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Abstract Jet flavour identification algorithms are of
paramount importance to maximise the physics potential of
future collider experiments. This work describes a novel set
of tools allowing for a realistic simulation and reconstruction
of particle level observables that are necessary ingredients to
jet flavour identification. An algorithm for reconstructing the
track parameters and covariance matrix of charged particles
for an arbitrary tracking sub-detector geometries has been
developed. Additional modules allowing for particle identi-
fication using time-of-flight and ionizing energy loss infor-
mation have been implemented. A jet flavour identification
algorithm based on a graph neural network architecture and
exploiting all available particle level information has been
developed. The impact of different detector design assump-
tions on the flavour tagging performance is assessed using
the FCC-ee IDEA detector prototype.
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1 Introduction

Precision measurements of standard model (SM) parameters
are key objectives of the physics program of future lepton and
hadron machines [1–6]. In particular, the measurement of the
Higgs couplings to bottom (b) and charm (c) quarks, and glu-
ons (g) [7–13], the Higgs self-coupling [14] and the precise
characterisation of top quark properties, such as the top quark
mass [15] and its electroweak couplings [16,17] require an
efficient reconstruction and identification of hadronic final
states. Being able to efficiently identify the flavour of the par-
ton that initiated the formation of a jet, known as jet flavour
tagging, is therefore critical for the success of the physics pro-
gram of future electroweak factories [18]. The large statistics
of hadronic Z boson decays (> 1011) at future lepton and
hadron machines would provide copious control samples to
calibrate jet tagging algorithms in data.

Jets originating from b and c quark decays contain a b or
c hadron that typically travels a macroscopic distance before
decaying into lighter hadrons. Compared to b, c, up or down
jets (collectively referred to as ud or light jets in what fol-
lows), strange quark (s) jets contain a larger fraction of s
mesons and baryons. Gluons (g) carry a larger colour charge
than quarks and thus tend to produce jets with a large parti-
cle multiplicity. Quarks have a harder fragmentation function
compared to g, which results in a larger fraction of the jet
momentum carried by a smaller fraction of the constituents.
Jet flavour tagging algorithms aim at identifying these char-
acteristic end-products of the fragmentation and hadroniza-
tion of the initial parton.

The first b and c quark tagging algorithms were devel-
oped at LEP [19,20] and the Tevatron [21,22]. These algo-
rithms typically rely on the detector capability to identify
and measure charged tracks with a significant displacement
(cτ ∼ 500 (150) µm) from the beam axis originated from
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long lived B (D) meson weak decays. On the other hand,
tracks from the charged hadrons produced in ud quark decays
feature a small distance at closest approach to the interaction
point. Therefore, in the case of b and c tagging, tracks are
typically clustered to reconstruct possible secondary vertices
(SVs). However, c tagging is more challenging than b tag-
ging, due to its properties laying between the b and ud or g
jets. The track multiplicity and the mass of the SV (expected
to be large for heavy flavour jets), together with the pres-
ence of a non-isolated electron or muon indicating a semi-
leptonic heavy flavour decay, are also used as discriminat-
ing variables in traditional heavy quark tagging algorithms.
Such taggers, widely used in the early days of current LHC
experiments [23–26] and future e+e− experiments [27,28]
are implemented by directly applying a selection on a com-
bination of the tracks and SV properties, by constructing a
likelihood ratio or a multi-variate discriminant based on a set
of jet-level properties.

Recently, a new generation of advanced machine learning
based jet tagging algorithms has been developed [29–32],
bringing more than an order of magnitude improvement in
background rejection compared to the traditional approaches
in heavy flavour and g tagging. Three are the primary rea-
sons for this success. First, significant advancements in the
architecture of the neural networks used, as well as new jet
representations that allow to better capture the jet properties
have been achieved. Second, these algorithms exploit directly
low-level information, e.g., from reconstructed particles (as
in the Particle-Flow algorithm [33]) or even reconstructed
hits, compared to traditional methods. This allows to explore
in much more depth the true potential of the detectors and the
event reconstruction, and also better capture the jet proper-
ties compared to algorithms relying on jet-level observables.
Moreover, the nature of each of the jet constituents, via parti-
cle identification techniques (PID), is expected to provide an
additional useful handle in discriminating between different
jet species. Powerful particle identification capabilities based
on ionisation energy loss (via dE/dx or cluster counting),
or via precise time-of-flight measurements, are expected to
be highly beneficial for jet flavour tagging, in particular for
s tagging where the identification of charged kaons is cru-
cial [34–36]. Finally, the developments in computing, e.g.,
graphics processing units, and the availability of very large
Monte Carlo simulated and collision data samples, were crit-
ical for the development of these advanced methods.

In this paper we present a general framework for building a
jet flavour tagging at future colliders using fast detector sim-
ulation and state-of-the art machine learning techniques. A
major goal of the present work has been to allow for the eval-
uation of the impact of specific detector design options on the
jet flavour tagging performance (and in turn on the physics
potential) in an efficient yet precise way. To this end, we
have implemented two key additions to the official Delphes

fast simulation framework. The TrackCovariance [37],
described in Sect. 2, which allows for a simple defini-
tion of a tracker geometry, and the fast simulation and the
reconstruction of the parameters and covariance matrix of
charged particles tracks. The TimeOfFlight [38] and
ClusterCounting [39], described in Sect. 3, open up
the possibility to model particle identification in Delphes.
Section 4 describes the input observables and the implemen-
tation of the jet flavour identification algorithm. The tagging
algorithm is based on ParticleNet [40], using state-of-the-
art jet representation and a graph neural network (GNN)
architecture. The performance of the algorithm is evaluated
using one of the FCC-ee/CEPC baseline detector concepts,
the IDEA [1,41,42] detector. Variations around the baseline
using Higgs decays taken from a Higgsstrahlung sample at√
s = 240 GeV are discussed. Finally, a discussion of the

results, together with limitations of the current approach and
perspectives for future work are presented in Sect. 5.

2 Fast tracking simulation

The tracking system is a major part of modern detectors for
high energy physics experiments and arguably the most rel-
evant for jet flavour tagging since it is responsible for recon-
structing and identifying charged particles. The design of
this system, its optimization, and the evaluation of its perfor-
mance on many specific physics benchmarks is a fundamen-
tal step in the planning of future experiments. To this end,
we have developed and included in Delphes, a versatile and
modular framework to easily study different detector con-
figurations, and provide for each of those a fast simulation
of the tracking performance. The corresponding module is
namedTrackCovariance [37]. In this section we present
the general implementation of the algorithm, while technical
details on the speed optimisation and randomisation can be
found in Appendix A1.

While various attempts to calculate the track resolution
analytically have been made (see for instance [43]), they
usually make highly simplifying assumptions such as equal
spacing and equal detector resolution, that make them unsuit-
able to use for a realistic combined tracking system. The
tracking system geometry is described in terms of layers.
Only two types of layer geometries are considered: cylinders
coaxial with the beam axis and planar disks orthogonal to
the beam axis (z-direction). Each layer can be either asso-
ciated to a measurement with a given resolution or else be
just included to describe passive material in the system. An
accurate description of the material inside the tracking vol-
ume is important to estimate appropriately the contribution of
multiple coulomb scattering to the track resolution. Several
measurement geometries are allowed: axial or stereo strips
and wires, and pixels.
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The tracking system is located inside the solenoid mag-
net generating a constant field, B, directed parallel to the
z-direction. With these assumptions, charged tracks follow a
helix trajectory that is described with a set of five parameters:
�α = (D, ϕ0, C, z0, λ). These parameters are defined in the
point of closest approach (PCA) of the track to the z-axis; D
is the signed transverse distance of the PCA from the z-axis,
ϕ0 is the track azimutal angle, C is the signed half curva-
ture, z0 the z-coordinate of the PCA and λ the cotangent of
the track polar angle. Given a charged particle originating
at �x with momentum �p and charge Q, the parameters �α are
uniquely defined, as is the associated trajectory.

During its motion the charged particle will cross some
of the layers described in the geometry and is reconstructed
as a track provided that it produces at least 6 hits.1 At each
crossing the particle will undergo small random changes of
its direction due to multiple scattering and, in the case of
measurement layers, a generalized coordinate, d∗, will be
measured with an uncertainty given by the specific detector
resolution. The track parameters are reconstructed from the
measured coordinates by minimizing the following χ2 with
respect to the track parameters �α. The χ2 is defined as:

χ2 = ( �d − �d∗)t S−1( �d − �d∗), (2.1)

where �d∗ is the array of measured coordinates and �d that of
predicted coordinates, that can be computed from the track
parameters �α and the geometry of each measurement layer. S
is the covariance matrix of all the measurements and includes
contributions from the detector resolution and from the mul-
tiple scattering. The superscript t indicates the transpose of a
vector or a matrix. Assuming �d0 to be the array of predicted
coordinates for which the χ2 is minimized, then for small
variations of the track parameters relative to this minimum,
δ�α, we have:

�d � �d0 + ∂ �d
∂ �α δ�α = �d0 + Aδ�α, (2.2)

where A is the derivative matrix. Including Eq. (2.2) in
Eq. (2.1) we obtain:

χ2 = ( �d0 − �d∗ + Aδ�α)t S−1( �d0 − �d∗ + Aδ�α). (2.3)

Differentiating with respect to the track parameters we obtain
the track parameter covariance matrix, C :

C−1 = 1

2

∂2χ2

∂ �α∂ �α = At S−1A. (2.4)

1 The minimum number of hits for a track to be reconstructed is a
configurable parameter in Delphes.

This equation highlights the key ingredients to estimate the
track covariance matrix; the derivative matrix and the covari-
ance matrix of the measurements. The former is straightfor-
ward and can be derived for every type of measurement given
the track equation. The latter requires the combination of two
elements: the intrinsic detector resolution and the multiple
scattering contribution, as shown in the following equation:

Si j = σ 2
i δi j + Mi j , (2.5)

where the indices i and j identify the measurement layers, σi
is the detector resolution for layer i and Mi j is the multiple
scattering contribution. The Mi j includes contributions from
all scattering layers below the smallest of the two indices, as
shown in the following equation:

Mi j =
∑

1≤k<min(i, j)

(Li − Lk)(L j − Lk)θ
2
k (i, j), (2.6)

where Li is the distance traveled by the track to the layer i
and θk(i, j) the standard deviation of the multiple scattering
angle generated by layer k after correcting for projection
factors specific for layers i and j .

Once A and S have been determined for a given track,
the parameter covariance matrix can be computed analyti-
cally [44] using Eq. (2.4). The obtained resolution as a func-
tion of momentum of the track parameters (pT, D, z0,θ ) for
two different reference detector configurations proposed for
a future e+e− collider is shown in Fig. 1. In this case, it
clearly appears that the detector transparency is more impor-
tant than the single point detector resolution, in particular
for heavy flavor tagging task, that involve reconstructing and
identifying mostly few GeV tracks.

3 Particle identification

Particle identification techniques can play a major role in
the identification of the jet flavour. In particular, as will be
discussed in Sect. 4, s jets contain a significant fraction of
charged kaons (K±) compared to u or d jets that are mostly
composed of charged pions (π±). Given that the perfor-
mance of such algorithms heavily depends on explicit detec-
tor design choices, it is crucial to be able to first simulate
appropriately the detector response and then to implement
such particle identification algorithms.

Two complementary particle identification techniques
have been included in the Delphes fast-simulation. The pre-
cise measurement of the time of arrival of tracks in the outer-
most part of the tracking volume, together with the momen-
tum and the path length, provide an indirect measurement of
the particle mass via the well known time-of-flight method.
This method has been implemented in the TimeOfFlight
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Fig. 1 Track parameter resolution for the IDEA and CLD detector concepts for FCC-ee [1]. The dashed lines in the top left plot show the multiple
scattering contribution

module [38]. The cluster counting method, dN/dx , imple-
mented in the ClusterCounting module [39], consists
in counting the multiplicity of the primary ionization clusters
produced along the track in gaseous detectors, which together
with the particle momentum, can also be used to infer the par-
ticle mass. In this section we discuss the implementation of
these two methods within the simulation framework.

3.1 Time-of-flight

The time-of-flight (tflight) of a particle can be expressed as:

tflight ≡ tF − tV = L

β
= L

√
p2 + m2

p
= LE√

E2 − m2
, (3.1)

where tF is the measured time after propagation, tV is the
particle time of production at vertex, L is total path length,
and p, E and m are the momentum, energy and mass of
the particle, respectively. Provided that the quantities L and
p (or E) and tV can be measured, the measurement of tflight

provides an estimate for the particle mass and thus a powerful
handle for particle identification.

For charged particles the reconstructed mass is given by:

m(c)
t.o.f. = p

√(
tflight

L

)2

− 1. (3.2)
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The initial position (and therefore L) and the particle
momentum p are reconstructed by means of the inner/outer
tracking system, and simulated with the procedure described
in Sect. 2. The time of a particle production at vertex tV
can be estimated indirectly, with the following procedure.
Assuming that the beamspot has a small time (σB,t) and lon-
gitudinal (σB,z) spread compared to the precision of the tim-
ing measurement device, the time of the primary vertex can
be simply taken as tPV = 0. However, if the particle origi-
nates from a highly displaced vertex (e.g. from KS or 
.),
assuming tV = 0 can lead to a severe over-estimate of tflight.
A more accurate estimate for the vertex time corresponds
to tV = rV

βV
, where rV is the distance of the vertex to the

origin and βV is the vertex velocity, computed from its out-
going particles. In the current study we assume we are able to
reconstruct the initial time at vertex perfectly and therefore
we take the initial time from Monte Carlo simulation. We
define the significance (in number of standard deviations) of
K/π hypothesis separation as:

Nσ = 2
μπ − μK

σπ + σK
. (3.3)

The time of flight distribution of charged Kaons and Pions
emitted at 90 ◦ is shown in Fig. 2a, assuming a 30 ps timing
resolution, which allows for an efficient 3σ K/π discrimina-
tion for momenta p < 3.5 GeV. For reference, a 3 ps timing
resolution leads to 3σ separation for momenta p < 10 GeV.

For neutral particles the mass can be reconstructed from
the energy measurement provided by the calorimeters:

m(n)
t.o.f. = E

√

1 −
(

L

tflight

)2

. (3.4)

At low momenta, where the time-of-flight method is
expected to provide good identification capabilities, the
calorimetric energy measurement is sub-optimal and leads
to poor mt.o.f. resolution for neutral particles compared to
charged particles. Moreover, the vertex time determination
is inaccessible for neutral particles. The assumption tPV = 0
for all neutral particles leads to an additional uncertainty on
the mt.o.f. estimate. As an example, the reconstructed mt.o.f.

for K±, π±, KL , protons and neutrons with momenta p = 1
GeV, where separation is close to optimal,2 is shown in
Fig. 2b.

3.2 Cluster counting

The cluster counting technique is expected to provide
improved particle identification relative to the more com-

2 We note that in the case of the FCC-ee the typical momenta of charged
particles in hadronic Higgs decays are in the range of a few GeV.

monly used dE/dx methods in large drift chambers or
TPCs [45,46]. In addition it does not require the tuning of
truncated mean algorithms to suppress the large Landau tails
present in the dE/dx distribution. The number of ioniza-
tion clusters per unit length is obtained from a very detailed
simulation program, Heed++ [47], now fully integrated into
Garfield++ [48]. An array of number of ionization clus-
ters per unit length for several values of βγ is obtained from
Garfield++ and used to interpolate the average cluster den-
sity. The total mean number of clusters is found by multiply-
ing for the track length in the chamber. Finally the observed
cluster number is obtained by extraction over a Poisson dis-
tribution with that mean. Four common gas options are avail-
able: pure Helium or Argon, He 90% + Isobutane 10%, Argon
50% + Ethane 50%. This library can be easily extended if
needed to a larger collection of gas mixtures.

In Fig. 3a the potential for K/π separation is shown for
a He 90% + Isobutane 10% mixture over a wide range of
momenta (2 < p < 30 GeV) . The combination of the
cluster counting and time-of-flight techniques is displayed
in Fig. 3b and shows an efficient separation of K± / π±
separation (≥ 3σ ) for momenta p < 30 GeV.

4 Jet flavour identification

In this section a novel jet tagging algorithm is presented. The
jet flavour discrimination uses reconstructed observables at
the level of the jet constituents. For simplicity, the jet flavour
discriminant is built and evaluated using e+e− collisions
reconstructed with the IDEA detector concept and will thus
be referred as ParticleNetIdea. While the obtained per-
formance is specific to the clean e+e− environment and the
explicit detector specifications, the inputs and the construc-
tion of the discriminant itself are general. We first discuss
the event generation and reconstruction details, then intro-
duce the particle-level input observables and the architecture
of the neural network discriminant. Finally we address the
tagger performance and its robustness with respect to differ-
ent detector choices.

4.1 Simulated data

The simulated sample consists of e+e− → ZH events
produced at a center of mass energy

√
s = 240GeV. The

Higgs bosons decay to H → gg or H → qq̄ , where
q = (u, d), s, c, b with relative fraction as expected for a
SM Higgs boson with m = 125 GeV, whereas the Z bosons
always decay to a pair of neutrinos. The hard scattering pro-
cess is generated withMadGraph5_aMC@NLO [49], while
Pythia8 [50] is used for modeling the decay, parton-shower
and hadronisation processes. Five different samples, corre-
sponding to each jet flavour category (ud, s, c, b, g) containing
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(a) (b)

Fig. 2 a Time-of-flight for K± and π± track at θ = 90 ◦ as a function of momentum in the IDEA detector drift chamber30. b Reconstructed mt.o.f.
for K±, π±, KL , protons and neutrons with momenta p = 1 GeV

(a) (b)

Fig. 3 a Number of cluster distribution of charged pions and kaons for 90 ◦ tracks in the IDEA detector drift chamber as function of momentum;
b K/π separation in number of σ as a function of the particle momentum using the dN/dx and time-of-flight methods

106 events each (or equivalently 2 × 106 jets) are used for
the training. Final state particles are reconstructed with the
Delphes PF algorithm. In particular, charged particles are
reconstructed using the latest TrackCovariance module
described in Sect. 2, and the time-of-flight and number of ion-
isation clusters per unit length (dN/dx), are reconstructed
using theTimeOfFlight andClusterCountingmod-
ules, described in Sects. 3.1 and 3.2, respectively. A charged
particle is reconstructed provided that it produces at least 6
hits within the tracking volume. Neutral particles (photons
and neutral hadrons) are reconstructed by the PF algorithm

implemented in the DualReadoutCalorimeter mod-
ule [51]. The time-of-flight (and corresponding reconstructed
mass mt.o.f.) of neutral hadrons is also included and assumes
a 100 ps resolution, as opposed to 30 ps assumed for charged
particles. The baseline simulation setup assumes the nomi-
nal IDEA detector concept [41,42]. Jets are clustered with
the FastJet- 3.3.4 [52] package using the e+e− generalized
kT algorithm [53,54] with parameter p = −1 (for infrared
safety) and R = 1.5 to maximise the energy collected in the
jet. This set of parameters leads to an optimal Higgs di-jet
invariant mass resolution.

123



Eur. Phys. J. C (2022) 82 :646 Page 7 of 14 646

4.2 Input features

The jet constituents in the form of PF candidates are used
as inputs to the ParticleNetIdea algorithm. For each PF
candidate we define a set of input observables (features) that
are summarized in Table 1. The first set of inputs, denoted as
kinematics, uses features derived from the 4-momentum of
each jet constituent. These include the energy measurement
of the constituent relative to the jet energy and the direction of
the jet constituents relative to the jet momentum. The second
set of features, labelled asdisplacement, includes observables
related to the longitudinal and transverse displacement of
the jet constituents which are more relevant to identify jets
originating from the hadronization of the b and c quarks.
Finally, the third set of inputs, labelled as identification, refers
to the nature of each particle using the PF reconstruction
and the particle identification (PID) algorithms presented in
Sect. 3.

The total number of reconstructed jet constituents, shown
in Fig. 4a, is typically larger for g jets compared to quark jets
due to their different color factor. We note that the particle
multiplicity is shown here for illustrative purposes only as
it is not used directly as input to ParticleNetIdea since
it is a jet-based variable, while only particle-level observ-

ables are used. The remaining distributions of Fig. 4 corre-
spond to particle-level observables and are calculated using
the charged constituent with the largest displacement. Fig-
ure 4b displays the relative energy of the jet constituent with
respect to the jet energy. Gluon jets populate lower values of
this observables, indicating that the jet energy is more demo-
cratically distributed among the constituents. Figure 4b dis-
play observables relevant for b and c quark identification,
such as SIP2D (left) and its significance SIP2D/σ2D (right) as
defined in Table 1. As expected, in b jets, and to smaller extent
in c jets, a significantly larger displacement is observed com-
pared to the other jet flavours. Displaced particles can also
be present in other jet flavours, e.g. from long-lived K 0

S or 


hadrons decays, but represent a much smaller fraction.

4.3 The flavour tagging algorithm

The ParticleNetIdea algorithm is based on the
ParticleNet jet tagging algorithm [40]. ParticleNet uses
an advanced network architecture, based on Graph Neu-
ral Networks (GNN) that first developed in the context of
proton–proton collisions at the LHC. A novel jet representa-
tion was utilized in ParticleNet, where jets are represented
as an un-ordered set of particles. As shown in Refs. [40,55–

Table 1 Set of input variables

Variable Description

Kinematics

Econst/Ejet Energy of the jet constituent divided by the jet energy

θrel Polar angle of the constituent with respect to the jet momentum

φrel Azimuthal angle of the constituent with respect to the jet momentum

Displacement

dxy Transverse impact parameter of the track

dz Longitudinal impact parameter of the track

SIP2D Signed 2D impact parameter of the track

SIP2D/σ2D Signed 2D impact parameter significance of the track

SIP3D Signed 3D impact parameter of the track

SIP3D/σ3D Signed 3D impact parameter significance of the track

d3D Jet track distance at their point of closest approach

d3D/σd3D Jet track distance significance at their point of closest approach

Cij Covariance matrix of the track parameters

Identification

q Electric charge of the particle

mt.o.f. Mass calculated from time-of-flight

dN/dx Number of primary ionisation clusters along track

isMuon If the particle is identified as a muon

isElectron If the particle is identified as an electron

isPhoton If the particle is identified as a photon

isChargedHadron If the particle is identified as a charged hadron

isNeutralHadron If the particle is identified as a neutral hadron
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(a) (b)

(c) (d)

Fig. 4 Shape comparison of a set of representative observables relevant for jet flavour identification. The different colors correspond to different
jet flavours. The FCC-ee IDEA detector concept is used. In these histograms, the first and last bin correspond to the underflow and overflow entries

66], this provides a more natural jet representation compared
to alternative approaches based on jet images [67–76] or
ordered lists of jet constituents [77–85] and translates to
an improved tagging performance. A hierarchical learning
approach using convolution operations [86] is adopted. Dif-
ferent convolutional layers are used to learn features at differ-
ent scales: the shallower layers explore local neighborhood
information, whereas more global structures are learned by
deeper layers. The jet constituents are represented as a graph,
where each node of the graph is a jet constituent, and rela-
tionships between the particles are the edges of the graph.
Each node has a set of features related to constituent proper-

ties. However, the graph is not static, rather it is updated after
each convolutional operation. The ultimate goal is to group
jet constituents according to their proximity in the multi-
dimensional space defined by the learned features.

The currentParticleNetIdea implementation uses up to
75 constituents for each jet, sorted by the highest momentum,
which typically correspond to more than 99% of the total
jet momentum. The algorithm is designed to discriminate
between five orthogonal jet classes: ud, s, c, b, and g jets.
The training is performed using the Weaver package [87]
on 10M jets (2M per category) over 30 epochs on a NVIDIA
GTX 1080Ti GPUs. The network outputs 5 real numbers
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Di (i = g, �(ud), s, c, b) between 0 and 1 (discriminants),
one for each jet category. Approximately 1M jets are used to
evaluate the ParticleNetIdea performance. For every jet
flavour pair (i, j), the binary discriminant is constructed as:

Di, j = Di

Di + Dj
, (4.1)

where Di( j) are the output scores of the classes i and j . For
example, Db,c represents the binary discriminant for tagging
b quark jets against c quark jets. The efficiency of tagging
flavour i as function of the probability of mis-identifying the
jet as flavour j (mistag rate) can be constructed by computing
the probability of selecting jets that satisfy Di, j > α, for α ∈
[0, 1]. The receiver operating characteristic (ROC) curve, i.e.
the mistag rate as a function of the tagging efficiency (for
every α), is used as a figure of merit for evaluating the tagger
performance for every jet flavour.

4.4 Results

The nominal ParticleNetIdea flavour tagging perfor-
mance is shown in Fig. 5 for different jet flavours. The b
tagging performance is shown in Fig. 5a. The most effec-
tive discrimination is observed against ud jets since these
contain mostly tracks with no displacement. For high b tag-
ging efficiency, g jet rejection is more effective than c jet
(with both being less effective than u, d or s jet rejection).
Conversely at small tagging efficiencies (i.e. for high tag-
ging purity), c jet rejection becomes more effective than g
jet rejection due to a sizeable probability for g to produce
bb̄ splittings. For c tagging, at high efficiencies, b jet dis-
crimination is the most effective (due to a large difference of
lifetime between B and D mesons), followed by ud and g jet
rejection. For large c tagging purity (i.e. at low efficiency and
high background rejection), we observe that b jet rejection
becomes more challenging than ud jet rejection, which is
expected since a fraction of B meson have inherently a com-
parable decay length to D mesons. We also observe that in
this regime g → cc̄ splittings result into more challenging g
rejection. In Fig. 5c the s tagging performance is shown. The
most effective discrimination is observed against b jets fol-
lowed by c jets due to the large displacement of their tracks.
The mistag rate against g and ud jets is substantially larger
since displacement observables are not discriminating, and
the algorithm relies mainly on PID-related variables. Rejec-
tion of g jet is more effective than ud jet one since s and ud
jets have similar particle multiplicities. Finally, the g tagging
performance is displayed in Fig. 5d. Rejection of ud jets is
the most challenging, due to similar particle displacement
and nature, followed by s, c and b jet rejection.

The modularity of the framework enables the study of the
algorithm performance for different detector design choices.

In this work, we report two representative examples of pos-
sible detector design variations. Figure 6a shows the impor-
tance of particle identification information in discriminating
s jets from other jet flavours. Exploiting PID information with
the nominal dN/dx and tflight resolutions yields to approxi-
mately an order of magnitude reduced ud jet mistag rate for
the same s tagging efficiency. A timing detector providing an
improved tflight resolution of 3 ps for charged particles, yields
a small, but detectable improvement compared to the more
realistic scenario of 30 ps. The performance obtained using
MC truth information for PID (“ideal PID”) is also shown for
reference. In that case only a marginal improvement in per-
formance is observed, suggesting that the existing detector
configurations and PID algorithms are very close to opti-
mal. We also note that the improvement brought by neutral
particle timing is limited due a much worse nominal timing
resolution (100 ps) from the calorimetric timing measure-
ment and most importantly because the contribution coming
from neutral massive particles is at most 10% of the total jet
energy. We also observe that the usage of PID information
brings only modest improvement in other jet flavour tasks.

The distance of the first vertex detector layer to the inter-
action point is the most important parameter for achieving
optimal transverse impact parameter resolution and hence b
and c tagging performance. While the nominal IDEA vertex
detector provides already an excellent resolution (three lay-
ers, with the innermost layer located at 1.5 cm), we study the
impact of introducing an additional fourth layer in the pixel
detector, closer to the beam pipe, located at 1 cm from the
interaction point, on c jet identification. The corresponding
performance is displayed in Fig. 6b. The largest improve-
ment is observed in the discrimination against ud jets, where
for the same εS, εB is reduced by almost a factor of two.
Smaller, yet important improvement, is seen in the discrimi-
nation against other jet flavours. The impact of an additional
pixel layer was studied for other jet flavours treated as signal
without significant improvement in the performance.

5 Conclusion and perspectives

Jet flavour tagging will be a crucial tool for maximising
the physics potential at future colliders. This work builds
on the design of a fast detector simulation framework, and
provides an efficient way to study the impact of different
detector design options to the jet flavour tagging problem. A
fast tracking module was developed, which allows to easily
configure a full tracking geometry including material effects
and compute both the charge particle track parameters and
the track covariance matrix. Two algorithms that allow for
particle identification, the time-of-flight and cluster counting
with respectively configurable time resolution and gas com-
position have also been added. The framework is designed to
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(a) (b)

(c) (d)

Fig. 5 Evaluation of ParticleNetIdea performance in terms of a
receiver operating characteristic (ROC) curve for the identification of
different jet flavours i.e., b quarks (upper left), c quarks (upper right),

s (lower left), and g (lower right). The different jet flavours considered
background are indicated on the labels. The IDEA detector configura-
tion is used

(a) (b)

Fig. 6 Evaluation of ParticleNetIdea performance of the jet flavour identification for various detector assumptions. a Impact of particle
identification on s tagging performance. b Impact of inner track geometry 3 vs 4 layers on c tagging
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provide flexibility for further studies, such as the exploration
of alternative clustering algorithms, beam energies and final
states.

Deep learning techniques based on GNNs have proven
very effective for classification problems such as jet flavour
tagging and boosted jet tagging at the LHC, and have not been
explored yet in the context of future experiments. This paper
presents the first algorithm for jet flavour tagging at future
e+e− colliders using state-of-the-art jet representation and
a GNN architecture. At such future machines where statis-
tics for Higgs processes are moderate, flavour taggers will
be required to perform well in the high tagging efficiency
regime while still providing excellent background rejection.
In this study we have investigated the impact of MIP timing
resolution and of an additional inner tracking layer on the tag-
ging performance. More studies are possible and should be
pursued: the interplay of MIP and calorimeter timing on PID
performance, the impact of the tracker design on displaced
tracks performance, KS and 
 reconstruction and hence on
s tagging, secondary vertex reconstruction on b, c and s tag-
ging. Another area for future studies is the calibration of
the algorithm. The algorithm is designed to have very little
dependence on the jet kinematics and therefore a calibration
strategy relying on a Z boson sample of unprecedented sta-
tistical power expected to be obtained in e+e− experiments
seems a promising avenue.

We stress that this study has possible limitations given the
inherent optimistic nature of fast simulation. In particular,
this tracking simulation include a simplistic particle-matter
description where multiple scattering is taken into account
to derive track parameter resolutions but no secondary emis-
sions are simulated (i.e. electron bremsstrahlung, photon con-
versions and hadronic interactions are neglected). A natural
next step is to assess the limitation of the fast detector simula-
tion framework by validating the results with events produced
using Full Simulation. Nevertheless, the set of tools presented
in this article should provide robust means for assessing an
upper limit of the achievable tagging performance and the
relative performance of alternative detector design choices
at future e+e− colliders. We also point out that the pre-
sented framework should allow for similar optimisations at
any future machine, including high energy proton–proton or
Muon colliders, acknowledging however that further caution
is required due to the lack of simulation of larger background
levels.
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Appendix A: Tracking speed optimisation and randomi-
sation

A.1 Speed optimization

The method for the computation of the covariance matrix,
presented in Sect. 2, involves the inversion of the covariance
matrix of the measurements, S. This matrix can be of order
larger than 100 in many practical applications and becomes
an obvious speed bottleneck. This problem is solved by gen-
erating a set of track covariance matrices in a transverse
momentum-polar angle grid during the initialization stage.
This grid is loaded in memory and then the track covariance
matrices are calculated by means of a bi-linear interpola-
tion over this grid. Care is taken to choose the grid nodes
so that the geometry transitions are mapped accurately. In
addition, since a linear combination of positive definite sym-
metric matrices is not always positive definite, we correct for
the loss of positive definiteness in the extremely rare cases
when this happens. A similar grid mapping the number of
measurement points on the track is used to define if the track
has a sufficient number of hits to be reconstructed.

This method works well for tracks originating close to the
primary interaction point, but clearly cannot describe cor-
rectly tracks that start inside the tracking volume such as, for
instance, tracks from the decay of long lived particle (such
as K 0

S or 
0). Since these track categories are a small frac-
tion of the total, the full covariance calculation can be used
without affecting much the overall simulation speed in these
cases.
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A.2 Randomization

Once the “true” track parameters and their covariance matrix
have been determined, pseudo-reconstructed tracks are gen-
erated by doing a Cholesky decomposition [88] of the covari-
ance matrix. This process transforms a symmetric positive
definite matrix,C , in the product of an upper diagonal matrix,
U , and its transposed: C = Ut ·U . A vector, �r , of five Gaus-
sian distributed random numbers with mean zero and stan-
dard deviation equal to one is generated and used to obtain
the resolution smeared track parameters, �α′:

�α′ = �α +Ut �r . (A.1)

It is easily shown that the covariance of the parameters �α′ is
exactly C :

< (�α′ − �α)(�α′ − �α)t >= Ut < �r �r t > U = Ut IU = C

(A.2)

where the angle brackets indicate the average over many ran-
dom number extractions.

References

1. FCC Collaboration, A. Abada et al., FCC-ee: the lepton collider:
future circular collider conceptual design report volume 2. Eur.
Phys. J. ST 228, 261 (2019)

2. CEPC Study Group Collaboration, M. Dong et al., CEPC
conceptual design report: volume 2—physics & detector.
arXiv:1811.10545 [hep-ex]

3. The international linear collider technical design report—volume
2: physics. arXiv:1306.6352 [hep-ph]

4. J. Tian, K. Fujii, Summary of Higgs coupling measurements with
staged running of ILC at 250 GeV, 500 GeV and 1 TeV. Technical
Report. LC-REP-2013-021, DESY (2013)

5. CLICdp, CLIC Collaboration, T.K. Charles et al., The compact
linear collider (CLIC)—2018 summary report. arXiv:1812.06018
[physics.acc-ph]

6. M. Benedikt, M. Capeans Garrido, F. Cerutti, B. Goddard, J. Gutle-
ber, J.M. Jimenez et al., Future circular collider study. Volume 3: the
hadron collider (FCC-hh). Technical Report. CERN-ACC-2018-
0058, CERN, Geneva (2018). https://cds.cern.ch/record/2651300

7. D.M. Asner et al., ILC Higgs white paper, in Community Summer
Study 2013: Snowmass on theMississippi (2013). arXiv:1310.0763
[hep-ph]

8. M. Thomson, Model-independent measurement of the e+ e− →
HZ cross section at a future e+ e− linear collider using hadronic Z
decays. Eur. Phys. J. C 76, 72 (2016). arXiv:1509.02853 [hep-ex]

9. H. Abramowicz et al., Higgs physics at the CLIC electron–positron
linear collider. Eur. Phys. J. C 77, 475 (2017). arXiv:1608.07538
[hep-ex]

10. J. de Blas et al., Higgs Boson studies at future particle colliders.
JHEP 01, 139 (2020). arXiv:1905.03764 [hep-ph]

11. F. An et al., Precision Higgs physics at the CEPC. Chin. Phys. C
43, 043002 (2019). arXiv:1810.09037 [hep-ex]

12. L. Borgonovi, S. Braibant, B. Di Micco, E. Fontanesi, P. Har-
ris, C. Helsens et al., Higgs measurements at FCC-hh. Technical

Report. CERN-ACC-2018-0045, CERN, Geneva (2018). https://
cds.cern.ch/record/2642471

13. M. Koratzinos et al., TLEP: a high-performance circular e+e−
collider to study the Higgs boson, in 4th International Particle
Accelerator Conference (2013), p. TUPME040. arXiv:1305.6498
[physics.acc-ph]

14. M.L. Mangano, G. Ortona, M. Selvaggi, Measuring the Higgs self-
coupling via Higgs-pair production at a 100 TeV p-p collider. Eur.
Phys. J. C 80, 1030 (2020). arXiv:2004.03505 [hep-ph]

15. K. Seidel, F. Simon, M. Tesar, S. Poss, Top quark mass measure-
ments at and above threshold at CLIC. Eur. Phys. J. C 73, 2530
(2013). arXiv:1303.3758 [hep-ex]

16. P. Janot, Top-quark electroweak couplings at the FCC-ee. JHEP
04, 182 (2015). arXiv:1503.01325 [hep-ph]

17. M.L. Mangano, T. Plehn, P. Reimitz, T. Schell, H.-S. Shao, Mea-
suring the top Yukawa coupling at 100 TeV. J. Phys. G 43, 035001
(2016). arXiv:1507.08169 [hep-ph]

18. P. Azzi, L. Gouskos, M. Selvaggi, F. Simon, Higgs and top physics
reconstruction challenges and opportunities at FCC-ee. Eur. Phys.
J. Plus 137, 39 (2022). arXiv:2107.05003 [hep-ex]

19. DELPHI Collaboration, J. Abdallah et al., b tagging in DELPHI at
LEP. Eur. Phys. J. C 32, 185 (2004). arXiv:hep-ex/0311003

20. J. Proriol, A. Falvard, P. Henrard, J. Jousset, B. Brandl, Tagging
B quark events in ALEPH with neural networks: comparison of
different methods. Int. J. Neural Syst. 3(Supp.), 267 (1991)

21. D0 Collaboration, V.M. Abazov et al., b-Jet identification in
the D0 experiment. Nucl. Instrum. Methods A 620, 490 (2010).
arXiv:1002.4224 [hep-ex]

22. J. Freeman, T. Junk, M. Kirby, Y. Oksuzian, T.J. Phillips, F.D.
Snider et al., Introduction to HOBIT, a b-jet identification tagger
at the CDF experiment optimized for light Higgs boson searches.
Nucl. Instrum. Methods A 697, 64 (2013). arXiv:1205.1812 [hep-
ex]

23. ATLAS Collaboration, Performance of the ATLAS secondary
vertex b-tagging algorithm in 7 TeV collision data. Technical
Report. ATLAS-CONF-2010-042, CERN, Geneva (2010). https://
cds.cern.ch/record/1277682

24. ATLAS Collaboration, Tracking studies for b-tagging with 7 TeV
collision data with the ATLAS detector. Technical Report. ATLAS-
CONF-2010-070, CERN, Geneva (2010). https://cds.cern.ch/
record/1281352

25. ATLAS Collaboration, Performance of impact parameter-based b-
tagging algorithms with the ATLAS detector using proton–proton
collisions at

√
s = 7 TeV. Technical Report. ATLAS-CONF-2010-

091, CERN, Geneva (2010). https://cds.cern.ch/record/1299106
26. CMS Collaboration, b-Jet identification in the CMS experiment.

Technical Report. CMS-PAS-BTV-11-004, CERN, Geneva (2012).
http://cds.cern.ch/record/1427247

27. M. Battaglia, Jet flavor identification at the CLIC multi TeV e+ e−
collider. AIP Conf. Proc. 578, 813 (2001). arXiv:hep-ex/0011099

28. T. Suehara, T. Tanabe, LCFIPlus: a framework for jet analysis in
linear collider studies. Nucl. Instrum. Methods A 808, 109 (2016).
arXiv:1506.08371 [physics.ins-det]

29. Shape ATLAS Collaboration, Performance of b-jet identification
in the ATLAS experiment. JINST 11, P04008 (2016)

30. Shape CMS Collaboration, Identification of heavy, energetic,
hadronically decaying particles using machine-learning tech-
niques. J. Instrum. 15, P06005 (2020). arXiv:arXiv:2004.08262

31. ATLAS Collaboration, Identification of jets containing b-hadrons
with recurrent neural networks at the ATLAS experiment. Tech-
nical Report. ATL-PHYS-PUB-2017-003, CERN, Geneva (2017).
https://cds.cern.ch/record/2255226

32. E. Bols, J. Kieseler, M. Verzetti, M. Stoye, A. Stakia, Jet
flavour classification using DeepJet. JINST 15, P12012 (2020).
arXiv:2008.10519 [hep-ex]

123

http://arxiv.org/abs/1811.10545
http://arxiv.org/abs/1306.6352
http://arxiv.org/abs/1812.06018
https://cds.cern.ch/record/2651300
http://arxiv.org/abs/1310.0763
http://arxiv.org/abs/1509.02853
http://arxiv.org/abs/1608.07538
http://arxiv.org/abs/1905.03764
http://arxiv.org/abs/1810.09037
https://cds.cern.ch/record/2642471
https://cds.cern.ch/record/2642471
http://arxiv.org/abs/1305.6498
http://arxiv.org/abs/2004.03505
http://arxiv.org/abs/1303.3758
http://arxiv.org/abs/1503.01325
http://arxiv.org/abs/1507.08169
http://arxiv.org/abs/2107.05003
http://arxiv.org/abs/hep-ex/0311003
http://arxiv.org/abs/1002.4224
http://arxiv.org/abs/1205.1812
https://cds.cern.ch/record/1277682
https://cds.cern.ch/record/1277682
https://cds.cern.ch/record/1281352
https://cds.cern.ch/record/1281352
https://cds.cern.ch/record/1299106
http://cds.cern.ch/record/1427247
http://arxiv.org/abs/hep-ex/0011099
http://arxiv.org/abs/1506.08371
http://arxiv.org/abs/2004.08262
https://cds.cern.ch/record/2255226
http://arxiv.org/abs/2008.10519


Eur. Phys. J. C (2022) 82 :646 Page 13 of 14 646

33. CMSCollaboration, A.M. Sirunyan et al., Particle-flow reconstruc-
tion and global event description with the CMS detector. JINST 12,
P10003 (2017). arXiv:1706.04965 [physics.ins-det]

34. J. Duarte-Campderros, G. Perez, M. Schlaffer, A. Soffer, Probing
the Higgs–strange-quark coupling at e+e− colliders using light-jet
flavor tagging. Phys. Rev. D101, 115005 (2020). arXiv:1811.09636
[hep-ph]

35. Y. Nakai, D. Shih, S. Thomas, Strange jet tagging.
arXiv:2003.09517 [hep-ph]

36. SLD Collaboration, K. Abe et al., First direct measurement of the
parity violating coupling of the Z0 to the s quark. Phys. Rev. Lett.
85, 5059 (2000). arXiv:hep-ex/0006019

37. TrackCovariance module in Delphes. https://github.com/
delphes/delphes/blob/master/modules/TrackCovariance.cc

38. TimeOfFlight module in Delphes. https://github.com/
delphes/delphes/blob/master/modules/TimeOfFlight.cc

39. ClusterCounting module in Delphes. https://github.com/
delphes/delphes/blob/master/modules/ClusterCounting.cc

40. H. Qu, L. Gouskos, ParticleNet: jet tagging via particle clouds.
Phys. Rev. D 101, 056019 (2020). arXiv:1902.08570 [hep-ph]

41. F. Bedeschi, A detector concept proposal for a circular e+e− col-
lider. PoS ICHEP2020, 819 (2021)

42. FCC-ee IDEA detector Delphes card. https://github.com/delphes/
delphes/blob/master/cards/delphes_card_IDEA.tcl

43. Z. Drasal, W. Riegler, An extension of the Gluckstern formulae
for multiple scattering: analytic expressions for track parameter
resolution using optimum weights. Nucl. Instrum. Methods A 910,
127 (2018). arXiv:1805.12014 [physics.ins-det]

44. F. Bedeschi, Fast tracking simulation. https://indico.cern.ch/event/
783429/contributions/3376675/attachments/1829951/3712651/
Oxford_April2019_V1.pdf

45. A.H. Walenta, The time expansion chamber and single ionization
cluster measurement. IEEE Trans. Nucl. Sci. 26, 73 (1979)

46. J.-F. Caron et al., Improved particle identification using cluster
counting in a full-length drift chamber prototype. Nucl. Instrum.
Methods A 735, 169 (2014). arXiv:1307.8101 [physics.ins-det]

47. I.B. Smirnov, Modeling of ionization produced by fast charged
particles in gases. Nucl. Instrum. Methods A 554, 474 (2005)

48. R. Veenhof, GARFIELD, recent developments. Nucl. Instrum.
Methods A 419, 726 (1998)

49. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mat-
telaer et al., The automated computation of tree-level and next-
to-leading order differential cross sections, and their matching to
parton shower simulations. JHEP 07, 079 (2014). arXiv:1405.0301
[hep-ph]

50. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten
et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun.
191, 159 (2015). arXiv:1410.3012 [hep-ph]

51. DualReadoutCalorimeter module in Delphes.
https://github.com/delphes/delphes/blob/master/modules/
DualReadoutCalorimeter.cc

52. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys.
J. C72, 1896 (2012). arXiv:1111.6097 [hep-ph]

53. M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algo-
rithm. JHEP 04, 063 (2008). arXiv:0802.1189 [hep-ph]

54. S. Catani, Y. Dokshitzer, M. Olsson, G. Turnock, B. Web-
ber, New clustering algorithm for multijet cross sections in
e+e−annihilation. Phys. Lett. B 269, 432 (1991)

55. V. Mikuni, F. Canelli, ABCNet: an attention-based method for par-
ticle tagging. Eur. Phys. J. Plus 135, 463 (2020). arXiv:2001.05311
[physics.data-an]

56. V. Mikuni, F. Canelli, Point cloud transformers applied to col-
lider physics. Mach. Learn. Sci. Technol. 2, 035027 (2021).
arXiv:2102.05073 [physics.data-an]

57. E.A. Moreno, O. Cerri, J.M. Duarte, H.B. Newman, T.Q.
Nguyen, A. Periwal et al., JEDI-net: a jet identification algorithm

based on interaction networks. Eur. Phys. J. C 80, 58 (2020).
arXiv:1908.05318 [hep-ex]

58. E.A. Moreno, T.Q. Nguyen, J.-R. Vlimant, O. Cerri, H.B. New-
man, A. Periwal et al., Interaction networks for the identification
of boosted H → bb decays. Phys. Rev. D 102, 012010 (2020).
arXiv:1909.12285 [hep-ex]

59. E. Bernreuther, T. Finke, F. Kahlhoefer, M. Krämer, A. Mück, Cast-
ing a graph net to catch dark showers. SciPost Phys. 10, 046 (2021).
arXiv:2006.08639 [hep-ph]

60. J. Guo, J. Li, T. Li, R. Zhang, Boosted Higgs boson jet reconstruc-
tion via a graph neural network. Phys. Rev. D 103, 116025 (2021).
arXiv:2010.05464 [hep-ph]

61. F.A. Dreyer, H. Qu, Jet tagging in the Lund plane with graph net-
works. JHEP 03, 052 (2021). arXiv:2012.08526 [hep-ph]

62. P. Konar, V.S. Ngairangbam, M. Spannowsky, Energy-weighted
message passing: an infra-red and collinear safe graph neural net-
work algorithm. arXiv:2109.14636 [hep-ph]

63. M.J. Dolan, A. Ore, Equivariant energy flow networks for jet tag-
ging. Phys. Rev. D103, 074022 (2021). arXiv:2012.00964 [hep-ph]

64. P.T. Komiske, E.M. Metodiev, J. Thaler, Energy flow networks:
deep sets for particle jets. JHEP 01, 121 (2019). arXiv:1810.05165
[hep-ph]

65. H. Serviansky, N. Segol, J. Shlomi, K. Cranmer, E. Gross, H. Maron
et al., Set2Graph: learning graphs from sets. arXiv:2002.08772
[cs.LG]

66. J. Shlomi, S. Ganguly, E. Gross, K. Cranmer, Y. Lipman, H. Ser-
viansky et al., Secondary vertex finding in jets with neural net-
works. Eur. Phys. J. C 81, 540 (2021). arXiv:2008.02831 [hep-ex]

67. J. Cogan, M. Kagan, E. Strauss, A. Schwarztman, Jet-images: com-
puter vision inspired techniques for jet tagging. JHEP 02, 118
(2015). arXiv:1407.5675 [hep-ph]
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