)

where n is a non-negative integer and ε < 0 for the solutions
to be smooth. Actually one can see that the solutions of the
Eq. (135) have the following form

Xi (ȳ, |y|), Xī (y, |y|), (138)

since

y∂y X
i (ȳ, |y|) = 1

2
|y|∂X

i (ȳ, |y|)
∂|y| = 1

2
gi j̄∂ j̄ (ε

aDa), (139)

where the derivative with respect to |y| acts only on the sec-
ond argument in Xi (y, |y|). Hence we have anti-holomorphic
disks twisted by an additional radial dependence |y| which
is controlled by the gradient flow with the Morse function
given by the moment map εaDa . For example, if we look
only on the solutions of the form Xμ(|y|) then

dXμ

dt
= gμν∂ν(ε

aDa) (140)

with |y| = et , hence we deal with the gradient flows between
the fixed points. Since the disk has a finite size |y| ≤ 1

2 ,
t ∈ (−∞,− log 2). Thus the solutions of (135) are some
mixture of anti-holomorphic disks and gradient flows for the
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Morse function given by the moment map εaDa . As we dis-
cussed previously for anti-holomorphic disks to give rise to a
nice moduli space we have to impose the Lagrangian bound-
ary conditions on the boundary of D. The argument pre-
sented around the Eq. (127) can be repeated here and most
likely the good moduli space of (135) would require impos-
ing Lagrangian boundary conditions for D. Moreover in this
fully equivariant story the Lagrangian submanifolds may be
required to preserve some toric symmetry (as may be argued
from (129)).

Provided that we have a good moduli space we can under-
stand the equation

LvX
μ + εakμ

a = 0 (141)

as a further localization on the moduli space. Formally this
equation will tell us that the fixed points of S2 are mapped to
the fixed points of ka on M . We cannot find any smooth solu-
tions satisfying all equations. Rewritten in (y, ȳ) coordinates
we have

(y∂y − ȳ∂ȳ)X
μ = iεakμ

a . (142)

and there are no smooth single valued solutions for both
Eqs. (142) and (135). To illustrate this let us look at the exam-
ple of maps from D toC (see above) which satisfy both (136)
and the equations

(y∂y − ȳ∂ȳ)X = −εX, (y∂y − ȳ∂ȳ)X̄ = ε X̄ (143)

where we have assumed ε to be real. It is hard to find solutions
for all equations. The only solution we find

X = y−ε/2 ȳε/2, X̄ = ȳ−ε/2yε/2, (144)

that is not single valued.

7 1-loop calculation

In this section we perform the localization calculation around
the constant maps. We start with the model without target
space equivariance from Sect. 4.3 and we reintroduce the
equivariant parameter ε in front of v in the transformations
(60) but we keep the canonical kinetic term as in (62). In
the localization locus we have a distinguished subspace of
constant maps dX = 0 which solves both Eqs. (111) and
(112). The moduli space of constant maps is identified with
the target space M . We denote by Xμ

0 a point on target Käh-
ler manifold M and by �

μ
0 the corresponding fermionic zero

modes which have the interpretation of dXμ
0 . We will local-

ize around such constant solutions and calculate explicitly
the one-loop determinant. For the contribution of other topo-
logical sectors we will make a conjecture in the next section.
The localization answer for the observable (98) for such maps

has the following form

ZS2
(
ε, t, t̄

) =
∫

M

dd X0 dd�0 Z (const)
1−loop(ε, X0, �0) exp

×
(
iε−1 (

ta − t̄ a
)
ωa(X0)μν�

μ
0 �ν

0

)

=
∫

M

Z (const)
1−loop(ε) exp

(
iε−1 (

ta − t̄ a
)
ωa

)
(145)

where we will use standard notations for differential forms
and the 1-loop contribution Z (const)

1−loop is understood as a dif-
ferential form. Here in the observable (98) we have to
have an extra factor ε−1 since we require a canonical
kinetic term. Hence the observable should contain the term
cos θ ωμνdXμ ∧ dXν but in the transformations we should
have ε in front of Lv . Here ωa is a basis in H2(M) and ta ,
t̄ a are the complexified coordinates such that

(−iω + b) =
dim H2∑
a=1

taωa . (146)

Hence in the exponent of (145) we have the evaluation of
the observable (98) on the constant maps with a canonical
kinetic term.

The one-loop contribution Z (const)
1−loop(ε) can be obtained by

the study of the linearized supersymmetry transformations
(60) around the constant maps. Let us expand our variables
X and � around the constants maps and related zero modes

Xμ = Xμ
0 + ΔXμ �μ = �

μ
0 + Δ�̃μ (147)

where ΔXμ and Δ�̃μ are the bosonic and fermionic fluctu-
ations over which we have to integrate. The problem is that
while the bosonic fluctuation ΔXμ transforms tensorially
(with respect to the diffeomorphisms of M) the fermionic
fluctuation Δ�̃μ does not transform tensorially and thus we
have a problem in defining the path integral measure. The
standard way to fix it is to use the Levi-Civita connection
and redefine

Δ�̃μ = Δ�μ − �μ
νρ�ν

0 ΔXρ. (148)

Now Δ�μ transform tensorially and thus the path integral
measure is well-defined. We have to track down the cor-
responding supersymmetry transformations for the fluctu-
ations. We plug (147) and (148) into (60), and assume the
following transformations for the zero modes δX0 = �0,
δ�0 = 0. We obtain the following linearized transforma-
tions for the fluctuations ΔXμ and Δ�μ

δΔXμ = Δ�μ − �μ
νρ�ν

0 ΔXρ,

δΔ�μ = εLvΔXμ + 1

2
Rμ

νλ�
ν
0 �λ

0 ΔXσ − �μ
νρ�ν

0 Δ�ρ.

(149)
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It is convenient to define the covariant version of the trans-
formations δ∇ = δ + �

μ
νρ�ν

0 hence

δ∇ΔXμ = Δ�μ

δ∇Δ�μ = εLvΔXμ + 1

2
Rμ

σνλ�
ν
0 �λ

0 ΔXσ

= εLvΔXμ + (R)μσ ΔXσ

(150)

where we use the short hand convention (R)
μ
σ = 1

2
Rμ

σνλ

�ν
0 �λ

0 . The fields χ and H do not have any zero modes for
the constant maps and thus we treat them as fluctuations. The
original transformations (60) are linear in the χ and H fields
and we should further linearize them in the fluctuations ΔXμ

and Δ�μ. The final result can be written as follows

δ∇χμ = Hμ,

δ∇Hμ = εLvχ
μ + (R)μνχ

ν,
(151)

where we use again the short hand conventions (R)
μ
ν and

Lv = L�
v at the linearized level in the fluctuations.

Using the linearized transformations (149), (151) and
applying standard arguments (see e.g. the review [27] or the
more detailed exposition in [13]) we can derive the one-loop
contribution. It is given by the following superdeterminant

Z (const)
1−loop(ε) = sdet1/2

(
δ2∇

)
= sdet1/2

(
εLv + R̂

)

=
⎛
⎝ detχμ

(
εLv + R̂

)

det�Xμ

(
εLv + R̂

)
⎞
⎠

1/2

, (152)

where the denominator comes from (149) and the numerator
comes from (151). Here R̂ is the Lie algebra valued curvature
form (R)

μ
ν and the determinant is assumed both over the

infinite set of modes and the Lie algebra action on T M . Recall
that �X are zero forms on S2 with values in the tangent
bundle of M

�Xμ ∈ �0
(
S2, X∗(T M)

)
(153)

while the odd field χ is in the subspace of one-forms on
S2 valued in the tangent bundle M with respect to the P+
projector

χμ ∈ �1+ (
S2, X∗(T M)

)
. (154)

(see the discussion around (50) for more explanations).
We stress that in (153) and (154) we deal with the lin-
earized spaces around X0, therefore below we regard
�0

(
S2, X∗(T MX0)

)
�1+ (

S2, X∗(T MX0)
)

as linear spaces
(we suppress the expansion point X0 in our notation). Hence

the one-loop answer is written more properly as follows

Z (const)
1−loop(ε) =

⎛
⎝det�1+(S2,X∗(T M))

(
εLv + R̂

)

det�0(S2,X∗(T M))

(
εLv + R̂

)
⎞
⎠

1/2

.

(155)

This ratio of determinants can be calculated in different ways
and it is related to the one-loop contribution of the chiral
field on S2. We present below an explicit calculation of this
determinant ratio stressing the relevant regularization issues.
Instead of diagonalizing explicitly he relevant operator, we
exploit the fact that there are many cancellations. For that we
use the operator P+d that connects the two spaces

P+d : �0
(
S2, X∗(T M)

)
P+d−−→ �1+ (

S2, X∗(T M)
)

(156)

and commutes with the operator which appears in the one-
loop expression

[Lv + R̂, P+d] = 0. (157)

There are cancellations between common eigenfunctions so
that the answer reduces to the kernel and cokernel
⎛
⎝det�1+(S2,X∗(T M))

(
εLv + R̂

)

det�0(S2,X∗(T M))

(
εLv + R̂

)
⎞
⎠

1/2

=
⎛
⎝detcoker P+d

(
εLv + R̂

)

detker P+d
(
εLv + R̂

)
⎞
⎠

1/2

(158)

We now address in detail how to find the kernel and the
cokernel, since they admit explicit descriptions on S2. First
we make use of the target space complex structure and sep-
arate the determinant into that over the holomorphic and
anti-holomorphic parts of the tangent bundle T (1,0)M and
T (0,1)M . We use stereographic coordinates (z, z̄) on S2; by
changing the coordinates to (z′, z̄′) we can check that every-
thing is well-defined on S2. On the holomorphic part the
kernel is defined by the equation

P+d f i (z, z̄) = 0 ⇐⇒
(
∂z + z̄2∂z̄

)
f i (z, z̄) = 0 (159)

which, as discussed above is solved by any function of the
form:

f i (z, z̄) = f i
(

z̄

1 + |z|2
)

(160)

Hence the kernel is spanned by basis functions (or every i)

f i,(m)(z, z̄) ∼
(

z̄

1 + |z|2
)m

, m ≥ 0 (161)

which is diagonal with respect to Lv . The cokernel is defined
by the one-forms χ i which are not in the image of P+d
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operator. Equivalently we can write

d†χ i = 0, P−χ = 0 (162)

where we use Hodge decomposition and the second condi-
tion makes sure that χ i is in the correct space. These two
conditions are solved by (for every i)

χ i,(m) ∼ 1

(1 + |z|2)2

(
z

(1 + |z|2)
)m (

dz + z2dz̄
)

,

m ≥ 0

(163)

For the anti-holomorphic components (for every ī) we get
the complex conjugate answer

ker P+d =
{(

z

(1 + |z|2)
)m

, m ≥ 0

}

coker P+d =
{

1

(1 + |z|2)2

(
z̄

(1 + |z|2)
)m (

z̄2dz + dz̄
)

, m ≥ 0

}

(164)

On S2 these basis element diagonalize the Lie derivative oper-
ator Lv

Lv f
i,(m) = −im f i,(m), Lvχ

i,(m) = i(m + 1)χ i,(m).

(165)

We also diagonalize the curvature form R̂ and denote the
Chern roots by ri . Finally the ratio of determinants is given
by the following expression

Z (const)
1−loop(ε) =

(∏dimC M
i=1

∏∞
m=1(εm + ri )2

∏dimC M
i=1

∏∞
m=1(εm − ri )2

)1/2

, (166)

where we have excluded the constant mode (m = 0) of the
ΔXμ fluctuations since we expand around the constant maps.
Using zeta-function regularization the infinite products can
be rewritten in terms of Gamma functions as follows( ∞∏

m=1

1

εm + x

)∣∣∣∣∣
reg

= ε

2π
� (1 + x/ε) εx/ε. (167)

The resulting answer as a function of the Chern roots can
be presented in terms of the characteristic class called the
Gamma class [28,29] as

Z (const)
1−loop(ε) = ε

2c1(M)

ε
�̂M (ε)

¯ˆ M�(ε)
, (168)

where c1(M) is the first Chern class of M . The Gamma class
is a multiplicative characteristic class which can be expressed
through the Chern characters chk (T M)

�̂M (ε) = det �

(
1 + R̂

ε

)

= exp

⎛
⎝−γEu

c1(M)

ε
+

∑
k�2

(−1)k(k − 1)!ζ(k)
chk(T M)

εk

⎞
⎠ .

(169)

The conjugate is given by ¯ˆ M�(ε) = det �
(

1 − R̂
ε

)
. Finally

substituting (168) into (145) we can write down the full
answer for the contribution of the constant maps

ZS2
(
ε, t, t̄

) =
∫

M

ε
2c1(M)

ε
�̂M (ε)

¯ˆ M�(ε)
exp

(
iε−1 (

ta − t̄ a
)
ωa

)
.

(170)

This answer is written for any Kähler manifold M . As it
stands this integral is well-defined for compact M and it
depends only on the cohomology class of R̂ and the coho-
mology class of the complexified Kähler form ω.

If we assume that M is a Calabi–Yau (CY) manifold
(c1(X) = 0) then the dependence of (170) on the equivariant
parameter ε is analytical

ZS2
(
ε, t, t̄

) =
∫

M

�̂M (ε)

¯ˆ M�(ε)
exp

(
iε−1 (

ta − t̄ a
)
ωa

)
(171)

This answer agrees with the results presented in [30,31]. In
[30] the answer (171) which encodes the perturbative correc-
tions to the Kähler potential was argued from mirror symme-
try considerations and some other consistency checks (see
also [9] for a review). In [31] the above answer was dis-
cussed in the context of a GLSM localization calculation
and its geometrical meaning (we will comment more on this
case below). Here our goal was to obtain this answer directly
from the calculation within the non-linear sigma model with-
out assuming any specific geometrical restrictions on M . Due
to degree considerations upon the expansion the answer (171)
has the following overall dependence

ZS2
(
ε, t, t̄

) ∼ ε− dim M
2 (172)

in agreement with the anomaly considerations in [8] (keeping
in mind that ε is proportional to R−1

S2 ).
Let us write down some explicit formulas for CY mani-

folds in different dimensions. If we look at a CY-threefold
then expanding (171) to the appropriate order we get

ZS2
(
ε, t, t̄

) = −2ζ(3)

ε3∫

M

c3(M) − i

3!ε3

∑
a,b,c

(ta − t̄ a)(tb − t̄ b)(tc − t̄ c)

×
∫

M

ωa ∧ ωb ∧ ωc, (173)

where the first integral on the RHS is just the Euler number
of M . The ζ(3) term as a perturbative correction was initially
obtained in [32] by explicit evaluation of loop integrals in the
N = (2, 2) sigma model and later via mirror symmetry in
[33]. For higher dimensional CY the perturbative contribu-
tions mix with the observable, for example for a CY-fourfold
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we obtain

ZS2
(
ε, t, t̄

) = −2iζ(3)

ε4

∑
a

(ta − t̄ a)
∫

M

c3(M) ∧ ωa

+ 1

4!ε4

∑
a,b,c,d

× (ta − t̄ a)(tb − t̄ b)(tc − t̄ c)(td − t̄ d)

×
∫

M

ωa ∧ ωb ∧ ωc ∧ ωd .

(174)

Notice, that a potential ζ(4) perturbative contribution is
absent. This is in accordance with the absence of the five
loop correction in the sigma model [34]. In fact in the ratio
of gamma functions only terms with odd zeta-values survive,
and the transcendental weight is related to the loop order at
which corrections to the sigma model appear. This pattern of
seemingly complicated transcendental loop corrections sum-
ming up into a simple expression indicates once again, why
the study of the transcendental structure of loop integrals
[35–37] is important.

Let us comment on the non-analytical dependence in (170)
for a general Kähler case. In (170) we can collect the terms
with c1(M) as follows

exp

(
2 c1(M)

ε
(log ε − γEu)

)
. (175)

For example, if we look at a six dimensional Kähler manifold
then in (173) the perturbative term on RHS should be replaced
as follows for the non CY case

−2ζ(3)

∫
M
c3(M) −→ −4ζ(3)

×
∫
M

ch3(M) + 4 (log ε − γEu)
3

3

∫
M

(c1(M))3 .

(176)

We believe that one can relate ε to the UV renormaliza-
tion scale (there will be some ratio of ε and the UV scale).
Since the model is no longer conformal, a dependence on
such parameter is expected. In particular we conjecture that
if one restores the scale dependence in [32,34], one would
obtain exactly the expression (176). We think that a similar
statement can be made for Kähler manifold of other dimen-
sions and the corrections analyzed in [32,34] can be better
understood in cohomological terms.

7.1 One loop with target space equivariance

We analyzed the constant map contribution to the partition
function for the model with just S2 equivariance. The answer
(170) is given in terms of an integral over certain de Rham
cohomology classes, this integral is well-defined for a com-
pact Kähler target space manifold. For non-compact exam-

ples, it may require an additional regularization. If a target
space admits isometries then target space equivariance may
serve as natural way to regularize the non-compact answer.
Here we briefly sketch the derivation for the model with the
target space equivariance. The main idea is that the result
is the same as in (170) but now all classes are understood
as equivariant classes and the integral can be localized and
written as a sum over fixed point contributions.

Let us analyze the contribution of constant maps in the
model with target space equivariance. In this case a con-
stant map will provide a solution to the localization equa-
tions (128) and (129) if ka(X0) = 0. Hence we have a finite
number of constant maps which map S2 to the fixed points
of our torus action on M . Let us concentrate on one given
fixed point Xμ

0 (we assume that all fixed points are isolated)
and analyze the linearized supersymmetry (68) around this
point. The main difference is that in this case there are no
fermionic zero modes �0 and thus we will regard � as fluc-
tuations, together with the χ and H fields. Up to linear order
in the fluctuations we obtain the following transformations

δ�Xμ = �μ,

δ�μ = εLv�Xμ + εa∂νk
μ
a (X0)�Xν,

δχμ = Hμ,

δHμ = εLvχ
μ + εa∂νk

μ
a (X0)χ

ν.

(177)

At the fixed point X0 we have ∂νk
μ
a (X0) = ∇νk

μ
a (X0). Due to

the isometry property this is an anti-symmetric matrix acting
on T MX0 (for short below we denote this matrix as ∂k(X0)).
Next we have to calculate the determinants and this goes
through exactly in the same way as we discussed earlier.
Eventually we arrive to the expression (166) where under
iri we understand the eigenvalues of ∂k(X0). Moreover we
now have to keep the mode m = 0 for the �X fluctuations.
Finally we can summarize the one-loop contributions for a
given fixed point X0 as follows

Z1−loop(ε, ε
a, X0) = e2 log ε

ε
εaTr(∂ka(X0))

1√
det(εa∂ka(X0))

det �
(

1 + εa∂ka(X0)
ε

)

det �
(

1 − εa∂ka(X0)
ε

) , (178)

where the determinants are understood on T MX0 and the
additional determinant in front of Gamma functions comes
from the m = 0 contribution. It is important to stress
that (178) is a complicated expression in the equivariant
parameters and it does not terminate if we expand it. In order
to write the full answer we have to sum over all fixed points
X0 and evaluate the observable (106) at the constant maps
X0. Hence the full contribution can be written as follows

ZS2(ε, εa) =
∑
X0

Z1−loop(ε, ε
a, X0) e

8π εa
ε
Da(X0), (179)
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where the factor 4π comes from the evaluation of the vol-
ume of S2 in our conventions. The additional factor ε−1

in the exponent is related to the canonical normalization of
the kinetic term and thus to fixing the normalization of the
observable (106) with all parameters turned on. The answer
(179) can be written as an integral over of the appropriate
equivariant forms as follows

ZS2(ε, εa) =
∫

M

det �

(
1 + R̂equiv

ε

)

det �

(
1 − R̂equiv

ε

) e
8π
ε

ωequiv+2 log ε
ε

Tr(R̂equiv).

(180)

Hence this is the equivariant extension of the previously dis-
cussed answer (170). Here the equivariant extensions are
defined as ωequiv = ω + εaDa and R̂equiv = R̂ + εa∇ka
where we have used the following identity

∇α∇σ k
ρ
a + Rρ

σγαk
γ
a = 0, (181)

which follows from the standard properties of the curvature
tensor and the fact that the ka are isometries of the corre-
sponding metric. By applying the Berline–Vergne–Atiyah–
Bott localization theorem to (180) we reproduce the answer
(179) with (178).

If we impose the CY condition5 the answer (179) has the
following functional dependence

ZS2(ε, εa) = ε− dim M
2 F

(
εa

ε

)
, (182)

hence it agrees with the anomaly considerations in [8]. Please
observe that the natural normalization of the target space
equivariant parameters is εaε−1 since the flat connection (70)
has ε−1 in front to keep the property ιvA = 1. Finally let us
remark about the relation to the localization result for GLSM.
Let us restrict to the toric CY manifolds which are obtained
by the Kähler quotient CN//(U (1))r then the integral over
the equivariant characteristic classes (180) can be written
in terms of r -dimensional contour integral (see [38] for an
explanation). This integral can be identified with the con-
crete pole contribution (within the zero flux sector) in the
full answer for the GLSM model of the corresponding toric
CY manifold.

8 Summary and full answer

In this paper we focused on the formulation on S2 of super-
symmetric N = (2, 2) non-linear sigma models with a Käh-

5 We need to set to zero the equivariant first Chern class Tr(R̂equiv). For
this beside the CY condition we also need to require that the isometries
preserve the CY structure, i.e.

∑
a εa = 0.

ler target manifold. We described these supersymmetric the-
ories on S2 and provided a reformulation in terms of a coho-
mological theory similar to the A-model. Unlike the A-model
here we introduce a new notion of 2D self-duality defined on
one forms �1(�, X∗(T M)) that uses the existence of aU (1)

vector field on S2. We also considered the model with tar-
get space equivariance, corresponding to a supersymmetric
sigma model coupled to a supersymmetric background gauge
multiplet. We analyzed the observables in the model and we
presented a discussion of the localization locus and of the
1-loop calculation around constant maps.

Let us speculate about the possible structure for the full
result. If we look at the model with a general Kähler tar-
get space manifold then we have argued that the localization
locus is given by holomorphic disks but within our frame-
work we do not single out any kind of boundary conditions
(or we do not understand how to derive them). However
motivated by ellipticity considerations we may guess that
the holomorphic disks should end on Lagrangian submani-
folds. Hence we can conjecture that the full answer should be
written schematically as sum over all Lagrangian submani-
folds

ZS2 =
∑
L

ZL (183)

where ZL is the theory associated to the moduli space of
holomorphic disks ending on a given L . This theory is not the
A-model, the counting should be done differently and the rel-
evant cohomology class is related to the ratio of two Gamma
classes (as we saw in the case of the constant maps). The
conjectured answer is hard to check in such generality, but
some explicit checks may be done for simple examples of tar-
get spaces. Another related question is how structures related
to A-model appear in the present context. For example, it is
not clear to us how the quantum cohomology (ring structure
of observables) appears in the present context. Many stan-
dard arguments from the A-model cannot be applied directly
here, for example the local observables are stuck at fixed
points etc. Let us stress that we do not understand what is the
string theory interpretation of the conjectured answer (183)
as this definitely requires further investigation.

If we move to the case when the model has target space
equivariance then the situation is better. For example, if we
assume that the target space manifold is a toric CY mani-
fold then we expect that the answer for ZS2 should be given
in terms of a GLSM localization calculation (certain sum
over fluxes of contour integrals). The main challenge is to
understand how the GLSM answer encodes the counting of
disks at the level of the non-linear sigma model. It would be
natural to expect that the formula (183) holds but now we
have to sum over a specific class of invariant Lagrangians.
It would be nice to perform some simple enumerative calcu-
lations for the disks and to understand how to extract them
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from the GLSM answer. This can also help us to understand
better the localization locus we discussed. In this context the
conjectured answer (183) looks even more surprising since
there is no obvious relation between what we suggest and
the discussion of the factorization of the GLSM answer in
[5] and [31]. It may be that these two pictures are dual in some
sense; any further insight requires to analyze the localization
equations properly in the context of the supersymmetric non-
linear sigma model.

Let us make a final comment, the relation of the presently
discussed non-linear sigma model with all equivariant param-
eters ε and εa to the A-model is not as simple as it may appear
at first. It is not so easy to extract the non-equivariant answer
and the claim that we deal with a gluing of A and Ā models is
not that straightforward. We think that the role of the equiv-
ariant parameters should be studied better and one should pay
more attention to different expansions in the parameters of
the model. We hope to come back to these issues elsewhere.
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A Notations

The Euclidean flat-space metric is δAB , A, B = 1, 2 and the
Levi-Civita symbol εAB is normalized to ε12 = 1. We use
complex coordinates z = x1 + i x2, z̄ = x2 − i x2, so that
δzz̄ = 1

2 , δzz = δz̄ z̄ = 0 and εzz̄ = −2i .
We denote Weyl spinors with ± indices so that ψ− and

ψ+ have spin 1
2 and − 1

2 , respectively, under Spin(2) ∼= U (1).

We also use Dirac spinors

ψ = (ψα) =
(

ψ−
ψ+

)
. (184)

The two-dimensional gamma matrices are (γ A)α
β =

(−σ 1,−σ 2)α
β

when A runs over 1, 2, and γ 3 = σ 3, with
σ A the Pauli matrices. They satisfy γ Aγ B = δAB + iεABγ 3

and {γ 3, γ A} = 0. In complex coordinates, we have

γz =
(

0 0
−1 0

)
, γz̄ =

(
0 −1
0 0

)
. (185)

Dirac indices are raised and lowered with the epsilon symbols
εαβ, εαβ and are contracted from upper-left to lower-right so
that

ψχ = ψ+χ− − ψ−χ−, ψγ 3χ = ψ+χ− + ψ−χ−.

(186)

The supersymmetry covariant derivatives read

D+ = ∂
∂θ+ − 2i θ̃+∂z̄, D̃+ = − ∂

∂θ̃+ + 2iθ+∂z̄,

D− = ∂
∂θ− + 2i θ̃−∂z, D̃− = − ∂

∂θ̃− − 2iθ−∂z, (187)

they satisfy {D−, D̃−} = −4i∂z and {D+, D̃+} = 4i∂z̄ .

B Summary of S2 geometry

In this appendix we summarize our conventions on S2 geom-
etry. The unit sphere S2 is defined in R

3 as

x2
1 + x2

2 + x2
3 = 1. (188)

We define the stereographic projection of S2 minus point
(0, 0, 1) (we refer to this point as the north pole) into the
plane x3 = 0

z = x1 + i x2

1 − x3
= cot

θ

2
eiφ, (189)

where (θ, φ) are the standard spherical coordinates with the
values φ ∈ [0, 2φ), θ ∈ [0, π ]. Analogously we define the
stereographic projection of S2 minus point (0, 0,−1) (we
refer to this point as south pole) into the plane x3

z′ = x1 − i x2

1 + x3
= tan

θ

2
e−iφ. (190)

Using these two stereographic projections we see that for S2

minus north and south poles

z = 1

z′
(191)

and this diffeomorphism identifies S2 with the projective
spaceCP1. Throughout the paper we use two systems of coor-
dinates for S2, either (z, z̄) (with (z′, z̄′) on another patch)
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or the spherical coordinates (θ, φ) and the following relation
will be useful

cos θ = |z|2 − 1

1 + |z|2 = 1 − |z′|2
1 + |z′|2 (192)

with the appropriate regions of validity. In our conventions
the north pole of S2 corresponds to θ = 0, z′ = 0 and the
south pole to θ = π, z = 0.

The sphere S2 is equipped with the Fubini-Study metric

4dzdz̄

(1 + |z|2)2 = dθ2 + sin2 θdφ2 (193)

and with the Fubini-Study Kähler form

�2 = 2i dz ∧ dz̄

(1 + |z|2)2 = sin θ dφ ∧ dθ, (194)

which also defines the volume form. The sphere S2 admits
U (1)-action which is realized by shifting the angle φ (or
phase of z). The corresponding vector field is defined as fol-
lows

v = ∂φ = i(z∂z − z̄∂z̄), (195)

and we define the dual 1-form

κ = g(v) = 2i(zdz̄ − z̄dz)

(1 + |z|2)2 = sin2 θ dφ, (196)

such that

||v||2 = ιvκ = g(v, v) = 4|z|2
(1 + |z|2)2 . (197)

This U (1)-action is the Hamiltonian since

(d + ιv)(�2 + �0) = 0 (198)

with the Hamiltonian function �0 = cos θ .
Sometimes we consider the sphere S2 of radius RS2 . In this

case we use the following form for the Fubini-Study metric

4R2
S2dzdz̄

(1 + |z|2)2 = R2
S2(dθ2 + sin2 θdφ2), (199)

where we use the conventions with z being dimensionless
coordinate. By appropriate rescaling of z one can switch to
other convention with the dimensionful coordinates.

C Cohomological complex

Here we present the explicit map between the N = (2, 2)

chiral and anti-chiral superfield components and the coho-
mological fields introduced in Sects. 4.3 and 4.4.

In order to define the cohomological fields we will use
the Killing spinors ζ and ζ̃ . When the supersymmetric back-
ground admits more than one ζ or ζ̃ we need to single out
one of each to construct the cohomological variables.

From the Killing spinors we can form the spinor bilinears:

vm = −2ζγm ζ̃ , s = ζ̃ (1 − γ3)ζ, s̃ = ζ̃ (1 + γ3)ζ,

τm = ζγmζ, τ̃m = ζ̃ γm ζ̃ . (200)

The vector field v is Killing and the scalars s and s̃ are con-
stant along v.

We require s + s̃ and s2 + s̃2 to be smooth positive real
functions. We can then write down the following projectors
acting on one forms (we remind the reader that we denote
with κ the one form with components κm = vm)

P+ = s + s̃

2(s2 + s̃2)

(
(s + s̃)11 + i(s̃ − s) � − 1

s + s̃
κ ∧ ιv

)
,

P̃+ = s + s̃

2(s2 + s̃2)

(
(s + s̃)11 − i(s̃ − s) � − 1

s + s̃
κ ∧ ιv

)
.

(201)

Using these definitions it follows that P+τ = τ while
P̃+τ̃ = τ̃ .

Specifically we are interested in the round two sphere and
we select the spinors (14) with A = Ã = 1, B = B̃ = 0.
With this choice the projectors P+ is:

P+ = 1

2(1 + |z|4)
×

(
1 + |z|4 + i(1 − |z|4) � +2(z2dz̄ ∧ ι∂z + z̄2dz ∧ ι∂z̄ )

)
,

(202)

which can be compared with (51) when acting on one forms
with the values in X∗(T 1,0M).

We start by considering the case of chiral and anti-chiral
multiplets that are not coupled to a background gauge field.
The cohomological variables for the chiral multiplet (see
Sect. 3.3) are defined as follows:

Xi = Xi

� i = √
2ζψ i ,

χ i
m =

√
2 τm

s + s̃
ζ̃ψ i ,

him = τmF
i + i

s2 + s̃2

s + s̃

(
P+∂Xi

)
m

. (203)

Note that we have P+χ i = χ i and P+hi = hi . The inverse
map is given by

ψ i = −√
2

(
2

s2 + s̃2 τ̃mχ i
mζ + 1

s + s̃
� i ζ̃

)
, (204)

Fi = − 2

s2 + s̃2 τ̃mhim + 2i

s + s̃
τ̃m∂mX

i . (205)
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The supersymmetry variation δ = δζ + δζ̃ acts on the coho-
mological variables as:

δXi = � i ,

δ� i = ivm∂mX
i ,

δχ i
m = him,

δhim = i(Lvχ
i )m . (206)

These coincide with (58) up to redefining δ when acting on
Grassmann odd variables with an extra factor of −i .

Next we consider the case where there is an Abelian isom-
etry generated by a holomorphic Killing vector field ki . We
can then couple the chiral fields to a supersymmetric back-
ground gauge field. The definition of the cohomological vari-
ables is then

Xi = Xi

� i = √
2ζψ i ,

χ i
m =

√
2

s + s̃
τm ζ̃ψ i ,

him = τmF
i + i

s2 + s̃2

s + s̃

(
P+DXi

)
m

+ (σ − σ̃ )
ζ̃ γ 3ζ̃

s + s̃
τmk

i .

(207)

where DmXi = ∂mXi − ki . The inverse map is

ψ i = −√
2

(
2

s2 + s̃2 τ̃mχ i
mζ + 1

s + s̃
� i ζ̃

)
, (208)

Fi = − 2

s2 + s̃2 τ̃mhim + 2i

s + s̃
τ̃mDmX

i

−(σ − σ̃ )
ζ̃ γ 3ζ̃

s + s̃
ki . (209)

Supersymmetry acts on the cohomological variables as:

δXi = � i ,

δ� i = ivm∂mX
i − i(vn An − i(sσ + s̃σ̃ ))ki ,

δχ i
m = him,

δhim = i(Lvχ
i )m − i(vn An − i(sσ + s̃σ̃ ))∂ j k

iχ
j
m . (210)

For the Killing spinors we selected on the round sphere and
with the choice of background gauge field as in (20) we have
that

vm Am − i(sσ + s̃σ̃ ) = u

RS2

where u is a constant complex parameter. Hence the susy
transformations simplify to

δXi = � i ,

δ� i = ivm∂mX
i − i

u

RS2
ki ,

δχ i
m = him

δhim = i(Lvχ
i )m − i

u

RS2
∂ j k

iχ
j
m . (211)

Comparing with (65) we identify the target-space equivariant
parameter to be ε = − u

RS2
.

With these definitions the transformations of the coho-
mological variables are independent of the sigma model tar-
get space geometry. However the fields hi do not transform
as tensors under holomorphic coordinate changes. As we
reviewed in Sect. 4 we can define fields Hi = hi +�i

jk�
jχk

that do transform tensorially.
Similarly we can consider an anti-chiral field of R-charge

0. The corresponding χ̃ i and h̃i fields are then in the image
of P̃+ :

Xī = X̃ ī

� ī = −√
2ζ̃ ψ̃ ī ,

χ ī
m = −

√
2

s + s̃
τ̃m ζ ψ̃ ī ,

hīm = τ̃m F̃
ī + i

s2 + s̃2

s + s̃

(
P̃+DX̃ ī

)
m

+ (σ − σ̃ )
ζγ 3ζ

s + s̃
τ̃mk

ī .

(212)

Next we look at the action obtained from the Lagrangian
density (30). Using the Killing spinors we selected on the
round sphere and with the choice of background gauge field
as in (20) the action can be rewritten in terms of the cohomo-
logical variables. This results in the observableO2 introduced
in (100) plus various δ-exact terms:

S = 1

2

∫ (
− cos(θ) ωμνdX

μ ∧ dXν + 2�2ε
aDa

− i �2 ωμν�
μ�ν

)
+

+
∫

d2x
√
gS2gμνδ

[
2

1 + cos(θ)2 χμ
m H νm − 2iχμ

m DmXν+

− i

2
�μιvDXν − i

u f

2RS2
�μkν

]
. (213)

Here the angle θ is the latitude on S2 as in (189) while �2 is
defined in (194). The indices μ, ν run over i, ī . The arbitrary
function f (zz̄) that specifies the background gauge multiplet
configuration (20) appears only in Q-exact terms.

D Squashing

We can squash the two sphere maintaining a U (1) isometry
by multiplying the radius RS2 by a positive function c(zz̄).
By rescaling RS2 the values of the function c at the two poles
can be taken to be w2 = c(∞) = c(0)−1. The maximum
number of Killing spinors satisfying (10) is reduced to two.
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For instance

ζ∗ =
(

ζ−
ζ+

)
=

√
c(zz̄)√

(1 + zz̄)

(
w
i
w
z

)
,

ζ̃∗ =
(

ζ̃−
ζ̃+

)
=

√
c(zz̄)√

(1 + zz̄)

( i
w
z̄

w

)
. (214)

satisfy the Killing spinor equations for vanishing background
U (1)R connection and

H = iw2

RS2

c − (1 + zz̄)c′

c2 , H̃ = i

w2RS2

c + (1 + zz̄)c′

c2 .

(215)

The spinors bilinears (11), built from the two Killing spinors
above are

v = i

RS2
(z∂z − z̄∂z̄), s = zz̄

1 + zz̄

c

w2 , s̃ = 1

1 + zz̄
w2c.

(216)

Near the z = 0 pole the spinors (214) and the supercharge
corresponding to δQ = δζ + δζ̃ approach those correspond-

ing to the Ā topological twist. Similarly near the z = ∞
pole the supercharge approaches that corresponding to the A
topological twist.

D.1 Background gauge field

Here we present the supersymmetric background gauge
field configurations that preserve both supercharges on the
squashed sphere. Introducing a function f (zz̄) we can set

A = − iu

2

(
1 − w2 + w−2zz̄

1 + zz̄
c f

) (
dz

z
− dz̄

z̄

)
,

σ = i
u f

RS2
, σ̃ = i

u f

RS2
,

D = u f

cR2
S2

w2 + w−2

2
− u

(1 + zz̄)(w2 − w−2zz̄)

2c2R2
S2

(c f )′,

(217)

where u is a complex constant. The anticommutator of δζ̃

and δζ reduces to

{δζ̃ , δζ }φ = iLvφ + 1

2RS2
(r + 2qu) φ. (218)

Hence neither the squashing profile c(zz̄) nor the function
f (zz̄) appear in the superalgebra.
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